Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livep...
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <asm/livepatch.h>
59
60 #include <linux/kprobes.h>
61 #include <linux/kdebug.h>
62
63 /* Transactional Memory debug */
64 #ifdef TM_DEBUG_SW
65 #define TM_DEBUG(x...) printk(KERN_INFO x)
66 #else
67 #define TM_DEBUG(x...) do { } while(0)
68 #endif
69
70 extern unsigned long _get_SP(void);
71
72 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
73 static void check_if_tm_restore_required(struct task_struct *tsk)
74 {
75         /*
76          * If we are saving the current thread's registers, and the
77          * thread is in a transactional state, set the TIF_RESTORE_TM
78          * bit so that we know to restore the registers before
79          * returning to userspace.
80          */
81         if (tsk == current && tsk->thread.regs &&
82             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
83             !test_thread_flag(TIF_RESTORE_TM)) {
84                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
85                 set_thread_flag(TIF_RESTORE_TM);
86         }
87 }
88 #else
89 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
90 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
91
92 bool strict_msr_control;
93 EXPORT_SYMBOL(strict_msr_control);
94
95 static int __init enable_strict_msr_control(char *str)
96 {
97         strict_msr_control = true;
98         pr_info("Enabling strict facility control\n");
99
100         return 0;
101 }
102 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
103
104 void msr_check_and_set(unsigned long bits)
105 {
106         unsigned long oldmsr = mfmsr();
107         unsigned long newmsr;
108
109         newmsr = oldmsr | bits;
110
111 #ifdef CONFIG_VSX
112         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
113                 newmsr |= MSR_VSX;
114 #endif
115
116         if (oldmsr != newmsr)
117                 mtmsr_isync(newmsr);
118 }
119
120 void __msr_check_and_clear(unsigned long bits)
121 {
122         unsigned long oldmsr = mfmsr();
123         unsigned long newmsr;
124
125         newmsr = oldmsr & ~bits;
126
127 #ifdef CONFIG_VSX
128         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129                 newmsr &= ~MSR_VSX;
130 #endif
131
132         if (oldmsr != newmsr)
133                 mtmsr_isync(newmsr);
134 }
135 EXPORT_SYMBOL(__msr_check_and_clear);
136
137 #ifdef CONFIG_PPC_FPU
138 void __giveup_fpu(struct task_struct *tsk)
139 {
140         save_fpu(tsk);
141         tsk->thread.regs->msr &= ~MSR_FP;
142 #ifdef CONFIG_VSX
143         if (cpu_has_feature(CPU_FTR_VSX))
144                 tsk->thread.regs->msr &= ~MSR_VSX;
145 #endif
146 }
147
148 void giveup_fpu(struct task_struct *tsk)
149 {
150         check_if_tm_restore_required(tsk);
151
152         msr_check_and_set(MSR_FP);
153         __giveup_fpu(tsk);
154         msr_check_and_clear(MSR_FP);
155 }
156 EXPORT_SYMBOL(giveup_fpu);
157
158 /*
159  * Make sure the floating-point register state in the
160  * the thread_struct is up to date for task tsk.
161  */
162 void flush_fp_to_thread(struct task_struct *tsk)
163 {
164         if (tsk->thread.regs) {
165                 /*
166                  * We need to disable preemption here because if we didn't,
167                  * another process could get scheduled after the regs->msr
168                  * test but before we have finished saving the FP registers
169                  * to the thread_struct.  That process could take over the
170                  * FPU, and then when we get scheduled again we would store
171                  * bogus values for the remaining FP registers.
172                  */
173                 preempt_disable();
174                 if (tsk->thread.regs->msr & MSR_FP) {
175                         /*
176                          * This should only ever be called for current or
177                          * for a stopped child process.  Since we save away
178                          * the FP register state on context switch,
179                          * there is something wrong if a stopped child appears
180                          * to still have its FP state in the CPU registers.
181                          */
182                         BUG_ON(tsk != current);
183                         giveup_fpu(tsk);
184                 }
185                 preempt_enable();
186         }
187 }
188 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
189
190 void enable_kernel_fp(void)
191 {
192         WARN_ON(preemptible());
193
194         msr_check_and_set(MSR_FP);
195
196         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
197                 check_if_tm_restore_required(current);
198                 __giveup_fpu(current);
199         }
200 }
201 EXPORT_SYMBOL(enable_kernel_fp);
202
203 static int restore_fp(struct task_struct *tsk) {
204         if (tsk->thread.load_fp) {
205                 load_fp_state(&current->thread.fp_state);
206                 current->thread.load_fp++;
207                 return 1;
208         }
209         return 0;
210 }
211 #else
212 static int restore_fp(struct task_struct *tsk) { return 0; }
213 #endif /* CONFIG_PPC_FPU */
214
215 #ifdef CONFIG_ALTIVEC
216 #define loadvec(thr) ((thr).load_vec)
217
218 static void __giveup_altivec(struct task_struct *tsk)
219 {
220         save_altivec(tsk);
221         tsk->thread.regs->msr &= ~MSR_VEC;
222 #ifdef CONFIG_VSX
223         if (cpu_has_feature(CPU_FTR_VSX))
224                 tsk->thread.regs->msr &= ~MSR_VSX;
225 #endif
226 }
227
228 void giveup_altivec(struct task_struct *tsk)
229 {
230         check_if_tm_restore_required(tsk);
231
232         msr_check_and_set(MSR_VEC);
233         __giveup_altivec(tsk);
234         msr_check_and_clear(MSR_VEC);
235 }
236 EXPORT_SYMBOL(giveup_altivec);
237
238 void enable_kernel_altivec(void)
239 {
240         WARN_ON(preemptible());
241
242         msr_check_and_set(MSR_VEC);
243
244         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
245                 check_if_tm_restore_required(current);
246                 __giveup_altivec(current);
247         }
248 }
249 EXPORT_SYMBOL(enable_kernel_altivec);
250
251 /*
252  * Make sure the VMX/Altivec register state in the
253  * the thread_struct is up to date for task tsk.
