Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebieder...
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/pgtable.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77
78 extern unsigned long _get_SP(void);
79
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90         /*
91          * If we are saving the current thread's registers, and the
92          * thread is in a transactional state, set the TIF_RESTORE_TM
93          * bit so that we know to restore the registers before
94          * returning to userspace.
95          */
96         if (tsk == current && tsk->thread.regs &&
97             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98             !test_thread_flag(TIF_RESTORE_TM)) {
99                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100                 set_thread_flag(TIF_RESTORE_TM);
101         }
102 }
103
104 static bool tm_active_with_fp(struct task_struct *tsk)
105 {
106         return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
107                 (tsk->thread.ckpt_regs.msr & MSR_FP);
108 }
109
110 static bool tm_active_with_altivec(struct task_struct *tsk)
111 {
112         return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
113                 (tsk->thread.ckpt_regs.msr & MSR_VEC);
114 }
115 #else
116 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
117 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
118 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
119 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
120
121 bool strict_msr_control;
122 EXPORT_SYMBOL(strict_msr_control);
123
124 static int __init enable_strict_msr_control(char *str)
125 {
126         strict_msr_control = true;
127         pr_info("Enabling strict facility control\n");
128
129         return 0;
130 }
131 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
132
133 /* notrace because it's called by restore_math */
134 unsigned long notrace msr_check_and_set(unsigned long bits)
135 {
136         unsigned long oldmsr = mfmsr();
137         unsigned long newmsr;
138
139         newmsr = oldmsr | bits;
140
141 #ifdef CONFIG_VSX
142         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
143                 newmsr |= MSR_VSX;
144 #endif
145
146         if (oldmsr != newmsr)
147                 mtmsr_isync(newmsr);
148
149         return newmsr;
150 }
151 EXPORT_SYMBOL_GPL(msr_check_and_set);
152
153 /* notrace because it's called by restore_math */
154 void notrace __msr_check_and_clear(unsigned long bits)
155 {
156         unsigned long oldmsr = mfmsr();
157         unsigned long newmsr;
158
159         newmsr = oldmsr & ~bits;
160
161 #ifdef CONFIG_VSX
162         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
163                 newmsr &= ~MSR_VSX;
164 #endif
165
166         if (oldmsr != newmsr)
167                 mtmsr_isync(newmsr);
168 }
169 EXPORT_SYMBOL(__msr_check_and_clear);
170
171 #ifdef CONFIG_PPC_FPU
172 static void __giveup_fpu(struct task_struct *tsk)
173 {
174         unsigned long msr;
175
176         save_fpu(tsk);
177         msr = tsk->thread.regs->msr;
178         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
179 #ifdef CONFIG_VSX
180         if (cpu_has_feature(CPU_FTR_VSX))
181                 msr &= ~MSR_VSX;
182 #endif
183         tsk->thread.regs->msr = msr;
184 }
185
186 void giveup_fpu(struct task_struct *tsk)
187 {
188         check_if_tm_restore_required(tsk);
189
190         msr_check_and_set(MSR_FP);
191         __giveup_fpu(tsk);
192         msr_check_and_clear(MSR_FP);
193 }
194 EXPORT_SYMBOL(giveup_fpu);
195
196 /*
197  * Make sure the floating-point register state in the
198  * the thread_struct is up to date for task tsk.
199  */
200 void flush_fp_to_thread(struct task_struct *tsk)
201 {
202         if (tsk->thread.regs) {
203                 /*
204                  * We need to disable preemption here because if we didn't,
205                  * another process could get scheduled after the regs->msr
206                  * test but before we have finished saving the FP registers
207                  * to the thread_struct.  That process could take over the
208                  * FPU, and then when we get scheduled again we would store
209                  * bogus values for the remaining FP registers.
210                  */
211                 preempt_disable();
212                 if (tsk->thread.regs->msr & MSR_FP) {
213                         /*
214                          * This should only ever be called for current or
215                          * for a stopped child process.  Since we save away
216                          * the FP register state on context switch,
217                          * there is something wrong if a stopped child appears
218                          * to still have its FP state in the CPU registers.
219                          */
220                         BUG_ON(tsk != current);
221                         giveup_fpu(tsk);
222                 }
223                 preempt_enable();
224         }
225 }
226 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
227
228 void enable_kernel_fp(void)
229 {
230         unsigned long cpumsr;
231
232         WARN_ON(preemptible());
233
234         cpumsr = msr_check_and_set(MSR_FP);
235
236         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
237                 check_if_tm_restore_required(current);
238                 /*
239                  * If a thread has already been reclaimed then the
240                  * checkpointed registers are on the CPU but have definitely
241                  * been saved by the reclaim code. Don't need to and *cannot*
242                  * giveup as this would save  to the 'live' structure not the
243                  * checkpointed structure.
244                  */
245                 if (!MSR_TM_ACTIVE(cpumsr) &&
246                      MSR_TM_ACTIVE(current->thread.regs->msr))
247                         return;
248                 __giveup_fpu(current);
249         }
250 }
251 EXPORT_SYMBOL(enable_kernel_fp);
252
253 static int restore_fp(struct task_struct *tsk)
254 {
255         if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
256                 load_fp_state(&current->thread.fp_state);
257                 current->thread.load_fp++;
258                 return 1;
259         }
260         return 0;
261 }
262 #else
263 static int restore_fp(struct task_struct *tsk) { return 0; }
264 #endif /* CONFIG_PPC_FPU */
265
266 #ifdef CONFIG_ALTIVEC
267 #define loadvec(thr) ((thr).load_vec)
268
269 static void __giveup_altivec(struct task_struct *tsk)
270 {
271         unsigned long msr;
272
273         save_altivec(tsk);
274         msr = tsk->thread.regs->msr;
275         msr &= ~MSR_VEC;
276 #ifdef CONFIG_VSX
277         if (cpu_has_feature(CPU_FTR_VSX))
278                 msr &= ~MSR_VSX;
279 #endif
280         tsk->thread.regs->msr = msr;
281 }
282
283 void giveup_altivec(struct task_struct *tsk)
284 {
285         check_if_tm_restore_required(tsk);
286
287         msr_check_and_set(MSR_VEC);
288         __giveup_altivec(tsk);
289         msr_check_and_clear(MSR_VEC);
290 }
291 EXPORT_SYMBOL(giveup_altivec);
292
293 void enable_kernel_altivec(void)
294 {
295         unsigned long cpumsr;
296
297         WARN_ON(preemptible());
298
299         cpumsr = msr_check_and_set(MSR_VEC);
300
301         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
302                 check_if_tm_restore_required(current);
303                 /*
304                  * If a thread has already been reclaimed then the
305                  * checkpointed registers are on the CPU but have definitely
306                  * been saved by the reclaim code. Don't need to and *cannot*
307                  * giveup as this would save  to the 'live' structure not the
308                  * checkpointed structure.
309                  */
310                 if (!MSR_TM_ACTIVE(cpumsr) &&
311                      MSR_TM_ACTIVE(current->thread.regs->msr))
312                         return;
313                 __giveup_altivec(current);
314         }
315 }
316 EXPORT_SYMBOL(enable_kernel_altivec);
317
318 /*
319  * Make sure the VMX/Altivec register state in the
320  * the thread_struct is up to date for task tsk.
321  */
322 void flush_altivec_to_thread(struct task_struct *tsk)
323 {
324         if (tsk->thread.regs) {
325                 preempt_disable();
326                 if (tsk->thread.regs->msr & MSR_VEC) {
327                         BUG_ON(tsk != current);
328                         giveup_altivec(tsk);
329                 }
330                 preempt_enable();
331         }
332 }
333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
334
335 static int restore_altivec(struct task_struct *tsk)
336 {
337         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
338                 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
339                 load_vr_state(&tsk->thread.vr_state);
340                 tsk->thread.used_vr = 1;
341                 tsk->thread.load_vec++;
342
343                 return 1;
344         }
345         return 0;
346 }
347 #else
348 #define loadvec(thr) 0
349 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
350 #endif /* CONFIG_ALTIVEC */
351
352 #ifdef CONFIG_VSX
353 static void __giveup_vsx(struct task_struct *tsk)
354 {
355         unsigned long msr = tsk->thread.regs->msr;
356
357         /*
358          * We should never be ssetting MSR_VSX without also setting
359          * MSR_FP and MSR_VEC
360          */
361         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
362
363         /* __giveup_fpu will clear MSR_VSX */
364         if (msr & MSR_FP)
365                 __giveup_fpu(tsk);
366         if (msr & MSR_VEC)
367                 __giveup_altivec(tsk);
368 }
369
370 static void giveup_vsx(struct task_struct *tsk)
371 {
372         check_if_tm_restore_required(tsk);
373
374         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
375         __giveup_vsx(tsk);
376         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
377 }
378
379 void enable_kernel_vsx(void)
380 {
381         unsigned long cpumsr;
382
383         WARN_ON(preemptible());
384
385         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
386
387         if (current->thread.regs &&
388             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
389                 check_if_tm_restore_required(current);
390                 /*
391                  * If a thread has already been reclaimed then the
392                  * checkpointed registers are on the CPU but have definitely
393                  * been saved by the reclaim code. Don't need to and *cannot*
394                  * giveup as this would save  to the 'live' structure not the
395                  * checkpointed structure.
