Merge tag 'trace-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/pgtable.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77
78 extern unsigned long _get_SP(void);
79
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90         /*
91          * If we are saving the current thread's registers, and the
92          * thread is in a transactional state, set the TIF_RESTORE_TM
93          * bit so that we know to restore the registers before
94          * returning to userspace.
95          */
96         if (tsk == current && tsk->thread.regs &&
97             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98             !test_thread_flag(TIF_RESTORE_TM)) {
99                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100                 set_thread_flag(TIF_RESTORE_TM);
101         }
102 }
103
104 static bool tm_active_with_fp(struct task_struct *tsk)
105 {
106         return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
107                 (tsk->thread.ckpt_regs.msr & MSR_FP);
108 }
109
110 static bool tm_active_with_altivec(struct task_struct *tsk)
111 {
112         return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
113                 (tsk->thread.ckpt_regs.msr & MSR_VEC);
114 }
115 #else
116 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
117 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
118 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
119 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
120
121 bool strict_msr_control;
122 EXPORT_SYMBOL(strict_msr_control);
123
124 static int __init enable_strict_msr_control(char *str)
125 {
126         strict_msr_control = true;
127         pr_info("Enabling strict facility control\n");
128
129         return 0;
130 }
131 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
132
133 /* notrace because it's called by restore_math */
134 unsigned long notrace msr_check_and_set(unsigned long bits)
135 {
136         unsigned long oldmsr = mfmsr();
137         unsigned long newmsr;
138
139         newmsr = oldmsr | bits;
140
141 #ifdef CONFIG_VSX
142         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
143                 newmsr |= MSR_VSX;
144 #endif
145
146         if (oldmsr != newmsr)
147                 mtmsr_isync(newmsr);
148
149         return newmsr;
150 }
151 EXPORT_SYMBOL_GPL(msr_check_and_set);
152
153 /* notrace because it's called by restore_math */
154 void notrace __msr_check_and_clear(unsigned long bits)
155 {
156         unsigned long oldmsr = mfmsr();
157         unsigned long newmsr;
158
159         newmsr = oldmsr & ~bits;
160
161 #ifdef CONFIG_VSX
162         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
163                 newmsr &= ~MSR_VSX;
164 #endif
165
166         if (oldmsr != newmsr)
167                 mtmsr_isync(newmsr);
168 }
169 EXPORT_SYMBOL(__msr_check_and_clear);
170
171 #ifdef CONFIG_PPC_FPU
172 static void __giveup_fpu(struct task_struct *tsk)
173 {
174         unsigned long msr;
175
176         save_fpu(tsk);
177         msr = tsk->thread.regs->msr;
178         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
179 #ifdef CONFIG_VSX
180         if (cpu_has_feature(CPU_FTR_VSX))
181                 msr &= ~MSR_VSX;
182 #endif
183         tsk->thread.regs->msr = msr;
184 }
185
186 void giveup_fpu(struct task_struct *tsk)
187 {
188         check_if_tm_restore_required(tsk);
189
190         msr_check_and_set(MSR_FP);
191         __giveup_fpu(tsk);
192         msr_check_and_clear(MSR_FP);
193 }
194 EXPORT_SYMBOL(giveup_fpu);
195
196 /*
197  * Make sure the floating-point register state in the
198  * the thread_struct is up to date for task tsk.
199  */
200 void flush_fp_to_thread(struct task_struct *tsk)
201 {
202         if (tsk->thread.regs) {
203                 /*
204                  * We need to disable preemption here because if we didn't,
205                  * another process could get scheduled after the regs->msr
206                  * test but before we have finished saving the FP registers
207                  * to the thread_struct.  That process could take over the
208                  * FPU, and then when we get scheduled again we would store
209                  * bogus values for the remaining FP registers.
210                  */
211                 preempt_disable();
212                 if (tsk->thread.regs->msr & MSR_FP) {
213                         /*
214                          * This should only ever be called for current or
215                          * for a stopped child process.  Since we save away
216                          * the FP register state on context switch,
217                          * there is something wrong if a stopped child appears
218                          * to still have its FP state in the CPU registers.
219                          */
220                         BUG_ON(tsk != current);
221                         giveup_fpu(tsk);
222                 }
223                 preempt_enable();
224         }
225 }
226 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
227
228 void enable_kernel_fp(void)
229 {
230         unsigned long cpumsr;
231
232         WARN_ON(preemptible());
233
234         cpumsr = msr_check_and_set(MSR_FP);
235
236         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
237                 check_if_tm_restore_required(current);
238                 /*
239                  * If a thread has already been reclaimed then the
240                  * checkpointed registers are on the CPU but have definitely
241                  * been saved by the reclaim code. Don't need to and *cannot*
242                  * giveup as this would save  to the 'live' structure not the
243                  * checkpointed structure.
244                  */
245                 if (!MSR_TM_ACTIVE(cpumsr) &&
246                      MSR_TM_ACTIVE(current->thread.regs->msr))
247                         return;
248                 __giveup_fpu(current);
249         }
250 }
251 EXPORT_SYMBOL(enable_kernel_fp);
252
253 static int restore_fp(struct task_struct *tsk)
254 {
255         if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
256                 load_fp_state(&current->thread.fp_state);
257                 current->thread.load_fp++;
258                 return 1;
259         }
260         return 0;
261 }
262 #else
263 static int restore_fp(struct task_struct *tsk) { return 0; }
264 #endif /* CONFIG_PPC_FPU */
265
266 #ifdef CONFIG_ALTIVEC
267 #define loadvec(thr) ((thr).load_vec)
268
269 static void __giveup_altivec(struct task_struct *tsk)
270 {
271         unsigned long msr;
272
273         save_altivec(tsk);
274         msr = tsk->thread.regs->msr;
275         msr &= ~MSR_VEC;
276 #ifdef CONFIG_VSX
277         if (cpu_has_feature(CPU_FTR_VSX))
278                 msr &= ~MSR_VSX;
279 #endif
280         tsk->thread.regs->msr = msr;
281 }
282
283 void giveup_altivec(struct task_struct *tsk)
284 {
285         check_if_tm_restore_required(tsk);
286
287         msr_check_and_set(MSR_VEC);
288         __giveup_altivec(tsk);
289         msr_check_and_clear(MSR_VEC);
290 }
291 EXPORT_SYMBOL(giveup_altivec);
292
293 void enable_kernel_altivec(void)
294 {
295         unsigned long cpumsr;
296
297         WARN_ON(preemptible());
298
299         cpumsr = msr_check_and_set(MSR_VEC);
300
301         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
302                 check_if_tm_restore_required(current);
303                 /*
304                  * If a thread has already been reclaimed then the
305                  * checkpointed registers are on the CPU but have definitely
306                  * been saved by the reclaim code. Don't need to and *cannot*
307                  * giveup as this would save  to the 'live' structure not the
308                  * checkpointed structure.
309                  */
310                 if (!MSR_TM_ACTIVE(cpumsr) &&
311                      MSR_TM_ACTIVE(current->thread.regs->msr))
312                         return;
313                 __giveup_altivec(current);
314         }
315 }
316 EXPORT_SYMBOL(enable_kernel_altivec);
317
318 /*
319  * Make sure the VMX/Altivec register state in the
320  * the thread_struct is up to date for task tsk.