254  */
255 void flush_altivec_to_thread(struct task_struct *tsk)
256 {
257         if (tsk->thread.regs) {
258                 preempt_disable();
259                 if (tsk->thread.regs->msr & MSR_VEC) {
260                         BUG_ON(tsk != current);
261                         giveup_altivec(tsk);
262                 }
263                 preempt_enable();
264         }
265 }
266 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
267
268 static int restore_altivec(struct task_struct *tsk)
269 {
270         if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
271                 load_vr_state(&tsk->thread.vr_state);
272                 tsk->thread.used_vr = 1;
273                 tsk->thread.load_vec++;
274
275                 return 1;
276         }
277         return 0;
278 }
279 #else
280 #define loadvec(thr) 0
281 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
282 #endif /* CONFIG_ALTIVEC */
283
284 #ifdef CONFIG_VSX
285 static void __giveup_vsx(struct task_struct *tsk)
286 {
287         if (tsk->thread.regs->msr & MSR_FP)
288                 __giveup_fpu(tsk);
289         if (tsk->thread.regs->msr & MSR_VEC)
290                 __giveup_altivec(tsk);
291         tsk->thread.regs->msr &= ~MSR_VSX;
292 }
293
294 static void giveup_vsx(struct task_struct *tsk)
295 {
296         check_if_tm_restore_required(tsk);
297
298         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
299         __giveup_vsx(tsk);
300         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
301 }
302
303 static void save_vsx(struct task_struct *tsk)
304 {
305         if (tsk->thread.regs->msr & MSR_FP)
306                 save_fpu(tsk);
307         if (tsk->thread.regs->msr & MSR_VEC)
308                 save_altivec(tsk);
309 }
310
311 void enable_kernel_vsx(void)
312 {
313         WARN_ON(preemptible());
314
315         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
316
317         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
318                 check_if_tm_restore_required(current);
319                 if (current->thread.regs->msr & MSR_FP)
320                         __giveup_fpu(current);
321                 if (current->thread.regs->msr & MSR_VEC)
322                         __giveup_altivec(current);
323                 __giveup_vsx(current);
324         }
325 }
326 EXPORT_SYMBOL(enable_kernel_vsx);
327
328 void flush_vsx_to_thread(struct task_struct *tsk)
329 {
330         if (tsk->thread.regs) {
331                 preempt_disable();
332                 if (tsk->thread.regs->msr & MSR_VSX) {
333                         BUG_ON(tsk != current);
334                         giveup_vsx(tsk);
335                 }
336                 preempt_enable();
337         }
338 }
339 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
340
341 static int restore_vsx(struct task_struct *tsk)
342 {
343         if (cpu_has_feature(CPU_FTR_VSX)) {
344                 tsk->thread.used_vsr = 1;
345                 return 1;
346         }
347
348         return 0;
349 }
350 #else
351 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
352 static inline void save_vsx(struct task_struct *tsk) { }
353 #endif /* CONFIG_VSX */
354
355 #ifdef CONFIG_SPE
356 void giveup_spe(struct task_struct *tsk)
357 {
358         check_if_tm_restore_required(tsk);
359
360         msr_check_and_set(MSR_SPE);
361         __giveup_spe(tsk);
362         msr_check_and_clear(MSR_SPE);
363 }
364 EXPORT_SYMBOL(giveup_spe);
365
366 void enable_kernel_spe(void)
367 {
368         WARN_ON(preemptible());
369
370         msr_check_and_set(MSR_SPE);
371
372         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
373                 check_if_tm_restore_required(current);
374                 __giveup_spe(current);
375         }
376 }
377 EXPORT_SYMBOL(enable_kernel_spe);
378
379 void flush_spe_to_thread(struct task_struct *tsk)
380 {
381         if (tsk->thread.regs) {
382                 preempt_disable();
383                 if (tsk->thread.regs->msr & MSR_SPE) {
384                         BUG_ON(tsk != current);
385                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
386                         giveup_spe(tsk);
387                 }
388                 preempt_enable();
389         }
390 }
391 #endif /* CONFIG_SPE */
392
393 static unsigned long msr_all_available;
394
395 static int __init init_msr_all_available(void)
396 {
397 #ifdef CONFIG_PPC_FPU
398         msr_all_available |= MSR_FP;
399 #endif
400 #ifdef CONFIG_ALTIVEC
401         if (cpu_has_feature(CPU_FTR_ALTIVEC))
402                 msr_all_available |= MSR_VEC;
403 #endif
404 #ifdef CONFIG_VSX
405         if (cpu_has_feature(CPU_FTR_VSX))
406                 msr_all_available |= MSR_VSX;
407 #endif
408 #ifdef CONFIG_SPE
409         if (cpu_has_feature(CPU_FTR_SPE))
410                 msr_all_available |= MSR_SPE;
411 #endif
412
413         return 0;
414 }
415 early_initcall(init_msr_all_available);
416
417 void giveup_all(struct task_struct *tsk)
418 {
419         unsigned long usermsr;
420
421         if (!tsk->thread.regs)
422                 return;
423
424         usermsr = tsk->thread.regs->msr;
425
426         if ((usermsr & msr_all_available) == 0)
427                 return;
428
429         msr_check_and_set(msr_all_available);
430
431 #ifdef CONFIG_PPC_FPU
432         if (usermsr & MSR_FP)
433                 __giveup_fpu(tsk);
434 #endif
435 #ifdef CONFIG_ALTIVEC
436         if (usermsr & MSR_VEC)
437                 __giveup_altivec(tsk);
438 #endif
439 #ifdef CONFIG_VSX
440         if (usermsr & MSR_VSX)
441                 __giveup_vsx(tsk);
442 #endif
443 #ifdef CONFIG_SPE
444         if (usermsr & MSR_SPE)
445                 __giveup_spe(tsk);
446 #endif
447
448         msr_check_and_clear(msr_all_available);
449 }
450 EXPORT_SYMBOL(giveup_all);
451
452 void restore_math(struct pt_regs *regs)
453 {
454         unsigned long msr;
455
456         if (!current->thread.load_fp && !loadvec(current->thread))
457                 return;
458
459         msr = regs->msr;
460         msr_check_and_set(msr_all_available);
461
462         /*
463          * Only reload if the bit is not set in the user MSR, the bit BEING set
464          * indicates that the registers are hot
465          */
466         if ((!(msr & MSR_FP)) && restore_fp(current))
467                 msr |= MSR_FP | current->thread.fpexc_mode;
468
469         if ((!(msr & MSR_VEC)) && restore_altivec(current))
470                 msr |= MSR_VEC;
471
472         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
473                         restore_vsx(current)) {
474                 msr |= MSR_VSX;
475         }
476
477         msr_check_and_clear(msr_all_available);
478
479         regs->msr = msr;
480 }
481
482 void save_all(struct task_struct *tsk)
483 {
484         unsigned long usermsr;
485
486         if (!tsk->thread.regs)
487                 return;
488
489         usermsr = tsk->thread.regs->msr;
490
491         if ((usermsr & msr_all_available) == 0)
492                 return;
493
494         msr_check_and_set(msr_all_available);
495
496         /*
497          * Saving the way the register space is in hardware, save_vsx boils
498          * down to a save_fpu() and save_altivec()
499          */
500         if (usermsr & MSR_VSX) {
501                 save_vsx(tsk);
502         } else {
503                 if (usermsr & MSR_FP)
504                         save_fpu(tsk);
505
506                 if (usermsr & MSR_VEC)
507                         save_altivec(tsk);
508         }
509
510         if (usermsr & MSR_SPE)
511                 __giveup_spe(tsk);
512
513         msr_check_and_clear(msr_all_available);
514 }
515
516 void flush_all_to_thread(struct task_struct *tsk)
517 {
518         if (tsk->thread.regs) {
519                 preempt_disable();
520                 BUG_ON(tsk != current);
521                 save_all(tsk);
522
523 #ifdef CONFIG_SPE
524                 if (tsk->thread.regs->msr & MSR_SPE)
525                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
526 #endif
527
528                 preempt_enable();
529         }
530 }
531 EXPORT_SYMBOL(flush_all_to_thread);
532
533 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
534 void do_send_trap(struct pt_regs *regs, unsigned long address,
535                   unsigned long error_code, int signal_code, int breakpt)
536 {
537         siginfo_t info;
538
539         current->thread.trap_nr = signal_code;
540         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
541                         11, SIGSEGV) == NOTIFY_STOP)
542                 return;
543
544         /* Deliver the signal to userspace */
545         info.si_signo = SIGTRAP;
546         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
547         info.si_code = signal_code;
548         info.si_addr = (void __user *)address;
549         force_sig_info(SIGTRAP, &info, current);
550 }
551 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
552 void do_break (struct pt_regs *regs, unsigned long address,
553                     unsigned long error_code)
554 {
555         siginfo_t info;
556
557         current->thread.trap_nr = TRAP_HWBKPT;
558         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
559                         11, SIGSEGV) == NOTIFY_STOP)
560                 return;
561
562         if (debugger_break_match(regs))
563                 return;
564
565         /* Clear the breakpoint */
566         hw_breakpoint_disable();
567
568         /* Deliver the signal to userspace */
569         info.si_signo = SIGTRAP;
570         info.si_errno = 0;
571         info.si_code = TRAP_HWBKPT;
572         info.si_addr = (void __user *)address;
573         force_sig_info(SIGTRAP, &info, current);
574 }
575 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
576
577 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
578
579 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
580 /*
581  * Set the debug registers back to their default "safe" values.
