powerpc: Fix compile issue with force DAWR
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46 #include <linux/seq_buf.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/io.h>
50 #include <asm/processor.h>
51 #include <asm/mmu.h>
52 #include <asm/prom.h>
53 #include <asm/machdep.h>
54 #include <asm/time.h>
55 #include <asm/runlatch.h>
56 #include <asm/syscalls.h>
57 #include <asm/switch_to.h>
58 #include <asm/tm.h>
59 #include <asm/debug.h>
60 #ifdef CONFIG_PPC64
61 #include <asm/firmware.h>
62 #include <asm/hw_irq.h>
63 #endif
64 #include <asm/code-patching.h>
65 #include <asm/exec.h>
66 #include <asm/livepatch.h>
67 #include <asm/cpu_has_feature.h>
68 #include <asm/asm-prototypes.h>
69 #include <asm/stacktrace.h>
70 #include <asm/hw_breakpoint.h>
71
72 #include <linux/kprobes.h>
73 #include <linux/kdebug.h>
74
75 /* Transactional Memory debug */
76 #ifdef TM_DEBUG_SW
77 #define TM_DEBUG(x...) printk(KERN_INFO x)
78 #else
79 #define TM_DEBUG(x...) do { } while(0)
80 #endif
81
82 extern unsigned long _get_SP(void);
83
84 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
85 /*
86  * Are we running in "Suspend disabled" mode? If so we have to block any
87  * sigreturn that would get us into suspended state, and we also warn in some
88  * other paths that we should never reach with suspend disabled.
89  */
90 bool tm_suspend_disabled __ro_after_init = false;
91
92 static void check_if_tm_restore_required(struct task_struct *tsk)
93 {
94         /*
95          * If we are saving the current thread's registers, and the
96          * thread is in a transactional state, set the TIF_RESTORE_TM
97          * bit so that we know to restore the registers before
98          * returning to userspace.
99          */
100         if (tsk == current && tsk->thread.regs &&
101             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
102             !test_thread_flag(TIF_RESTORE_TM)) {
103                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
104                 set_thread_flag(TIF_RESTORE_TM);
105         }
106 }
107
108 static bool tm_active_with_fp(struct task_struct *tsk)
109 {
110         return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
111                 (tsk->thread.ckpt_regs.msr & MSR_FP);
112 }
113
114 static bool tm_active_with_altivec(struct task_struct *tsk)
115 {
116         return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
117                 (tsk->thread.ckpt_regs.msr & MSR_VEC);
118 }
119 #else
120 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
121 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
122 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
124
125 bool strict_msr_control;
126 EXPORT_SYMBOL(strict_msr_control);
127
128 static int __init enable_strict_msr_control(char *str)
129 {
130         strict_msr_control = true;
131         pr_info("Enabling strict facility control\n");
132
133         return 0;
134 }
135 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
136
137 /* notrace because it's called by restore_math */
138 unsigned long notrace msr_check_and_set(unsigned long bits)
139 {
140         unsigned long oldmsr = mfmsr();
141         unsigned long newmsr;
142
143         newmsr = oldmsr | bits;
144
145 #ifdef CONFIG_VSX
146         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147                 newmsr |= MSR_VSX;
148 #endif
149
150         if (oldmsr != newmsr)
151                 mtmsr_isync(newmsr);
152
153         return newmsr;
154 }
155 EXPORT_SYMBOL_GPL(msr_check_and_set);
156
157 /* notrace because it's called by restore_math */
158 void notrace __msr_check_and_clear(unsigned long bits)
159 {
160         unsigned long oldmsr = mfmsr();
161         unsigned long newmsr;
162
163         newmsr = oldmsr & ~bits;
164
165 #ifdef CONFIG_VSX
166         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
167                 newmsr &= ~MSR_VSX;
168 #endif
169
170         if (oldmsr != newmsr)
171                 mtmsr_isync(newmsr);
172 }
173 EXPORT_SYMBOL(__msr_check_and_clear);
174
175 #ifdef CONFIG_PPC_FPU
176 static void __giveup_fpu(struct task_struct *tsk)
177 {
178         unsigned long msr;
179
180         save_fpu(tsk);
181         msr = tsk->thread.regs->msr;
182         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
183 #ifdef CONFIG_VSX
184         if (cpu_has_feature(CPU_FTR_VSX))
185                 msr &= ~MSR_VSX;
186 #endif
187         tsk->thread.regs->msr = msr;
188 }
189
190 void giveup_fpu(struct task_struct *tsk)
191 {
192         check_if_tm_restore_required(tsk);
193
194         msr_check_and_set(MSR_FP);
195         __giveup_fpu(tsk);
196         msr_check_and_clear(MSR_FP);
197 }
198 EXPORT_SYMBOL(giveup_fpu);
199
200 /*
201  * Make sure the floating-point register state in the
202  * the thread_struct is up to date for task tsk.
203  */
204 void flush_fp_to_thread(struct task_struct *tsk)
205 {
206         if (tsk->thread.regs) {
207                 /*
208                  * We need to disable preemption here because if we didn't,
209                  * another process could get scheduled after the regs->msr
210                  * test but before we have finished saving the FP registers
211                  * to the thread_struct.  That process could take over the
212                  * FPU, and then when we get scheduled again we would store
213                  * bogus values for the remaining FP registers.