321  */
322 void flush_altivec_to_thread(struct task_struct *tsk)
323 {
324         if (tsk->thread.regs) {
325                 preempt_disable();
326                 if (tsk->thread.regs->msr & MSR_VEC) {
327                         BUG_ON(tsk != current);
328                         giveup_altivec(tsk);
329                 }
330                 preempt_enable();
331         }
332 }
333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
334
335 static int restore_altivec(struct task_struct *tsk)
336 {
337         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
338                 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
339                 load_vr_state(&tsk->thread.vr_state);
340                 tsk->thread.used_vr = 1;
341                 tsk->thread.load_vec++;
342
343                 return 1;
344         }
345         return 0;
346 }
347 #else
348 #define loadvec(thr) 0
349 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
350 #endif /* CONFIG_ALTIVEC */
351
352 #ifdef CONFIG_VSX
353 static void __giveup_vsx(struct task_struct *tsk)
354 {
355         unsigned long msr = tsk->thread.regs->msr;
356
357         /*
358          * We should never be ssetting MSR_VSX without also setting
359          * MSR_FP and MSR_VEC
360          */
361         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
362
363         /* __giveup_fpu will clear MSR_VSX */
364         if (msr & MSR_FP)
365                 __giveup_fpu(tsk);
366         if (msr & MSR_VEC)
367                 __giveup_altivec(tsk);
368 }
369
370 static void giveup_vsx(struct task_struct *tsk)
371 {
372         check_if_tm_restore_required(tsk);
373
374         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
375         __giveup_vsx(tsk);
376         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
377 }
378
379 void enable_kernel_vsx(void)
380 {
381         unsigned long cpumsr;
382
383         WARN_ON(preemptible());
384
385         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
386
387         if (current->thread.regs &&
388             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
389                 check_if_tm_restore_required(current);
390                 /*
391                  * If a thread has already been reclaimed then the
392                  * checkpointed registers are on the CPU but have definitely
393                  * been saved by the reclaim code. Don't need to and *cannot*
394                  * giveup as this would save  to the 'live' structure not the
395                  * checkpointed structure.
396                  */
397                 if (!MSR_TM_ACTIVE(cpumsr) &&
398                      MSR_TM_ACTIVE(current->thread.regs->msr))
399                         return;
400                 __giveup_vsx(current);
401         }
402 }
403 EXPORT_SYMBOL(enable_kernel_vsx);
404
405 void flush_vsx_to_thread(struct task_struct *tsk)
406 {
407         if (tsk->thread.regs) {
408                 preempt_disable();
409                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
410                         BUG_ON(tsk != current);
411                         giveup_vsx(tsk);
412                 }
413                 preempt_enable();
414         }
415 }
416 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
417
418 static int restore_vsx(struct task_struct *tsk)
419 {
420         if (cpu_has_feature(CPU_FTR_VSX)) {
421                 tsk->thread.used_vsr = 1;
422                 return 1;
423         }
424
425         return 0;
426 }
427 #else
428 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
429 #endif /* CONFIG_VSX */
430
431 #ifdef CONFIG_SPE
432 void giveup_spe(struct task_struct *tsk)
433 {
434         check_if_tm_restore_required(tsk);
435
436         msr_check_and_set(MSR_SPE);
437         __giveup_spe(tsk);
438         msr_check_and_clear(MSR_SPE);
439 }
440 EXPORT_SYMBOL(giveup_spe);
441
442 void enable_kernel_spe(void)
443 {
444         WARN_ON(preemptible());
445
446         msr_check_and_set(MSR_SPE);
447
448         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
449                 check_if_tm_restore_required(current);
450                 __giveup_spe(current);
451         }
452 }
453 EXPORT_SYMBOL(enable_kernel_spe);
454
455 void flush_spe_to_thread(struct task_struct *tsk)
456 {
457         if (tsk->thread.regs) {
458                 preempt_disable();
459                 if (tsk->thread.regs->msr & MSR_SPE) {
460                         BUG_ON(tsk != current);
461                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
462                         giveup_spe(tsk);
463                 }
464                 preempt_enable();
465         }
466 }
467 #endif /* CONFIG_SPE */
468
469 static unsigned long msr_all_available;
470
471 static int __init init_msr_all_available(void)
472 {
473 #ifdef CONFIG_PPC_FPU
474         msr_all_available |= MSR_FP;
475 #endif
476 #ifdef CONFIG_ALTIVEC
477         if (cpu_has_feature(CPU_FTR_ALTIVEC))
478                 msr_all_available |= MSR_VEC;
479 #endif
480 #ifdef CONFIG_VSX
481         if (cpu_has_feature(CPU_FTR_VSX))
482                 msr_all_available |= MSR_VSX;
483 #endif
484 #ifdef CONFIG_SPE
485         if (cpu_has_feature(CPU_FTR_SPE))
486                 msr_all_available |= MSR_SPE;
487 #endif
488
489         return 0;
490 }
491 early_initcall(init_msr_all_available);
492
493 void giveup_all(struct task_struct *tsk)
494 {
495         unsigned long usermsr;
496
497         if (!tsk->thread.regs)
498                 return;
499
500         usermsr = tsk->thread.regs->msr;
501
502         if ((usermsr & msr_all_available) == 0)
503                 return;
504
505         msr_check_and_set(msr_all_available);
506         check_if_tm_restore_required(tsk);
507
508         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
509
510 #ifdef CONFIG_PPC_FPU
511         if (usermsr & MSR_FP)
512                 __giveup_fpu(tsk);
513 #endif
514 #ifdef CONFIG_ALTIVEC
515         if (usermsr & MSR_VEC)
516                 __giveup_altivec(tsk);
517 #endif
518 #ifdef CONFIG_SPE
519         if (usermsr & MSR_SPE)
520                 __giveup_spe(tsk);
521 #endif
522
523         msr_check_and_clear(msr_all_available);
524 }
525 EXPORT_SYMBOL(giveup_all);
526
527 /*
528  * The exception exit path calls restore_math() with interrupts hard disabled
529  * but the soft irq state not "reconciled". ftrace code that calls
530  * local_irq_save/restore causes warnings.
531  *
532  * Rather than complicate the exit path, just don't trace restore_math. This
533  * could be done by having ftrace entry code check for this un-reconciled
534  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
535  * temporarily fix it up for the duration of the ftrace call.
536  */
537 void notrace restore_math(struct pt_regs *regs)
538 {
539         unsigned long msr;
540
541         if (!MSR_TM_ACTIVE(regs->msr) &&
542                 !current->thread.load_fp && !loadvec(current->thread))
543                 return;
544
545         msr = regs->msr;
546         msr_check_and_set(msr_all_available);
547
548         /*
549          * Only reload if the bit is not set in the user MSR, the bit BEING set
550          * indicates that the registers are hot
551          */
552         if ((!(msr & MSR_FP)) && restore_fp(current))
553                 msr |= MSR_FP | current->thread.fpexc_mode;
554
555         if ((!(msr & MSR_VEC)) && restore_altivec(current))
556                 msr |= MSR_VEC;
557
558         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
559                         restore_vsx(current)) {
560                 msr |= MSR_VSX;
561         }
562
563         msr_check_and_clear(msr_all_available);
564
565         regs->msr = msr;
566 }
567
568 static void save_all(struct task_struct *tsk)
569 {
570         unsigned long usermsr;
571
572         if (!tsk->thread.regs)
573                 return;
574
575         usermsr = tsk->thread.regs->msr;
576
577         if ((usermsr & msr_all_available) == 0)
578                 return;
579
580         msr_check_and_set(msr_all_available);
581
582         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
583
584         if (usermsr & MSR_FP)
585                 save_fpu(tsk);
586
587         if (usermsr & MSR_VEC)
588                 save_altivec(tsk);
589
590         if (usermsr & MSR_SPE)
591                 __giveup_spe(tsk);
592
593         msr_check_and_clear(msr_all_available);
594         thread_pkey_regs_save(&tsk->thread);
595 }
596
597 void flush_all_to_thread(struct task_struct *tsk)
598 {
599         if (tsk->thread.regs) {
600                 preempt_disable();
601                 BUG_ON(tsk != current);
602 #ifdef CONFIG_SPE
603                 if (tsk->thread.regs->msr & MSR_SPE)
604                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
605 #endif
606                 save_all(tsk);
607
608                 preempt_enable();
609         }
610 }
611 EXPORT_SYMBOL(flush_all_to_thread);
612
613 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
614 void do_send_trap(struct pt_regs *regs, unsigned long address,
615                   unsigned long error_code, int breakpt)
616 {
617         current->thread.trap_nr = TRAP_HWBKPT;
618         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619                         11, SIGSEGV) == NOTIFY_STOP)
620                 return;
621
622         /* Deliver the signal to userspace */
623         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
624                                     (void __user *)address);
625 }
626 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
627 void do_break (struct pt_regs *regs, unsigned long address,
628                     unsigned long error_code)
629 {
630         current->thread.trap_nr = TRAP_HWBKPT;
631         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
632                         11, SIGSEGV) == NOTIFY_STOP)
633                 return;
634
635         if (debugger_break_match(regs))
636                 return;
637
638         /* Clear the breakpoint */
639         hw_breakpoint_disable();
640
641         /* Deliver the signal to userspace */
642         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
643 }
644 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
645
646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647
648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
649 /*
650  * Set the debug registers back to their default "safe" values.