582  */
583 static void set_debug_reg_defaults(struct thread_struct *thread)
584 {
585         thread->debug.iac1 = thread->debug.iac2 = 0;
586 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
587         thread->debug.iac3 = thread->debug.iac4 = 0;
588 #endif
589         thread->debug.dac1 = thread->debug.dac2 = 0;
590 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
591         thread->debug.dvc1 = thread->debug.dvc2 = 0;
592 #endif
593         thread->debug.dbcr0 = 0;
594 #ifdef CONFIG_BOOKE
595         /*
596          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
597          */
598         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
599                         DBCR1_IAC3US | DBCR1_IAC4US;
600         /*
601          * Force Data Address Compare User/Supervisor bits to be User-only
602          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
603          */
604         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
605 #else
606         thread->debug.dbcr1 = 0;
607 #endif
608 }
609
610 static void prime_debug_regs(struct debug_reg *debug)
611 {
612         /*
613          * We could have inherited MSR_DE from userspace, since
614          * it doesn't get cleared on exception entry.  Make sure
615          * MSR_DE is clear before we enable any debug events.
616          */
617         mtmsr(mfmsr() & ~MSR_DE);
618
619         mtspr(SPRN_IAC1, debug->iac1);
620         mtspr(SPRN_IAC2, debug->iac2);
621 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
622         mtspr(SPRN_IAC3, debug->iac3);
623         mtspr(SPRN_IAC4, debug->iac4);
624 #endif
625         mtspr(SPRN_DAC1, debug->dac1);
626         mtspr(SPRN_DAC2, debug->dac2);
627 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
628         mtspr(SPRN_DVC1, debug->dvc1);
629         mtspr(SPRN_DVC2, debug->dvc2);
630 #endif
631         mtspr(SPRN_DBCR0, debug->dbcr0);
632         mtspr(SPRN_DBCR1, debug->dbcr1);
633 #ifdef CONFIG_BOOKE
634         mtspr(SPRN_DBCR2, debug->dbcr2);
635 #endif
636 }
637 /*
638  * Unless neither the old or new thread are making use of the
639  * debug registers, set the debug registers from the values
640  * stored in the new thread.
641  */
642 void switch_booke_debug_regs(struct debug_reg *new_debug)
643 {
644         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
645                 || (new_debug->dbcr0 & DBCR0_IDM))
646                         prime_debug_regs(new_debug);
647 }
648 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
649 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
650 #ifndef CONFIG_HAVE_HW_BREAKPOINT
651 static void set_debug_reg_defaults(struct thread_struct *thread)
652 {
653         thread->hw_brk.address = 0;
654         thread->hw_brk.type = 0;
655         set_breakpoint(&thread->hw_brk);
656 }
657 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
658 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
659
660 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
661 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
662 {
663         mtspr(SPRN_DAC1, dabr);
664 #ifdef CONFIG_PPC_47x
665         isync();
666 #endif
667         return 0;
668 }
669 #elif defined(CONFIG_PPC_BOOK3S)
670 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
671 {
672         mtspr(SPRN_DABR, dabr);
673         if (cpu_has_feature(CPU_FTR_DABRX))
674                 mtspr(SPRN_DABRX, dabrx);
675         return 0;
676 }
677 #else
678 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
679 {
680         return -EINVAL;
681 }
682 #endif
683
684 static inline int set_dabr(struct arch_hw_breakpoint *brk)
685 {
686         unsigned long dabr, dabrx;
687
688         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
689         dabrx = ((brk->type >> 3) & 0x7);
690
691         if (ppc_md.set_dabr)
692                 return ppc_md.set_dabr(dabr, dabrx);
693
694         return __set_dabr(dabr, dabrx);
695 }
696
697 static inline int set_dawr(struct arch_hw_breakpoint *brk)
698 {
699         unsigned long dawr, dawrx, mrd;
700
701         dawr = brk->address;
702
703         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
704                                    << (63 - 58); //* read/write bits */
705         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
706                                    << (63 - 59); //* translate */
707         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
708                                    >> 3; //* PRIM bits */
709         /* dawr length is stored in field MDR bits 48:53.  Matches range in
710            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
711            0b111111=64DW.
712            brk->len is in bytes.
713            This aligns up to double word size, shifts and does the bias.
714         */
715         mrd = ((brk->len + 7) >> 3) - 1;
716         dawrx |= (mrd & 0x3f) << (63 - 53);
717
718         if (ppc_md.set_dawr)
719                 return ppc_md.set_dawr(dawr, dawrx);
720         mtspr(SPRN_DAWR, dawr);
721         mtspr(SPRN_DAWRX, dawrx);
722         return 0;
723 }
724
725 void __set_breakpoint(struct arch_hw_breakpoint *brk)
726 {
727         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
728
729         if (cpu_has_feature(CPU_FTR_DAWR))
730                 set_dawr(brk);
731         else
732                 set_dabr(brk);
733 }
734
735 void set_breakpoint(struct arch_hw_breakpoint *brk)
736 {
737         preempt_disable();
738         __set_breakpoint(brk);
739         preempt_enable();
740 }
741
742 #ifdef CONFIG_PPC64
743 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
744 #endif
745
746 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
747                               struct arch_hw_breakpoint *b)
748 {
749         if (a->address != b->address)
750                 return false;
751         if (a->type != b->type)
752                 return false;
753         if (a->len != b->len)
754                 return false;
755         return true;
756 }
757
758 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
759 static void tm_reclaim_thread(struct thread_struct *thr,
760                               struct thread_info *ti, uint8_t cause)
761 {
762         unsigned long msr_diff = 0;
763
764         /*
765          * If FP/VSX registers have been already saved to the
766          * thread_struct, move them to the transact_fp array.
767          * We clear the TIF_RESTORE_TM bit since after the reclaim
768          * the thread will no longer be transactional.
769          */
770         if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
771                 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
772                 if (msr_diff & MSR_FP)
773                         memcpy(&thr->transact_fp, &thr->fp_state,
774                                sizeof(struct thread_fp_state));
775                 if (msr_diff & MSR_VEC)
776                         memcpy(&thr->transact_vr, &thr->vr_state,
777                                sizeof(struct thread_vr_state));
778                 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
779                 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
780         }
781
782         /*
783          * Use the current MSR TM suspended bit to track if we have
784          * checkpointed state outstanding.
785          * On signal delivery, we'd normally reclaim the checkpointed
786          * state to obtain stack pointer (see:get_tm_stackpointer()).