214                  */
215                 preempt_disable();
216                 if (tsk->thread.regs->msr & MSR_FP) {
217                         /*
218                          * This should only ever be called for current or
219                          * for a stopped child process.  Since we save away
220                          * the FP register state on context switch,
221                          * there is something wrong if a stopped child appears
222                          * to still have its FP state in the CPU registers.
223                          */
224                         BUG_ON(tsk != current);
225                         giveup_fpu(tsk);
226                 }
227                 preempt_enable();
228         }
229 }
230 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
231
232 void enable_kernel_fp(void)
233 {
234         unsigned long cpumsr;
235
236         WARN_ON(preemptible());
237
238         cpumsr = msr_check_and_set(MSR_FP);
239
240         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
241                 check_if_tm_restore_required(current);
242                 /*
243                  * If a thread has already been reclaimed then the
244                  * checkpointed registers are on the CPU but have definitely
245                  * been saved by the reclaim code. Don't need to and *cannot*
246                  * giveup as this would save  to the 'live' structure not the
247                  * checkpointed structure.
248                  */
249                 if (!MSR_TM_ACTIVE(cpumsr) &&
250                      MSR_TM_ACTIVE(current->thread.regs->msr))
251                         return;
252                 __giveup_fpu(current);
253         }
254 }
255 EXPORT_SYMBOL(enable_kernel_fp);
256
257 static int restore_fp(struct task_struct *tsk)
258 {
259         if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
260                 load_fp_state(&current->thread.fp_state);
261                 current->thread.load_fp++;
262                 return 1;
263         }
264         return 0;
265 }
266 #else
267 static int restore_fp(struct task_struct *tsk) { return 0; }
268 #endif /* CONFIG_PPC_FPU */
269
270 #ifdef CONFIG_ALTIVEC
271 #define loadvec(thr) ((thr).load_vec)
272
273 static void __giveup_altivec(struct task_struct *tsk)
274 {
275         unsigned long msr;
276
277         save_altivec(tsk);
278         msr = tsk->thread.regs->msr;
279         msr &= ~MSR_VEC;
280 #ifdef CONFIG_VSX
281         if (cpu_has_feature(CPU_FTR_VSX))
282                 msr &= ~MSR_VSX;
283 #endif
284         tsk->thread.regs->msr = msr;
285 }
286
287 void giveup_altivec(struct task_struct *tsk)
288 {
289         check_if_tm_restore_required(tsk);
290
291         msr_check_and_set(MSR_VEC);
292         __giveup_altivec(tsk);
293         msr_check_and_clear(MSR_VEC);
294 }
295 EXPORT_SYMBOL(giveup_altivec);
296
297 void enable_kernel_altivec(void)
298 {
299         unsigned long cpumsr;
300
301         WARN_ON(preemptible());
302
303         cpumsr = msr_check_and_set(MSR_VEC);
304
305         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
306                 check_if_tm_restore_required(current);
307                 /*
308                  * If a thread has already been reclaimed then the
309                  * checkpointed registers are on the CPU but have definitely
310                  * been saved by the reclaim code. Don't need to and *cannot*
311                  * giveup as this would save  to the 'live' structure not the
312                  * checkpointed structure.
313                  */
314                 if (!MSR_TM_ACTIVE(cpumsr) &&
315                      MSR_TM_ACTIVE(current->thread.regs->msr))
316                         return;
317                 __giveup_altivec(current);
318         }
319 }
320 EXPORT_SYMBOL(enable_kernel_altivec);
321
322 /*
323  * Make sure the VMX/Altivec register state in the
324  * the thread_struct is up to date for task tsk.
325  */
326 void flush_altivec_to_thread(struct task_struct *tsk)
327 {
328         if (tsk->thread.regs) {
329                 preempt_disable();
330                 if (tsk->thread.regs->msr & MSR_VEC) {
331                         BUG_ON(tsk != current);
332                         giveup_altivec(tsk);
333                 }
334                 preempt_enable();
335         }
336 }
337 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
338
339 static int restore_altivec(struct task_struct *tsk)
340 {
341         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
342                 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
343                 load_vr_state(&tsk->thread.vr_state);
344                 tsk->thread.used_vr = 1;
345                 tsk->thread.load_vec++;
346
347                 return 1;
348         }
349         return 0;
350 }
351 #else
352 #define loadvec(thr) 0
353 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
354 #endif /* CONFIG_ALTIVEC */
355
356 #ifdef CONFIG_VSX
357 static void __giveup_vsx(struct task_struct *tsk)
358 {
359         unsigned long msr = tsk->thread.regs->msr;
360
361         /*
362          * We should never be ssetting MSR_VSX without also setting
363          * MSR_FP and MSR_VEC
364          */
365         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
366
367         /* __giveup_fpu will clear MSR_VSX */
368         if (msr & MSR_FP)
369                 __giveup_fpu(tsk);
370         if (msr & MSR_VEC)
371                 __giveup_altivec(tsk);
372 }
373
374 static void giveup_vsx(struct task_struct *tsk)
375 {
376         check_if_tm_restore_required(tsk);
377
378         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
379         __giveup_vsx(tsk);
380         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
381 }
382
383 void enable_kernel_vsx(void)
384 {
385         unsigned long cpumsr;
386
387         WARN_ON(preemptible());
388
389         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
390
391         if (current->thread.regs &&
392             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
393                 check_if_tm_restore_required(current);
394                 /*
395                  * If a thread has already been reclaimed then the
396                  * checkpointed registers are on the CPU but have definitely
397                  * been saved by the reclaim code. Don't need to and *cannot*
398                  * giveup as this would save  to the 'live' structure not the
399                  * checkpointed structure.
