Merge branch 'next' into for-linus
[linux-block.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/pgtable.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77
78 extern unsigned long _get_SP(void);
79
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90         /*
91          * If we are saving the current thread's registers, and the
92          * thread is in a transactional state, set the TIF_RESTORE_TM
93          * bit so that we know to restore the registers before
94          * returning to userspace.
95          */
96         if (tsk == current && tsk->thread.regs &&
97             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98             !test_thread_flag(TIF_RESTORE_TM)) {
99                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100                 set_thread_flag(TIF_RESTORE_TM);
101         }
102 }
103
104 #else
105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
107
108 bool strict_msr_control;
109 EXPORT_SYMBOL(strict_msr_control);
110
111 static int __init enable_strict_msr_control(char *str)
112 {
113         strict_msr_control = true;
114         pr_info("Enabling strict facility control\n");
115
116         return 0;
117 }
118 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
119
120 /* notrace because it's called by restore_math */
121 unsigned long notrace msr_check_and_set(unsigned long bits)
122 {
123         unsigned long oldmsr = mfmsr();
124         unsigned long newmsr;
125
126         newmsr = oldmsr | bits;
127
128 #ifdef CONFIG_VSX
129         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130                 newmsr |= MSR_VSX;
131 #endif
132
133         if (oldmsr != newmsr)
134                 mtmsr_isync(newmsr);
135
136         return newmsr;
137 }
138 EXPORT_SYMBOL_GPL(msr_check_and_set);
139
140 /* notrace because it's called by restore_math */
141 void notrace __msr_check_and_clear(unsigned long bits)
142 {
143         unsigned long oldmsr = mfmsr();
144         unsigned long newmsr;
145
146         newmsr = oldmsr & ~bits;
147
148 #ifdef CONFIG_VSX
149         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
150                 newmsr &= ~MSR_VSX;
151 #endif
152
153         if (oldmsr != newmsr)
154                 mtmsr_isync(newmsr);
155 }
156 EXPORT_SYMBOL(__msr_check_and_clear);
157
158 #ifdef CONFIG_PPC_FPU
159 static void __giveup_fpu(struct task_struct *tsk)
160 {
161         unsigned long msr;
162
163         save_fpu(tsk);
164         msr = tsk->thread.regs->msr;
165         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
166 #ifdef CONFIG_VSX
167         if (cpu_has_feature(CPU_FTR_VSX))
168                 msr &= ~MSR_VSX;
169 #endif
170         tsk->thread.regs->msr = msr;
171 }
172
173 void giveup_fpu(struct task_struct *tsk)
174 {
175         check_if_tm_restore_required(tsk);
176
177         msr_check_and_set(MSR_FP);
178         __giveup_fpu(tsk);
179         msr_check_and_clear(MSR_FP);
180 }
181 EXPORT_SYMBOL(giveup_fpu);
182
183 /*
184  * Make sure the floating-point register state in the
185  * the thread_struct is up to date for task tsk.
186  */
187 void flush_fp_to_thread(struct task_struct *tsk)
188 {
189         if (tsk->thread.regs) {
190                 /*
191                  * We need to disable preemption here because if we didn't,
192                  * another process could get scheduled after the regs->msr
193                  * test but before we have finished saving the FP registers
194                  * to the thread_struct.  That process could take over the
195                  * FPU, and then when we get scheduled again we would store
196                  * bogus values for the remaining FP registers.
197                  */
198                 preempt_disable();
199                 if (tsk->thread.regs->msr & MSR_FP) {
200                         /*
201                          * This should only ever be called for current or
202                          * for a stopped child process.  Since we save away
203                          * the FP register state on context switch,
204                          * there is something wrong if a stopped child appears
205                          * to still have its FP state in the CPU registers.
206                          */
207                         BUG_ON(tsk != current);
208                         giveup_fpu(tsk);
209                 }
210                 preempt_enable();
211         }
212 }
213 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
214
215 void enable_kernel_fp(void)
216 {
217         unsigned long cpumsr;
218
219         WARN_ON(preemptible());
220
221         cpumsr = msr_check_and_set(MSR_FP);
222
223         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
224                 check_if_tm_restore_required(current);
225                 /*
226                  * If a thread has already been reclaimed then the
227                  * checkpointed registers are on the CPU but have definitely
228                  * been saved by the reclaim code. Don't need to and *cannot*
229                  * giveup as this would save  to the 'live' structure not the
230                  * checkpointed structure.
231                  */
232                 if (!MSR_TM_ACTIVE(cpumsr) &&
233                      MSR_TM_ACTIVE(current->thread.regs->msr))
234                         return;
235                 __giveup_fpu(current);
236         }
237 }
238 EXPORT_SYMBOL(enable_kernel_fp);
239 #endif /* CONFIG_PPC_FPU */
240
241 #ifdef CONFIG_ALTIVEC
242 static void __giveup_altivec(struct task_struct *tsk)
243 {
244         unsigned long msr;
245
246         save_altivec(tsk);
247         msr = tsk->thread.regs->msr;
248         msr &= ~MSR_VEC;
249 #ifdef CONFIG_VSX
250         if (cpu_has_feature(CPU_FTR_VSX))
251                 msr &= ~MSR_VSX;
252 #endif
253         tsk->thread.regs->msr = msr;
254 }
255
256 void giveup_altivec(struct task_struct *tsk)
257 {
258         check_if_tm_restore_required(tsk);
259
260         msr_check_and_set(MSR_VEC);
261         __giveup_altivec(tsk);
262         msr_check_and_clear(MSR_VEC);
263 }
264 EXPORT_SYMBOL(giveup_altivec);
265
266 void enable_kernel_altivec(void)
267 {
268         unsigned long cpumsr;
269
270         WARN_ON(preemptible());
271
272         cpumsr = msr_check_and_set(MSR_VEC);
273
274         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
275                 check_if_tm_restore_required(current);
276                 /*
277                  * If a thread has already been reclaimed then the
278                  * checkpointed registers are on the CPU but have definitely
279                  * been saved by the reclaim code. Don't need to and *cannot*
280                  * giveup as this would save  to the 'live' structure not the
281                  * checkpointed structure.
282                  */
283                 if (!MSR_TM_ACTIVE(cpumsr) &&
284                      MSR_TM_ACTIVE(current->thread.regs->msr))
285                         return;
286                 __giveup_altivec(current);
287         }
288 }
289 EXPORT_SYMBOL(enable_kernel_altivec);
290
291 /*
292  * Make sure the VMX/Altivec register state in the
293  * the thread_struct is up to date for task tsk.
294  */
295 void flush_altivec_to_thread(struct task_struct *tsk)
296 {
297         if (tsk->thread.regs) {
298                 preempt_disable();
299                 if (tsk->thread.regs->msr & MSR_VEC) {
300                         BUG_ON(tsk != current);
301                         giveup_altivec(tsk);
302                 }
303                 preempt_enable();
304         }
305 }
306 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
307 #endif /* CONFIG_ALTIVEC */
308
309 #ifdef CONFIG_VSX
310 static void __giveup_vsx(struct task_struct *tsk)
311 {
312         unsigned long msr = tsk->thread.regs->msr;
313
314         /*
315          * We should never be ssetting MSR_VSX without also setting
316          * MSR_FP and MSR_VEC
317          */
318         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
319
320         /* __giveup_fpu will clear MSR_VSX */
321         if (msr & MSR_FP)
322                 __giveup_fpu(tsk);
323         if (msr & MSR_VEC)
324                 __giveup_altivec(tsk);
325 }
326
327 static void giveup_vsx(struct task_struct *tsk)
328 {
329         check_if_tm_restore_required(tsk);
330
331         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
332         __giveup_vsx(tsk);
333         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
334 }
335
336 void enable_kernel_vsx(void)
337 {
338         unsigned long cpumsr;
339
340         WARN_ON(preemptible());
341
342         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
343
344         if (current->thread.regs &&
345             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
346                 check_if_tm_restore_required(current);
347                 /*
348                  * If a thread has already been reclaimed then the
349                  * checkpointed registers are on the CPU but have definitely
350                  * been saved by the reclaim code. Don't need to and *cannot*
351                  * giveup as this would save  to the 'live' structure not the
352                  * checkpointed structure.