651  */
652 static void set_debug_reg_defaults(struct thread_struct *thread)
653 {
654         thread->debug.iac1 = thread->debug.iac2 = 0;
655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
656         thread->debug.iac3 = thread->debug.iac4 = 0;
657 #endif
658         thread->debug.dac1 = thread->debug.dac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660         thread->debug.dvc1 = thread->debug.dvc2 = 0;
661 #endif
662         thread->debug.dbcr0 = 0;
663 #ifdef CONFIG_BOOKE
664         /*
665          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666          */
667         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668                         DBCR1_IAC3US | DBCR1_IAC4US;
669         /*
670          * Force Data Address Compare User/Supervisor bits to be User-only
671          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672          */
673         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674 #else
675         thread->debug.dbcr1 = 0;
676 #endif
677 }
678
679 static void prime_debug_regs(struct debug_reg *debug)
680 {
681         /*
682          * We could have inherited MSR_DE from userspace, since
683          * it doesn't get cleared on exception entry.  Make sure
684          * MSR_DE is clear before we enable any debug events.
685          */
686         mtmsr(mfmsr() & ~MSR_DE);
687
688         mtspr(SPRN_IAC1, debug->iac1);
689         mtspr(SPRN_IAC2, debug->iac2);
690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
691         mtspr(SPRN_IAC3, debug->iac3);
692         mtspr(SPRN_IAC4, debug->iac4);
693 #endif
694         mtspr(SPRN_DAC1, debug->dac1);
695         mtspr(SPRN_DAC2, debug->dac2);
696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697         mtspr(SPRN_DVC1, debug->dvc1);
698         mtspr(SPRN_DVC2, debug->dvc2);
699 #endif
700         mtspr(SPRN_DBCR0, debug->dbcr0);
701         mtspr(SPRN_DBCR1, debug->dbcr1);
702 #ifdef CONFIG_BOOKE
703         mtspr(SPRN_DBCR2, debug->dbcr2);
704 #endif
705 }
706 /*
707  * Unless neither the old or new thread are making use of the
708  * debug registers, set the debug registers from the values
709  * stored in the new thread.
710  */
711 void switch_booke_debug_regs(struct debug_reg *new_debug)
712 {
713         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714                 || (new_debug->dbcr0 & DBCR0_IDM))
715                         prime_debug_regs(new_debug);
716 }
717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
719 #ifndef CONFIG_HAVE_HW_BREAKPOINT
720 static void set_breakpoint(struct arch_hw_breakpoint *brk)
721 {
722         preempt_disable();
723         __set_breakpoint(brk);
724         preempt_enable();
725 }
726
727 static void set_debug_reg_defaults(struct thread_struct *thread)
728 {
729         thread->hw_brk.address = 0;
730         thread->hw_brk.type = 0;
731         if (ppc_breakpoint_available())
732                 set_breakpoint(&thread->hw_brk);
733 }
734 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
735 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
736
737 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740         mtspr(SPRN_DAC1, dabr);
741 #ifdef CONFIG_PPC_47x
742         isync();
743 #endif
744         return 0;
745 }
746 #elif defined(CONFIG_PPC_BOOK3S)
747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748 {
749         mtspr(SPRN_DABR, dabr);
750         if (cpu_has_feature(CPU_FTR_DABRX))
751                 mtspr(SPRN_DABRX, dabrx);
752         return 0;
753 }
754 #elif defined(CONFIG_PPC_8xx)
755 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
756 {
757         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
758         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
759         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
760
761         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
762                 lctrl1 |= 0xa0000;
763         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
764                 lctrl1 |= 0xf0000;
765         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
766                 lctrl2 = 0;
767
768         mtspr(SPRN_LCTRL2, 0);
769         mtspr(SPRN_CMPE, addr);
770         mtspr(SPRN_CMPF, addr + 4);
771         mtspr(SPRN_LCTRL1, lctrl1);
772         mtspr(SPRN_LCTRL2, lctrl2);
773
774         return 0;
775 }
776 #else
777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
778 {
779         return -EINVAL;
780 }
781 #endif
782
783 static inline int set_dabr(struct arch_hw_breakpoint *brk)
784 {
785         unsigned long dabr, dabrx;
786
787         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
788         dabrx = ((brk->type >> 3) & 0x7);
789
790         if (ppc_md.set_dabr)
791                 return ppc_md.set_dabr(dabr, dabrx);
792
793         return __set_dabr(dabr, dabrx);
794 }
795
796 void __set_breakpoint(struct arch_hw_breakpoint *brk)
797 {
798         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
799
800         if (dawr_enabled())
801                 // Power8 or later
802                 set_dawr(brk);
803         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
804                 // Power7 or earlier
805                 set_dabr(brk);
806         else
807                 // Shouldn't happen due to higher level checks
808                 WARN_ON_ONCE(1);
809 }
810
811 /* Check if we have DAWR or DABR hardware */
812 bool ppc_breakpoint_available(void)
813 {
814         if (dawr_enabled())
815                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
816         if (cpu_has_feature(CPU_FTR_ARCH_207S))
817                 return false; /* POWER9 with DAWR disabled */
818         /* DABR: Everything but POWER8 and POWER9 */
819         return true;
820 }
821 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
822
823 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
824                               struct arch_hw_breakpoint *b)
825 {
826         if (a->address != b->address)
827                 return false;
828         if (a->type != b->type)
829                 return false;
830         if (a->len != b->len)
831                 return false;
832         return true;
833 }
834
835 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
836
837 static inline bool tm_enabled(struct task_struct *tsk)
838 {
839         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
840 }
841
842 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
843 {
844         /*
845          * Use the current MSR TM suspended bit to track if we have
846          * checkpointed state outstanding.
847          * On signal delivery, we'd normally reclaim the checkpointed
848          * state to obtain stack pointer (see:get_tm_stackpointer()).
849          * This will then directly return to userspace without going
850          * through __switch_to(). However, if the stack frame is bad,
851          * we need to exit this thread which calls __switch_to() which
852          * will again attempt to reclaim the already saved tm state.
853          * Hence we need to check that we've not already reclaimed
854          * this state.
855          * We do this using the current MSR, rather tracking it in
856          * some specific thread_struct bit, as it has the additional
857          * benefit of checking for a potential TM bad thing exception.
858          */
859         if (!MSR_TM_SUSPENDED(mfmsr()))
860                 return;
861
862         giveup_all(container_of(thr, struct task_struct, thread));
863
864         tm_reclaim(thr, cause);
865
866         /*
867          * If we are in a transaction and FP is off then we can't have
868          * used FP inside that transaction. Hence the checkpointed
869          * state is the same as the live state. We need to copy the
870          * live state to the checkpointed state so that when the
871          * transaction is restored, the checkpointed state is correct
872          * and the aborted transaction sees the correct state. We use
873          * ckpt_regs.msr here as that's what tm_reclaim will use to
874          * determine if it's going to write the checkpointed state or
875          * not. So either this will write the checkpointed registers,
876          * or reclaim will. Similarly for VMX.
877          */
878         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
879                 memcpy(&thr->ckfp_state, &thr->fp_state,
880                        sizeof(struct thread_fp_state));
881         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
882                 memcpy(&thr->ckvr_state, &thr->vr_state,
883                        sizeof(struct thread_vr_state));
884 }
885
886 void tm_reclaim_current(uint8_t cause)
887 {
888         tm_enable();
889         tm_reclaim_thread(&current->thread, cause);
890 }
891
892 static inline void tm_reclaim_task(struct task_struct *tsk)
893 {
894         /* We have to work out if we're switching from/to a task that's in the
895          * middle of a transaction.