400                  */
401                 if (!MSR_TM_ACTIVE(cpumsr) &&
402                      MSR_TM_ACTIVE(current->thread.regs->msr))
403                         return;
404                 __giveup_vsx(current);
405         }
406 }
407 EXPORT_SYMBOL(enable_kernel_vsx);
408
409 void flush_vsx_to_thread(struct task_struct *tsk)
410 {
411         if (tsk->thread.regs) {
412                 preempt_disable();
413                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
414                         BUG_ON(tsk != current);
415                         giveup_vsx(tsk);
416                 }
417                 preempt_enable();
418         }
419 }
420 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
421
422 static int restore_vsx(struct task_struct *tsk)
423 {
424         if (cpu_has_feature(CPU_FTR_VSX)) {
425                 tsk->thread.used_vsr = 1;
426                 return 1;
427         }
428
429         return 0;
430 }
431 #else
432 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
433 #endif /* CONFIG_VSX */
434
435 #ifdef CONFIG_SPE
436 void giveup_spe(struct task_struct *tsk)
437 {
438         check_if_tm_restore_required(tsk);
439
440         msr_check_and_set(MSR_SPE);
441         __giveup_spe(tsk);
442         msr_check_and_clear(MSR_SPE);
443 }
444 EXPORT_SYMBOL(giveup_spe);
445
446 void enable_kernel_spe(void)
447 {
448         WARN_ON(preemptible());
449
450         msr_check_and_set(MSR_SPE);
451
452         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
453                 check_if_tm_restore_required(current);
454                 __giveup_spe(current);
455         }
456 }
457 EXPORT_SYMBOL(enable_kernel_spe);
458
459 void flush_spe_to_thread(struct task_struct *tsk)
460 {
461         if (tsk->thread.regs) {
462                 preempt_disable();
463                 if (tsk->thread.regs->msr & MSR_SPE) {
464                         BUG_ON(tsk != current);
465                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
466                         giveup_spe(tsk);
467                 }
468                 preempt_enable();
469         }
470 }
471 #endif /* CONFIG_SPE */
472
473 static unsigned long msr_all_available;
474
475 static int __init init_msr_all_available(void)
476 {
477 #ifdef CONFIG_PPC_FPU
478         msr_all_available |= MSR_FP;
479 #endif
480 #ifdef CONFIG_ALTIVEC
481         if (cpu_has_feature(CPU_FTR_ALTIVEC))
482                 msr_all_available |= MSR_VEC;
483 #endif
484 #ifdef CONFIG_VSX
485         if (cpu_has_feature(CPU_FTR_VSX))
486                 msr_all_available |= MSR_VSX;
487 #endif
488 #ifdef CONFIG_SPE
489         if (cpu_has_feature(CPU_FTR_SPE))
490                 msr_all_available |= MSR_SPE;
491 #endif
492
493         return 0;
494 }
495 early_initcall(init_msr_all_available);
496
497 void giveup_all(struct task_struct *tsk)
498 {
499         unsigned long usermsr;
500
501         if (!tsk->thread.regs)
502                 return;
503
504         usermsr = tsk->thread.regs->msr;
505
506         if ((usermsr & msr_all_available) == 0)
507                 return;
508
509         msr_check_and_set(msr_all_available);
510         check_if_tm_restore_required(tsk);
511
512         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
513
514 #ifdef CONFIG_PPC_FPU
515         if (usermsr & MSR_FP)
516                 __giveup_fpu(tsk);
517 #endif
518 #ifdef CONFIG_ALTIVEC
519         if (usermsr & MSR_VEC)
520                 __giveup_altivec(tsk);
521 #endif
522 #ifdef CONFIG_SPE
523         if (usermsr & MSR_SPE)
524                 __giveup_spe(tsk);
525 #endif
526
527         msr_check_and_clear(msr_all_available);
528 }
529 EXPORT_SYMBOL(giveup_all);
530
531 /*
532  * The exception exit path calls restore_math() with interrupts hard disabled
533  * but the soft irq state not "reconciled". ftrace code that calls
534  * local_irq_save/restore causes warnings.
535  *
536  * Rather than complicate the exit path, just don't trace restore_math. This
537  * could be done by having ftrace entry code check for this un-reconciled
538  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
539  * temporarily fix it up for the duration of the ftrace call.