787          * This will then directly return to userspace without going
788          * through __switch_to(). However, if the stack frame is bad,
789          * we need to exit this thread which calls __switch_to() which
790          * will again attempt to reclaim the already saved tm state.
791          * Hence we need to check that we've not already reclaimed
792          * this state.
793          * We do this using the current MSR, rather tracking it in
794          * some specific thread_struct bit, as it has the additional
795          * benifit of checking for a potential TM bad thing exception.
796          */
797         if (!MSR_TM_SUSPENDED(mfmsr()))
798                 return;
799
800         tm_reclaim(thr, thr->regs->msr, cause);
801
802         /* Having done the reclaim, we now have the checkpointed
803          * FP/VSX values in the registers.  These might be valid
804          * even if we have previously called enable_kernel_fp() or
805          * flush_fp_to_thread(), so update thr->regs->msr to
806          * indicate their current validity.
807          */
808         thr->regs->msr |= msr_diff;
809 }
810
811 void tm_reclaim_current(uint8_t cause)
812 {
813         tm_enable();
814         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
815 }
816
817 static inline void tm_reclaim_task(struct task_struct *tsk)
818 {
819         /* We have to work out if we're switching from/to a task that's in the
820          * middle of a transaction.
821          *
822          * In switching we need to maintain a 2nd register state as
823          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
824          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
825          * (current) FPRs into oldtask->thread.transact_fpr[].
826          *
827          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
828          */
829         struct thread_struct *thr = &tsk->thread;
830
831         if (!thr->regs)
832                 return;
833
834         if (!MSR_TM_ACTIVE(thr->regs->msr))
835                 goto out_and_saveregs;
836
837         /* Stash the original thread MSR, as giveup_fpu et al will
838          * modify it.  We hold onto it to see whether the task used
839          * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
840          * ckpt_regs.msr is already set.
841          */
842         if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
843                 thr->ckpt_regs.msr = thr->regs->msr;
844
845         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
846                  "ccr=%lx, msr=%lx, trap=%lx)\n",
847                  tsk->pid, thr->regs->nip,
848                  thr->regs->ccr, thr->regs->msr,
849                  thr->regs->trap);
850
851         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
852
853         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
854                  tsk->pid);
855
856 out_and_saveregs:
857         /* Always save the regs here, even if a transaction's not active.
858          * This context-switches a thread's TM info SPRs.  We do it here to
859          * be consistent with the restore path (in recheckpoint) which
860          * cannot happen later in _switch().
861          */
862         tm_save_sprs(thr);
863 }
864
865 extern void __tm_recheckpoint(struct thread_struct *thread,
866                               unsigned long orig_msr);
867
868 void tm_recheckpoint(struct thread_struct *thread,
869                      unsigned long orig_msr)
870 {
871         unsigned long flags;
872
873         /* We really can't be interrupted here as the TEXASR registers can't
874          * change and later in the trecheckpoint code, we have a userspace R1.
875          * So let's hard disable over this region.
876          */
877         local_irq_save(flags);
878         hard_irq_disable();
879
880         /* The TM SPRs are restored here, so that TEXASR.FS can be set
881          * before the trecheckpoint and no explosion occurs.
882          */
883         tm_restore_sprs(thread);
884
885         __tm_recheckpoint(thread, orig_msr);
886
887         local_irq_restore(flags);
888 }
889
890 static inline void tm_recheckpoint_new_task(struct task_struct *new)
891 {
892         unsigned long msr;
893
894         if (!cpu_has_feature(CPU_FTR_TM))
895                 return;
896
897         /* Recheckpoint the registers of the thread we're about to switch to.
898          *
899          * If the task was using FP, we non-lazily reload both the original and
900          * the speculative FP register states.  This is because the kernel
901          * doesn't see if/when a TM rollback occurs, so if we take an FP
902          * unavoidable later, we are unable to determine which set of FP regs
903          * need to be restored.
904          */
905         if (!new->thread.regs)
906                 return;
907
908         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
909                 tm_restore_sprs(&new->thread);
910                 return;
911         }
912         msr = new->thread.ckpt_regs.msr;
913         /* Recheckpoint to restore original checkpointed register state. */
914         TM_DEBUG("*** tm_recheckpoint of pid %d "
915                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
916                  new->pid, new->thread.regs->msr, msr);
917
918         /* This loads the checkpointed FP/VEC state, if used */
919         tm_recheckpoint(&new->thread, msr);
920
921         /* This loads the speculative FP/VEC state, if used */
922         if (msr & MSR_FP) {
923                 do_load_up_transact_fpu(&new->thread);
924                 new->thread.regs->msr |=
925                         (MSR_FP | new->thread.fpexc_mode);
926         }
927 #ifdef CONFIG_ALTIVEC
928         if (msr & MSR_VEC) {
929                 do_load_up_transact_altivec(&new->thread);
930                 new->thread.regs->msr |= MSR_VEC;
931         }
932 #endif
933         /* We may as well turn on VSX too since all the state is restored now */
934         if (msr & MSR_VSX)
935                 new->thread.regs->msr |= MSR_VSX;
936
937         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
938                  "(kernel msr 0x%lx)\n",
939                  new->pid, mfmsr());
940 }
941
942 static inline void __switch_to_tm(struct task_struct *prev)
943 {
944         if (cpu_has_feature(CPU_FTR_TM)) {
945                 tm_enable();
946                 tm_reclaim_task(prev);
947         }
948 }
949
950 /*
951  * This is called if we are on the way out to userspace and the
952  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
953  * FP and/or vector state and does so if necessary.
954  * If userspace is inside a transaction (whether active or
955  * suspended) and FP/VMX/VSX instructions have ever been enabled
956  * inside that transaction, then we have to keep them enabled
957  * and keep the FP/VMX/VSX state loaded while ever the transaction
958  * continues.  The reason is that if we didn't, and subsequently
959  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
960  * we don't know whether it's the same transaction, and thus we
961  * don't know which of the checkpointed state and the transactional
962  * state to use.
963  */
964 void restore_tm_state(struct pt_regs *regs)
965 {
966         unsigned long msr_diff;
967
968         clear_thread_flag(TIF_RESTORE_TM);
969         if (!MSR_TM_ACTIVE(regs->msr))
970                 return;
971
972         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
973         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
974
975         restore_math(regs);
976
977         regs->msr |= msr_diff;
978 }
979
980 #else
981 #define tm_recheckpoint_new_task(new)
982 #define __switch_to_tm(prev)
983 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
984
985 static inline void save_sprs(struct thread_struct *t)
986 {
987 #ifdef CONFIG_ALTIVEC
988         if (cpu_has_feature(CPU_FTR_ALTIVEC))
989                 t->vrsave = mfspr(SPRN_VRSAVE);
990 #endif
991 #ifdef CONFIG_PPC_BOOK3S_64
992         if (cpu_has_feature(CPU_FTR_DSCR))
993                 t->dscr = mfspr(SPRN_DSCR);
994
995         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
996                 t->bescr = mfspr(SPRN_BESCR);
997                 t->ebbhr = mfspr(SPRN_EBBHR);
998                 t->ebbrr = mfspr(SPRN_EBBRR);
999
1000                 t->fscr = mfspr(SPRN_FSCR);
1001
1002                 /*
1003                  * Note that the TAR is not available for use in the kernel.
1004                  * (To provide this, the TAR should be backed up/restored on
1005                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1006                  * this should be in pt_regs anyway (for debug).)