896          *
897          * In switching we need to maintain a 2nd register state as
898          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
899          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
900          * ckvr_state
901          *
902          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
903          */
904         struct thread_struct *thr = &tsk->thread;
905
906         if (!thr->regs)
907                 return;
908
909         if (!MSR_TM_ACTIVE(thr->regs->msr))
910                 goto out_and_saveregs;
911
912         WARN_ON(tm_suspend_disabled);
913
914         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
915                  "ccr=%lx, msr=%lx, trap=%lx)\n",
916                  tsk->pid, thr->regs->nip,
917                  thr->regs->ccr, thr->regs->msr,
918                  thr->regs->trap);
919
920         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
921
922         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
923                  tsk->pid);
924
925 out_and_saveregs:
926         /* Always save the regs here, even if a transaction's not active.
927          * This context-switches a thread's TM info SPRs.  We do it here to
928          * be consistent with the restore path (in recheckpoint) which
929          * cannot happen later in _switch().
930          */
931         tm_save_sprs(thr);
932 }
933
934 extern void __tm_recheckpoint(struct thread_struct *thread);
935
936 void tm_recheckpoint(struct thread_struct *thread)
937 {
938         unsigned long flags;
939
940         if (!(thread->regs->msr & MSR_TM))
941                 return;
942
943         /* We really can't be interrupted here as the TEXASR registers can't
944          * change and later in the trecheckpoint code, we have a userspace R1.
945          * So let's hard disable over this region.
946          */
947         local_irq_save(flags);
948         hard_irq_disable();
949
950         /* The TM SPRs are restored here, so that TEXASR.FS can be set
951          * before the trecheckpoint and no explosion occurs.
952          */
953         tm_restore_sprs(thread);
954
955         __tm_recheckpoint(thread);
956
957         local_irq_restore(flags);
958 }
959
960 static inline void tm_recheckpoint_new_task(struct task_struct *new)
961 {
962         if (!cpu_has_feature(CPU_FTR_TM))
963                 return;
964
965         /* Recheckpoint the registers of the thread we're about to switch to.
966          *
967          * If the task was using FP, we non-lazily reload both the original and
968          * the speculative FP register states.  This is because the kernel
969          * doesn't see if/when a TM rollback occurs, so if we take an FP
970          * unavailable later, we are unable to determine which set of FP regs
971          * need to be restored.
972          */
973         if (!tm_enabled(new))
974                 return;
975
976         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
977                 tm_restore_sprs(&new->thread);
978                 return;
979         }
980         /* Recheckpoint to restore original checkpointed register state. */
981         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
982                  new->pid, new->thread.regs->msr);
983
984         tm_recheckpoint(&new->thread);
985
986         /*
987          * The checkpointed state has been restored but the live state has
988          * not, ensure all the math functionality is turned off to trigger
989          * restore_math() to reload.
990          */
991         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
992
993         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
994                  "(kernel msr 0x%lx)\n",
995                  new->pid, mfmsr());
996 }
997
998 static inline void __switch_to_tm(struct task_struct *prev,
999                 struct task_struct *new)
1000 {
1001         if (cpu_has_feature(CPU_FTR_TM)) {
1002                 if (tm_enabled(prev) || tm_enabled(new))
1003                         tm_enable();
1004
1005                 if (tm_enabled(prev)) {
1006                         prev->thread.load_tm++;
1007                         tm_reclaim_task(prev);
1008                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1009                                 prev->thread.regs->msr &= ~MSR_TM;
1010                 }
1011
1012                 tm_recheckpoint_new_task(new);
1013         }
1014 }
1015
1016 /*
1017  * This is called if we are on the way out to userspace and the
1018  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1019  * FP and/or vector state and does so if necessary.
1020  * If userspace is inside a transaction (whether active or
1021  * suspended) and FP/VMX/VSX instructions have ever been enabled
1022  * inside that transaction, then we have to keep them enabled
1023  * and keep the FP/VMX/VSX state loaded while ever the transaction
1024  * continues.  The reason is that if we didn't, and subsequently
1025  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1026  * we don't know whether it's the same transaction, and thus we
1027  * don't know which of the checkpointed state and the transactional
1028  * state to use.
1029  */
1030 void restore_tm_state(struct pt_regs *regs)
1031 {
1032         unsigned long msr_diff;
1033
1034         /*
1035          * This is the only moment we should clear TIF_RESTORE_TM as
1036          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1037          * again, anything else could lead to an incorrect ckpt_msr being
1038          * saved and therefore incorrect signal contexts.
1039          */
1040         clear_thread_flag(TIF_RESTORE_TM);
1041         if (!MSR_TM_ACTIVE(regs->msr))
1042                 return;
1043
1044         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1045         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1046
1047         /* Ensure that restore_math() will restore */
1048         if (msr_diff & MSR_FP)
1049                 current->thread.load_fp = 1;
1050 #ifdef CONFIG_ALTIVEC
1051         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1052                 current->thread.load_vec = 1;
1053 #endif
1054         restore_math(regs);
1055
1056         regs->msr |= msr_diff;
1057 }
1058
1059 #else
1060 #define tm_recheckpoint_new_task(new)
1061 #define __switch_to_tm(prev, new)
1062 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1063
1064 static inline void save_sprs(struct thread_struct *t)
1065 {
1066 #ifdef CONFIG_ALTIVEC
1067         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1068                 t->vrsave = mfspr(SPRN_VRSAVE);
1069 #endif
1070 #ifdef CONFIG_PPC_BOOK3S_64
1071         if (cpu_has_feature(CPU_FTR_DSCR))
1072                 t->dscr = mfspr(SPRN_DSCR);
1073
1074         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1075                 t->bescr = mfspr(SPRN_BESCR);
1076                 t->ebbhr = mfspr(SPRN_EBBHR);
1077                 t->ebbrr = mfspr(SPRN_EBBRR);
1078
1079                 t->fscr = mfspr(SPRN_FSCR);
1080
1081                 /*
1082                  * Note that the TAR is not available for use in the kernel.
1083                  * (To provide this, the TAR should be backed up/restored on
1084                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1085                  * this should be in pt_regs anyway (for debug).)
1086                  */
1087                 t->tar = mfspr(SPRN_TAR);
1088         }
1089 #endif
1090
1091         thread_pkey_regs_save(t);
1092 }
1093
1094 static inline void restore_sprs(struct thread_struct *old_thread,
1095                                 struct thread_struct *new_thread)
1096 {
1097 #ifdef CONFIG_ALTIVEC
1098         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1099             old_thread->vrsave != new_thread->vrsave)
1100                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1101 #endif
1102 #ifdef CONFIG_PPC_BOOK3S_64
1103         if (cpu_has_feature(CPU_FTR_DSCR)) {
1104                 u64 dscr = get_paca()->dscr_default;
1105                 if (new_thread->dscr_inherit)
1106                         dscr = new_thread->dscr;
1107
1108                 if (old_thread->dscr != dscr)
1109                         mtspr(SPRN_DSCR, dscr);
1110         }
1111
1112         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1113                 if (old_thread->bescr != new_thread->bescr)
1114                         mtspr(SPRN_BESCR, new_thread->bescr);
1115                 if (old_thread->ebbhr != new_thread->ebbhr)
1116                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1117                 if (old_thread->ebbrr != new_thread->ebbrr)
1118                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1119
1120                 if (old_thread->fscr != new_thread->fscr)
1121                         mtspr(SPRN_FSCR, new_thread->fscr);
1122
1123                 if (old_thread->tar != new_thread->tar)
1124                         mtspr(SPRN_TAR, new_thread->tar);
1125         }
1126
1127         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1128             old_thread->tidr != new_thread->tidr)
1129                 mtspr(SPRN_TIDR, new_thread->tidr);
1130 #endif
1131
1132         thread_pkey_regs_restore(new_thread, old_thread);
1133 }
1134
1135 struct task_struct *__switch_to(struct task_struct *prev,
1136         struct task_struct *new)
1137 {
1138         struct thread_struct *new_thread, *old_thread;
1139         struct task_struct *last;
1140 #ifdef CONFIG_PPC_BOOK3S_64
1141         struct ppc64_tlb_batch *batch;
1142 #endif
1143
1144         new_thread = &new->thread;
1145         old_thread = &current->thread;
1146
1147         WARN_ON(!irqs_disabled());
1148
1149 #ifdef CONFIG_PPC_BOOK3S_64
1150         batch = this_cpu_ptr(&ppc64_tlb_batch);
1151         if (batch->active) {
1152                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1153                 if (batch->index)
1154                         __flush_tlb_pending(batch);
1155                 batch->active = 0;
1156         }
1157 #endif /* CONFIG_PPC_BOOK3S_64 */
1158
1159 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1160         switch_booke_debug_regs(&new->thread.debug);
1161 #else
1162 /*
1163  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1164  * schedule DABR
1165  */
1166 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1167         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1168                 __set_breakpoint(&new->thread.hw_brk);
1169 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1170 #endif
1171
1172         /*
1173          * We need to save SPRs before treclaim/trecheckpoint as these will
1174          * change a number of them.