396                  */
397                 if (!MSR_TM_ACTIVE(cpumsr) &&
398                      MSR_TM_ACTIVE(current->thread.regs->msr))
399                         return;
400                 __giveup_vsx(current);
401         }
402 }
403 EXPORT_SYMBOL(enable_kernel_vsx);
404
405 void flush_vsx_to_thread(struct task_struct *tsk)
406 {
407         if (tsk->thread.regs) {
408                 preempt_disable();
409                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
410                         BUG_ON(tsk != current);
411                         giveup_vsx(tsk);
412                 }
413                 preempt_enable();
414         }
415 }
416 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
417
418 static int restore_vsx(struct task_struct *tsk)
419 {
420         if (cpu_has_feature(CPU_FTR_VSX)) {
421                 tsk->thread.used_vsr = 1;
422                 return 1;
423         }
424
425         return 0;
426 }
427 #else
428 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
429 #endif /* CONFIG_VSX */
430
431 #ifdef CONFIG_SPE
432 void giveup_spe(struct task_struct *tsk)
433 {
434         check_if_tm_restore_required(tsk);
435
436         msr_check_and_set(MSR_SPE);
437         __giveup_spe(tsk);
438         msr_check_and_clear(MSR_SPE);
439 }
440 EXPORT_SYMBOL(giveup_spe);
441
442 void enable_kernel_spe(void)
443 {
444         WARN_ON(preemptible());
445
446         msr_check_and_set(MSR_SPE);
447
448         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
449                 check_if_tm_restore_required(current);
450                 __giveup_spe(current);
451         }
452 }
453 EXPORT_SYMBOL(enable_kernel_spe);
454
455 void flush_spe_to_thread(struct task_struct *tsk)
456 {
457         if (tsk->thread.regs) {
458                 preempt_disable();
459                 if (tsk->thread.regs->msr & MSR_SPE) {
460                         BUG_ON(tsk != current);
461                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
462                         giveup_spe(tsk);
463                 }
464                 preempt_enable();
465         }
466 }
467 #endif /* CONFIG_SPE */
468
469 static unsigned long msr_all_available;
470
471 static int __init init_msr_all_available(void)
472 {
473 #ifdef CONFIG_PPC_FPU
474         msr_all_available |= MSR_FP;
475 #endif
476 #ifdef CONFIG_ALTIVEC
477         if (cpu_has_feature(CPU_FTR_ALTIVEC))
478                 msr_all_available |= MSR_VEC;
479 #endif
480 #ifdef CONFIG_VSX
481         if (cpu_has_feature(CPU_FTR_VSX))
482                 msr_all_available |= MSR_VSX;
483 #endif
484 #ifdef CONFIG_SPE
485         if (cpu_has_feature(CPU_FTR_SPE))
486                 msr_all_available |= MSR_SPE;
487 #endif
488
489         return 0;
490 }
491 early_initcall(init_msr_all_available);
492
493 void giveup_all(struct task_struct *tsk)
494 {
495         unsigned long usermsr;
496
497         if (!tsk->thread.regs)
498                 return;
499
500         usermsr = tsk->thread.regs->msr;
501
502         if ((usermsr & msr_all_available) == 0)
503                 return;
504
505         msr_check_and_set(msr_all_available);
506         check_if_tm_restore_required(tsk);
507
508         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
509
510 #ifdef CONFIG_PPC_FPU
511         if (usermsr & MSR_FP)
512                 __giveup_fpu(tsk);
513 #endif
514 #ifdef CONFIG_ALTIVEC
515         if (usermsr & MSR_VEC)
516                 __giveup_altivec(tsk);
517 #endif
518 #ifdef CONFIG_SPE
519         if (usermsr & MSR_SPE)
520                 __giveup_spe(tsk);
521 #endif
522
523         msr_check_and_clear(msr_all_available);
524 }
525 EXPORT_SYMBOL(giveup_all);
526
527 /*
528  * The exception exit path calls restore_math() with interrupts hard disabled
529  * but the soft irq state not "reconciled". ftrace code that calls
530  * local_irq_save/restore causes warnings.
531  *
532  * Rather than complicate the exit path, just don't trace restore_math. This
533  * could be done by having ftrace entry code check for this un-reconciled
534  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
535  * temporarily fix it up for the duration of the ftrace call.
536  */
537 void notrace restore_math(struct pt_regs *regs)
538 {
539         unsigned long msr;
540
541         if (!MSR_TM_ACTIVE(regs->msr) &&
542                 !current->thread.load_fp && !loadvec(current->thread))
543                 return;
544
545         msr = regs->msr;
546         msr_check_and_set(msr_all_available);
547
548         /*
549          * Only reload if the bit is not set in the user MSR, the bit BEING set
550          * indicates that the registers are hot
551          */
552         if ((!(msr & MSR_FP)) && restore_fp(current))
553                 msr |= MSR_FP | current->thread.fpexc_mode;
554
555         if ((!(msr & MSR_VEC)) && restore_altivec(current))
556                 msr |= MSR_VEC;
557
558         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
559                         restore_vsx(current)) {
560                 msr |= MSR_VSX;
561         }
562
563         msr_check_and_clear(msr_all_available);
564
565         regs->msr = msr;
566 }
567
568 static void save_all(struct task_struct *tsk)
569 {
570         unsigned long usermsr;
571
572         if (!tsk->thread.regs)
573                 return;
574
575         usermsr = tsk->thread.regs->msr;
576
577         if ((usermsr & msr_all_available) == 0)
578                 return;
579
580         msr_check_and_set(msr_all_available);
581
582         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
583
584         if (usermsr & MSR_FP)
585                 save_fpu(tsk);
586
587         if (usermsr & MSR_VEC)
588                 save_altivec(tsk);
589
590         if (usermsr & MSR_SPE)
591                 __giveup_spe(tsk);
592
593         msr_check_and_clear(msr_all_available);
594         thread_pkey_regs_save(&tsk->thread);
595 }
596
597 void flush_all_to_thread(struct task_struct *tsk)
598 {
599         if (tsk->thread.regs) {
600                 preempt_disable();
601                 BUG_ON(tsk != current);
602 #ifdef CONFIG_SPE
603                 if (tsk->thread.regs->msr & MSR_SPE)
604                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
605 #endif
606                 save_all(tsk);
607
608                 preempt_enable();
609         }
610 }
611 EXPORT_SYMBOL(flush_all_to_thread);
612
613 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
614 void do_send_trap(struct pt_regs *regs, unsigned long address,
615                   unsigned long error_code, int breakpt)
616 {
617         current->thread.trap_nr = TRAP_HWBKPT;
618         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619                         11, SIGSEGV) == NOTIFY_STOP)
620                 return;
621
622         /* Deliver the signal to userspace */
623         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
624                                     (void __user *)address);
625 }
626 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
627 void do_break (struct pt_regs *regs, unsigned long address,
628                     unsigned long error_code)
629 {
630         current->thread.trap_nr = TRAP_HWBKPT;
631         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
632                         11, SIGSEGV) == NOTIFY_STOP)
633                 return;
634
635         if (debugger_break_match(regs))
636                 return;
637
638         /* Clear the breakpoint */
639         hw_breakpoint_disable();
640
641         /* Deliver the signal to userspace */
642         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
643 }
644 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
645
646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647
648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
649 /*
650  * Set the debug registers back to their default "safe" values.