353                  */
354                 if (!MSR_TM_ACTIVE(cpumsr) &&
355                      MSR_TM_ACTIVE(current->thread.regs->msr))
356                         return;
357                 __giveup_vsx(current);
358         }
359 }
360 EXPORT_SYMBOL(enable_kernel_vsx);
361
362 void flush_vsx_to_thread(struct task_struct *tsk)
363 {
364         if (tsk->thread.regs) {
365                 preempt_disable();
366                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
367                         BUG_ON(tsk != current);
368                         giveup_vsx(tsk);
369                 }
370                 preempt_enable();
371         }
372 }
373 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
374 #endif /* CONFIG_VSX */
375
376 #ifdef CONFIG_SPE
377 void giveup_spe(struct task_struct *tsk)
378 {
379         check_if_tm_restore_required(tsk);
380
381         msr_check_and_set(MSR_SPE);
382         __giveup_spe(tsk);
383         msr_check_and_clear(MSR_SPE);
384 }
385 EXPORT_SYMBOL(giveup_spe);
386
387 void enable_kernel_spe(void)
388 {
389         WARN_ON(preemptible());
390
391         msr_check_and_set(MSR_SPE);
392
393         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
394                 check_if_tm_restore_required(current);
395                 __giveup_spe(current);
396         }
397 }
398 EXPORT_SYMBOL(enable_kernel_spe);
399
400 void flush_spe_to_thread(struct task_struct *tsk)
401 {
402         if (tsk->thread.regs) {
403                 preempt_disable();
404                 if (tsk->thread.regs->msr & MSR_SPE) {
405                         BUG_ON(tsk != current);
406                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
407                         giveup_spe(tsk);
408                 }
409                 preempt_enable();
410         }
411 }
412 #endif /* CONFIG_SPE */
413
414 static unsigned long msr_all_available;
415
416 static int __init init_msr_all_available(void)
417 {
418 #ifdef CONFIG_PPC_FPU
419         msr_all_available |= MSR_FP;
420 #endif
421 #ifdef CONFIG_ALTIVEC
422         if (cpu_has_feature(CPU_FTR_ALTIVEC))
423                 msr_all_available |= MSR_VEC;
424 #endif
425 #ifdef CONFIG_VSX
426         if (cpu_has_feature(CPU_FTR_VSX))
427                 msr_all_available |= MSR_VSX;
428 #endif
429 #ifdef CONFIG_SPE
430         if (cpu_has_feature(CPU_FTR_SPE))
431                 msr_all_available |= MSR_SPE;
432 #endif
433
434         return 0;
435 }
436 early_initcall(init_msr_all_available);
437
438 void giveup_all(struct task_struct *tsk)
439 {
440         unsigned long usermsr;
441
442         if (!tsk->thread.regs)
443                 return;
444
445         check_if_tm_restore_required(tsk);
446
447         usermsr = tsk->thread.regs->msr;
448
449         if ((usermsr & msr_all_available) == 0)
450                 return;
451
452         msr_check_and_set(msr_all_available);
453
454         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
455
456 #ifdef CONFIG_PPC_FPU
457         if (usermsr & MSR_FP)
458                 __giveup_fpu(tsk);
459 #endif
460 #ifdef CONFIG_ALTIVEC
461         if (usermsr & MSR_VEC)
462                 __giveup_altivec(tsk);
463 #endif
464 #ifdef CONFIG_SPE
465         if (usermsr & MSR_SPE)
466                 __giveup_spe(tsk);
467 #endif
468
469         msr_check_and_clear(msr_all_available);
470 }
471 EXPORT_SYMBOL(giveup_all);
472
473 #ifdef CONFIG_PPC_BOOK3S_64
474 #ifdef CONFIG_PPC_FPU
475 static int restore_fp(struct task_struct *tsk)
476 {
477         if (tsk->thread.load_fp) {
478                 load_fp_state(&current->thread.fp_state);
479                 current->thread.load_fp++;
480                 return 1;
481         }
482         return 0;
483 }
484 #else
485 static int restore_fp(struct task_struct *tsk) { return 0; }
486 #endif /* CONFIG_PPC_FPU */
487
488 #ifdef CONFIG_ALTIVEC
489 #define loadvec(thr) ((thr).load_vec)
490 static int restore_altivec(struct task_struct *tsk)
491 {
492         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) {
493                 load_vr_state(&tsk->thread.vr_state);
494                 tsk->thread.used_vr = 1;
495                 tsk->thread.load_vec++;
496
497                 return 1;
498         }
499         return 0;
500 }
501 #else
502 #define loadvec(thr) 0
503 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
504 #endif /* CONFIG_ALTIVEC */
505
506 #ifdef CONFIG_VSX
507 static int restore_vsx(struct task_struct *tsk)
508 {
509         if (cpu_has_feature(CPU_FTR_VSX)) {
510                 tsk->thread.used_vsr = 1;
511                 return 1;
512         }
513
514         return 0;
515 }
516 #else
517 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
518 #endif /* CONFIG_VSX */
519
520 /*
521  * The exception exit path calls restore_math() with interrupts hard disabled
522  * but the soft irq state not "reconciled". ftrace code that calls
523  * local_irq_save/restore causes warnings.
524  *
525  * Rather than complicate the exit path, just don't trace restore_math. This
526  * could be done by having ftrace entry code check for this un-reconciled
527  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
528  * temporarily fix it up for the duration of the ftrace call.
529  */
530 void notrace restore_math(struct pt_regs *regs)
531 {
532         unsigned long msr;
533
534         if (!MSR_TM_ACTIVE(regs->msr) &&
535                 !current->thread.load_fp && !loadvec(current->thread))
536                 return;
537
538         msr = regs->msr;
539         msr_check_and_set(msr_all_available);
540
541         /*
542          * Only reload if the bit is not set in the user MSR, the bit BEING set
543          * indicates that the registers are hot
544          */
545         if ((!(msr & MSR_FP)) && restore_fp(current))
546                 msr |= MSR_FP | current->thread.fpexc_mode;
547
548         if ((!(msr & MSR_VEC)) && restore_altivec(current))
549                 msr |= MSR_VEC;
550
551         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
552                         restore_vsx(current)) {
553                 msr |= MSR_VSX;
554         }
555
556         msr_check_and_clear(msr_all_available);
557
558         regs->msr = msr;
559 }
560 #endif
561
562 static void save_all(struct task_struct *tsk)
563 {
564         unsigned long usermsr;
565
566         if (!tsk->thread.regs)
567                 return;
568
569         usermsr = tsk->thread.regs->msr;
570
571         if ((usermsr & msr_all_available) == 0)
572                 return;
573
574         msr_check_and_set(msr_all_available);
575
576         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
577
578         if (usermsr & MSR_FP)
579                 save_fpu(tsk);
580
581         if (usermsr & MSR_VEC)
582                 save_altivec(tsk);
583
584         if (usermsr & MSR_SPE)
585                 __giveup_spe(tsk);
586
587         msr_check_and_clear(msr_all_available);
588         thread_pkey_regs_save(&tsk->thread);
589 }
590
591 void flush_all_to_thread(struct task_struct *tsk)
592 {
593         if (tsk->thread.regs) {
594                 preempt_disable();
595                 BUG_ON(tsk != current);
596 #ifdef CONFIG_SPE
597                 if (tsk->thread.regs->msr & MSR_SPE)
598                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
599 #endif
600                 save_all(tsk);
601
602                 preempt_enable();
603         }
604 }
605 EXPORT_SYMBOL(flush_all_to_thread);
606
607 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
608 void do_send_trap(struct pt_regs *regs, unsigned long address,
609                   unsigned long error_code, int breakpt)
610 {
611         current->thread.trap_nr = TRAP_HWBKPT;
612         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
613                         11, SIGSEGV) == NOTIFY_STOP)
614                 return;
615
616         /* Deliver the signal to userspace */
617         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
618                                     (void __user *)address);
619 }
620 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
621 void do_break (struct pt_regs *regs, unsigned long address,
622                     unsigned long error_code)
623 {
624         current->thread.trap_nr = TRAP_HWBKPT;
625         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
626                         11, SIGSEGV) == NOTIFY_STOP)
627                 return;
628
629         if (debugger_break_match(regs))
630                 return;
631
632         /* Clear the breakpoint */
633         hw_breakpoint_disable();
634
635         /* Deliver the signal to userspace */
636         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
637 }
638 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
639
640 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
641
642 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
643 /*
644  * Set the debug registers back to their default "safe" values.