1175          */
1176         save_sprs(&prev->thread);
1177
1178         /* Save FPU, Altivec, VSX and SPE state */
1179         giveup_all(prev);
1180
1181         __switch_to_tm(prev, new);
1182
1183         if (!radix_enabled()) {
1184                 /*
1185                  * We can't take a PMU exception inside _switch() since there
1186                  * is a window where the kernel stack SLB and the kernel stack
1187                  * are out of sync. Hard disable here.
1188                  */
1189                 hard_irq_disable();
1190         }
1191
1192         /*
1193          * Call restore_sprs() before calling _switch(). If we move it after
1194          * _switch() then we miss out on calling it for new tasks. The reason
1195          * for this is we manually create a stack frame for new tasks that
1196          * directly returns through ret_from_fork() or
1197          * ret_from_kernel_thread(). See copy_thread() for details.
1198          */
1199         restore_sprs(old_thread, new_thread);
1200
1201         last = _switch(old_thread, new_thread);
1202
1203 #ifdef CONFIG_PPC_BOOK3S_64
1204         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1205                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1206                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1207                 batch->active = 1;
1208         }
1209
1210         if (current->thread.regs) {
1211                 restore_math(current->thread.regs);
1212
1213                 /*
1214                  * The copy-paste buffer can only store into foreign real
1215                  * addresses, so unprivileged processes can not see the
1216                  * data or use it in any way unless they have foreign real
1217                  * mappings. If the new process has the foreign real address
1218                  * mappings, we must issue a cp_abort to clear any state and
1219                  * prevent snooping, corruption or a covert channel.
1220                  */
1221                 if (current->thread.used_vas)
1222                         asm volatile(PPC_CP_ABORT);
1223         }
1224 #endif /* CONFIG_PPC_BOOK3S_64 */
1225
1226         return last;
1227 }
1228
1229 #define NR_INSN_TO_PRINT        16
1230
1231 static void show_instructions(struct pt_regs *regs)
1232 {
1233         int i;
1234         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1235
1236         printk("Instruction dump:");
1237
1238         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1239                 int instr;
1240
1241                 if (!(i % 8))
1242                         pr_cont("\n");
1243
1244 #if !defined(CONFIG_BOOKE)
1245                 /* If executing with the IMMU off, adjust pc rather
1246                  * than print XXXXXXXX.
1247                  */
1248                 if (!(regs->msr & MSR_IR))
1249                         pc = (unsigned long)phys_to_virt(pc);
1250 #endif
1251
1252                 if (!__kernel_text_address(pc) ||
1253                     probe_kernel_address((const void *)pc, instr)) {
1254                         pr_cont("XXXXXXXX ");
1255                 } else {
1256                         if (regs->nip == pc)
1257                                 pr_cont("<%08x> ", instr);
1258                         else
1259                                 pr_cont("%08x ", instr);
1260                 }
1261
1262                 pc += sizeof(int);
1263         }
1264
1265         pr_cont("\n");
1266 }
1267
1268 void show_user_instructions(struct pt_regs *regs)
1269 {
1270         unsigned long pc;
1271         int n = NR_INSN_TO_PRINT;
1272         struct seq_buf s;
1273         char buf[96]; /* enough for 8 times 9 + 2 chars */
1274
1275         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1276
1277         /*
1278          * Make sure the NIP points at userspace, not kernel text/data or
1279          * elsewhere.
1280          */
1281         if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1282                 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1283                         current->comm, current->pid);
1284                 return;
1285         }
1286
1287         seq_buf_init(&s, buf, sizeof(buf));
1288
1289         while (n) {
1290                 int i;
1291
1292                 seq_buf_clear(&s);
1293
1294                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1295                         int instr;
1296
1297                         if (probe_kernel_address((const void *)pc, instr)) {
1298                                 seq_buf_printf(&s, "XXXXXXXX ");
1299                                 continue;
1300                         }
1301                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1302                 }
1303
1304                 if (!seq_buf_has_overflowed(&s))
1305                         pr_info("%s[%d]: code: %s\n", current->comm,
1306                                 current->pid, s.buffer);
1307         }
1308 }
1309
1310 struct regbit {
1311         unsigned long bit;
1312         const char *name;
1313 };
1314
1315 static struct regbit msr_bits[] = {
1316 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1317         {MSR_SF,        "SF"},
1318         {MSR_HV,        "HV"},
1319 #endif
1320         {MSR_VEC,       "VEC"},
1321         {MSR_VSX,       "VSX"},
1322 #ifdef CONFIG_BOOKE
1323         {MSR_CE,        "CE"},
1324 #endif
1325         {MSR_EE,        "EE"},
1326         {MSR_PR,        "PR"},
1327         {MSR_FP,        "FP"},
1328         {MSR_ME,        "ME"},
1329 #ifdef CONFIG_BOOKE
1330         {MSR_DE,        "DE"},
1331 #else
1332         {MSR_SE,        "SE"},
1333         {MSR_BE,        "BE"},
1334 #endif
1335         {MSR_IR,        "IR"},
1336         {MSR_DR,        "DR"},
1337         {MSR_PMM,       "PMM"},
1338 #ifndef CONFIG_BOOKE
1339         {MSR_RI,        "RI"},
1340         {MSR_LE,        "LE"},
1341 #endif
1342         {0,             NULL}
1343 };
1344
1345 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1346 {
1347         const char *s = "";
1348
1349         for (; bits->bit; ++bits)
1350                 if (val & bits->bit) {
1351                         pr_cont("%s%s", s, bits->name);
1352                         s = sep;
1353                 }
1354 }
1355
1356 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1357 static struct regbit msr_tm_bits[] = {
1358         {MSR_TS_T,      "T"},
1359         {MSR_TS_S,      "S"},
1360         {MSR_TM,        "E"},
1361         {0,             NULL}
1362 };
1363
1364 static void print_tm_bits(unsigned long val)
1365 {
1366 /*
1367  * This only prints something if at least one of the TM bit is set.