1007                  */
1008                 t->tar = mfspr(SPRN_TAR);
1009         }
1010 #endif
1011 }
1012
1013 static inline void restore_sprs(struct thread_struct *old_thread,
1014                                 struct thread_struct *new_thread)
1015 {
1016 #ifdef CONFIG_ALTIVEC
1017         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1018             old_thread->vrsave != new_thread->vrsave)
1019                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1020 #endif
1021 #ifdef CONFIG_PPC_BOOK3S_64
1022         if (cpu_has_feature(CPU_FTR_DSCR)) {
1023                 u64 dscr = get_paca()->dscr_default;
1024                 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
1025
1026                 if (new_thread->dscr_inherit) {
1027                         dscr = new_thread->dscr;
1028                         fscr |= FSCR_DSCR;
1029                 }
1030
1031                 if (old_thread->dscr != dscr)
1032                         mtspr(SPRN_DSCR, dscr);
1033
1034                 if (old_thread->fscr != fscr)
1035                         mtspr(SPRN_FSCR, fscr);
1036         }
1037
1038         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1039                 if (old_thread->bescr != new_thread->bescr)
1040                         mtspr(SPRN_BESCR, new_thread->bescr);
1041                 if (old_thread->ebbhr != new_thread->ebbhr)
1042                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1043                 if (old_thread->ebbrr != new_thread->ebbrr)
1044                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1045
1046                 if (old_thread->tar != new_thread->tar)
1047                         mtspr(SPRN_TAR, new_thread->tar);
1048         }
1049 #endif
1050 }
1051
1052 struct task_struct *__switch_to(struct task_struct *prev,
1053         struct task_struct *new)
1054 {
1055         struct thread_struct *new_thread, *old_thread;
1056         struct task_struct *last;
1057 #ifdef CONFIG_PPC_BOOK3S_64
1058         struct ppc64_tlb_batch *batch;
1059 #endif
1060
1061         new_thread = &new->thread;
1062         old_thread = &current->thread;
1063
1064         WARN_ON(!irqs_disabled());
1065
1066 #ifdef CONFIG_PPC64
1067         /*
1068          * Collect processor utilization data per process
1069          */
1070         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1071                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1072                 long unsigned start_tb, current_tb;
1073                 start_tb = old_thread->start_tb;
1074                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1075                 old_thread->accum_tb += (current_tb - start_tb);
1076                 new_thread->start_tb = current_tb;
1077         }
1078 #endif /* CONFIG_PPC64 */
1079
1080 #ifdef CONFIG_PPC_BOOK3S_64
1081         batch = this_cpu_ptr(&ppc64_tlb_batch);
1082         if (batch->active) {
1083                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1084                 if (batch->index)
1085                         __flush_tlb_pending(batch);
1086                 batch->active = 0;
1087         }
1088 #endif /* CONFIG_PPC_BOOK3S_64 */
1089
1090 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1091         switch_booke_debug_regs(&new->thread.debug);
1092 #else
1093 /*
1094  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1095  * schedule DABR
1096  */
1097 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1098         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1099                 __set_breakpoint(&new->thread.hw_brk);
1100 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1101 #endif
1102
1103         /*
1104          * We need to save SPRs before treclaim/trecheckpoint as these will
1105          * change a number of them.
1106          */
1107         save_sprs(&prev->thread);
1108
1109         __switch_to_tm(prev);
1110
1111         /* Save FPU, Altivec, VSX and SPE state */
1112         giveup_all(prev);
1113
1114         /*
1115          * We can't take a PMU exception inside _switch() since there is a
1116          * window where the kernel stack SLB and the kernel stack are out
1117          * of sync. Hard disable here.
1118          */
1119         hard_irq_disable();
1120
1121         tm_recheckpoint_new_task(new);
1122
1123         /*
1124          * Call restore_sprs() before calling _switch(). If we move it after
1125          * _switch() then we miss out on calling it for new tasks. The reason
1126          * for this is we manually create a stack frame for new tasks that
1127          * directly returns through ret_from_fork() or
1128          * ret_from_kernel_thread(). See copy_thread() for details.
1129          */
1130         restore_sprs(old_thread, new_thread);
1131
1132         last = _switch(old_thread, new_thread);
1133
1134 #ifdef CONFIG_PPC_BOOK3S_64
1135         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1136                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1137                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1138                 batch->active = 1;
1139         }
1140
1141         if (current_thread_info()->task->thread.regs)
1142                 restore_math(current_thread_info()->task->thread.regs);
1143
1144 #endif /* CONFIG_PPC_BOOK3S_64 */
1145
1146         return last;
1147 }
1148
1149 static int instructions_to_print = 16;
1150
1151 static void show_instructions(struct pt_regs *regs)
1152 {
1153         int i;
1154         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1155                         sizeof(int));
1156
1157         printk("Instruction dump:");
1158
1159         for (i = 0; i < instructions_to_print; i++) {
1160                 int instr;
1161
1162                 if (!(i % 8))
1163                         printk("\n");
1164
1165 #if !defined(CONFIG_BOOKE)
1166                 /* If executing with the IMMU off, adjust pc rather
1167                  * than print XXXXXXXX.
1168                  */
1169                 if (!(regs->msr & MSR_IR))
1170                         pc = (unsigned long)phys_to_virt(pc);
1171 #endif
1172
1173                 if (!__kernel_text_address(pc) ||
1174                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1175                         printk(KERN_CONT "XXXXXXXX ");
1176                 } else {
1177                         if (regs->nip == pc)
1178                                 printk(KERN_CONT "<%08x> ", instr);
1179                         else
1180                                 printk(KERN_CONT "%08x ", instr);
1181                 }
1182
1183                 pc += sizeof(int);
1184         }
1185
1186         printk("\n");
1187 }
1188
1189 struct regbit {
1190         unsigned long bit;
1191         const char *name;
1192 };
1193
1194 static struct regbit msr_bits[] = {
1195 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1196         {MSR_SF,        "SF"},
1197         {MSR_HV,        "HV"},
1198 #endif
1199         {MSR_VEC,       "VEC"},
1200         {MSR_VSX,       "VSX"},
1201 #ifdef CONFIG_BOOKE
1202         {MSR_CE,        "CE"},
1203 #endif
1204         {MSR_EE,        "EE"},
1205         {MSR_PR,        "PR"},
1206         {MSR_FP,        "FP"},
1207         {MSR_ME,        "ME"},
1208 #ifdef CONFIG_BOOKE
1209         {MSR_DE,        "DE"},
1210 #else
1211         {MSR_SE,        "SE"},
1212         {MSR_BE,        "BE"},
1213 #endif
1214         {MSR_IR,        "IR"},
1215         {MSR_DR,        "DR"},
1216         {MSR_PMM,       "PMM"},
1217 #ifndef CONFIG_BOOKE
1218         {MSR_RI,        "RI"},
1219         {MSR_LE,        "LE"},
1220 #endif
1221         {0,             NULL}
1222 };
1223
1224 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1225 {
1226         const char *s = "";
1227
1228         for (; bits->bit; ++bits)
1229                 if (val & bits->bit) {
1230                         printk("%s%s", s, bits->name);
1231                         s = sep;
1232                 }
1233 }
1234
1235 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1236 static struct regbit msr_tm_bits[] = {
1237         {MSR_TS_T,      "T"},
1238         {MSR_TS_S,      "S"},
1239         {MSR_TM,        "E"},
1240         {0,             NULL}
1241 };
1242
1243 static void print_tm_bits(unsigned long val)
1244 {
1245 /*
1246  * This only prints something if at least one of the TM bit is set.