645  */
646 static void set_debug_reg_defaults(struct thread_struct *thread)
647 {
648         thread->debug.iac1 = thread->debug.iac2 = 0;
649 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
650         thread->debug.iac3 = thread->debug.iac4 = 0;
651 #endif
652         thread->debug.dac1 = thread->debug.dac2 = 0;
653 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
654         thread->debug.dvc1 = thread->debug.dvc2 = 0;
655 #endif
656         thread->debug.dbcr0 = 0;
657 #ifdef CONFIG_BOOKE
658         /*
659          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
660          */
661         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
662                         DBCR1_IAC3US | DBCR1_IAC4US;
663         /*
664          * Force Data Address Compare User/Supervisor bits to be User-only
665          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
666          */
667         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
668 #else
669         thread->debug.dbcr1 = 0;
670 #endif
671 }
672
673 static void prime_debug_regs(struct debug_reg *debug)
674 {
675         /*
676          * We could have inherited MSR_DE from userspace, since
677          * it doesn't get cleared on exception entry.  Make sure
678          * MSR_DE is clear before we enable any debug events.
679          */
680         mtmsr(mfmsr() & ~MSR_DE);
681
682         mtspr(SPRN_IAC1, debug->iac1);
683         mtspr(SPRN_IAC2, debug->iac2);
684 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
685         mtspr(SPRN_IAC3, debug->iac3);
686         mtspr(SPRN_IAC4, debug->iac4);
687 #endif
688         mtspr(SPRN_DAC1, debug->dac1);
689         mtspr(SPRN_DAC2, debug->dac2);
690 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
691         mtspr(SPRN_DVC1, debug->dvc1);
692         mtspr(SPRN_DVC2, debug->dvc2);
693 #endif
694         mtspr(SPRN_DBCR0, debug->dbcr0);
695         mtspr(SPRN_DBCR1, debug->dbcr1);
696 #ifdef CONFIG_BOOKE
697         mtspr(SPRN_DBCR2, debug->dbcr2);
698 #endif
699 }
700 /*
701  * Unless neither the old or new thread are making use of the
702  * debug registers, set the debug registers from the values
703  * stored in the new thread.
704  */
705 void switch_booke_debug_regs(struct debug_reg *new_debug)
706 {
707         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
708                 || (new_debug->dbcr0 & DBCR0_IDM))
709                         prime_debug_regs(new_debug);
710 }
711 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
712 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
713 #ifndef CONFIG_HAVE_HW_BREAKPOINT
714 static void set_breakpoint(struct arch_hw_breakpoint *brk)
715 {
716         preempt_disable();
717         __set_breakpoint(brk);
718         preempt_enable();
719 }
720
721 static void set_debug_reg_defaults(struct thread_struct *thread)
722 {
723         thread->hw_brk.address = 0;
724         thread->hw_brk.type = 0;
725         thread->hw_brk.len = 0;
726         thread->hw_brk.hw_len = 0;
727         if (ppc_breakpoint_available())
728                 set_breakpoint(&thread->hw_brk);
729 }
730 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
731 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
732
733 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
735 {
736         mtspr(SPRN_DAC1, dabr);
737 #ifdef CONFIG_PPC_47x
738         isync();
739 #endif
740         return 0;
741 }
742 #elif defined(CONFIG_PPC_BOOK3S)
743 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
744 {
745         mtspr(SPRN_DABR, dabr);
746         if (cpu_has_feature(CPU_FTR_DABRX))
747                 mtspr(SPRN_DABRX, dabrx);
748         return 0;
749 }
750 #else
751 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
752 {
753         return -EINVAL;
754 }
755 #endif
756
757 static inline int set_dabr(struct arch_hw_breakpoint *brk)
758 {
759         unsigned long dabr, dabrx;
760
761         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
762         dabrx = ((brk->type >> 3) & 0x7);
763
764         if (ppc_md.set_dabr)
765                 return ppc_md.set_dabr(dabr, dabrx);
766
767         return __set_dabr(dabr, dabrx);
768 }
769
770 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
771 {
772         unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
773                                LCTRL1_CRWF_RW;
774         unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
775         unsigned long start_addr = brk->address & ~HW_BREAKPOINT_ALIGN;
776         unsigned long end_addr = (brk->address + brk->len - 1) | HW_BREAKPOINT_ALIGN;
777
778         if (start_addr == 0)
779                 lctrl2 |= LCTRL2_LW0LA_F;
780         else if (end_addr == ~0U)
781                 lctrl2 |= LCTRL2_LW0LA_E;
782         else
783                 lctrl2 |= LCTRL2_LW0LA_EandF;
784
785         mtspr(SPRN_LCTRL2, 0);
786
787         if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
788                 return 0;
789
790         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
791                 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
792         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
793                 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
794
795         mtspr(SPRN_CMPE, start_addr - 1);
796         mtspr(SPRN_CMPF, end_addr + 1);
797         mtspr(SPRN_LCTRL1, lctrl1);
798         mtspr(SPRN_LCTRL2, lctrl2);
799
800         return 0;
801 }
802
803 void __set_breakpoint(struct arch_hw_breakpoint *brk)
804 {
805         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
806
807         if (dawr_enabled())
808                 // Power8 or later
809                 set_dawr(brk);
810         else if (IS_ENABLED(CONFIG_PPC_8xx))
811                 set_breakpoint_8xx(brk);
812         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
813                 // Power7 or earlier
814                 set_dabr(brk);
815         else
816                 // Shouldn't happen due to higher level checks
817                 WARN_ON_ONCE(1);
818 }
819
820 /* Check if we have DAWR or DABR hardware */
821 bool ppc_breakpoint_available(void)
822 {
823         if (dawr_enabled())
824                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
825         if (cpu_has_feature(CPU_FTR_ARCH_207S))
826                 return false; /* POWER9 with DAWR disabled */
827         /* DABR: Everything but POWER8 and POWER9 */
828         return true;
829 }
830 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
831
832 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
833                               struct arch_hw_breakpoint *b)
834 {
835         if (a->address != b->address)
836                 return false;
837         if (a->type != b->type)
838                 return false;
839         if (a->len != b->len)
840                 return false;
841         /* no need to check hw_len. it's calculated from address and len */
842         return true;
843 }
844
845 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
846
847 static inline bool tm_enabled(struct task_struct *tsk)
848 {
849         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
850 }
851
852 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
853 {
854         /*
855          * Use the current MSR TM suspended bit to track if we have
856          * checkpointed state outstanding.
857          * On signal delivery, we'd normally reclaim the checkpointed
858          * state to obtain stack pointer (see:get_tm_stackpointer()).
859          * This will then directly return to userspace without going
860          * through __switch_to(). However, if the stack frame is bad,
861          * we need to exit this thread which calls __switch_to() which
862          * will again attempt to reclaim the already saved tm state.
863          * Hence we need to check that we've not already reclaimed
864          * this state.
865          * We do this using the current MSR, rather tracking it in
866          * some specific thread_struct bit, as it has the additional
867          * benefit of checking for a potential TM bad thing exception.
868          */
869         if (!MSR_TM_SUSPENDED(mfmsr()))
870                 return;
871
872         giveup_all(container_of(thr, struct task_struct, thread));
873
874         tm_reclaim(thr, cause);
875
876         /*
877          * If we are in a transaction and FP is off then we can't have
878          * used FP inside that transaction. Hence the checkpointed
879          * state is the same as the live state. We need to copy the
880          * live state to the checkpointed state so that when the
881          * transaction is restored, the checkpointed state is correct
882          * and the aborted transaction sees the correct state. We use
883          * ckpt_regs.msr here as that's what tm_reclaim will use to
884          * determine if it's going to write the checkpointed state or
885          * not. So either this will write the checkpointed registers,
886          * or reclaim will. Similarly for VMX.
887          */
888         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
889                 memcpy(&thr->ckfp_state, &thr->fp_state,
890                        sizeof(struct thread_fp_state));
891         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
892                 memcpy(&thr->ckvr_state, &thr->vr_state,
893                        sizeof(struct thread_vr_state));
894 }
895
896 void tm_reclaim_current(uint8_t cause)
897 {
898         tm_enable();
899         tm_reclaim_thread(&current->thread, cause);
900 }
901
902 static inline void tm_reclaim_task(struct task_struct *tsk)
903 {
904         /* We have to work out if we're switching from/to a task that's in the
905          * middle of a transaction.