1368  * Inside the TM[], the output means:
1369  *   E: Enabled         (bit 32)
1370  *   S: Suspended       (bit 33)
1371  *   T: Transactional   (bit 34)
1372  */
1373         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1374                 pr_cont(",TM[");
1375                 print_bits(val, msr_tm_bits, "");
1376                 pr_cont("]");
1377         }
1378 }
1379 #else
1380 static void print_tm_bits(unsigned long val) {}
1381 #endif
1382
1383 static void print_msr_bits(unsigned long val)
1384 {
1385         pr_cont("<");
1386         print_bits(val, msr_bits, ",");
1387         print_tm_bits(val);
1388         pr_cont(">");
1389 }
1390
1391 #ifdef CONFIG_PPC64
1392 #define REG             "%016lx"
1393 #define REGS_PER_LINE   4
1394 #define LAST_VOLATILE   13
1395 #else
1396 #define REG             "%08lx"
1397 #define REGS_PER_LINE   8
1398 #define LAST_VOLATILE   12
1399 #endif
1400
1401 void show_regs(struct pt_regs * regs)
1402 {
1403         int i, trap;
1404
1405         show_regs_print_info(KERN_DEFAULT);
1406
1407         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1408                regs->nip, regs->link, regs->ctr);
1409         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1410                regs, regs->trap, print_tainted(), init_utsname()->release);
1411         printk("MSR:  "REG" ", regs->msr);
1412         print_msr_bits(regs->msr);
1413         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1414         trap = TRAP(regs);
1415         if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1416                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1417         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1418 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1419                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1420 #else
1421                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1422 #endif
1423 #ifdef CONFIG_PPC64
1424         pr_cont("IRQMASK: %lx ", regs->softe);
1425 #endif
1426 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1427         if (MSR_TM_ACTIVE(regs->msr))
1428                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1429 #endif
1430
1431         for (i = 0;  i < 32;  i++) {
1432                 if ((i % REGS_PER_LINE) == 0)
1433                         pr_cont("\nGPR%02d: ", i);
1434                 pr_cont(REG " ", regs->gpr[i]);
1435                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1436                         break;
1437         }
1438         pr_cont("\n");
1439 #ifdef CONFIG_KALLSYMS
1440         /*
1441          * Lookup NIP late so we have the best change of getting the
1442          * above info out without failing
1443          */
1444         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1445         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1446 #endif
1447         show_stack(current, (unsigned long *) regs->gpr[1]);
1448         if (!user_mode(regs))
1449                 show_instructions(regs);
1450 }
1451
1452 void flush_thread(void)
1453 {
1454 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1455         flush_ptrace_hw_breakpoint(current);
1456 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1457         set_debug_reg_defaults(&current->thread);
1458 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1459 }
1460
1461 #ifdef CONFIG_PPC_BOOK3S_64
1462 void arch_setup_new_exec(void)
1463 {
1464         if (radix_enabled())
1465                 return;
1466         hash__setup_new_exec();
1467 }
1468 #endif
1469
1470 int set_thread_uses_vas(void)
1471 {
1472 #ifdef CONFIG_PPC_BOOK3S_64
1473         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1474                 return -EINVAL;
1475
1476         current->thread.used_vas = 1;
1477
1478         /*
1479          * Even a process that has no foreign real address mapping can use
1480          * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1481          * to clear any pending COPY and prevent a covert channel.
1482          *
1483          * __switch_to() will issue CP_ABORT on future context switches.
1484          */
1485         asm volatile(PPC_CP_ABORT);
1486
1487 #endif /* CONFIG_PPC_BOOK3S_64 */
1488         return 0;
1489 }
1490
1491 #ifdef CONFIG_PPC64
1492 /**
1493  * Assign a TIDR (thread ID) for task @t and set it in the thread
1494  * structure. For now, we only support setting TIDR for 'current' task.
1495  *
1496  * Since the TID value is a truncated form of it PID, it is possible
1497  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1498  * that 2 threads share the same TID and are waiting, one of the following
1499  * cases will happen:
1500  *
1501  * 1. The correct thread is running, the wrong thread is not
1502  * In this situation, the correct thread is woken and proceeds to pass it's
1503  * condition check.
1504  *
1505  * 2. Neither threads are running
1506  * In this situation, neither thread will be woken. When scheduled, the waiting
1507  * threads will execute either a wait, which will return immediately, followed
1508  * by a condition check, which will pass for the correct thread and fail
1509  * for the wrong thread, or they will execute the condition check immediately.
1510  *
1511  * 3. The wrong thread is running, the correct thread is not
1512  * The wrong thread will be woken, but will fail it's condition check and
1513  * re-execute wait. The correct thread, when scheduled, will execute either
1514  * it's condition check (which will pass), or wait, which returns immediately
1515  * when called the first time after the thread is scheduled, followed by it's
1516  * condition check (which will pass).
1517  *
1518  * 4. Both threads are running
1519  * Both threads will be woken. The wrong thread will fail it's condition check
1520  * and execute another wait, while the correct thread will pass it's condition
1521  * check.
1522  *
1523  * @t: the task to set the thread ID for
1524  */
1525 int set_thread_tidr(struct task_struct *t)
1526 {
1527         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1528                 return -EINVAL;
1529
1530         if (t != current)
1531                 return -EINVAL;
1532
1533         if (t->thread.tidr)
1534                 return 0;
1535
1536         t->thread.tidr = (u16)task_pid_nr(t);
1537         mtspr(SPRN_TIDR, t->thread.tidr);
1538
1539         return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(set_thread_tidr);
1542
1543 #endif /* CONFIG_PPC64 */
1544
1545 void
1546 release_thread(struct task_struct *t)
1547 {
1548 }
1549
1550 /*
1551  * this gets called so that we can store coprocessor state into memory and
1552  * copy the current task into the new thread.
1553  */
1554 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1555 {
1556         flush_all_to_thread(src);
1557         /*
1558          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1559          * flush but it removes the checkpointed state from the current CPU and
1560          * transitions the CPU out of TM mode.  Hence we need to call
1561          * tm_recheckpoint_new_task() (on the same task) to restore the
1562          * checkpointed state back and the TM mode.
1563          *
1564          * Can't pass dst because it isn't ready. Doesn't matter, passing
1565          * dst is only important for __switch_to()
1566          */
1567         __switch_to_tm(src, src);
1568
1569         *dst = *src;
1570
1571         clear_task_ebb(dst);
1572
1573         return 0;
1574 }
1575
1576 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1577 {
1578 #ifdef CONFIG_PPC_BOOK3S_64
1579         unsigned long sp_vsid;
1580         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1581
1582         if (radix_enabled())
1583                 return;
1584
1585         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1586                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1587                         << SLB_VSID_SHIFT_1T;
1588         else
1589                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1590                         << SLB_VSID_SHIFT;
1591         sp_vsid |= SLB_VSID_KERNEL | llp;
1592         p->thread.ksp_vsid = sp_vsid;
1593 #endif
1594 }
1595
1596 /*
1597  * Copy a thread..
1598  */
1599
1600 /*
1601  * Copy architecture-specific thread state
1602  */
1603 int copy_thread(unsigned long clone_flags, unsigned long usp,
1604                 unsigned long kthread_arg, struct task_struct *p)
1605 {
1606         struct pt_regs *childregs, *kregs;
1607         extern void ret_from_fork(void);
1608         extern void ret_from_kernel_thread(void);
1609         void (*f)(void);
1610         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1611         struct thread_info *ti = task_thread_info(p);
1612
1613         klp_init_thread_info(p);
1614
1615         /* Copy registers */
1616         sp -= sizeof(struct pt_regs);
1617         childregs = (struct pt_regs *) sp;
1618         if (unlikely(p->flags & PF_KTHREAD)) {
1619                 /* kernel thread */
1620                 memset(childregs, 0, sizeof(struct pt_regs));
1621                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1622                 /* function */
1623                 if (usp)
1624                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1625 #ifdef CONFIG_PPC64
1626                 clear_tsk_thread_flag(p, TIF_32BIT);
1627                 childregs->softe = IRQS_ENABLED;
1628 #endif
1629                 childregs->gpr[15] = kthread_arg;
1630                 p->thread.regs = NULL;  /* no user register state */
1631                 ti->flags |= _TIF_RESTOREALL;
1632                 f = ret_from_kernel_thread;
1633         } else {
1634                 /* user thread */
1635                 struct pt_regs *regs = current_pt_regs();
1636                 CHECK_FULL_REGS(regs);
1637                 *childregs = *regs;
1638                 if (usp)
1639                         childregs->gpr[1] = usp;
1640                 p->thread.regs = childregs;
1641                 childregs->gpr[3] = 0;  /* Result from fork() */
1642                 if (clone_flags & CLONE_SETTLS) {
1643 #ifdef CONFIG_PPC64
1644                         if (!is_32bit_task())
1645                                 childregs->gpr[13] = childregs->gpr[6];
1646                         else
1647 #endif
1648                                 childregs->gpr[2] = childregs->gpr[6];
1649                 }
1650
1651                 f = ret_from_fork;
1652         }
1653         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1654         sp -= STACK_FRAME_OVERHEAD;
1655
1656         /*
1657          * The way this works is that at some point in the future
1658          * some task will call _switch to switch to the new task.
1659          * That will pop off the stack frame created below and start
1660          * the new task running at ret_from_fork.  The new task will
1661          * do some house keeping and then return from the fork or clone
1662          * system call, using the stack frame created above.