1247  * Inside the TM[], the output means:
1248  *   E: Enabled         (bit 32)
1249  *   S: Suspended       (bit 33)
1250  *   T: Transactional   (bit 34)
1251  */
1252         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1253                 printk(",TM[");
1254                 print_bits(val, msr_tm_bits, "");
1255                 printk("]");
1256         }
1257 }
1258 #else
1259 static void print_tm_bits(unsigned long val) {}
1260 #endif
1261
1262 static void print_msr_bits(unsigned long val)
1263 {
1264         printk("<");
1265         print_bits(val, msr_bits, ",");
1266         print_tm_bits(val);
1267         printk(">");
1268 }
1269
1270 #ifdef CONFIG_PPC64
1271 #define REG             "%016lx"
1272 #define REGS_PER_LINE   4
1273 #define LAST_VOLATILE   13
1274 #else
1275 #define REG             "%08lx"
1276 #define REGS_PER_LINE   8
1277 #define LAST_VOLATILE   12
1278 #endif
1279
1280 void show_regs(struct pt_regs * regs)
1281 {
1282         int i, trap;
1283
1284         show_regs_print_info(KERN_DEFAULT);
1285
1286         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1287                regs->nip, regs->link, regs->ctr);
1288         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1289                regs, regs->trap, print_tainted(), init_utsname()->release);
1290         printk("MSR: "REG" ", regs->msr);
1291         print_msr_bits(regs->msr);
1292         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1293         trap = TRAP(regs);
1294         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1295                 printk("CFAR: "REG" ", regs->orig_gpr3);
1296         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1297 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1298                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1299 #else
1300                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1301 #endif
1302 #ifdef CONFIG_PPC64
1303         printk("SOFTE: %ld ", regs->softe);
1304 #endif
1305 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1306         if (MSR_TM_ACTIVE(regs->msr))
1307                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1308 #endif
1309
1310         for (i = 0;  i < 32;  i++) {
1311                 if ((i % REGS_PER_LINE) == 0)
1312                         printk("\nGPR%02d: ", i);
1313                 printk(REG " ", regs->gpr[i]);
1314                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1315                         break;
1316         }
1317         printk("\n");
1318 #ifdef CONFIG_KALLSYMS
1319         /*
1320          * Lookup NIP late so we have the best change of getting the
1321          * above info out without failing
1322          */
1323         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1324         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1325 #endif
1326         show_stack(current, (unsigned long *) regs->gpr[1]);
1327         if (!user_mode(regs))
1328                 show_instructions(regs);
1329 }
1330
1331 void exit_thread(void)
1332 {
1333 }
1334
1335 void flush_thread(void)
1336 {
1337 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1338         flush_ptrace_hw_breakpoint(current);
1339 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1340         set_debug_reg_defaults(&current->thread);
1341 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1342 }
1343
1344 void
1345 release_thread(struct task_struct *t)
1346 {
1347 }
1348
1349 /*
1350  * this gets called so that we can store coprocessor state into memory and
1351  * copy the current task into the new thread.
1352  */
1353 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1354 {
1355         flush_all_to_thread(src);
1356         /*
1357          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1358          * flush but it removes the checkpointed state from the current CPU and
1359          * transitions the CPU out of TM mode.  Hence we need to call
1360          * tm_recheckpoint_new_task() (on the same task) to restore the
1361          * checkpointed state back and the TM mode.
1362          */
1363         __switch_to_tm(src);
1364         tm_recheckpoint_new_task(src);
1365
1366         *dst = *src;
1367
1368         clear_task_ebb(dst);
1369
1370         return 0;
1371 }
1372
1373 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1374 {
1375 #ifdef CONFIG_PPC_STD_MMU_64
1376         unsigned long sp_vsid;
1377         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1378
1379         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1380                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1381                         << SLB_VSID_SHIFT_1T;
1382         else
1383                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1384                         << SLB_VSID_SHIFT;
1385         sp_vsid |= SLB_VSID_KERNEL | llp;
1386         p->thread.ksp_vsid = sp_vsid;
1387 #endif
1388 }
1389
1390 /*
1391  * Copy a thread..
1392  */
1393
1394 /*
1395  * Copy architecture-specific thread state
1396  */
1397 int copy_thread(unsigned long clone_flags, unsigned long usp,
1398                 unsigned long kthread_arg, struct task_struct *p)
1399 {
1400         struct pt_regs *childregs, *kregs;
1401         extern void ret_from_fork(void);
1402         extern void ret_from_kernel_thread(void);
1403         void (*f)(void);
1404         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1405         struct thread_info *ti = task_thread_info(p);
1406
1407         klp_init_thread_info(ti);
1408
1409         /* Copy registers */
1410         sp -= sizeof(struct pt_regs);
1411         childregs = (struct pt_regs *) sp;
1412         if (unlikely(p->flags & PF_KTHREAD)) {
1413                 /* kernel thread */
1414                 memset(childregs, 0, sizeof(struct pt_regs));
1415                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1416                 /* function */
1417                 if (usp)
1418                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1419 #ifdef CONFIG_PPC64
1420                 clear_tsk_thread_flag(p, TIF_32BIT);
1421                 childregs->softe = 1;
1422 #endif
1423                 childregs->gpr[15] = kthread_arg;
1424                 p->thread.regs = NULL;  /* no user register state */
1425                 ti->flags |= _TIF_RESTOREALL;
1426                 f = ret_from_kernel_thread;
1427         } else {
1428                 /* user thread */
1429                 struct pt_regs *regs = current_pt_regs();
1430                 CHECK_FULL_REGS(regs);
1431                 *childregs = *regs;
1432                 if (usp)
1433                         childregs->gpr[1] = usp;
1434                 p->thread.regs = childregs;
1435                 childregs->gpr[3] = 0;  /* Result from fork() */
1436                 if (clone_flags & CLONE_SETTLS) {
1437 #ifdef CONFIG_PPC64
1438                         if (!is_32bit_task())
1439                                 childregs->gpr[13] = childregs->gpr[6];
1440                         else
1441 #endif
1442                                 childregs->gpr[2] = childregs->gpr[6];
1443                 }
1444
1445                 f = ret_from_fork;
1446         }
1447         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1448         sp -= STACK_FRAME_OVERHEAD;
1449
1450         /*
1451          * The way this works is that at some point in the future
1452          * some task will call _switch to switch to the new task.
1453          * That will pop off the stack frame created below and start
1454          * the new task running at ret_from_fork.  The new task will
1455          * do some house keeping and then return from the fork or clone
1456          * system call, using the stack frame created above.