540  */
541 void notrace restore_math(struct pt_regs *regs)
542 {
543         unsigned long msr;
544
545         if (!MSR_TM_ACTIVE(regs->msr) &&
546                 !current->thread.load_fp && !loadvec(current->thread))
547                 return;
548
549         msr = regs->msr;
550         msr_check_and_set(msr_all_available);
551
552         /*
553          * Only reload if the bit is not set in the user MSR, the bit BEING set
554          * indicates that the registers are hot
555          */
556         if ((!(msr & MSR_FP)) && restore_fp(current))
557                 msr |= MSR_FP | current->thread.fpexc_mode;
558
559         if ((!(msr & MSR_VEC)) && restore_altivec(current))
560                 msr |= MSR_VEC;
561
562         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
563                         restore_vsx(current)) {
564                 msr |= MSR_VSX;
565         }
566
567         msr_check_and_clear(msr_all_available);
568
569         regs->msr = msr;
570 }
571
572 static void save_all(struct task_struct *tsk)
573 {
574         unsigned long usermsr;
575
576         if (!tsk->thread.regs)
577                 return;
578
579         usermsr = tsk->thread.regs->msr;
580
581         if ((usermsr & msr_all_available) == 0)
582                 return;
583
584         msr_check_and_set(msr_all_available);
585
586         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
587
588         if (usermsr & MSR_FP)
589                 save_fpu(tsk);
590
591         if (usermsr & MSR_VEC)
592                 save_altivec(tsk);
593
594         if (usermsr & MSR_SPE)
595                 __giveup_spe(tsk);
596
597         msr_check_and_clear(msr_all_available);
598         thread_pkey_regs_save(&tsk->thread);
599 }
600
601 void flush_all_to_thread(struct task_struct *tsk)
602 {
603         if (tsk->thread.regs) {
604                 preempt_disable();
605                 BUG_ON(tsk != current);
606 #ifdef CONFIG_SPE
607                 if (tsk->thread.regs->msr & MSR_SPE)
608                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
609 #endif
610                 save_all(tsk);
611
612                 preempt_enable();
613         }
614 }
615 EXPORT_SYMBOL(flush_all_to_thread);
616
617 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
618 void do_send_trap(struct pt_regs *regs, unsigned long address,
619                   unsigned long error_code, int breakpt)
620 {
621         current->thread.trap_nr = TRAP_HWBKPT;
622         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
623                         11, SIGSEGV) == NOTIFY_STOP)
624                 return;
625
626         /* Deliver the signal to userspace */
627         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
628                                     (void __user *)address);
629 }
630 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
631 void do_break (struct pt_regs *regs, unsigned long address,
632                     unsigned long error_code)
633 {
634         current->thread.trap_nr = TRAP_HWBKPT;
635         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
636                         11, SIGSEGV) == NOTIFY_STOP)
637                 return;
638
639         if (debugger_break_match(regs))
640                 return;
641
642         /* Clear the breakpoint */
643         hw_breakpoint_disable();
644
645         /* Deliver the signal to userspace */
646         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
647 }
648 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
649
650 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
651
652 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
653 /*
654  * Set the debug registers back to their default "safe" values.
655  */
656 static void set_debug_reg_defaults(struct thread_struct *thread)
657 {
658         thread->debug.iac1 = thread->debug.iac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
660         thread->debug.iac3 = thread->debug.iac4 = 0;
661 #endif
662         thread->debug.dac1 = thread->debug.dac2 = 0;
663 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
664         thread->debug.dvc1 = thread->debug.dvc2 = 0;
665 #endif
666         thread->debug.dbcr0 = 0;
667 #ifdef CONFIG_BOOKE
668         /*
669          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
670          */
671         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
672                         DBCR1_IAC3US | DBCR1_IAC4US;
673         /*
674          * Force Data Address Compare User/Supervisor bits to be User-only
675          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
676          */
677         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
678 #else
679         thread->debug.dbcr1 = 0;
680 #endif
681 }
682
683 static void prime_debug_regs(struct debug_reg *debug)
684 {
685         /*
686          * We could have inherited MSR_DE from userspace, since
687          * it doesn't get cleared on exception entry.  Make sure
688          * MSR_DE is clear before we enable any debug events.
689          */
690         mtmsr(mfmsr() & ~MSR_DE);
691
692         mtspr(SPRN_IAC1, debug->iac1);
693         mtspr(SPRN_IAC2, debug->iac2);
694 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
695         mtspr(SPRN_IAC3, debug->iac3);
696         mtspr(SPRN_IAC4, debug->iac4);
697 #endif
698         mtspr(SPRN_DAC1, debug->dac1);
699         mtspr(SPRN_DAC2, debug->dac2);
700 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
701         mtspr(SPRN_DVC1, debug->dvc1);
702         mtspr(SPRN_DVC2, debug->dvc2);
703 #endif
704         mtspr(SPRN_DBCR0, debug->dbcr0);
705         mtspr(SPRN_DBCR1, debug->dbcr1);
706 #ifdef CONFIG_BOOKE
707         mtspr(SPRN_DBCR2, debug->dbcr2);
708 #endif
709 }
710 /*
711  * Unless neither the old or new thread are making use of the
712  * debug registers, set the debug registers from the values
713  * stored in the new thread.