651  */
652 static void set_debug_reg_defaults(struct thread_struct *thread)
653 {
654         thread->debug.iac1 = thread->debug.iac2 = 0;
655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
656         thread->debug.iac3 = thread->debug.iac4 = 0;
657 #endif
658         thread->debug.dac1 = thread->debug.dac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660         thread->debug.dvc1 = thread->debug.dvc2 = 0;
661 #endif
662         thread->debug.dbcr0 = 0;
663 #ifdef CONFIG_BOOKE
664         /*
665          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666          */
667         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668                         DBCR1_IAC3US | DBCR1_IAC4US;
669         /*
670          * Force Data Address Compare User/Supervisor bits to be User-only
671          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672          */
673         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674 #else
675         thread->debug.dbcr1 = 0;
676 #endif
677 }
678
679 static void prime_debug_regs(struct debug_reg *debug)
680 {
681         /*
682          * We could have inherited MSR_DE from userspace, since
683          * it doesn't get cleared on exception entry.  Make sure
684          * MSR_DE is clear before we enable any debug events.
685          */
686         mtmsr(mfmsr() & ~MSR_DE);
687
688         mtspr(SPRN_IAC1, debug->iac1);
689         mtspr(SPRN_IAC2, debug->iac2);
690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
691         mtspr(SPRN_IAC3, debug->iac3);
692         mtspr(SPRN_IAC4, debug->iac4);
693 #endif
694         mtspr(SPRN_DAC1, debug->dac1);
695         mtspr(SPRN_DAC2, debug->dac2);
696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697         mtspr(SPRN_DVC1, debug->dvc1);
698         mtspr(SPRN_DVC2, debug->dvc2);
699 #endif
700         mtspr(SPRN_DBCR0, debug->dbcr0);
701         mtspr(SPRN_DBCR1, debug->dbcr1);
702 #ifdef CONFIG_BOOKE
703         mtspr(SPRN_DBCR2, debug->dbcr2);
704 #endif
705 }
706 /*
707  * Unless neither the old or new thread are making use of the
708  * debug registers, set the debug registers from the values
709  * stored in the new thread.
710  */
711 void switch_booke_debug_regs(struct debug_reg *new_debug)
712 {
713         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714                 || (new_debug->dbcr0 & DBCR0_IDM))
715                         prime_debug_regs(new_debug);
716 }
717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
719 #ifndef CONFIG_HAVE_HW_BREAKPOINT
720 static void set_breakpoint(struct arch_hw_breakpoint *brk)
721 {
722         preempt_disable();
723         __set_breakpoint(brk);
724         preempt_enable();
725 }
726
727 static void set_debug_reg_defaults(struct thread_struct *thread)
728 {
729         thread->hw_brk.address = 0;
730         thread->hw_brk.type = 0;
731         if (ppc_breakpoint_available())
732                 set_breakpoint(&thread->hw_brk);
733 }
734 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
735 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
736
737 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740         mtspr(SPRN_DAC1, dabr);
741 #ifdef CONFIG_PPC_47x
742         isync();
743 #endif
744         return 0;
745 }
746 #elif defined(CONFIG_PPC_BOOK3S)
747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748 {
749         mtspr(SPRN_DABR, dabr);
750         if (cpu_has_feature(CPU_FTR_DABRX))
751                 mtspr(SPRN_DABRX, dabrx);
752         return 0;
753 }
754 #elif defined(CONFIG_PPC_8xx)
755 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
756 {
757         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
758         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
759         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
760
761         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
762                 lctrl1 |= 0xa0000;
763         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
764                 lctrl1 |= 0xf0000;
765         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
766                 lctrl2 = 0;
767
768         mtspr(SPRN_LCTRL2, 0);
769         mtspr(SPRN_CMPE, addr);
770         mtspr(SPRN_CMPF, addr + 4);
771         mtspr(SPRN_LCTRL1, lctrl1);
772         mtspr(SPRN_LCTRL2, lctrl2);
773
774         return 0;
775 }
776 #else
777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
778 {
779         return -EINVAL;
780 }
781 #endif
782
783 static inline int set_dabr(struct arch_hw_breakpoint *brk)
784 {
785         unsigned long dabr, dabrx;
786
787         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
788         dabrx = ((brk->type >> 3) & 0x7);
789
790         if (ppc_md.set_dabr)
791                 return ppc_md.set_dabr(dabr, dabrx);
792
793         return __set_dabr(dabr, dabrx);
794 }
795
796 int set_dawr(struct arch_hw_breakpoint *brk)
797 {
798         unsigned long dawr, dawrx, mrd;
799
800         dawr = brk->address;
801
802         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
803                                    << (63 - 58); //* read/write bits */
804         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
805                                    << (63 - 59); //* translate */
806         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
807                                    >> 3; //* PRIM bits */
808         /* dawr length is stored in field MDR bits 48:53.  Matches range in
809            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
810            0b111111=64DW.
811            brk->len is in bytes.
812            This aligns up to double word size, shifts and does the bias.
813         */
814         mrd = ((brk->len + 7) >> 3) - 1;
815         dawrx |= (mrd & 0x3f) << (63 - 53);
816
817         if (ppc_md.set_dawr)
818                 return ppc_md.set_dawr(dawr, dawrx);
819         mtspr(SPRN_DAWR, dawr);
820         mtspr(SPRN_DAWRX, dawrx);
821         return 0;
822 }
823
824 void __set_breakpoint(struct arch_hw_breakpoint *brk)
825 {
826         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
827
828         if (dawr_enabled())
829                 // Power8 or later
830                 set_dawr(brk);
831         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
832                 // Power7 or earlier
833                 set_dabr(brk);
834         else
835                 // Shouldn't happen due to higher level checks
836                 WARN_ON_ONCE(1);
837 }
838
839 /* Check if we have DAWR or DABR hardware */
840 bool ppc_breakpoint_available(void)
841 {
842         if (dawr_enabled())
843                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
844         if (cpu_has_feature(CPU_FTR_ARCH_207S))
845                 return false; /* POWER9 with DAWR disabled */
846         /* DABR: Everything but POWER8 and POWER9 */
847         return true;
848 }
849 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
850
851 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
852                               struct arch_hw_breakpoint *b)
853 {
854         if (a->address != b->address)
855                 return false;
856         if (a->type != b->type)
857                 return false;
858         if (a->len != b->len)
859                 return false;
860         return true;
861 }
862
863 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
864
865 static inline bool tm_enabled(struct task_struct *tsk)
866 {
867         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
868 }
869
870 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
871 {
872         /*
873          * Use the current MSR TM suspended bit to track if we have
874          * checkpointed state outstanding.
875          * On signal delivery, we'd normally reclaim the checkpointed
876          * state to obtain stack pointer (see:get_tm_stackpointer()).
877          * This will then directly return to userspace without going
878          * through __switch_to(). However, if the stack frame is bad,
879          * we need to exit this thread which calls __switch_to() which
880          * will again attempt to reclaim the already saved tm state.
881          * Hence we need to check that we've not already reclaimed
882          * this state.
883          * We do this using the current MSR, rather tracking it in
884          * some specific thread_struct bit, as it has the additional
885          * benefit of checking for a potential TM bad thing exception.
886          */
887         if (!MSR_TM_SUSPENDED(mfmsr()))
888                 return;
889
890         giveup_all(container_of(thr, struct task_struct, thread));
891
892         tm_reclaim(thr, cause);
893
894         /*
895          * If we are in a transaction and FP is off then we can't have
896          * used FP inside that transaction. Hence the checkpointed
897          * state is the same as the live state. We need to copy the
898          * live state to the checkpointed state so that when the
899          * transaction is restored, the checkpointed state is correct
900          * and the aborted transaction sees the correct state. We use
901          * ckpt_regs.msr here as that's what tm_reclaim will use to
902          * determine if it's going to write the checkpointed state or
903          * not. So either this will write the checkpointed registers,
904          * or reclaim will. Similarly for VMX.
905          */
906         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
907                 memcpy(&thr->ckfp_state, &thr->fp_state,
908                        sizeof(struct thread_fp_state));
909         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
910                 memcpy(&thr->ckvr_state, &thr->vr_state,
911                        sizeof(struct thread_vr_state));
912 }
913
914 void tm_reclaim_current(uint8_t cause)
915 {
916         tm_enable();
917         tm_reclaim_thread(&current->thread, cause);
918 }
919
920 static inline void tm_reclaim_task(struct task_struct *tsk)
921 {
922         /* We have to work out if we're switching from/to a task that's in the
923          * middle of a transaction.