1457          */
1458         ((unsigned long *)sp)[0] = 0;
1459         sp -= sizeof(struct pt_regs);
1460         kregs = (struct pt_regs *) sp;
1461         sp -= STACK_FRAME_OVERHEAD;
1462         p->thread.ksp = sp;
1463 #ifdef CONFIG_PPC32
1464         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1465                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1466 #endif
1467 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1468         p->thread.ptrace_bps[0] = NULL;
1469 #endif
1470
1471         p->thread.fp_save_area = NULL;
1472 #ifdef CONFIG_ALTIVEC
1473         p->thread.vr_save_area = NULL;
1474 #endif
1475
1476         setup_ksp_vsid(p, sp);
1477
1478 #ifdef CONFIG_PPC64 
1479         if (cpu_has_feature(CPU_FTR_DSCR)) {
1480                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1481                 p->thread.dscr = mfspr(SPRN_DSCR);
1482         }
1483         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1484                 p->thread.ppr = INIT_PPR;
1485 #endif
1486         kregs->nip = ppc_function_entry(f);
1487         return 0;
1488 }
1489
1490 /*
1491  * Set up a thread for executing a new program
1492  */
1493 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1494 {
1495 #ifdef CONFIG_PPC64
1496         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1497 #endif
1498
1499         /*
1500          * If we exec out of a kernel thread then thread.regs will not be
1501          * set.  Do it now.
1502          */
1503         if (!current->thread.regs) {
1504                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1505                 current->thread.regs = regs - 1;
1506         }
1507
1508         memset(regs->gpr, 0, sizeof(regs->gpr));
1509         regs->ctr = 0;
1510         regs->link = 0;
1511         regs->xer = 0;
1512         regs->ccr = 0;
1513         regs->gpr[1] = sp;
1514
1515         /*
1516          * We have just cleared all the nonvolatile GPRs, so make
1517          * FULL_REGS(regs) return true.  This is necessary to allow
1518          * ptrace to examine the thread immediately after exec.
1519          */
1520         regs->trap &= ~1UL;
1521
1522 #ifdef CONFIG_PPC32
1523         regs->mq = 0;
1524         regs->nip = start;
1525         regs->msr = MSR_USER;
1526 #else
1527         if (!is_32bit_task()) {
1528                 unsigned long entry;
1529
1530                 if (is_elf2_task()) {
1531                         /* Look ma, no function descriptors! */
1532                         entry = start;
1533
1534                         /*
1535                          * Ulrich says:
1536                          *   The latest iteration of the ABI requires that when
1537                          *   calling a function (at its global entry point),
1538                          *   the caller must ensure r12 holds the entry point
1539                          *   address (so that the function can quickly
1540                          *   establish addressability).
1541                          */
1542                         regs->gpr[12] = start;
1543                         /* Make sure that's restored on entry to userspace. */
1544                         set_thread_flag(TIF_RESTOREALL);
1545                 } else {
1546                         unsigned long toc;
1547
1548                         /* start is a relocated pointer to the function
1549                          * descriptor for the elf _start routine.  The first
1550                          * entry in the function descriptor is the entry
1551                          * address of _start and the second entry is the TOC
1552                          * value we need to use.
1553                          */
1554                         __get_user(entry, (unsigned long __user *)start);
1555                         __get_user(toc, (unsigned long __user *)start+1);
1556
1557                         /* Check whether the e_entry function descriptor entries
1558                          * need to be relocated before we can use them.
1559                          */
1560                         if (load_addr != 0) {
1561                                 entry += load_addr;
1562                                 toc   += load_addr;
1563                         }
1564                         regs->gpr[2] = toc;
1565                 }
1566                 regs->nip = entry;
1567                 regs->msr = MSR_USER64;
1568         } else {
1569                 regs->nip = start;
1570                 regs->gpr[2] = 0;
1571                 regs->msr = MSR_USER32;
1572         }
1573 #endif
1574 #ifdef CONFIG_VSX
1575         current->thread.used_vsr = 0;
1576 #endif
1577         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1578         current->thread.fp_save_area = NULL;
1579 #ifdef CONFIG_ALTIVEC
1580         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1581         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1582         current->thread.vr_save_area = NULL;
1583         current->thread.vrsave = 0;
1584         current->thread.used_vr = 0;
1585 #endif /* CONFIG_ALTIVEC */
1586 #ifdef CONFIG_SPE
1587         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1588         current->thread.acc = 0;
1589         current->thread.spefscr = 0;
1590         current->thread.used_spe = 0;
1591 #endif /* CONFIG_SPE */
1592 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1593         if (cpu_has_feature(CPU_FTR_TM))
1594                 regs->msr |= MSR_TM;
1595         current->thread.tm_tfhar = 0;
1596         current->thread.tm_texasr = 0;
1597         current->thread.tm_tfiar = 0;
1598 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1599 }
1600 EXPORT_SYMBOL(start_thread);
1601
1602 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1603                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1604
1605 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1606 {
1607         struct pt_regs *regs = tsk->thread.regs;
1608
1609         /* This is a bit hairy.  If we are an SPE enabled  processor
1610          * (have embedded fp) we store the IEEE exception enable flags in
1611          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1612          * mode (asyn, precise, disabled) for 'Classic' FP. */
1613         if (val & PR_FP_EXC_SW_ENABLE) {
1614 #ifdef CONFIG_SPE
1615                 if (cpu_has_feature(CPU_FTR_SPE)) {
1616                         /*
1617                          * When the sticky exception bits are set
1618                          * directly by userspace, it must call prctl
1619                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1620                          * in the existing prctl settings) or
1621                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1622                          * the bits being set).  <fenv.h> functions
1623                          * saving and restoring the whole
1624                          * floating-point environment need to do so
1625                          * anyway to restore the prctl settings from
1626                          * the saved environment.
1627                          */
1628                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1629                         tsk->thread.fpexc_mode = val &
1630                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1631                         return 0;
1632                 } else {
1633                         return -EINVAL;
1634                 }
1635 #else
1636                 return -EINVAL;
1637 #endif
1638         }
1639
1640         /* on a CONFIG_SPE this does not hurt us.  The bits that
1641          * __pack_fe01 use do not overlap with bits used for
1642          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1643          * on CONFIG_SPE implementations are reserved so writing to
1644          * them does not change anything */
1645         if (val > PR_FP_EXC_PRECISE)
1646                 return -EINVAL;
1647         tsk->thread.fpexc_mode = __pack_fe01(val);
1648         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1649                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1650                         | tsk->thread.fpexc_mode;
1651         return 0;
1652 }
1653
1654 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1655 {
1656         unsigned int val;
1657
1658         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1659 #ifdef CONFIG_SPE
1660                 if (cpu_has_feature(CPU_FTR_SPE)) {
1661                         /*
1662                          * When the sticky exception bits are set
1663                          * directly by userspace, it must call prctl
1664                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1665                          * in the existing prctl settings) or
1666                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1667                          * the bits being set).  <fenv.h> functions
1668                          * saving and restoring the whole
1669                          * floating-point environment need to do so
1670                          * anyway to restore the prctl settings from
1671                          * the saved environment.