714  */
715 void switch_booke_debug_regs(struct debug_reg *new_debug)
716 {
717         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
718                 || (new_debug->dbcr0 & DBCR0_IDM))
719                         prime_debug_regs(new_debug);
720 }
721 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
722 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
723 #ifndef CONFIG_HAVE_HW_BREAKPOINT
724 static void set_breakpoint(struct arch_hw_breakpoint *brk)
725 {
726         preempt_disable();
727         __set_breakpoint(brk);
728         preempt_enable();
729 }
730
731 static void set_debug_reg_defaults(struct thread_struct *thread)
732 {
733         thread->hw_brk.address = 0;
734         thread->hw_brk.type = 0;
735         if (ppc_breakpoint_available())
736                 set_breakpoint(&thread->hw_brk);
737 }
738 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
739 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
740
741 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
742 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
743 {
744         mtspr(SPRN_DAC1, dabr);
745 #ifdef CONFIG_PPC_47x
746         isync();
747 #endif
748         return 0;
749 }
750 #elif defined(CONFIG_PPC_BOOK3S)
751 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
752 {
753         mtspr(SPRN_DABR, dabr);
754         if (cpu_has_feature(CPU_FTR_DABRX))
755                 mtspr(SPRN_DABRX, dabrx);
756         return 0;
757 }
758 #elif defined(CONFIG_PPC_8xx)
759 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
760 {
761         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
762         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
763         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
764
765         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
766                 lctrl1 |= 0xa0000;
767         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
768                 lctrl1 |= 0xf0000;
769         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
770                 lctrl2 = 0;
771
772         mtspr(SPRN_LCTRL2, 0);
773         mtspr(SPRN_CMPE, addr);
774         mtspr(SPRN_CMPF, addr + 4);
775         mtspr(SPRN_LCTRL1, lctrl1);
776         mtspr(SPRN_LCTRL2, lctrl2);
777
778         return 0;
779 }
780 #else
781 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
782 {
783         return -EINVAL;
784 }
785 #endif
786
787 static inline int set_dabr(struct arch_hw_breakpoint *brk)
788 {
789         unsigned long dabr, dabrx;
790
791         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
792         dabrx = ((brk->type >> 3) & 0x7);
793
794         if (ppc_md.set_dabr)
795                 return ppc_md.set_dabr(dabr, dabrx);
796
797         return __set_dabr(dabr, dabrx);
798 }
799
800 void __set_breakpoint(struct arch_hw_breakpoint *brk)
801 {
802         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
803
804         if (dawr_enabled())
805                 // Power8 or later
806                 set_dawr(brk);
807         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
808                 // Power7 or earlier
809                 set_dabr(brk);
810         else
811                 // Shouldn't happen due to higher level checks
812                 WARN_ON_ONCE(1);
813 }
814
815 /* Check if we have DAWR or DABR hardware */
816 bool ppc_breakpoint_available(void)
817 {
818         if (dawr_enabled())
819                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
820         if (cpu_has_feature(CPU_FTR_ARCH_207S))
821                 return false; /* POWER9 with DAWR disabled */
822         /* DABR: Everything but POWER8 and POWER9 */
823         return true;
824 }
825 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
826
827 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
828                               struct arch_hw_breakpoint *b)
829 {
830         if (a->address != b->address)
831                 return false;
832         if (a->type != b->type)
833                 return false;
834         if (a->len != b->len)
835                 return false;
836         return true;
837 }
838
839 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
840
841 static inline bool tm_enabled(struct task_struct *tsk)
842 {
843         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
844 }
845
846 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
847 {
848         /*
849          * Use the current MSR TM suspended bit to track if we have
850          * checkpointed state outstanding.
851          * On signal delivery, we'd normally reclaim the checkpointed
852          * state to obtain stack pointer (see:get_tm_stackpointer()).
853          * This will then directly return to userspace without going
854          * through __switch_to(). However, if the stack frame is bad,
855          * we need to exit this thread which calls __switch_to() which
856          * will again attempt to reclaim the already saved tm state.
857          * Hence we need to check that we've not already reclaimed
858          * this state.
859          * We do this using the current MSR, rather tracking it in
860          * some specific thread_struct bit, as it has the additional
861          * benefit of checking for a potential TM bad thing exception.
862          */
863         if (!MSR_TM_SUSPENDED(mfmsr()))
864                 return;
865
866         giveup_all(container_of(thr, struct task_struct, thread));
867
868         tm_reclaim(thr, cause);
869
870         /*
871          * If we are in a transaction and FP is off then we can't have
872          * used FP inside that transaction. Hence the checkpointed
873          * state is the same as the live state. We need to copy the
874          * live state to the checkpointed state so that when the
875          * transaction is restored, the checkpointed state is correct
876          * and the aborted transaction sees the correct state. We use
877          * ckpt_regs.msr here as that's what tm_reclaim will use to
878          * determine if it's going to write the checkpointed state or
879          * not. So either this will write the checkpointed registers,
880          * or reclaim will. Similarly for VMX.
881          */
882         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
883                 memcpy(&thr->ckfp_state, &thr->fp_state,
884                        sizeof(struct thread_fp_state));
885         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
886                 memcpy(&thr->ckvr_state, &thr->vr_state,
887                        sizeof(struct thread_vr_state));
888 }
889
890 void tm_reclaim_current(uint8_t cause)
891 {
892         tm_enable();
893         tm_reclaim_thread(&current->thread, cause);
894 }
895
896 static inline void tm_reclaim_task(struct task_struct *tsk)
897 {
898         /* We have to work out if we're switching from/to a task that's in the
899          * middle of a transaction.
900          *
901          * In switching we need to maintain a 2nd register state as
902          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
903          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
904          * ckvr_state
905          *
906          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
907          */
908         struct thread_struct *thr = &tsk->thread;
909
910         if (!thr->regs)
911                 return;
912
913         if (!MSR_TM_ACTIVE(thr->regs->msr))
914                 goto out_and_saveregs;
915
916         WARN_ON(tm_suspend_disabled);
917
918         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
919                  "ccr=%lx, msr=%lx, trap=%lx)\n",
920                  tsk->pid, thr->regs->nip,
921                  thr->regs->ccr, thr->regs->msr,
922                  thr->regs->trap);
923
924         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
925
926         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
927                  tsk->pid);
928
929 out_and_saveregs:
930         /* Always save the regs here, even if a transaction's not active.