924          *
925          * In switching we need to maintain a 2nd register state as
926          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
927          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
928          * ckvr_state
929          *
930          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
931          */
932         struct thread_struct *thr = &tsk->thread;
933
934         if (!thr->regs)
935                 return;
936
937         if (!MSR_TM_ACTIVE(thr->regs->msr))
938                 goto out_and_saveregs;
939
940         WARN_ON(tm_suspend_disabled);
941
942         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
943                  "ccr=%lx, msr=%lx, trap=%lx)\n",
944                  tsk->pid, thr->regs->nip,
945                  thr->regs->ccr, thr->regs->msr,
946                  thr->regs->trap);
947
948         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
949
950         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
951                  tsk->pid);
952
953 out_and_saveregs:
954         /* Always save the regs here, even if a transaction's not active.
955          * This context-switches a thread's TM info SPRs.  We do it here to
956          * be consistent with the restore path (in recheckpoint) which
957          * cannot happen later in _switch().
958          */
959         tm_save_sprs(thr);
960 }
961
962 extern void __tm_recheckpoint(struct thread_struct *thread);
963
964 void tm_recheckpoint(struct thread_struct *thread)
965 {
966         unsigned long flags;
967
968         if (!(thread->regs->msr & MSR_TM))
969                 return;
970
971         /* We really can't be interrupted here as the TEXASR registers can't
972          * change and later in the trecheckpoint code, we have a userspace R1.
973          * So let's hard disable over this region.
974          */
975         local_irq_save(flags);
976         hard_irq_disable();
977
978         /* The TM SPRs are restored here, so that TEXASR.FS can be set
979          * before the trecheckpoint and no explosion occurs.
980          */
981         tm_restore_sprs(thread);
982
983         __tm_recheckpoint(thread);
984
985         local_irq_restore(flags);
986 }
987
988 static inline void tm_recheckpoint_new_task(struct task_struct *new)
989 {
990         if (!cpu_has_feature(CPU_FTR_TM))
991                 return;
992
993         /* Recheckpoint the registers of the thread we're about to switch to.
994          *
995          * If the task was using FP, we non-lazily reload both the original and
996          * the speculative FP register states.  This is because the kernel
997          * doesn't see if/when a TM rollback occurs, so if we take an FP
998          * unavailable later, we are unable to determine which set of FP regs
999          * need to be restored.
1000          */
1001         if (!tm_enabled(new))
1002                 return;
1003
1004         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1005                 tm_restore_sprs(&new->thread);
1006                 return;
1007         }
1008         /* Recheckpoint to restore original checkpointed register state. */
1009         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1010                  new->pid, new->thread.regs->msr);
1011
1012         tm_recheckpoint(&new->thread);
1013
1014         /*
1015          * The checkpointed state has been restored but the live state has
1016          * not, ensure all the math functionality is turned off to trigger
1017          * restore_math() to reload.
1018          */
1019         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1020
1021         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1022                  "(kernel msr 0x%lx)\n",
1023                  new->pid, mfmsr());
1024 }
1025
1026 static inline void __switch_to_tm(struct task_struct *prev,
1027                 struct task_struct *new)
1028 {
1029         if (cpu_has_feature(CPU_FTR_TM)) {
1030                 if (tm_enabled(prev) || tm_enabled(new))
1031                         tm_enable();
1032
1033                 if (tm_enabled(prev)) {
1034                         prev->thread.load_tm++;
1035                         tm_reclaim_task(prev);
1036                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1037                                 prev->thread.regs->msr &= ~MSR_TM;
1038                 }
1039
1040                 tm_recheckpoint_new_task(new);
1041         }
1042 }
1043
1044 /*
1045  * This is called if we are on the way out to userspace and the
1046  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1047  * FP and/or vector state and does so if necessary.
1048  * If userspace is inside a transaction (whether active or
1049  * suspended) and FP/VMX/VSX instructions have ever been enabled
1050  * inside that transaction, then we have to keep them enabled
1051  * and keep the FP/VMX/VSX state loaded while ever the transaction
1052  * continues.  The reason is that if we didn't, and subsequently
1053  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1054  * we don't know whether it's the same transaction, and thus we
1055  * don't know which of the checkpointed state and the transactional
1056  * state to use.
1057  */
1058 void restore_tm_state(struct pt_regs *regs)
1059 {
1060         unsigned long msr_diff;
1061
1062         /*
1063          * This is the only moment we should clear TIF_RESTORE_TM as
1064          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1065          * again, anything else could lead to an incorrect ckpt_msr being
1066          * saved and therefore incorrect signal contexts.
1067          */
1068         clear_thread_flag(TIF_RESTORE_TM);
1069         if (!MSR_TM_ACTIVE(regs->msr))
1070                 return;
1071
1072         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1073         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1074
1075         /* Ensure that restore_math() will restore */
1076         if (msr_diff & MSR_FP)
1077                 current->thread.load_fp = 1;
1078 #ifdef CONFIG_ALTIVEC
1079         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1080                 current->thread.load_vec = 1;
1081 #endif
1082         restore_math(regs);
1083
1084         regs->msr |= msr_diff;
1085 }
1086
1087 #else
1088 #define tm_recheckpoint_new_task(new)
1089 #define __switch_to_tm(prev, new)
1090 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1091
1092 static inline void save_sprs(struct thread_struct *t)
1093 {
1094 #ifdef CONFIG_ALTIVEC
1095         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1096                 t->vrsave = mfspr(SPRN_VRSAVE);
1097 #endif
1098 #ifdef CONFIG_PPC_BOOK3S_64
1099         if (cpu_has_feature(CPU_FTR_DSCR))
1100                 t->dscr = mfspr(SPRN_DSCR);
1101
1102         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1103                 t->bescr = mfspr(SPRN_BESCR);
1104                 t->ebbhr = mfspr(SPRN_EBBHR);
1105                 t->ebbrr = mfspr(SPRN_EBBRR);
1106
1107                 t->fscr = mfspr(SPRN_FSCR);
1108
1109                 /*
1110                  * Note that the TAR is not available for use in the kernel.
1111                  * (To provide this, the TAR should be backed up/restored on
1112                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1113                  * this should be in pt_regs anyway (for debug).)
1114                  */
1115                 t->tar = mfspr(SPRN_TAR);
1116         }
1117 #endif
1118
1119         thread_pkey_regs_save(t);
1120 }
1121
1122 static inline void restore_sprs(struct thread_struct *old_thread,
1123                                 struct thread_struct *new_thread)
1124 {
1125 #ifdef CONFIG_ALTIVEC
1126         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1127             old_thread->vrsave != new_thread->vrsave)
1128                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1129 #endif
1130 #ifdef CONFIG_PPC_BOOK3S_64
1131         if (cpu_has_feature(CPU_FTR_DSCR)) {
1132                 u64 dscr = get_paca()->dscr_default;
1133                 if (new_thread->dscr_inherit)
1134                         dscr = new_thread->dscr;
1135
1136                 if (old_thread->dscr != dscr)
1137                         mtspr(SPRN_DSCR, dscr);
1138         }
1139
1140         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1141                 if (old_thread->bescr != new_thread->bescr)
1142                         mtspr(SPRN_BESCR, new_thread->bescr);
1143                 if (old_thread->ebbhr != new_thread->ebbhr)
1144                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1145                 if (old_thread->ebbrr != new_thread->ebbrr)
1146                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1147
1148                 if (old_thread->fscr != new_thread->fscr)
1149                         mtspr(SPRN_FSCR, new_thread->fscr);
1150
1151                 if (old_thread->tar != new_thread->tar)
1152                         mtspr(SPRN_TAR, new_thread->tar);
1153         }
1154
1155         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1156             old_thread->tidr != new_thread->tidr)
1157                 mtspr(SPRN_TIDR, new_thread->tidr);
1158 #endif
1159
1160         thread_pkey_regs_restore(new_thread, old_thread);
1161 }
1162
1163 struct task_struct *__switch_to(struct task_struct *prev,
1164         struct task_struct *new)
1165 {
1166         struct thread_struct *new_thread, *old_thread;
1167         struct task_struct *last;
1168 #ifdef CONFIG_PPC_BOOK3S_64
1169         struct ppc64_tlb_batch *batch;
1170 #endif
1171
1172         new_thread = &new->thread;
1173         old_thread = &current->thread;
1174
1175         WARN_ON(!irqs_disabled());
1176
1177 #ifdef CONFIG_PPC_BOOK3S_64
1178         batch = this_cpu_ptr(&ppc64_tlb_batch);
1179         if (batch->active) {
1180                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1181                 if (batch->index)
1182                         __flush_tlb_pending(batch);
1183                 batch->active = 0;
1184         }
1185 #endif /* CONFIG_PPC_BOOK3S_64 */
1186
1187 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1188         switch_booke_debug_regs(&new->thread.debug);
1189 #else
1190 /*
1191  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1192  * schedule DABR
1193  */
1194 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1195         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1196                 __set_breakpoint(&new->thread.hw_brk);
1197 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1198 #endif
1199
1200         /*
1201          * We need to save SPRs before treclaim/trecheckpoint as these will
1202          * change a number of them.