906          *
907          * In switching we need to maintain a 2nd register state as
908          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
909          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
910          * ckvr_state
911          *
912          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
913          */
914         struct thread_struct *thr = &tsk->thread;
915
916         if (!thr->regs)
917                 return;
918
919         if (!MSR_TM_ACTIVE(thr->regs->msr))
920                 goto out_and_saveregs;
921
922         WARN_ON(tm_suspend_disabled);
923
924         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
925                  "ccr=%lx, msr=%lx, trap=%lx)\n",
926                  tsk->pid, thr->regs->nip,
927                  thr->regs->ccr, thr->regs->msr,
928                  thr->regs->trap);
929
930         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
931
932         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
933                  tsk->pid);
934
935 out_and_saveregs:
936         /* Always save the regs here, even if a transaction's not active.
937          * This context-switches a thread's TM info SPRs.  We do it here to
938          * be consistent with the restore path (in recheckpoint) which
939          * cannot happen later in _switch().
940          */
941         tm_save_sprs(thr);
942 }
943
944 extern void __tm_recheckpoint(struct thread_struct *thread);
945
946 void tm_recheckpoint(struct thread_struct *thread)
947 {
948         unsigned long flags;
949
950         if (!(thread->regs->msr & MSR_TM))
951                 return;
952
953         /* We really can't be interrupted here as the TEXASR registers can't
954          * change and later in the trecheckpoint code, we have a userspace R1.
955          * So let's hard disable over this region.
956          */
957         local_irq_save(flags);
958         hard_irq_disable();
959
960         /* The TM SPRs are restored here, so that TEXASR.FS can be set
961          * before the trecheckpoint and no explosion occurs.
962          */
963         tm_restore_sprs(thread);
964
965         __tm_recheckpoint(thread);
966
967         local_irq_restore(flags);
968 }
969
970 static inline void tm_recheckpoint_new_task(struct task_struct *new)
971 {
972         if (!cpu_has_feature(CPU_FTR_TM))
973                 return;
974
975         /* Recheckpoint the registers of the thread we're about to switch to.
976          *
977          * If the task was using FP, we non-lazily reload both the original and
978          * the speculative FP register states.  This is because the kernel
979          * doesn't see if/when a TM rollback occurs, so if we take an FP
980          * unavailable later, we are unable to determine which set of FP regs
981          * need to be restored.
982          */
983         if (!tm_enabled(new))
984                 return;
985
986         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
987                 tm_restore_sprs(&new->thread);
988                 return;
989         }
990         /* Recheckpoint to restore original checkpointed register state. */
991         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
992                  new->pid, new->thread.regs->msr);
993
994         tm_recheckpoint(&new->thread);
995
996         /*
997          * The checkpointed state has been restored but the live state has
998          * not, ensure all the math functionality is turned off to trigger
999          * restore_math() to reload.
1000          */
1001         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1002
1003         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1004                  "(kernel msr 0x%lx)\n",
1005                  new->pid, mfmsr());
1006 }
1007
1008 static inline void __switch_to_tm(struct task_struct *prev,
1009                 struct task_struct *new)
1010 {
1011         if (cpu_has_feature(CPU_FTR_TM)) {
1012                 if (tm_enabled(prev) || tm_enabled(new))
1013                         tm_enable();
1014
1015                 if (tm_enabled(prev)) {
1016                         prev->thread.load_tm++;
1017                         tm_reclaim_task(prev);
1018                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1019                                 prev->thread.regs->msr &= ~MSR_TM;
1020                 }
1021
1022                 tm_recheckpoint_new_task(new);
1023         }
1024 }
1025
1026 /*
1027  * This is called if we are on the way out to userspace and the
1028  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1029  * FP and/or vector state and does so if necessary.
1030  * If userspace is inside a transaction (whether active or
1031  * suspended) and FP/VMX/VSX instructions have ever been enabled
1032  * inside that transaction, then we have to keep them enabled
1033  * and keep the FP/VMX/VSX state loaded while ever the transaction
1034  * continues.  The reason is that if we didn't, and subsequently
1035  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1036  * we don't know whether it's the same transaction, and thus we
1037  * don't know which of the checkpointed state and the transactional
1038  * state to use.
1039  */
1040 void restore_tm_state(struct pt_regs *regs)
1041 {
1042         unsigned long msr_diff;
1043
1044         /*
1045          * This is the only moment we should clear TIF_RESTORE_TM as
1046          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1047          * again, anything else could lead to an incorrect ckpt_msr being
1048          * saved and therefore incorrect signal contexts.
1049          */
1050         clear_thread_flag(TIF_RESTORE_TM);
1051         if (!MSR_TM_ACTIVE(regs->msr))
1052                 return;
1053
1054         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1055         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1056
1057         /* Ensure that restore_math() will restore */
1058         if (msr_diff & MSR_FP)
1059                 current->thread.load_fp = 1;
1060 #ifdef CONFIG_ALTIVEC
1061         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1062                 current->thread.load_vec = 1;
1063 #endif
1064         restore_math(regs);
1065
1066         regs->msr |= msr_diff;
1067 }
1068
1069 #else
1070 #define tm_recheckpoint_new_task(new)
1071 #define __switch_to_tm(prev, new)
1072 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1073
1074 static inline void save_sprs(struct thread_struct *t)
1075 {
1076 #ifdef CONFIG_ALTIVEC
1077         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1078                 t->vrsave = mfspr(SPRN_VRSAVE);
1079 #endif
1080 #ifdef CONFIG_PPC_BOOK3S_64
1081         if (cpu_has_feature(CPU_FTR_DSCR))
1082                 t->dscr = mfspr(SPRN_DSCR);
1083
1084         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1085                 t->bescr = mfspr(SPRN_BESCR);
1086                 t->ebbhr = mfspr(SPRN_EBBHR);
1087                 t->ebbrr = mfspr(SPRN_EBBRR);
1088
1089                 t->fscr = mfspr(SPRN_FSCR);
1090
1091                 /*
1092                  * Note that the TAR is not available for use in the kernel.
1093                  * (To provide this, the TAR should be backed up/restored on
1094                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1095                  * this should be in pt_regs anyway (for debug).)
1096                  */
1097                 t->tar = mfspr(SPRN_TAR);
1098         }
1099 #endif
1100
1101         thread_pkey_regs_save(t);
1102 }
1103
1104 static inline void restore_sprs(struct thread_struct *old_thread,
1105                                 struct thread_struct *new_thread)
1106 {
1107 #ifdef CONFIG_ALTIVEC
1108         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1109             old_thread->vrsave != new_thread->vrsave)
1110                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1111 #endif
1112 #ifdef CONFIG_PPC_BOOK3S_64
1113         if (cpu_has_feature(CPU_FTR_DSCR)) {
1114                 u64 dscr = get_paca()->dscr_default;
1115                 if (new_thread->dscr_inherit)
1116                         dscr = new_thread->dscr;
1117
1118                 if (old_thread->dscr != dscr)
1119                         mtspr(SPRN_DSCR, dscr);
1120         }
1121
1122         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1123                 if (old_thread->bescr != new_thread->bescr)
1124                         mtspr(SPRN_BESCR, new_thread->bescr);
1125                 if (old_thread->ebbhr != new_thread->ebbhr)
1126                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1127                 if (old_thread->ebbrr != new_thread->ebbrr)
1128                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1129
1130                 if (old_thread->fscr != new_thread->fscr)
1131                         mtspr(SPRN_FSCR, new_thread->fscr);
1132
1133                 if (old_thread->tar != new_thread->tar)
1134                         mtspr(SPRN_TAR, new_thread->tar);
1135         }
1136
1137         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1138             old_thread->tidr != new_thread->tidr)
1139                 mtspr(SPRN_TIDR, new_thread->tidr);
1140 #endif
1141
1142         thread_pkey_regs_restore(new_thread, old_thread);
1143 }
1144
1145 struct task_struct *__switch_to(struct task_struct *prev,
1146         struct task_struct *new)
1147 {
1148         struct thread_struct *new_thread, *old_thread;
1149         struct task_struct *last;
1150 #ifdef CONFIG_PPC_BOOK3S_64
1151         struct ppc64_tlb_batch *batch;
1152 #endif
1153
1154         new_thread = &new->thread;
1155         old_thread = &current->thread;
1156
1157         WARN_ON(!irqs_disabled());
1158
1159 #ifdef CONFIG_PPC_BOOK3S_64
1160         batch = this_cpu_ptr(&ppc64_tlb_batch);
1161         if (batch->active) {
1162                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1163                 if (batch->index)
1164                         __flush_tlb_pending(batch);
1165                 batch->active = 0;
1166         }
1167 #endif /* CONFIG_PPC_BOOK3S_64 */
1168
1169 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1170         switch_booke_debug_regs(&new->thread.debug);
1171 #else
1172 /*
1173  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1174  * schedule DABR
1175  */
1176 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1177         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1178                 __set_breakpoint(&new->thread.hw_brk);
1179 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1180 #endif
1181
1182         /*
1183          * We need to save SPRs before treclaim/trecheckpoint as these will
1184          * change a number of them.