1663          */
1664         ((unsigned long *)sp)[0] = 0;
1665         sp -= sizeof(struct pt_regs);
1666         kregs = (struct pt_regs *) sp;
1667         sp -= STACK_FRAME_OVERHEAD;
1668         p->thread.ksp = sp;
1669 #ifdef CONFIG_PPC32
1670         p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1671 #endif
1672 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1673         p->thread.ptrace_bps[0] = NULL;
1674 #endif
1675
1676         p->thread.fp_save_area = NULL;
1677 #ifdef CONFIG_ALTIVEC
1678         p->thread.vr_save_area = NULL;
1679 #endif
1680
1681         setup_ksp_vsid(p, sp);
1682
1683 #ifdef CONFIG_PPC64 
1684         if (cpu_has_feature(CPU_FTR_DSCR)) {
1685                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1686                 p->thread.dscr = mfspr(SPRN_DSCR);
1687         }
1688         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1689                 childregs->ppr = DEFAULT_PPR;
1690
1691         p->thread.tidr = 0;
1692 #endif
1693         kregs->nip = ppc_function_entry(f);
1694         return 0;
1695 }
1696
1697 void preload_new_slb_context(unsigned long start, unsigned long sp);
1698
1699 /*
1700  * Set up a thread for executing a new program
1701  */
1702 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1703 {
1704 #ifdef CONFIG_PPC64
1705         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1706
1707 #ifdef CONFIG_PPC_BOOK3S_64
1708         if (!radix_enabled())
1709                 preload_new_slb_context(start, sp);
1710 #endif
1711 #endif
1712
1713         /*
1714          * If we exec out of a kernel thread then thread.regs will not be
1715          * set.  Do it now.
1716          */
1717         if (!current->thread.regs) {
1718                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1719                 current->thread.regs = regs - 1;
1720         }
1721
1722 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1723         /*
1724          * Clear any transactional state, we're exec()ing. The cause is
1725          * not important as there will never be a recheckpoint so it's not
1726          * user visible.
1727          */
1728         if (MSR_TM_SUSPENDED(mfmsr()))
1729                 tm_reclaim_current(0);
1730 #endif
1731
1732         memset(regs->gpr, 0, sizeof(regs->gpr));
1733         regs->ctr = 0;
1734         regs->link = 0;
1735         regs->xer = 0;
1736         regs->ccr = 0;
1737         regs->gpr[1] = sp;
1738
1739         /*
1740          * We have just cleared all the nonvolatile GPRs, so make
1741          * FULL_REGS(regs) return true.  This is necessary to allow
1742          * ptrace to examine the thread immediately after exec.
1743          */
1744         regs->trap &= ~1UL;
1745
1746 #ifdef CONFIG_PPC32
1747         regs->mq = 0;
1748         regs->nip = start;
1749         regs->msr = MSR_USER;
1750 #else
1751         if (!is_32bit_task()) {
1752                 unsigned long entry;
1753
1754                 if (is_elf2_task()) {
1755                         /* Look ma, no function descriptors! */
1756                         entry = start;
1757
1758                         /*
1759                          * Ulrich says:
1760                          *   The latest iteration of the ABI requires that when
1761                          *   calling a function (at its global entry point),
1762                          *   the caller must ensure r12 holds the entry point
1763                          *   address (so that the function can quickly
1764                          *   establish addressability).
1765                          */
1766                         regs->gpr[12] = start;
1767                         /* Make sure that's restored on entry to userspace. */
1768                         set_thread_flag(TIF_RESTOREALL);
1769                 } else {
1770                         unsigned long toc;
1771
1772                         /* start is a relocated pointer to the function
1773                          * descriptor for the elf _start routine.  The first
1774                          * entry in the function descriptor is the entry
1775                          * address of _start and the second entry is the TOC
1776                          * value we need to use.
1777                          */
1778                         __get_user(entry, (unsigned long __user *)start);
1779                         __get_user(toc, (unsigned long __user *)start+1);
1780
1781                         /* Check whether the e_entry function descriptor entries
1782                          * need to be relocated before we can use them.
1783                          */
1784                         if (load_addr != 0) {
1785                                 entry += load_addr;
1786                                 toc   += load_addr;
1787                         }
1788                         regs->gpr[2] = toc;
1789                 }
1790                 regs->nip = entry;
1791                 regs->msr = MSR_USER64;
1792         } else {
1793                 regs->nip = start;
1794                 regs->gpr[2] = 0;
1795                 regs->msr = MSR_USER32;
1796         }
1797 #endif
1798 #ifdef CONFIG_VSX
1799         current->thread.used_vsr = 0;
1800 #endif
1801         current->thread.load_slb = 0;
1802         current->thread.load_fp = 0;
1803         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1804         current->thread.fp_save_area = NULL;
1805 #ifdef CONFIG_ALTIVEC
1806         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1807         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1808         current->thread.vr_save_area = NULL;
1809         current->thread.vrsave = 0;
1810         current->thread.used_vr = 0;
1811         current->thread.load_vec = 0;
1812 #endif /* CONFIG_ALTIVEC */
1813 #ifdef CONFIG_SPE
1814         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1815         current->thread.acc = 0;
1816         current->thread.spefscr = 0;
1817         current->thread.used_spe = 0;
1818 #endif /* CONFIG_SPE */
1819 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1820         current->thread.tm_tfhar = 0;
1821         current->thread.tm_texasr = 0;
1822         current->thread.tm_tfiar = 0;
1823         current->thread.load_tm = 0;
1824 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1825
1826         thread_pkey_regs_init(&current->thread);
1827 }
1828 EXPORT_SYMBOL(start_thread);
1829
1830 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1831                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1832
1833 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1834 {
1835         struct pt_regs *regs = tsk->thread.regs;
1836
1837         /* This is a bit hairy.  If we are an SPE enabled  processor
1838          * (have embedded fp) we store the IEEE exception enable flags in
1839          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1840          * mode (asyn, precise, disabled) for 'Classic' FP. */
1841         if (val & PR_FP_EXC_SW_ENABLE) {
1842 #ifdef CONFIG_SPE
1843                 if (cpu_has_feature(CPU_FTR_SPE)) {
1844                         /*
1845                          * When the sticky exception bits are set
1846                          * directly by userspace, it must call prctl
1847                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1848                          * in the existing prctl settings) or
1849                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1850                          * the bits being set).  <fenv.h> functions
1851                          * saving and restoring the whole
1852                          * floating-point environment need to do so
1853                          * anyway to restore the prctl settings from
1854                          * the saved environment.
1855                          */
1856                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1857                         tsk->thread.fpexc_mode = val &
1858                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1859                         return 0;
1860                 } else {
1861                         return -EINVAL;
1862                 }
1863 #else
1864                 return -EINVAL;
1865 #endif
1866         }
1867
1868         /* on a CONFIG_SPE this does not hurt us.  The bits that
1869          * __pack_fe01 use do not overlap with bits used for
1870          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1871          * on CONFIG_SPE implementations are reserved so writing to
1872          * them does not change anything */
1873         if (val > PR_FP_EXC_PRECISE)
1874                 return -EINVAL;
1875         tsk->thread.fpexc_mode = __pack_fe01(val);
1876         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1877                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1878                         | tsk->thread.fpexc_mode;
1879         return 0;
1880 }
1881
1882 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1883 {
1884         unsigned int val;
1885
1886         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1887 #ifdef CONFIG_SPE
1888                 if (cpu_has_feature(CPU_FTR_SPE)) {
1889                         /*
1890                          * When the sticky exception bits are set
1891                          * directly by userspace, it must call prctl
1892                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1893                          * in the existing prctl settings) or
1894                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1895                          * the bits being set).  <fenv.h> functions
1896                          * saving and restoring the whole
1897                          * floating-point environment need to do so
1898                          * anyway to restore the prctl settings from
1899                          * the saved environment.