1203          */
1204         save_sprs(&prev->thread);
1205
1206         /* Save FPU, Altivec, VSX and SPE state */
1207         giveup_all(prev);
1208
1209         __switch_to_tm(prev, new);
1210
1211         if (!radix_enabled()) {
1212                 /*
1213                  * We can't take a PMU exception inside _switch() since there
1214                  * is a window where the kernel stack SLB and the kernel stack
1215                  * are out of sync. Hard disable here.
1216                  */
1217                 hard_irq_disable();
1218         }
1219
1220         /*
1221          * Call restore_sprs() before calling _switch(). If we move it after
1222          * _switch() then we miss out on calling it for new tasks. The reason
1223          * for this is we manually create a stack frame for new tasks that
1224          * directly returns through ret_from_fork() or
1225          * ret_from_kernel_thread(). See copy_thread() for details.
1226          */
1227         restore_sprs(old_thread, new_thread);
1228
1229         last = _switch(old_thread, new_thread);
1230
1231 #ifdef CONFIG_PPC_BOOK3S_64
1232         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1233                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1234                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1235                 batch->active = 1;
1236         }
1237
1238         if (current->thread.regs) {
1239                 restore_math(current->thread.regs);
1240
1241                 /*
1242                  * The copy-paste buffer can only store into foreign real
1243                  * addresses, so unprivileged processes can not see the
1244                  * data or use it in any way unless they have foreign real
1245                  * mappings. If the new process has the foreign real address
1246                  * mappings, we must issue a cp_abort to clear any state and
1247                  * prevent snooping, corruption or a covert channel.
1248                  */
1249                 if (current->thread.used_vas)
1250                         asm volatile(PPC_CP_ABORT);
1251         }
1252 #endif /* CONFIG_PPC_BOOK3S_64 */
1253
1254         return last;
1255 }
1256
1257 #define NR_INSN_TO_PRINT        16
1258
1259 static void show_instructions(struct pt_regs *regs)
1260 {
1261         int i;
1262         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1263
1264         printk("Instruction dump:");
1265
1266         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1267                 int instr;
1268
1269                 if (!(i % 8))
1270                         pr_cont("\n");
1271
1272 #if !defined(CONFIG_BOOKE)
1273                 /* If executing with the IMMU off, adjust pc rather
1274                  * than print XXXXXXXX.
1275                  */
1276                 if (!(regs->msr & MSR_IR))
1277                         pc = (unsigned long)phys_to_virt(pc);
1278 #endif
1279
1280                 if (!__kernel_text_address(pc) ||
1281                     probe_kernel_address((const void *)pc, instr)) {
1282                         pr_cont("XXXXXXXX ");
1283                 } else {
1284                         if (regs->nip == pc)
1285                                 pr_cont("<%08x> ", instr);
1286                         else
1287                                 pr_cont("%08x ", instr);
1288                 }
1289
1290                 pc += sizeof(int);
1291         }
1292
1293         pr_cont("\n");
1294 }
1295
1296 void show_user_instructions(struct pt_regs *regs)
1297 {
1298         unsigned long pc;
1299         int n = NR_INSN_TO_PRINT;
1300         struct seq_buf s;
1301         char buf[96]; /* enough for 8 times 9 + 2 chars */
1302
1303         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1304
1305         /*
1306          * Make sure the NIP points at userspace, not kernel text/data or
1307          * elsewhere.
1308          */
1309         if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1310                 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1311                         current->comm, current->pid);
1312                 return;
1313         }
1314
1315         seq_buf_init(&s, buf, sizeof(buf));
1316
1317         while (n) {
1318                 int i;
1319
1320                 seq_buf_clear(&s);
1321
1322                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1323                         int instr;
1324
1325                         if (probe_kernel_address((const void *)pc, instr)) {
1326                                 seq_buf_printf(&s, "XXXXXXXX ");
1327                                 continue;
1328                         }
1329                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1330                 }
1331
1332                 if (!seq_buf_has_overflowed(&s))
1333                         pr_info("%s[%d]: code: %s\n", current->comm,
1334                                 current->pid, s.buffer);
1335         }
1336 }
1337
1338 struct regbit {
1339         unsigned long bit;
1340         const char *name;
1341 };
1342
1343 static struct regbit msr_bits[] = {
1344 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1345         {MSR_SF,        "SF"},
1346         {MSR_HV,        "HV"},
1347 #endif
1348         {MSR_VEC,       "VEC"},
1349         {MSR_VSX,       "VSX"},
1350 #ifdef CONFIG_BOOKE
1351         {MSR_CE,        "CE"},
1352 #endif
1353         {MSR_EE,        "EE"},
1354         {MSR_PR,        "PR"},
1355         {MSR_FP,        "FP"},
1356         {MSR_ME,        "ME"},
1357 #ifdef CONFIG_BOOKE
1358         {MSR_DE,        "DE"},
1359 #else
1360         {MSR_SE,        "SE"},
1361         {MSR_BE,        "BE"},
1362 #endif
1363         {MSR_IR,        "IR"},
1364         {MSR_DR,        "DR"},
1365         {MSR_PMM,       "PMM"},
1366 #ifndef CONFIG_BOOKE
1367         {MSR_RI,        "RI"},
1368         {MSR_LE,        "LE"},
1369 #endif
1370         {0,             NULL}
1371 };
1372
1373 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1374 {
1375         const char *s = "";
1376
1377         for (; bits->bit; ++bits)
1378                 if (val & bits->bit) {
1379                         pr_cont("%s%s", s, bits->name);
1380                         s = sep;
1381                 }
1382 }
1383
1384 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1385 static struct regbit msr_tm_bits[] = {
1386         {MSR_TS_T,      "T"},
1387         {MSR_TS_S,      "S"},
1388         {MSR_TM,        "E"},
1389         {0,             NULL}
1390 };
1391
1392 static void print_tm_bits(unsigned long val)
1393 {
1394 /*
1395  * This only prints something if at least one of the TM bit is set.