1185          */
1186         save_sprs(&prev->thread);
1187
1188         /* Save FPU, Altivec, VSX and SPE state */
1189         giveup_all(prev);
1190
1191         __switch_to_tm(prev, new);
1192
1193         if (!radix_enabled()) {
1194                 /*
1195                  * We can't take a PMU exception inside _switch() since there
1196                  * is a window where the kernel stack SLB and the kernel stack
1197                  * are out of sync. Hard disable here.
1198                  */
1199                 hard_irq_disable();
1200         }
1201
1202         /*
1203          * Call restore_sprs() before calling _switch(). If we move it after
1204          * _switch() then we miss out on calling it for new tasks. The reason
1205          * for this is we manually create a stack frame for new tasks that
1206          * directly returns through ret_from_fork() or
1207          * ret_from_kernel_thread(). See copy_thread() for details.
1208          */
1209         restore_sprs(old_thread, new_thread);
1210
1211         last = _switch(old_thread, new_thread);
1212
1213 #ifdef CONFIG_PPC_BOOK3S_64
1214         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1215                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1216                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1217                 batch->active = 1;
1218         }
1219
1220         if (current->thread.regs) {
1221                 restore_math(current->thread.regs);
1222
1223                 /*
1224                  * The copy-paste buffer can only store into foreign real
1225                  * addresses, so unprivileged processes can not see the
1226                  * data or use it in any way unless they have foreign real
1227                  * mappings. If the new process has the foreign real address
1228                  * mappings, we must issue a cp_abort to clear any state and
1229                  * prevent snooping, corruption or a covert channel.
1230                  */
1231                 if (current->thread.used_vas)
1232                         asm volatile(PPC_CP_ABORT);
1233         }
1234 #endif /* CONFIG_PPC_BOOK3S_64 */
1235
1236         return last;
1237 }
1238
1239 #define NR_INSN_TO_PRINT        16
1240
1241 static void show_instructions(struct pt_regs *regs)
1242 {
1243         int i;
1244         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1245
1246         printk("Instruction dump:");
1247
1248         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1249                 int instr;
1250
1251                 if (!(i % 8))
1252                         pr_cont("\n");
1253
1254 #if !defined(CONFIG_BOOKE)
1255                 /* If executing with the IMMU off, adjust pc rather
1256                  * than print XXXXXXXX.
1257                  */
1258                 if (!(regs->msr & MSR_IR))
1259                         pc = (unsigned long)phys_to_virt(pc);
1260 #endif
1261
1262                 if (!__kernel_text_address(pc) ||
1263                     probe_kernel_address((const void *)pc, instr)) {
1264                         pr_cont("XXXXXXXX ");
1265                 } else {
1266                         if (regs->nip == pc)
1267                                 pr_cont("<%08x> ", instr);
1268                         else
1269                                 pr_cont("%08x ", instr);
1270                 }
1271
1272                 pc += sizeof(int);
1273         }
1274
1275         pr_cont("\n");
1276 }
1277
1278 void show_user_instructions(struct pt_regs *regs)
1279 {
1280         unsigned long pc;
1281         int n = NR_INSN_TO_PRINT;
1282         struct seq_buf s;
1283         char buf[96]; /* enough for 8 times 9 + 2 chars */
1284
1285         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1286
1287         seq_buf_init(&s, buf, sizeof(buf));
1288
1289         while (n) {
1290                 int i;
1291
1292                 seq_buf_clear(&s);
1293
1294                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1295                         int instr;
1296
1297                         if (probe_user_read(&instr, (void __user *)pc, sizeof(instr))) {
1298                                 seq_buf_printf(&s, "XXXXXXXX ");
1299                                 continue;
1300                         }
1301                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1302                 }
1303
1304                 if (!seq_buf_has_overflowed(&s))
1305                         pr_info("%s[%d]: code: %s\n", current->comm,
1306                                 current->pid, s.buffer);
1307         }
1308 }
1309
1310 struct regbit {
1311         unsigned long bit;
1312         const char *name;
1313 };
1314
1315 static struct regbit msr_bits[] = {
1316 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1317         {MSR_SF,        "SF"},
1318         {MSR_HV,        "HV"},
1319 #endif
1320         {MSR_VEC,       "VEC"},
1321         {MSR_VSX,       "VSX"},
1322 #ifdef CONFIG_BOOKE
1323         {MSR_CE,        "CE"},
1324 #endif
1325         {MSR_EE,        "EE"},
1326         {MSR_PR,        "PR"},
1327         {MSR_FP,        "FP"},
1328         {MSR_ME,        "ME"},
1329 #ifdef CONFIG_BOOKE
1330         {MSR_DE,        "DE"},
1331 #else
1332         {MSR_SE,        "SE"},
1333         {MSR_BE,        "BE"},
1334 #endif
1335         {MSR_IR,        "IR"},
1336         {MSR_DR,        "DR"},
1337         {MSR_PMM,       "PMM"},
1338 #ifndef CONFIG_BOOKE
1339         {MSR_RI,        "RI"},
1340         {MSR_LE,        "LE"},
1341 #endif
1342         {0,             NULL}
1343 };
1344
1345 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1346 {
1347         const char *s = "";
1348
1349         for (; bits->bit; ++bits)
1350                 if (val & bits->bit) {
1351                         pr_cont("%s%s", s, bits->name);
1352                         s = sep;
1353                 }
1354 }
1355
1356 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1357 static struct regbit msr_tm_bits[] = {
1358         {MSR_TS_T,      "T"},
1359         {MSR_TS_S,      "S"},
1360         {MSR_TM,        "E"},
1361         {0,             NULL}
1362 };
1363
1364 static void print_tm_bits(unsigned long val)
1365 {
1366 /*
1367  * This only prints something if at least one of the TM bit is set.