931          * This context-switches a thread's TM info SPRs.  We do it here to
932          * be consistent with the restore path (in recheckpoint) which
933          * cannot happen later in _switch().
934          */
935         tm_save_sprs(thr);
936 }
937
938 extern void __tm_recheckpoint(struct thread_struct *thread);
939
940 void tm_recheckpoint(struct thread_struct *thread)
941 {
942         unsigned long flags;
943
944         if (!(thread->regs->msr & MSR_TM))
945                 return;
946
947         /* We really can't be interrupted here as the TEXASR registers can't
948          * change and later in the trecheckpoint code, we have a userspace R1.
949          * So let's hard disable over this region.
950          */
951         local_irq_save(flags);
952         hard_irq_disable();
953
954         /* The TM SPRs are restored here, so that TEXASR.FS can be set
955          * before the trecheckpoint and no explosion occurs.
956          */
957         tm_restore_sprs(thread);
958
959         __tm_recheckpoint(thread);
960
961         local_irq_restore(flags);
962 }
963
964 static inline void tm_recheckpoint_new_task(struct task_struct *new)
965 {
966         if (!cpu_has_feature(CPU_FTR_TM))
967                 return;
968
969         /* Recheckpoint the registers of the thread we're about to switch to.
970          *
971          * If the task was using FP, we non-lazily reload both the original and
972          * the speculative FP register states.  This is because the kernel
973          * doesn't see if/when a TM rollback occurs, so if we take an FP
974          * unavailable later, we are unable to determine which set of FP regs
975          * need to be restored.
976          */
977         if (!tm_enabled(new))
978                 return;
979
980         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
981                 tm_restore_sprs(&new->thread);
982                 return;
983         }
984         /* Recheckpoint to restore original checkpointed register state. */
985         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
986                  new->pid, new->thread.regs->msr);
987
988         tm_recheckpoint(&new->thread);
989
990         /*
991          * The checkpointed state has been restored but the live state has
992          * not, ensure all the math functionality is turned off to trigger
993          * restore_math() to reload.
994          */
995         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
996
997         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
998                  "(kernel msr 0x%lx)\n",
999                  new->pid, mfmsr());
1000 }
1001
1002 static inline void __switch_to_tm(struct task_struct *prev,
1003                 struct task_struct *new)
1004 {
1005         if (cpu_has_feature(CPU_FTR_TM)) {
1006                 if (tm_enabled(prev) || tm_enabled(new))
1007                         tm_enable();
1008
1009                 if (tm_enabled(prev)) {
1010                         prev->thread.load_tm++;
1011                         tm_reclaim_task(prev);
1012                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1013                                 prev->thread.regs->msr &= ~MSR_TM;
1014                 }
1015
1016                 tm_recheckpoint_new_task(new);
1017         }
1018 }
1019
1020 /*
1021  * This is called if we are on the way out to userspace and the
1022  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1023  * FP and/or vector state and does so if necessary.
1024  * If userspace is inside a transaction (whether active or
1025  * suspended) and FP/VMX/VSX instructions have ever been enabled
1026  * inside that transaction, then we have to keep them enabled
1027  * and keep the FP/VMX/VSX state loaded while ever the transaction
1028  * continues.  The reason is that if we didn't, and subsequently
1029  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1030  * we don't know whether it's the same transaction, and thus we
1031  * don't know which of the checkpointed state and the transactional
1032  * state to use.
1033  */
1034 void restore_tm_state(struct pt_regs *regs)
1035 {
1036         unsigned long msr_diff;
1037
1038         /*
1039          * This is the only moment we should clear TIF_RESTORE_TM as
1040          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1041          * again, anything else could lead to an incorrect ckpt_msr being
1042          * saved and therefore incorrect signal contexts.
1043          */
1044         clear_thread_flag(TIF_RESTORE_TM);
1045         if (!MSR_TM_ACTIVE(regs->msr))
1046                 return;
1047
1048         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1049         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1050
1051         /* Ensure that restore_math() will restore */
1052         if (msr_diff & MSR_FP)
1053                 current->thread.load_fp = 1;
1054 #ifdef CONFIG_ALTIVEC
1055         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1056                 current->thread.load_vec = 1;
1057 #endif
1058         restore_math(regs);
1059
1060         regs->msr |= msr_diff;
1061 }
1062
1063 #else
1064 #define tm_recheckpoint_new_task(new)
1065 #define __switch_to_tm(prev, new)
1066 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1067
1068 static inline void save_sprs(struct thread_struct *t)
1069 {
1070 #ifdef CONFIG_ALTIVEC
1071         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1072                 t->vrsave = mfspr(SPRN_VRSAVE);
1073 #endif
1074 #ifdef CONFIG_PPC_BOOK3S_64
1075         if (cpu_has_feature(CPU_FTR_DSCR))
1076                 t->dscr = mfspr(SPRN_DSCR);
1077
1078         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1079                 t->bescr = mfspr(SPRN_BESCR);
1080                 t->ebbhr = mfspr(SPRN_EBBHR);
1081                 t->ebbrr = mfspr(SPRN_EBBRR);
1082
1083                 t->fscr = mfspr(SPRN_FSCR);
1084
1085                 /*
1086                  * Note that the TAR is not available for use in the kernel.