1396  * Inside the TM[], the output means:
1397  *   E: Enabled         (bit 32)
1398  *   S: Suspended       (bit 33)
1399  *   T: Transactional   (bit 34)
1400  */
1401         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1402                 pr_cont(",TM[");
1403                 print_bits(val, msr_tm_bits, "");
1404                 pr_cont("]");
1405         }
1406 }
1407 #else
1408 static void print_tm_bits(unsigned long val) {}
1409 #endif
1410
1411 static void print_msr_bits(unsigned long val)
1412 {
1413         pr_cont("<");
1414         print_bits(val, msr_bits, ",");
1415         print_tm_bits(val);
1416         pr_cont(">");
1417 }
1418
1419 #ifdef CONFIG_PPC64
1420 #define REG             "%016lx"
1421 #define REGS_PER_LINE   4
1422 #define LAST_VOLATILE   13
1423 #else
1424 #define REG             "%08lx"
1425 #define REGS_PER_LINE   8
1426 #define LAST_VOLATILE   12
1427 #endif
1428
1429 void show_regs(struct pt_regs * regs)
1430 {
1431         int i, trap;
1432
1433         show_regs_print_info(KERN_DEFAULT);
1434
1435         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1436                regs->nip, regs->link, regs->ctr);
1437         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1438                regs, regs->trap, print_tainted(), init_utsname()->release);
1439         printk("MSR:  "REG" ", regs->msr);
1440         print_msr_bits(regs->msr);
1441         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1442         trap = TRAP(regs);
1443         if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1444                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1445         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1446 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1447                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1448 #else
1449                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1450 #endif
1451 #ifdef CONFIG_PPC64
1452         pr_cont("IRQMASK: %lx ", regs->softe);
1453 #endif
1454 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1455         if (MSR_TM_ACTIVE(regs->msr))
1456                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1457 #endif
1458
1459         for (i = 0;  i < 32;  i++) {
1460                 if ((i % REGS_PER_LINE) == 0)
1461                         pr_cont("\nGPR%02d: ", i);
1462                 pr_cont(REG " ", regs->gpr[i]);
1463                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1464                         break;
1465         }
1466         pr_cont("\n");
1467 #ifdef CONFIG_KALLSYMS
1468         /*
1469          * Lookup NIP late so we have the best change of getting the
1470          * above info out without failing
1471          */
1472         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1473         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1474 #endif
1475         show_stack(current, (unsigned long *) regs->gpr[1]);
1476         if (!user_mode(regs))
1477                 show_instructions(regs);
1478 }
1479
1480 void flush_thread(void)
1481 {
1482 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1483         flush_ptrace_hw_breakpoint(current);
1484 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1485         set_debug_reg_defaults(&current->thread);
1486 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1487 }
1488
1489 #ifdef CONFIG_PPC_BOOK3S_64
1490 void arch_setup_new_exec(void)
1491 {
1492         if (radix_enabled())
1493                 return;
1494         hash__setup_new_exec();
1495 }
1496 #endif
1497
1498 int set_thread_uses_vas(void)
1499 {
1500 #ifdef CONFIG_PPC_BOOK3S_64
1501         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1502                 return -EINVAL;
1503
1504         current->thread.used_vas = 1;
1505
1506         /*
1507          * Even a process that has no foreign real address mapping can use
1508          * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1509          * to clear any pending COPY and prevent a covert channel.
1510          *
1511          * __switch_to() will issue CP_ABORT on future context switches.
1512          */
1513         asm volatile(PPC_CP_ABORT);
1514
1515 #endif /* CONFIG_PPC_BOOK3S_64 */
1516         return 0;
1517 }
1518
1519 #ifdef CONFIG_PPC64
1520 /**
1521  * Assign a TIDR (thread ID) for task @t and set it in the thread
1522  * structure. For now, we only support setting TIDR for 'current' task.
1523  *
1524  * Since the TID value is a truncated form of it PID, it is possible
1525  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1526  * that 2 threads share the same TID and are waiting, one of the following
1527  * cases will happen:
1528  *
1529  * 1. The correct thread is running, the wrong thread is not
1530  * In this situation, the correct thread is woken and proceeds to pass it's
1531  * condition check.
1532  *
1533  * 2. Neither threads are running
1534  * In this situation, neither thread will be woken. When scheduled, the waiting
1535  * threads will execute either a wait, which will return immediately, followed
1536  * by a condition check, which will pass for the correct thread and fail
1537  * for the wrong thread, or they will execute the condition check immediately.
1538  *
1539  * 3. The wrong thread is running, the correct thread is not
1540  * The wrong thread will be woken, but will fail it's condition check and
1541  * re-execute wait. The correct thread, when scheduled, will execute either
1542  * it's condition check (which will pass), or wait, which returns immediately
1543  * when called the first time after the thread is scheduled, followed by it's
1544  * condition check (which will pass).
1545  *
1546  * 4. Both threads are running
1547  * Both threads will be woken. The wrong thread will fail it's condition check
1548  * and execute another wait, while the correct thread will pass it's condition
1549  * check.
1550  *
1551  * @t: the task to set the thread ID for
1552  */
1553 int set_thread_tidr(struct task_struct *t)
1554 {
1555         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1556                 return -EINVAL;
1557
1558         if (t != current)
1559                 return -EINVAL;
1560
1561         if (t->thread.tidr)
1562                 return 0;
1563
1564         t->thread.tidr = (u16)task_pid_nr(t);
1565         mtspr(SPRN_TIDR, t->thread.tidr);
1566
1567         return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(set_thread_tidr);
1570
1571 #endif /* CONFIG_PPC64 */
1572
1573 void
1574 release_thread(struct task_struct *t)
1575 {
1576 }
1577
1578 /*
1579  * this gets called so that we can store coprocessor state into memory and
1580  * copy the current task into the new thread.
1581  */
1582 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1583 {
1584         flush_all_to_thread(src);
1585         /*
1586          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1587          * flush but it removes the checkpointed state from the current CPU and
1588          * transitions the CPU out of TM mode.  Hence we need to call
1589          * tm_recheckpoint_new_task() (on the same task) to restore the
1590          * checkpointed state back and the TM mode.
1591          *
1592          * Can't pass dst because it isn't ready. Doesn't matter, passing
1593          * dst is only important for __switch_to()
1594          */
1595         __switch_to_tm(src, src);
1596
1597         *dst = *src;
1598
1599         clear_task_ebb(dst);
1600
1601         return 0;
1602 }
1603
1604 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1605 {
1606 #ifdef CONFIG_PPC_BOOK3S_64
1607         unsigned long sp_vsid;
1608         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1609
1610         if (radix_enabled())
1611                 return;
1612
1613         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1614                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1615                         << SLB_VSID_SHIFT_1T;
1616         else
1617                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1618                         << SLB_VSID_SHIFT;
1619         sp_vsid |= SLB_VSID_KERNEL | llp;
1620         p->thread.ksp_vsid = sp_vsid;
1621 #endif
1622 }
1623
1624 /*
1625  * Copy a thread..
1626  */
1627
1628 /*
1629  * Copy architecture-specific thread state
1630  */
1631 int copy_thread(unsigned long clone_flags, unsigned long usp,
1632                 unsigned long kthread_arg, struct task_struct *p)
1633 {
1634         struct pt_regs *childregs, *kregs;
1635         extern void ret_from_fork(void);
1636         extern void ret_from_kernel_thread(void);
1637         void (*f)(void);
1638         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1639         struct thread_info *ti = task_thread_info(p);
1640
1641         klp_init_thread_info(p);
1642
1643         /* Copy registers */
1644         sp -= sizeof(struct pt_regs);
1645         childregs = (struct pt_regs *) sp;
1646         if (unlikely(p->flags & PF_KTHREAD)) {
1647                 /* kernel thread */
1648                 memset(childregs, 0, sizeof(struct pt_regs));
1649                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1650                 /* function */
1651                 if (usp)
1652                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1653 #ifdef CONFIG_PPC64
1654                 clear_tsk_thread_flag(p, TIF_32BIT);
1655                 childregs->softe = IRQS_ENABLED;
1656 #endif
1657                 childregs->gpr[15] = kthread_arg;
1658                 p->thread.regs = NULL;  /* no user register state */
1659                 ti->flags |= _TIF_RESTOREALL;
1660                 f = ret_from_kernel_thread;
1661         } else {
1662                 /* user thread */
1663                 struct pt_regs *regs = current_pt_regs();
1664                 CHECK_FULL_REGS(regs);
1665                 *childregs = *regs;
1666                 if (usp)
1667                         childregs->gpr[1] = usp;
1668                 p->thread.regs = childregs;
1669                 childregs->gpr[3] = 0;  /* Result from fork() */
1670                 if (clone_flags & CLONE_SETTLS) {
1671 #ifdef CONFIG_PPC64
1672                         if (!is_32bit_task())
1673                                 childregs->gpr[13] = childregs->gpr[6];
1674                         else
1675 #endif
1676                                 childregs->gpr[2] = childregs->gpr[6];
1677                 }
1678
1679                 f = ret_from_fork;
1680         }
1681         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1682         sp -= STACK_FRAME_OVERHEAD;
1683
1684         /*
1685          * The way this works is that at some point in the future
1686          * some task will call _switch to switch to the new task.
1687          * That will pop off the stack frame created below and start
1688          * the new task running at ret_from_fork.  The new task will
1689          * do some house keeping and then return from the fork or clone
1690          * system call, using the stack frame created above.