1368  * Inside the TM[], the output means:
1369  *   E: Enabled         (bit 32)
1370  *   S: Suspended       (bit 33)
1371  *   T: Transactional   (bit 34)
1372  */
1373         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1374                 pr_cont(",TM[");
1375                 print_bits(val, msr_tm_bits, "");
1376                 pr_cont("]");
1377         }
1378 }
1379 #else
1380 static void print_tm_bits(unsigned long val) {}
1381 #endif
1382
1383 static void print_msr_bits(unsigned long val)
1384 {
1385         pr_cont("<");
1386         print_bits(val, msr_bits, ",");
1387         print_tm_bits(val);
1388         pr_cont(">");
1389 }
1390
1391 #ifdef CONFIG_PPC64
1392 #define REG             "%016lx"
1393 #define REGS_PER_LINE   4
1394 #define LAST_VOLATILE   13
1395 #else
1396 #define REG             "%08lx"
1397 #define REGS_PER_LINE   8
1398 #define LAST_VOLATILE   12
1399 #endif
1400
1401 void show_regs(struct pt_regs * regs)
1402 {
1403         int i, trap;
1404
1405         show_regs_print_info(KERN_DEFAULT);
1406
1407         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1408                regs->nip, regs->link, regs->ctr);
1409         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1410                regs, regs->trap, print_tainted(), init_utsname()->release);
1411         printk("MSR:  "REG" ", regs->msr);
1412         print_msr_bits(regs->msr);
1413         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1414         trap = TRAP(regs);
1415         if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1416                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1417         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1418 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1419                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1420 #else
1421                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1422 #endif
1423 #ifdef CONFIG_PPC64
1424         pr_cont("IRQMASK: %lx ", regs->softe);
1425 #endif
1426 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1427         if (MSR_TM_ACTIVE(regs->msr))
1428                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1429 #endif
1430
1431         for (i = 0;  i < 32;  i++) {
1432                 if ((i % REGS_PER_LINE) == 0)
1433                         pr_cont("\nGPR%02d: ", i);
1434                 pr_cont(REG " ", regs->gpr[i]);
1435                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1436                         break;
1437         }
1438         pr_cont("\n");
1439 #ifdef CONFIG_KALLSYMS
1440         /*
1441          * Lookup NIP late so we have the best change of getting the
1442          * above info out without failing
1443          */
1444         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1445         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1446 #endif
1447         show_stack(current, (unsigned long *) regs->gpr[1]);
1448         if (!user_mode(regs))
1449                 show_instructions(regs);
1450 }
1451
1452 void flush_thread(void)
1453 {
1454 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1455         flush_ptrace_hw_breakpoint(current);
1456 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1457         set_debug_reg_defaults(&current->thread);
1458 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1459 }
1460
1461 #ifdef CONFIG_PPC_BOOK3S_64
1462 void arch_setup_new_exec(void)
1463 {
1464         if (radix_enabled())
1465                 return;
1466         hash__setup_new_exec();
1467 }
1468 #endif
1469
1470 int set_thread_uses_vas(void)
1471 {
1472 #ifdef CONFIG_PPC_BOOK3S_64
1473         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1474                 return -EINVAL;
1475
1476         current->thread.used_vas = 1;
1477
1478         /*
1479          * Even a process that has no foreign real address mapping can use
1480          * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1481          * to clear any pending COPY and prevent a covert channel.
1482          *
1483          * __switch_to() will issue CP_ABORT on future context switches.
1484          */
1485         asm volatile(PPC_CP_ABORT);
1486
1487 #endif /* CONFIG_PPC_BOOK3S_64 */
1488         return 0;
1489 }
1490
1491 #ifdef CONFIG_PPC64
1492 /**
1493  * Assign a TIDR (thread ID) for task @t and set it in the thread
1494  * structure. For now, we only support setting TIDR for 'current' task.
1495  *
1496  * Since the TID value is a truncated form of it PID, it is possible
1497  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1498  * that 2 threads share the same TID and are waiting, one of the following
1499  * cases will happen:
1500  *
1501  * 1. The correct thread is running, the wrong thread is not
1502  * In this situation, the correct thread is woken and proceeds to pass it's
1503  * condition check.
1504  *
1505  * 2. Neither threads are running
1506  * In this situation, neither thread will be woken. When scheduled, the waiting
1507  * threads will execute either a wait, which will return immediately, followed
1508  * by a condition check, which will pass for the correct thread and fail
1509  * for the wrong thread, or they will execute the condition check immediately.
1510  *
1511  * 3. The wrong thread is running, the correct thread is not
1512  * The wrong thread will be woken, but will fail it's condition check and
1513  * re-execute wait. The correct thread, when scheduled, will execute either
1514  * it's condition check (which will pass), or wait, which returns immediately
1515  * when called the first time after the thread is scheduled, followed by it's
1516  * condition check (which will pass).
1517  *
1518  * 4. Both threads are running
1519  * Both threads will be woken. The wrong thread will fail it's condition check
1520  * and execute another wait, while the correct thread will pass it's condition
1521  * check.
1522  *
1523  * @t: the task to set the thread ID for
1524  */
1525 int set_thread_tidr(struct task_struct *t)
1526 {
1527         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1528                 return -EINVAL;
1529
1530         if (t != current)
1531                 return -EINVAL;
1532
1533         if (t->thread.tidr)
1534                 return 0;
1535
1536         t->thread.tidr = (u16)task_pid_nr(t);
1537         mtspr(SPRN_TIDR, t->thread.tidr);
1538
1539         return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(set_thread_tidr);
1542
1543 #endif /* CONFIG_PPC64 */
1544
1545 void
1546 release_thread(struct task_struct *t)
1547 {
1548 }
1549
1550 /*
1551  * this gets called so that we can store coprocessor state into memory and
1552  * copy the current task into the new thread.
1553  */
1554 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1555 {
1556         flush_all_to_thread(src);
1557         /*
1558          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1559          * flush but it removes the checkpointed state from the current CPU and
1560          * transitions the CPU out of TM mode.  Hence we need to call
1561          * tm_recheckpoint_new_task() (on the same task) to restore the
1562          * checkpointed state back and the TM mode.
1563          *
1564          * Can't pass dst because it isn't ready. Doesn't matter, passing
1565          * dst is only important for __switch_to()
1566          */
1567         __switch_to_tm(src, src);
1568
1569         *dst = *src;
1570
1571         clear_task_ebb(dst);
1572
1573         return 0;
1574 }
1575
1576 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1577 {
1578 #ifdef CONFIG_PPC_BOOK3S_64
1579         unsigned long sp_vsid;
1580         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1581
1582         if (radix_enabled())
1583                 return;
1584
1585         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1586                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1587                         << SLB_VSID_SHIFT_1T;
1588         else
1589                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1590                         << SLB_VSID_SHIFT;
1591         sp_vsid |= SLB_VSID_KERNEL | llp;
1592         p->thread.ksp_vsid = sp_vsid;
1593 #endif
1594 }
1595
1596 /*
1597  * Copy a thread..
1598  */
1599
1600 /*
1601  * Copy architecture-specific thread state
1602  */
1603 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
1604                 unsigned long kthread_arg, struct task_struct *p,
1605                 unsigned long tls)
1606 {
1607         struct pt_regs *childregs, *kregs;
1608         extern void ret_from_fork(void);
1609         extern void ret_from_kernel_thread(void);
1610         void (*f)(void);
1611         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1612         struct thread_info *ti = task_thread_info(p);
1613
1614         klp_init_thread_info(p);
1615
1616         /* Copy registers */
1617         sp -= sizeof(struct pt_regs);
1618         childregs = (struct pt_regs *) sp;
1619         if (unlikely(p->flags & PF_KTHREAD)) {
1620                 /* kernel thread */
1621                 memset(childregs, 0, sizeof(struct pt_regs));
1622                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1623                 /* function */
1624                 if (usp)
1625                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1626 #ifdef CONFIG_PPC64
1627                 clear_tsk_thread_flag(p, TIF_32BIT);
1628                 childregs->softe = IRQS_ENABLED;
1629 #endif
1630                 childregs->gpr[15] = kthread_arg;
1631                 p->thread.regs = NULL;  /* no user register state */
1632                 ti->flags |= _TIF_RESTOREALL;
1633                 f = ret_from_kernel_thread;
1634         } else {
1635                 /* user thread */
1636                 struct pt_regs *regs = current_pt_regs();
1637                 CHECK_FULL_REGS(regs);
1638                 *childregs = *regs;
1639                 if (usp)
1640                         childregs->gpr[1] = usp;
1641                 p->thread.regs = childregs;
1642                 childregs->gpr[3] = 0;  /* Result from fork() */
1643                 if (clone_flags & CLONE_SETTLS) {
1644                         if (!is_32bit_task())
1645                                 childregs->gpr[13] = tls;
1646                         else
1647                                 childregs->gpr[2] = tls;
1648                 }
1649
1650                 f = ret_from_fork;
1651         }
1652         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1653         sp -= STACK_FRAME_OVERHEAD;
1654
1655         /*
1656          * The way this works is that at some point in the future
1657          * some task will call _switch to switch to the new task.
1658          * That will pop off the stack frame created below and start
1659          * the new task running at ret_from_fork.  The new task will
1660          * do some house keeping and then return from the fork or clone
1661          * system call, using the stack frame created above.