1672                          */
1673                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1674                         val = tsk->thread.fpexc_mode;
1675                 } else
1676                         return -EINVAL;
1677 #else
1678                 return -EINVAL;
1679 #endif
1680         else
1681                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1682         return put_user(val, (unsigned int __user *) adr);
1683 }
1684
1685 int set_endian(struct task_struct *tsk, unsigned int val)
1686 {
1687         struct pt_regs *regs = tsk->thread.regs;
1688
1689         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1690             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1691                 return -EINVAL;
1692
1693         if (regs == NULL)
1694                 return -EINVAL;
1695
1696         if (val == PR_ENDIAN_BIG)
1697                 regs->msr &= ~MSR_LE;
1698         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1699                 regs->msr |= MSR_LE;
1700         else
1701                 return -EINVAL;
1702
1703         return 0;
1704 }
1705
1706 int get_endian(struct task_struct *tsk, unsigned long adr)
1707 {
1708         struct pt_regs *regs = tsk->thread.regs;
1709         unsigned int val;
1710
1711         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1712             !cpu_has_feature(CPU_FTR_REAL_LE))
1713                 return -EINVAL;
1714
1715         if (regs == NULL)
1716                 return -EINVAL;
1717
1718         if (regs->msr & MSR_LE) {
1719                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1720                         val = PR_ENDIAN_LITTLE;
1721                 else
1722                         val = PR_ENDIAN_PPC_LITTLE;
1723         } else
1724                 val = PR_ENDIAN_BIG;
1725
1726         return put_user(val, (unsigned int __user *)adr);
1727 }
1728
1729 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1730 {
1731         tsk->thread.align_ctl = val;
1732         return 0;
1733 }
1734
1735 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1736 {
1737         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1738 }
1739
1740 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1741                                   unsigned long nbytes)
1742 {
1743         unsigned long stack_page;
1744         unsigned long cpu = task_cpu(p);
1745
1746         /*
1747          * Avoid crashing if the stack has overflowed and corrupted
1748          * task_cpu(p), which is in the thread_info struct.
1749          */
1750         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1751                 stack_page = (unsigned long) hardirq_ctx[cpu];
1752                 if (sp >= stack_page + sizeof(struct thread_struct)
1753                     && sp <= stack_page + THREAD_SIZE - nbytes)
1754                         return 1;
1755
1756                 stack_page = (unsigned long) softirq_ctx[cpu];
1757                 if (sp >= stack_page + sizeof(struct thread_struct)
1758                     && sp <= stack_page + THREAD_SIZE - nbytes)
1759                         return 1;
1760         }
1761         return 0;
1762 }
1763
1764 int validate_sp(unsigned long sp, struct task_struct *p,
1765                        unsigned long nbytes)
1766 {
1767         unsigned long stack_page = (unsigned long)task_stack_page(p);
1768
1769         if (sp >= stack_page + sizeof(struct thread_struct)
1770             && sp <= stack_page + THREAD_SIZE - nbytes)
1771                 return 1;
1772
1773         return valid_irq_stack(sp, p, nbytes);
1774 }
1775
1776 EXPORT_SYMBOL(validate_sp);
1777
1778 unsigned long get_wchan(struct task_struct *p)
1779 {
1780         unsigned long ip, sp;
1781         int count = 0;
1782
1783         if (!p || p == current || p->state == TASK_RUNNING)
1784                 return 0;
1785
1786         sp = p->thread.ksp;
1787         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1788                 return 0;
1789
1790         do {
1791                 sp = *(unsigned long *)sp;
1792                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1793                         return 0;
1794                 if (count > 0) {
1795                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1796                         if (!in_sched_functions(ip))
1797                                 return ip;
1798                 }
1799         } while (count++ < 16);
1800         return 0;
1801 }
1802
1803 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1804
1805 void show_stack(struct task_struct *tsk, unsigned long *stack)
1806 {
1807         unsigned long sp, ip, lr, newsp;
1808         int count = 0;
1809         int firstframe = 1;
1810 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1811         int curr_frame = current->curr_ret_stack;
1812         extern void return_to_handler(void);
1813         unsigned long rth = (unsigned long)return_to_handler;
1814 #endif
1815
1816         sp = (unsigned long) stack;
1817         if (tsk == NULL)
1818                 tsk = current;
1819         if (sp == 0) {
1820                 if (tsk == current)
1821                         sp = current_stack_pointer();
1822                 else
1823                         sp = tsk->thread.ksp;
1824         }
1825
1826         lr = 0;
1827         printk("Call Trace:\n");
1828         do {
1829                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1830                         return;
1831
1832                 stack = (unsigned long *) sp;
1833                 newsp = stack[0];
1834                 ip = stack[STACK_FRAME_LR_SAVE];
1835                 if (!firstframe || ip != lr) {
1836                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1837 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1838                         if ((ip == rth) && curr_frame >= 0) {
1839                                 printk(" (%pS)",
1840                                        (void *)current->ret_stack[curr_frame].ret);
1841                                 curr_frame--;
1842                         }
1843 #endif
1844                         if (firstframe)
1845                                 printk(" (unreliable)");
1846                         printk("\n");
1847                 }
1848                 firstframe = 0;
1849
1850                 /*
1851                  * See if this is an exception frame.
1852                  * We look for the "regshere" marker in the current frame.
1853                  */
1854                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1855                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1856                         struct pt_regs *regs = (struct pt_regs *)
1857                                 (sp + STACK_FRAME_OVERHEAD);
1858                         lr = regs->link;
1859                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1860                                regs->trap, (void *)regs->nip, (void *)lr);
1861                         firstframe = 1;
1862                 }
1863
1864                 sp = newsp;
1865         } while (count++ < kstack_depth_to_print);
1866 }
1867
1868 #ifdef CONFIG_PPC64
1869 /* Called with hard IRQs off */
1870 void notrace __ppc64_runlatch_on(void)
1871 {
1872         struct thread_info *ti = current_thread_info();
1873         unsigned long ctrl;
1874
1875         ctrl = mfspr(SPRN_CTRLF);
1876         ctrl |= CTRL_RUNLATCH;
1877         mtspr(SPRN_CTRLT, ctrl);
1878
1879         ti->local_flags |= _TLF_RUNLATCH;
1880 }
1881
1882 /* Called with hard IRQs off */
1883 void notrace __ppc64_runlatch_off(void)
1884 {
1885         struct thread_info *ti = current_thread_info();
1886         unsigned long ctrl;
1887
1888         ti->local_flags &= ~_TLF_RUNLATCH;
1889
1890         ctrl = mfspr(SPRN_CTRLF);
1891         ctrl &= ~CTRL_RUNLATCH;
1892         mtspr(SPRN_CTRLT, ctrl);
1893 }
1894 #endif /* CONFIG_PPC64 */
1895
1896 unsigned long arch_align_stack(unsigned long sp)
1897 {
1898         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1899                 sp -= get_random_int() & ~PAGE_MASK;
1900         return sp & ~0xf;
1901 }
1902
1903 static inline unsigned long brk_rnd(void)
1904 {
1905         unsigned long rnd = 0;
1906
1907         /* 8MB for 32bit, 1GB for 64bit */
1908         if (is_32bit_task())
1909                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1910         else
1911                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1912
1913         return rnd << PAGE_SHIFT;
1914 }
1915
1916 unsigned long arch_randomize_brk(struct mm_struct *mm)
1917 {
1918         unsigned long base = mm->brk;
1919         unsigned long ret;
1920
1921 #ifdef CONFIG_PPC_STD_MMU_64
1922         /*
1923          * If we are using 1TB segments and we are allowed to randomise
1924          * the heap, we can put it above 1TB so it is backed by a 1TB
1925          * segment. Otherwise the heap will be in the bottom 1TB
1926          * which always uses 256MB segments and this may result in a
1927          * performance penalty.
1928          */
1929         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1930                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1931 #endif
1932
1933         ret = PAGE_ALIGN(base + brk_rnd());
1934
1935         if (ret < mm->brk)
1936                 return mm->brk;
1937
1938         return ret;
1939 }
1940