1691          */
1692         ((unsigned long *)sp)[0] = 0;
1693         sp -= sizeof(struct pt_regs);
1694         kregs = (struct pt_regs *) sp;
1695         sp -= STACK_FRAME_OVERHEAD;
1696         p->thread.ksp = sp;
1697 #ifdef CONFIG_PPC32
1698         p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1699 #endif
1700 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1701         p->thread.ptrace_bps[0] = NULL;
1702 #endif
1703
1704         p->thread.fp_save_area = NULL;
1705 #ifdef CONFIG_ALTIVEC
1706         p->thread.vr_save_area = NULL;
1707 #endif
1708
1709         setup_ksp_vsid(p, sp);
1710
1711 #ifdef CONFIG_PPC64 
1712         if (cpu_has_feature(CPU_FTR_DSCR)) {
1713                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1714                 p->thread.dscr = mfspr(SPRN_DSCR);
1715         }
1716         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1717                 childregs->ppr = DEFAULT_PPR;
1718
1719         p->thread.tidr = 0;
1720 #endif
1721         kregs->nip = ppc_function_entry(f);
1722         return 0;
1723 }
1724
1725 void preload_new_slb_context(unsigned long start, unsigned long sp);
1726
1727 /*
1728  * Set up a thread for executing a new program
1729  */
1730 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1731 {
1732 #ifdef CONFIG_PPC64
1733         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1734
1735 #ifdef CONFIG_PPC_BOOK3S_64
1736         if (!radix_enabled())
1737                 preload_new_slb_context(start, sp);
1738 #endif
1739 #endif
1740
1741         /*
1742          * If we exec out of a kernel thread then thread.regs will not be
1743          * set.  Do it now.
1744          */
1745         if (!current->thread.regs) {
1746                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1747                 current->thread.regs = regs - 1;
1748         }
1749
1750 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1751         /*
1752          * Clear any transactional state, we're exec()ing. The cause is
1753          * not important as there will never be a recheckpoint so it's not
1754          * user visible.
1755          */
1756         if (MSR_TM_SUSPENDED(mfmsr()))
1757                 tm_reclaim_current(0);
1758 #endif
1759
1760         memset(regs->gpr, 0, sizeof(regs->gpr));
1761         regs->ctr = 0;
1762         regs->link = 0;
1763         regs->xer = 0;
1764         regs->ccr = 0;
1765         regs->gpr[1] = sp;
1766
1767         /*
1768          * We have just cleared all the nonvolatile GPRs, so make
1769          * FULL_REGS(regs) return true.  This is necessary to allow
1770          * ptrace to examine the thread immediately after exec.
1771          */
1772         regs->trap &= ~1UL;
1773
1774 #ifdef CONFIG_PPC32
1775         regs->mq = 0;
1776         regs->nip = start;
1777         regs->msr = MSR_USER;
1778 #else
1779         if (!is_32bit_task()) {
1780                 unsigned long entry;
1781
1782                 if (is_elf2_task()) {
1783                         /* Look ma, no function descriptors! */
1784                         entry = start;
1785
1786                         /*
1787                          * Ulrich says:
1788                          *   The latest iteration of the ABI requires that when
1789                          *   calling a function (at its global entry point),
1790                          *   the caller must ensure r12 holds the entry point
1791                          *   address (so that the function can quickly
1792                          *   establish addressability).
1793                          */
1794                         regs->gpr[12] = start;
1795                         /* Make sure that's restored on entry to userspace. */
1796                         set_thread_flag(TIF_RESTOREALL);
1797                 } else {
1798                         unsigned long toc;
1799
1800                         /* start is a relocated pointer to the function
1801                          * descriptor for the elf _start routine.  The first
1802                          * entry in the function descriptor is the entry
1803                          * address of _start and the second entry is the TOC
1804                          * value we need to use.
1805                          */
1806                         __get_user(entry, (unsigned long __user *)start);
1807                         __get_user(toc, (unsigned long __user *)start+1);
1808
1809                         /* Check whether the e_entry function descriptor entries
1810                          * need to be relocated before we can use them.
1811                          */
1812                         if (load_addr != 0) {
1813                                 entry += load_addr;
1814                                 toc   += load_addr;
1815                         }
1816                         regs->gpr[2] = toc;
1817                 }
1818                 regs->nip = entry;
1819                 regs->msr = MSR_USER64;
1820         } else {
1821                 regs->nip = start;
1822                 regs->gpr[2] = 0;
1823                 regs->msr = MSR_USER32;
1824         }
1825 #endif
1826 #ifdef CONFIG_VSX
1827         current->thread.used_vsr = 0;
1828 #endif
1829         current->thread.load_slb = 0;
1830         current->thread.load_fp = 0;
1831         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1832         current->thread.fp_save_area = NULL;
1833 #ifdef CONFIG_ALTIVEC
1834         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1835         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1836         current->thread.vr_save_area = NULL;
1837         current->thread.vrsave = 0;
1838         current->thread.used_vr = 0;
1839         current->thread.load_vec = 0;
1840 #endif /* CONFIG_ALTIVEC */
1841 #ifdef CONFIG_SPE
1842         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1843         current->thread.acc = 0;
1844         current->thread.spefscr = 0;
1845         current->thread.used_spe = 0;
1846 #endif /* CONFIG_SPE */
1847 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1848         current->thread.tm_tfhar = 0;
1849         current->thread.tm_texasr = 0;
1850         current->thread.tm_tfiar = 0;
1851         current->thread.load_tm = 0;
1852 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1853
1854         thread_pkey_regs_init(&current->thread);
1855 }
1856 EXPORT_SYMBOL(start_thread);
1857
1858 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1859                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1860
1861 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1862 {
1863         struct pt_regs *regs = tsk->thread.regs;
1864
1865         /* This is a bit hairy.  If we are an SPE enabled  processor
1866          * (have embedded fp) we store the IEEE exception enable flags in
1867          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1868          * mode (asyn, precise, disabled) for 'Classic' FP. */
1869         if (val & PR_FP_EXC_SW_ENABLE) {
1870 #ifdef CONFIG_SPE
1871                 if (cpu_has_feature(CPU_FTR_SPE)) {
1872                         /*
1873                          * When the sticky exception bits are set
1874                          * directly by userspace, it must call prctl
1875                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1876                          * in the existing prctl settings) or
1877                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1878                          * the bits being set).  <fenv.h> functions
1879                          * saving and restoring the whole
1880                          * floating-point environment need to do so
1881                          * anyway to restore the prctl settings from
1882                          * the saved environment.
1883                          */
1884                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1885                         tsk->thread.fpexc_mode = val &
1886                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1887                         return 0;
1888                 } else {
1889                         return -EINVAL;
1890                 }
1891 #else
1892                 return -EINVAL;
1893 #endif
1894         }
1895
1896         /* on a CONFIG_SPE this does not hurt us.  The bits that
1897          * __pack_fe01 use do not overlap with bits used for
1898          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1899          * on CONFIG_SPE implementations are reserved so writing to
1900          * them does not change anything */
1901         if (val > PR_FP_EXC_PRECISE)
1902                 return -EINVAL;
1903         tsk->thread.fpexc_mode = __pack_fe01(val);
1904         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1905                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1906                         | tsk->thread.fpexc_mode;
1907         return 0;
1908 }
1909
1910 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1911 {
1912         unsigned int val;
1913
1914         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1915 #ifdef CONFIG_SPE
1916                 if (cpu_has_feature(CPU_FTR_SPE)) {
1917                         /*
1918                          * When the sticky exception bits are set
1919                          * directly by userspace, it must call prctl
1920                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1921                          * in the existing prctl settings) or
1922                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1923                          * the bits being set).  <fenv.h> functions
1924                          * saving and restoring the whole
1925                          * floating-point environment need to do so
1926                          * anyway to restore the prctl settings from
1927                          * the saved environment.