1662          */
1663         ((unsigned long *)sp)[0] = 0;
1664         sp -= sizeof(struct pt_regs);
1665         kregs = (struct pt_regs *) sp;
1666         sp -= STACK_FRAME_OVERHEAD;
1667         p->thread.ksp = sp;
1668 #ifdef CONFIG_PPC32
1669         p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1670 #endif
1671 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1672         p->thread.ptrace_bps[0] = NULL;
1673 #endif
1674
1675         p->thread.fp_save_area = NULL;
1676 #ifdef CONFIG_ALTIVEC
1677         p->thread.vr_save_area = NULL;
1678 #endif
1679
1680         setup_ksp_vsid(p, sp);
1681
1682 #ifdef CONFIG_PPC64 
1683         if (cpu_has_feature(CPU_FTR_DSCR)) {
1684                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1685                 p->thread.dscr = mfspr(SPRN_DSCR);
1686         }
1687         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1688                 childregs->ppr = DEFAULT_PPR;
1689
1690         p->thread.tidr = 0;
1691 #endif
1692         kregs->nip = ppc_function_entry(f);
1693         return 0;
1694 }
1695
1696 void preload_new_slb_context(unsigned long start, unsigned long sp);
1697
1698 /*
1699  * Set up a thread for executing a new program
1700  */
1701 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1702 {
1703 #ifdef CONFIG_PPC64
1704         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1705
1706 #ifdef CONFIG_PPC_BOOK3S_64
1707         if (!radix_enabled())
1708                 preload_new_slb_context(start, sp);
1709 #endif
1710 #endif
1711
1712         /*
1713          * If we exec out of a kernel thread then thread.regs will not be
1714          * set.  Do it now.
1715          */
1716         if (!current->thread.regs) {
1717                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1718                 current->thread.regs = regs - 1;
1719         }
1720
1721 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1722         /*
1723          * Clear any transactional state, we're exec()ing. The cause is
1724          * not important as there will never be a recheckpoint so it's not
1725          * user visible.
1726          */
1727         if (MSR_TM_SUSPENDED(mfmsr()))
1728                 tm_reclaim_current(0);
1729 #endif
1730
1731         memset(regs->gpr, 0, sizeof(regs->gpr));
1732         regs->ctr = 0;
1733         regs->link = 0;
1734         regs->xer = 0;
1735         regs->ccr = 0;
1736         regs->gpr[1] = sp;
1737
1738         /*
1739          * We have just cleared all the nonvolatile GPRs, so make
1740          * FULL_REGS(regs) return true.  This is necessary to allow
1741          * ptrace to examine the thread immediately after exec.
1742          */
1743         regs->trap &= ~1UL;
1744
1745 #ifdef CONFIG_PPC32
1746         regs->mq = 0;
1747         regs->nip = start;
1748         regs->msr = MSR_USER;
1749 #else
1750         if (!is_32bit_task()) {
1751                 unsigned long entry;
1752
1753                 if (is_elf2_task()) {
1754                         /* Look ma, no function descriptors! */
1755                         entry = start;
1756
1757                         /*
1758                          * Ulrich says:
1759                          *   The latest iteration of the ABI requires that when
1760                          *   calling a function (at its global entry point),
1761                          *   the caller must ensure r12 holds the entry point
1762                          *   address (so that the function can quickly
1763                          *   establish addressability).
1764                          */
1765                         regs->gpr[12] = start;
1766                         /* Make sure that's restored on entry to userspace. */
1767                         set_thread_flag(TIF_RESTOREALL);
1768                 } else {
1769                         unsigned long toc;
1770
1771                         /* start is a relocated pointer to the function
1772                          * descriptor for the elf _start routine.  The first
1773                          * entry in the function descriptor is the entry
1774                          * address of _start and the second entry is the TOC
1775                          * value we need to use.
1776                          */
1777                         __get_user(entry, (unsigned long __user *)start);
1778                         __get_user(toc, (unsigned long __user *)start+1);
1779
1780                         /* Check whether the e_entry function descriptor entries
1781                          * need to be relocated before we can use them.
1782                          */
1783                         if (load_addr != 0) {
1784                                 entry += load_addr;
1785                                 toc   += load_addr;
1786                         }
1787                         regs->gpr[2] = toc;
1788                 }
1789                 regs->nip = entry;
1790                 regs->msr = MSR_USER64;
1791         } else {
1792                 regs->nip = start;
1793                 regs->gpr[2] = 0;
1794                 regs->msr = MSR_USER32;
1795         }
1796 #endif
1797 #ifdef CONFIG_VSX
1798         current->thread.used_vsr = 0;
1799 #endif
1800         current->thread.load_slb = 0;
1801         current->thread.load_fp = 0;
1802         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1803         current->thread.fp_save_area = NULL;
1804 #ifdef CONFIG_ALTIVEC
1805         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1806         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1807         current->thread.vr_save_area = NULL;
1808         current->thread.vrsave = 0;
1809         current->thread.used_vr = 0;
1810         current->thread.load_vec = 0;
1811 #endif /* CONFIG_ALTIVEC */
1812 #ifdef CONFIG_SPE
1813         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1814         current->thread.acc = 0;
1815         current->thread.spefscr = 0;
1816         current->thread.used_spe = 0;
1817 #endif /* CONFIG_SPE */
1818 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1819         current->thread.tm_tfhar = 0;
1820         current->thread.tm_texasr = 0;
1821         current->thread.tm_tfiar = 0;
1822         current->thread.load_tm = 0;
1823 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1824
1825         thread_pkey_regs_init(&current->thread);
1826 }
1827 EXPORT_SYMBOL(start_thread);
1828
1829 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1830                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1831
1832 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1833 {
1834         struct pt_regs *regs = tsk->thread.regs;
1835
1836         /* This is a bit hairy.  If we are an SPE enabled  processor
1837          * (have embedded fp) we store the IEEE exception enable flags in
1838          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1839          * mode (asyn, precise, disabled) for 'Classic' FP. */
1840         if (val & PR_FP_EXC_SW_ENABLE) {
1841 #ifdef CONFIG_SPE
1842                 if (cpu_has_feature(CPU_FTR_SPE)) {
1843                         /*
1844                          * When the sticky exception bits are set
1845                          * directly by userspace, it must call prctl
1846                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1847                          * in the existing prctl settings) or
1848                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1849                          * the bits being set).  <fenv.h> functions
1850                          * saving and restoring the whole
1851                          * floating-point environment need to do so
1852                          * anyway to restore the prctl settings from
1853                          * the saved environment.
1854                          */
1855                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1856                         tsk->thread.fpexc_mode = val &
1857                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1858                         return 0;
1859                 } else {
1860                         return -EINVAL;
1861                 }
1862 #else
1863                 return -EINVAL;
1864 #endif
1865         }
1866
1867         /* on a CONFIG_SPE this does not hurt us.  The bits that
1868          * __pack_fe01 use do not overlap with bits used for
1869          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1870          * on CONFIG_SPE implementations are reserved so writing to
1871          * them does not change anything */
1872         if (val > PR_FP_EXC_PRECISE)
1873                 return -EINVAL;
1874         tsk->thread.fpexc_mode = __pack_fe01(val);
1875         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1876                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1877                         | tsk->thread.fpexc_mode;
1878         return 0;
1879 }
1880
1881 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1882 {
1883         unsigned int val;
1884
1885         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1886 #ifdef CONFIG_SPE
1887                 if (cpu_has_feature(CPU_FTR_SPE)) {
1888                         /*
1889                          * When the sticky exception bits are set
1890                          * directly by userspace, it must call prctl
1891                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1892                          * in the existing prctl settings) or
1893                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1894                          * the bits being set).  <fenv.h> functions
1895                          * saving and restoring the whole
1896                          * floating-point environment need to do so
1897                          * anyway to restore the prctl settings from
1898                          * the saved environment.