1900                          */
1901                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1902                         val = tsk->thread.fpexc_mode;
1903                 } else
1904                         return -EINVAL;
1905 #else
1906                 return -EINVAL;
1907 #endif
1908         else
1909                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1910         return put_user(val, (unsigned int __user *) adr);
1911 }
1912
1913 int set_endian(struct task_struct *tsk, unsigned int val)
1914 {
1915         struct pt_regs *regs = tsk->thread.regs;
1916
1917         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1918             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1919                 return -EINVAL;
1920
1921         if (regs == NULL)
1922                 return -EINVAL;
1923
1924         if (val == PR_ENDIAN_BIG)
1925                 regs->msr &= ~MSR_LE;
1926         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1927                 regs->msr |= MSR_LE;
1928         else
1929                 return -EINVAL;
1930
1931         return 0;
1932 }
1933
1934 int get_endian(struct task_struct *tsk, unsigned long adr)
1935 {
1936         struct pt_regs *regs = tsk->thread.regs;
1937         unsigned int val;
1938
1939         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1940             !cpu_has_feature(CPU_FTR_REAL_LE))
1941                 return -EINVAL;
1942
1943         if (regs == NULL)
1944                 return -EINVAL;
1945
1946         if (regs->msr & MSR_LE) {
1947                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1948                         val = PR_ENDIAN_LITTLE;
1949                 else
1950                         val = PR_ENDIAN_PPC_LITTLE;
1951         } else
1952                 val = PR_ENDIAN_BIG;
1953
1954         return put_user(val, (unsigned int __user *)adr);
1955 }
1956
1957 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1958 {
1959         tsk->thread.align_ctl = val;
1960         return 0;
1961 }
1962
1963 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1964 {
1965         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1966 }
1967
1968 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1969                                   unsigned long nbytes)
1970 {
1971         unsigned long stack_page;
1972         unsigned long cpu = task_cpu(p);
1973
1974         stack_page = (unsigned long)hardirq_ctx[cpu];
1975         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1976                 return 1;
1977
1978         stack_page = (unsigned long)softirq_ctx[cpu];
1979         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1980                 return 1;
1981
1982         return 0;
1983 }
1984
1985 int validate_sp(unsigned long sp, struct task_struct *p,
1986                        unsigned long nbytes)
1987 {
1988         unsigned long stack_page = (unsigned long)task_stack_page(p);
1989
1990         if (sp < THREAD_SIZE)
1991                 return 0;
1992
1993         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1994                 return 1;
1995
1996         return valid_irq_stack(sp, p, nbytes);
1997 }
1998
1999 EXPORT_SYMBOL(validate_sp);
2000
2001 static unsigned long __get_wchan(struct task_struct *p)
2002 {
2003         unsigned long ip, sp;
2004         int count = 0;
2005
2006         if (!p || p == current || p->state == TASK_RUNNING)
2007                 return 0;
2008
2009         sp = p->thread.ksp;
2010         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2011                 return 0;
2012
2013         do {
2014                 sp = *(unsigned long *)sp;
2015                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2016                     p->state == TASK_RUNNING)
2017                         return 0;
2018                 if (count > 0) {
2019                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2020                         if (!in_sched_functions(ip))
2021                                 return ip;
2022                 }
2023         } while (count++ < 16);
2024         return 0;
2025 }
2026
2027 unsigned long get_wchan(struct task_struct *p)
2028 {
2029         unsigned long ret;
2030
2031         if (!try_get_task_stack(p))
2032                 return 0;
2033
2034         ret = __get_wchan(p);
2035
2036         put_task_stack(p);
2037
2038         return ret;
2039 }
2040
2041 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2042
2043 void show_stack(struct task_struct *tsk, unsigned long *stack)
2044 {
2045         unsigned long sp, ip, lr, newsp;
2046         int count = 0;
2047         int firstframe = 1;
2048 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2049         struct ftrace_ret_stack *ret_stack;
2050         extern void return_to_handler(void);
2051         unsigned long rth = (unsigned long)return_to_handler;
2052         int curr_frame = 0;
2053 #endif
2054
2055         if (tsk == NULL)
2056                 tsk = current;
2057
2058         if (!try_get_task_stack(tsk))
2059                 return;
2060
2061         sp = (unsigned long) stack;
2062         if (sp == 0) {
2063                 if (tsk == current)
2064                         sp = current_stack_pointer();
2065                 else
2066                         sp = tsk->thread.ksp;
2067         }
2068
2069         lr = 0;
2070         printk("Call Trace:\n");
2071         do {
2072                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2073                         break;
2074
2075                 stack = (unsigned long *) sp;
2076                 newsp = stack[0];
2077                 ip = stack[STACK_FRAME_LR_SAVE];
2078                 if (!firstframe || ip != lr) {
2079                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2080 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2081                         if ((ip == rth) && curr_frame >= 0) {
2082                                 ret_stack = ftrace_graph_get_ret_stack(current,
2083                                                                   curr_frame++);
2084                                 if (ret_stack)
2085                                         pr_cont(" (%pS)",
2086                                                 (void *)ret_stack->ret);
2087                                 else
2088                                         curr_frame = -1;
2089                         }
2090 #endif
2091                         if (firstframe)
2092                                 pr_cont(" (unreliable)");
2093                         pr_cont("\n");
2094                 }
2095                 firstframe = 0;
2096
2097                 /*
2098                  * See if this is an exception frame.
2099                  * We look for the "regshere" marker in the current frame.
2100                  */
2101                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2102                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2103                         struct pt_regs *regs = (struct pt_regs *)
2104                                 (sp + STACK_FRAME_OVERHEAD);
2105                         lr = regs->link;
2106                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2107                                regs->trap, (void *)regs->nip, (void *)lr);
2108                         firstframe = 1;
2109                 }
2110
2111                 sp = newsp;
2112         } while (count++ < kstack_depth_to_print);
2113
2114         put_task_stack(tsk);
2115 }
2116
2117 #ifdef CONFIG_PPC64
2118 /* Called with hard IRQs off */
2119 void notrace __ppc64_runlatch_on(void)
2120 {
2121         struct thread_info *ti = current_thread_info();
2122
2123         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2124                 /*
2125                  * Least significant bit (RUN) is the only writable bit of
2126                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2127                  * earliest ISA where this is the case, but it's convenient.
2128                  */
2129                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2130         } else {
2131                 unsigned long ctrl;
2132
2133                 /*
2134                  * Some architectures (e.g., Cell) have writable fields other
2135                  * than RUN, so do the read-modify-write.
2136                  */
2137                 ctrl = mfspr(SPRN_CTRLF);
2138                 ctrl |= CTRL_RUNLATCH;
2139                 mtspr(SPRN_CTRLT, ctrl);
2140         }
2141
2142         ti->local_flags |= _TLF_RUNLATCH;
2143 }
2144
2145 /* Called with hard IRQs off */
2146 void notrace __ppc64_runlatch_off(void)
2147 {
2148         struct thread_info *ti = current_thread_info();
2149
2150         ti->local_flags &= ~_TLF_RUNLATCH;
2151
2152         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2153                 mtspr(SPRN_CTRLT, 0);
2154         } else {
2155                 unsigned long ctrl;
2156
2157                 ctrl = mfspr(SPRN_CTRLF);
2158                 ctrl &= ~CTRL_RUNLATCH;
2159                 mtspr(SPRN_CTRLT, ctrl);
2160         }
2161 }
2162 #endif /* CONFIG_PPC64 */
2163
2164 unsigned long arch_align_stack(unsigned long sp)
2165 {
2166         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2167                 sp -= get_random_int() & ~PAGE_MASK;
2168         return sp & ~0xf;
2169 }
2170
2171 static inline unsigned long brk_rnd(void)
2172 {
2173         unsigned long rnd = 0;
2174
2175         /* 8MB for 32bit, 1GB for 64bit */
2176         if (is_32bit_task())
2177                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2178         else
2179                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2180
2181         return rnd << PAGE_SHIFT;
2182 }
2183
2184 unsigned long arch_randomize_brk(struct mm_struct *mm)
2185 {
2186         unsigned long base = mm->brk;
2187         unsigned long ret;
2188
2189 #ifdef CONFIG_PPC_BOOK3S_64
2190         /*
2191          * If we are using 1TB segments and we are allowed to randomise
2192          * the heap, we can put it above 1TB so it is backed by a 1TB
2193          * segment. Otherwise the heap will be in the bottom 1TB
2194          * which always uses 256MB segments and this may result in a
2195          * performance penalty. We don't need to worry about radix. For
2196          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2197          */
2198         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2199                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2200 #endif
2201
2202         ret = PAGE_ALIGN(base + brk_rnd());
2203
2204         if (ret < mm->brk)
2205                 return mm->brk;
2206
2207         return ret;
2208 }
2209