1928                          */
1929                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1930                         val = tsk->thread.fpexc_mode;
1931                 } else
1932                         return -EINVAL;
1933 #else
1934                 return -EINVAL;
1935 #endif
1936         else
1937                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1938         return put_user(val, (unsigned int __user *) adr);
1939 }
1940
1941 int set_endian(struct task_struct *tsk, unsigned int val)
1942 {
1943         struct pt_regs *regs = tsk->thread.regs;
1944
1945         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1946             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1947                 return -EINVAL;
1948
1949         if (regs == NULL)
1950                 return -EINVAL;
1951
1952         if (val == PR_ENDIAN_BIG)
1953                 regs->msr &= ~MSR_LE;
1954         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1955                 regs->msr |= MSR_LE;
1956         else
1957                 return -EINVAL;
1958
1959         return 0;
1960 }
1961
1962 int get_endian(struct task_struct *tsk, unsigned long adr)
1963 {
1964         struct pt_regs *regs = tsk->thread.regs;
1965         unsigned int val;
1966
1967         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1968             !cpu_has_feature(CPU_FTR_REAL_LE))
1969                 return -EINVAL;
1970
1971         if (regs == NULL)
1972                 return -EINVAL;
1973
1974         if (regs->msr & MSR_LE) {
1975                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1976                         val = PR_ENDIAN_LITTLE;
1977                 else
1978                         val = PR_ENDIAN_PPC_LITTLE;
1979         } else
1980                 val = PR_ENDIAN_BIG;
1981
1982         return put_user(val, (unsigned int __user *)adr);
1983 }
1984
1985 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1986 {
1987         tsk->thread.align_ctl = val;
1988         return 0;
1989 }
1990
1991 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1992 {
1993         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1994 }
1995
1996 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1997                                   unsigned long nbytes)
1998 {
1999         unsigned long stack_page;
2000         unsigned long cpu = task_cpu(p);
2001
2002         stack_page = (unsigned long)hardirq_ctx[cpu];
2003         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2004                 return 1;
2005
2006         stack_page = (unsigned long)softirq_ctx[cpu];
2007         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2008                 return 1;
2009
2010         return 0;
2011 }
2012
2013 int validate_sp(unsigned long sp, struct task_struct *p,
2014                        unsigned long nbytes)
2015 {
2016         unsigned long stack_page = (unsigned long)task_stack_page(p);
2017
2018         if (sp < THREAD_SIZE)
2019                 return 0;
2020
2021         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2022                 return 1;
2023
2024         return valid_irq_stack(sp, p, nbytes);
2025 }
2026
2027 EXPORT_SYMBOL(validate_sp);
2028
2029 static unsigned long __get_wchan(struct task_struct *p)
2030 {
2031         unsigned long ip, sp;
2032         int count = 0;
2033
2034         if (!p || p == current || p->state == TASK_RUNNING)
2035                 return 0;
2036
2037         sp = p->thread.ksp;
2038         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2039                 return 0;
2040
2041         do {
2042                 sp = *(unsigned long *)sp;
2043                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2044                     p->state == TASK_RUNNING)
2045                         return 0;
2046                 if (count > 0) {
2047                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2048                         if (!in_sched_functions(ip))
2049                                 return ip;
2050                 }
2051         } while (count++ < 16);
2052         return 0;
2053 }
2054
2055 unsigned long get_wchan(struct task_struct *p)
2056 {
2057         unsigned long ret;
2058
2059         if (!try_get_task_stack(p))
2060                 return 0;
2061
2062         ret = __get_wchan(p);
2063
2064         put_task_stack(p);
2065
2066         return ret;
2067 }
2068
2069 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2070
2071 void show_stack(struct task_struct *tsk, unsigned long *stack)
2072 {
2073         unsigned long sp, ip, lr, newsp;
2074         int count = 0;
2075         int firstframe = 1;
2076 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2077         struct ftrace_ret_stack *ret_stack;
2078         extern void return_to_handler(void);
2079         unsigned long rth = (unsigned long)return_to_handler;
2080         int curr_frame = 0;
2081 #endif
2082
2083         if (tsk == NULL)
2084                 tsk = current;
2085
2086         if (!try_get_task_stack(tsk))
2087                 return;
2088
2089         sp = (unsigned long) stack;
2090         if (sp == 0) {
2091                 if (tsk == current)
2092                         sp = current_stack_pointer();
2093                 else
2094                         sp = tsk->thread.ksp;
2095         }
2096
2097         lr = 0;
2098         printk("Call Trace:\n");
2099         do {
2100                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2101                         break;
2102
2103                 stack = (unsigned long *) sp;
2104                 newsp = stack[0];
2105                 ip = stack[STACK_FRAME_LR_SAVE];
2106                 if (!firstframe || ip != lr) {
2107                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2108 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2109                         if ((ip == rth) && curr_frame >= 0) {
2110                                 ret_stack = ftrace_graph_get_ret_stack(current,
2111                                                                   curr_frame++);
2112                                 if (ret_stack)
2113                                         pr_cont(" (%pS)",
2114                                                 (void *)ret_stack->ret);
2115                                 else
2116                                         curr_frame = -1;
2117                         }
2118 #endif
2119                         if (firstframe)
2120                                 pr_cont(" (unreliable)");
2121                         pr_cont("\n");
2122                 }
2123                 firstframe = 0;
2124
2125                 /*
2126                  * See if this is an exception frame.
2127                  * We look for the "regshere" marker in the current frame.
2128                  */
2129                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2130                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2131                         struct pt_regs *regs = (struct pt_regs *)
2132                                 (sp + STACK_FRAME_OVERHEAD);
2133                         lr = regs->link;
2134                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2135                                regs->trap, (void *)regs->nip, (void *)lr);
2136                         firstframe = 1;
2137                 }
2138
2139                 sp = newsp;
2140         } while (count++ < kstack_depth_to_print);
2141
2142         put_task_stack(tsk);
2143 }
2144
2145 #ifdef CONFIG_PPC64
2146 /* Called with hard IRQs off */
2147 void notrace __ppc64_runlatch_on(void)
2148 {
2149         struct thread_info *ti = current_thread_info();
2150
2151         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2152                 /*
2153                  * Least significant bit (RUN) is the only writable bit of
2154                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2155                  * earliest ISA where this is the case, but it's convenient.
2156                  */
2157                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2158         } else {
2159                 unsigned long ctrl;
2160
2161                 /*
2162                  * Some architectures (e.g., Cell) have writable fields other
2163                  * than RUN, so do the read-modify-write.
2164                  */
2165                 ctrl = mfspr(SPRN_CTRLF);
2166                 ctrl |= CTRL_RUNLATCH;
2167                 mtspr(SPRN_CTRLT, ctrl);
2168         }
2169
2170         ti->local_flags |= _TLF_RUNLATCH;
2171 }
2172
2173 /* Called with hard IRQs off */
2174 void notrace __ppc64_runlatch_off(void)
2175 {
2176         struct thread_info *ti = current_thread_info();
2177
2178         ti->local_flags &= ~_TLF_RUNLATCH;
2179
2180         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2181                 mtspr(SPRN_CTRLT, 0);
2182         } else {
2183                 unsigned long ctrl;
2184
2185                 ctrl = mfspr(SPRN_CTRLF);
2186                 ctrl &= ~CTRL_RUNLATCH;
2187                 mtspr(SPRN_CTRLT, ctrl);
2188         }
2189 }
2190 #endif /* CONFIG_PPC64 */
2191
2192 unsigned long arch_align_stack(unsigned long sp)
2193 {
2194         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2195                 sp -= get_random_int() & ~PAGE_MASK;
2196         return sp & ~0xf;
2197 }
2198
2199 static inline unsigned long brk_rnd(void)
2200 {
2201         unsigned long rnd = 0;
2202
2203         /* 8MB for 32bit, 1GB for 64bit */
2204         if (is_32bit_task())
2205                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2206         else
2207                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2208
2209         return rnd << PAGE_SHIFT;
2210 }
2211
2212 unsigned long arch_randomize_brk(struct mm_struct *mm)
2213 {
2214         unsigned long base = mm->brk;
2215         unsigned long ret;
2216
2217 #ifdef CONFIG_PPC_BOOK3S_64
2218         /*
2219          * If we are using 1TB segments and we are allowed to randomise
2220          * the heap, we can put it above 1TB so it is backed by a 1TB
2221          * segment. Otherwise the heap will be in the bottom 1TB
2222          * which always uses 256MB segments and this may result in a
2223          * performance penalty. We don't need to worry about radix. For
2224          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2225          */
2226         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2227                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2228 #endif
2229
2230         ret = PAGE_ALIGN(base + brk_rnd());
2231
2232         if (ret < mm->brk)
2233                 return mm->brk;
2234
2235         return ret;
2236 }
2237