1899                          */
1900                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1901                         val = tsk->thread.fpexc_mode;
1902                 } else
1903                         return -EINVAL;
1904 #else
1905                 return -EINVAL;
1906 #endif
1907         else
1908                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1909         return put_user(val, (unsigned int __user *) adr);
1910 }
1911
1912 int set_endian(struct task_struct *tsk, unsigned int val)
1913 {
1914         struct pt_regs *regs = tsk->thread.regs;
1915
1916         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1917             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1918                 return -EINVAL;
1919
1920         if (regs == NULL)
1921                 return -EINVAL;
1922
1923         if (val == PR_ENDIAN_BIG)
1924                 regs->msr &= ~MSR_LE;
1925         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1926                 regs->msr |= MSR_LE;
1927         else
1928                 return -EINVAL;
1929
1930         return 0;
1931 }
1932
1933 int get_endian(struct task_struct *tsk, unsigned long adr)
1934 {
1935         struct pt_regs *regs = tsk->thread.regs;
1936         unsigned int val;
1937
1938         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1939             !cpu_has_feature(CPU_FTR_REAL_LE))
1940                 return -EINVAL;
1941
1942         if (regs == NULL)
1943                 return -EINVAL;
1944
1945         if (regs->msr & MSR_LE) {
1946                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1947                         val = PR_ENDIAN_LITTLE;
1948                 else
1949                         val = PR_ENDIAN_PPC_LITTLE;
1950         } else
1951                 val = PR_ENDIAN_BIG;
1952
1953         return put_user(val, (unsigned int __user *)adr);
1954 }
1955
1956 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1957 {
1958         tsk->thread.align_ctl = val;
1959         return 0;
1960 }
1961
1962 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1963 {
1964         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1965 }
1966
1967 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1968                                   unsigned long nbytes)
1969 {
1970         unsigned long stack_page;
1971         unsigned long cpu = task_cpu(p);
1972
1973         stack_page = (unsigned long)hardirq_ctx[cpu];
1974         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1975                 return 1;
1976
1977         stack_page = (unsigned long)softirq_ctx[cpu];
1978         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1979                 return 1;
1980
1981         return 0;
1982 }
1983
1984 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
1985                                         unsigned long nbytes)
1986 {
1987 #ifdef CONFIG_PPC64
1988         unsigned long stack_page;
1989         unsigned long cpu = task_cpu(p);
1990
1991         stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
1992         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1993                 return 1;
1994
1995 # ifdef CONFIG_PPC_BOOK3S_64
1996         stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
1997         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1998                 return 1;
1999
2000         stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2001         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2002                 return 1;
2003 # endif
2004 #endif
2005
2006         return 0;
2007 }
2008
2009
2010 int validate_sp(unsigned long sp, struct task_struct *p,
2011                        unsigned long nbytes)
2012 {
2013         unsigned long stack_page = (unsigned long)task_stack_page(p);
2014
2015         if (sp < THREAD_SIZE)
2016                 return 0;
2017
2018         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2019                 return 1;
2020
2021         if (valid_irq_stack(sp, p, nbytes))
2022                 return 1;
2023
2024         return valid_emergency_stack(sp, p, nbytes);
2025 }
2026
2027 EXPORT_SYMBOL(validate_sp);
2028
2029 static unsigned long __get_wchan(struct task_struct *p)
2030 {
2031         unsigned long ip, sp;
2032         int count = 0;
2033
2034         if (!p || p == current || p->state == TASK_RUNNING)
2035                 return 0;
2036
2037         sp = p->thread.ksp;
2038         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2039                 return 0;
2040
2041         do {
2042                 sp = *(unsigned long *)sp;
2043                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2044                     p->state == TASK_RUNNING)
2045                         return 0;
2046                 if (count > 0) {
2047                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2048                         if (!in_sched_functions(ip))
2049                                 return ip;
2050                 }
2051         } while (count++ < 16);
2052         return 0;
2053 }
2054
2055 unsigned long get_wchan(struct task_struct *p)
2056 {
2057         unsigned long ret;
2058
2059         if (!try_get_task_stack(p))
2060                 return 0;
2061
2062         ret = __get_wchan(p);
2063
2064         put_task_stack(p);
2065
2066         return ret;
2067 }
2068
2069 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2070
2071 void show_stack(struct task_struct *tsk, unsigned long *stack)
2072 {
2073         unsigned long sp, ip, lr, newsp;
2074         int count = 0;
2075         int firstframe = 1;
2076 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2077         unsigned long ret_addr;
2078         int ftrace_idx = 0;
2079 #endif
2080
2081         if (tsk == NULL)
2082                 tsk = current;
2083
2084         if (!try_get_task_stack(tsk))
2085                 return;
2086
2087         sp = (unsigned long) stack;
2088         if (sp == 0) {
2089                 if (tsk == current)
2090                         sp = current_stack_frame();
2091                 else
2092                         sp = tsk->thread.ksp;
2093         }
2094
2095         lr = 0;
2096         printk("Call Trace:\n");
2097         do {
2098                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2099                         break;
2100
2101                 stack = (unsigned long *) sp;
2102                 newsp = stack[0];
2103                 ip = stack[STACK_FRAME_LR_SAVE];
2104                 if (!firstframe || ip != lr) {
2105                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2106 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2107                         ret_addr = ftrace_graph_ret_addr(current,
2108                                                 &ftrace_idx, ip, stack);
2109                         if (ret_addr != ip)
2110                                 pr_cont(" (%pS)", (void *)ret_addr);
2111 #endif
2112                         if (firstframe)
2113                                 pr_cont(" (unreliable)");
2114                         pr_cont("\n");
2115                 }
2116                 firstframe = 0;
2117
2118                 /*
2119                  * See if this is an exception frame.
2120                  * We look for the "regshere" marker in the current frame.
2121                  */
2122                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2123                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2124                         struct pt_regs *regs = (struct pt_regs *)
2125                                 (sp + STACK_FRAME_OVERHEAD);
2126                         lr = regs->link;
2127                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2128                                regs->trap, (void *)regs->nip, (void *)lr);
2129                         firstframe = 1;
2130                 }
2131
2132                 sp = newsp;
2133         } while (count++ < kstack_depth_to_print);
2134
2135         put_task_stack(tsk);
2136 }
2137
2138 #ifdef CONFIG_PPC64
2139 /* Called with hard IRQs off */
2140 void notrace __ppc64_runlatch_on(void)
2141 {
2142         struct thread_info *ti = current_thread_info();
2143
2144         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2145                 /*
2146                  * Least significant bit (RUN) is the only writable bit of
2147                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2148                  * earliest ISA where this is the case, but it's convenient.
2149                  */
2150                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2151         } else {
2152                 unsigned long ctrl;
2153
2154                 /*
2155                  * Some architectures (e.g., Cell) have writable fields other
2156                  * than RUN, so do the read-modify-write.
2157                  */
2158                 ctrl = mfspr(SPRN_CTRLF);
2159                 ctrl |= CTRL_RUNLATCH;
2160                 mtspr(SPRN_CTRLT, ctrl);
2161         }
2162
2163         ti->local_flags |= _TLF_RUNLATCH;
2164 }
2165
2166 /* Called with hard IRQs off */
2167 void notrace __ppc64_runlatch_off(void)
2168 {
2169         struct thread_info *ti = current_thread_info();
2170
2171         ti->local_flags &= ~_TLF_RUNLATCH;
2172
2173         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2174                 mtspr(SPRN_CTRLT, 0);
2175         } else {
2176                 unsigned long ctrl;
2177
2178                 ctrl = mfspr(SPRN_CTRLF);
2179                 ctrl &= ~CTRL_RUNLATCH;
2180                 mtspr(SPRN_CTRLT, ctrl);
2181         }
2182 }
2183 #endif /* CONFIG_PPC64 */
2184
2185 unsigned long arch_align_stack(unsigned long sp)
2186 {
2187         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2188                 sp -= get_random_int() & ~PAGE_MASK;
2189         return sp & ~0xf;
2190 }
2191
2192 static inline unsigned long brk_rnd(void)
2193 {
2194         unsigned long rnd = 0;
2195
2196         /* 8MB for 32bit, 1GB for 64bit */
2197         if (is_32bit_task())
2198                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2199         else
2200                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2201
2202         return rnd << PAGE_SHIFT;
2203 }
2204
2205 unsigned long arch_randomize_brk(struct mm_struct *mm)
2206 {
2207         unsigned long base = mm->brk;
2208         unsigned long ret;
2209
2210 #ifdef CONFIG_PPC_BOOK3S_64
2211         /*
2212          * If we are using 1TB segments and we are allowed to randomise
2213          * the heap, we can put it above 1TB so it is backed by a 1TB
2214          * segment. Otherwise the heap will be in the bottom 1TB
2215          * which always uses 256MB segments and this may result in a
2216          * performance penalty. We don't need to worry about radix. For
2217          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2218          */
2219         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2220                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2221 #endif
2222
2223         ret = PAGE_ALIGN(base + brk_rnd());
2224
2225         if (ret < mm->brk)
2226                 return mm->brk;
2227
2228         return ret;
2229 }
2230