1087                  * (To provide this, the TAR should be backed up/restored on
1088                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1089                  * this should be in pt_regs anyway (for debug).)
1090                  */
1091                 t->tar = mfspr(SPRN_TAR);
1092         }
1093 #endif
1094
1095         thread_pkey_regs_save(t);
1096 }
1097
1098 static inline void restore_sprs(struct thread_struct *old_thread,
1099                                 struct thread_struct *new_thread)
1100 {
1101 #ifdef CONFIG_ALTIVEC
1102         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1103             old_thread->vrsave != new_thread->vrsave)
1104                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1105 #endif
1106 #ifdef CONFIG_PPC_BOOK3S_64
1107         if (cpu_has_feature(CPU_FTR_DSCR)) {
1108                 u64 dscr = get_paca()->dscr_default;
1109                 if (new_thread->dscr_inherit)
1110                         dscr = new_thread->dscr;
1111
1112                 if (old_thread->dscr != dscr)
1113                         mtspr(SPRN_DSCR, dscr);
1114         }
1115
1116         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1117                 if (old_thread->bescr != new_thread->bescr)
1118                         mtspr(SPRN_BESCR, new_thread->bescr);
1119                 if (old_thread->ebbhr != new_thread->ebbhr)
1120                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1121                 if (old_thread->ebbrr != new_thread->ebbrr)
1122                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1123
1124                 if (old_thread->fscr != new_thread->fscr)
1125                         mtspr(SPRN_FSCR, new_thread->fscr);
1126
1127                 if (old_thread->tar != new_thread->tar)
1128                         mtspr(SPRN_TAR, new_thread->tar);
1129         }
1130
1131         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1132             old_thread->tidr != new_thread->tidr)
1133                 mtspr(SPRN_TIDR, new_thread->tidr);
1134 #endif
1135
1136         thread_pkey_regs_restore(new_thread, old_thread);
1137 }
1138
1139 struct task_struct *__switch_to(struct task_struct *prev,
1140         struct task_struct *new)
1141 {
1142         struct thread_struct *new_thread, *old_thread;
1143         struct task_struct *last;
1144 #ifdef CONFIG_PPC_BOOK3S_64
1145         struct ppc64_tlb_batch *batch;
1146 #endif
1147
1148         new_thread = &new->thread;
1149         old_thread = &current->thread;
1150
1151         WARN_ON(!irqs_disabled());
1152
1153 #ifdef CONFIG_PPC_BOOK3S_64
1154         batch = this_cpu_ptr(&ppc64_tlb_batch);
1155         if (batch->active) {
1156                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1157                 if (batch->index)
1158                         __flush_tlb_pending(batch);
1159                 batch->active = 0;
1160         }
1161 #endif /* CONFIG_PPC_BOOK3S_64 */
1162
1163 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1164         switch_booke_debug_regs(&new->thread.debug);
1165 #else
1166 /*
1167  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1168  * schedule DABR
1169  */
1170 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1171         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1172                 __set_breakpoint(&new->thread.hw_brk);
1173 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1174 #endif
1175
1176         /*
1177          * We need to save SPRs before treclaim/trecheckpoint as these will
1178          * change a number of them.
1179          */
1180         save_sprs(&prev->thread);
1181
1182         /* Save FPU, Altivec, VSX and SPE state */
1183         giveup_all(prev);
1184
1185         __switch_to_tm(prev, new);
1186
1187         if (!radix_enabled()) {
1188                 /*
1189                  * We can't take a PMU exception inside _switch() since there
1190                  * is a window where the kernel stack SLB and the kernel stack
1191                  * are out of sync. Hard disable here.
1192                  */
1193                 hard_irq_disable();
1194         }
1195
1196         /*
1197          * Call restore_sprs() before calling _switch(). If we move it after
1198          * _switch() then we miss out on calling it for new tasks. The reason
1199          * for this is we manually create a stack frame for new tasks that
1200          * directly returns through ret_from_fork() or
1201          * ret_from_kernel_thread(). See copy_thread() for details.
1202          */
1203         restore_sprs(old_thread, new_thread);
1204
1205         last = _switch(old_thread, new_thread);
1206
1207 #ifdef CONFIG_PPC_BOOK3S_64
1208         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1209                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1210                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1211                 batch->active = 1;
1212         }
1213
1214         if (current->thread.regs) {
1215                 restore_math(current->thread.regs);
1216
1217                 /*
1218                  * The copy-paste buffer can only store into foreign real
1219                  * addresses, so unprivileged processes can not see the
1220                  * data or use it in any way unless they have foreign real
1221                  * mappings. If the new process has the foreign real address
1222                  * mappings, we must issue a cp_abort to clear any state and
1223                  * prevent snooping, corruption or a covert channel.
1224                  */
1225                 if (current->thread.used_vas)
1226                         asm volatile(PPC_CP_ABORT);
1227         }
1228 #endif /* CONFIG_PPC_BOOK3S_64 */
1229
1230         return last;
1231 }
1232
1233 #define NR_INSN_TO_PRINT        16
1234
1235 static void show_instructions(struct pt_regs *regs)
1236 {
1237         int i;
1238         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1239
1240         printk("Instruction dump:");
1241
1242         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1243                 int instr;
1244
1245                 if (!(i % 8))
1246                         pr_cont("\n");
1247
1248 #if !defined(CONFIG_BOOKE)
1249                 /* If executing with the IMMU off, adjust pc rather
1250                  * than print XXXXXXXX.
1251                  */
1252                 if (!(regs->msr & MSR_IR))
1253                         pc = (unsigned long)phys_to_virt(pc);
1254 #endif
1255
1256                 if (!__kernel_text_address(pc) ||
1257                     probe_kernel_address((const void *)pc, instr)) {
1258                         pr_cont("XXXXXXXX ");
1259                 } else {
1260                         if (regs->nip == pc)
1261                                 pr_cont("<%08x> ", instr);
1262                         else
1263                                 pr_cont("%08x ", instr);
1264                 }
1265
1266                 pc += sizeof(int);
1267         }
1268
1269         pr_cont("\n");
1270 }
1271
1272 void show_user_instructions(struct pt_regs *regs)
1273 {
1274         unsigned long pc;
1275         int n = NR_INSN_TO_PRINT;
1276         struct seq_buf s;
1277         char buf[96]; /* enough for 8 times 9 + 2 chars */
1278
1279         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1280
1281         /*
1282          * Make sure the NIP points at userspace, not kernel text/data or
1283          * elsewhere.
1284          */
1285         if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1286                 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1287                         current->comm, current->pid);
1288                 return;
1289         }
1290
1291         seq_buf_init(&s, buf, sizeof(buf));
1292
1293         while (n) {
1294                 int i;
1295
1296                 seq_buf_clear(&s);
1297
1298                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1299                         int instr;
1300
1301                         if (probe_kernel_address((const void *)pc, instr)) {
1302                                 seq_buf_printf(&s, "XXXXXXXX ");
1303                                 continue;
1304                         }
1305                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1306                 }
1307
1308                 if (!seq_buf_has_overflowed(&s))
1309                         pr_info("%s[%d]: code: %s\n", current->comm,
1310                                 current->pid, s.buffer);
1311         }
1312 }
1313
1314 struct regbit {
1315         unsigned long bit;
1316         const char *name;
1317 };
1318
1319 static struct regbit msr_bits[] = {
1320 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1321         {MSR_SF,        "SF"},
1322         {MSR_HV,        "HV"},
1323 #endif
1324         {MSR_VEC,       "VEC"},
1325         {MSR_VSX,       "VSX"},
1326 #ifdef CONFIG_BOOKE
1327         {MSR_CE,        "CE"},
1328 #endif
1329         {MSR_EE,        "EE"},
1330         {MSR_PR,        "PR"},
1331         {MSR_FP,        "FP"},
1332         {MSR_ME,        "ME"},
1333 #ifdef CONFIG_BOOKE
1334         {MSR_DE,        "DE"},
1335 #else
1336         {MSR_SE,        "SE"},
1337         {MSR_BE,        "BE"},
1338 #endif
1339         {MSR_IR,        "IR"},
1340         {MSR_DR,        "DR"},
1341         {MSR_PMM,       "PMM"},
1342 #ifndef CONFIG_BOOKE
1343         {MSR_RI,        "RI"},
1344         {MSR_LE,        "LE"},
1345 #endif
1346         {0,             NULL}
1347 };
1348
1349 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1350 {
1351         const char *s = "";
1352
1353         for (; bits->bit; ++bits)
1354                 if (val & bits->bit) {
1355                         pr_cont("%s%s", s, bits->name);
1356                         s = sep;
1357                 }
1358 }
1359
1360 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1361 static struct regbit msr_tm_bits[] = {
1362         {MSR_TS_T,      "T"},
1363         {MSR_TS_S,      "S"},
1364         {MSR_TM,        "E"},
1365         {0,             NULL}
1366 };
1367
1368 static void print_tm_bits(unsigned long val)
1369 {
1370 /*
1371  * This only prints something if at least one of the TM bit is set.
1372  * Inside the TM[], the output means:
1373  *   E: Enabled         (bit 32)
1374  *   S: Suspended       (bit 33)
1375  *   T: Transactional   (bit 34)
1376  */
1377         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1378                 pr_cont(",TM[");
1379                 print_bits(val, msr_tm_bits, "");
1380                 pr_cont("]");
1381         }
1382 }
1383 #else
1384 static void print_tm_bits(unsigned long val) {}
1385 #endif
1386
1387 static void print_msr_bits(unsigned long val)
1388 {
1389         pr_cont("<");
1390         print_bits(val, msr_bits, ",");
1391         print_tm_bits(val);
1392         pr_cont(">");
1393 }
1394
1395 #ifdef CONFIG_PPC64
1396 #define REG             "%016lx"
1397 #define REGS_PER_LINE   4
1398 #define LAST_VOLATILE   13
1399 #else
1400 #define REG             "%08lx"
1401 #define REGS_PER_LINE   8
1402 #define LAST_VOLATILE   12
1403 #endif
1404
1405 void show_regs(struct pt_regs * regs)
1406 {
1407         int i, trap;
1408
1409         show_regs_print_info(KERN_DEFAULT);
1410
1411         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1412                regs->nip, regs->link, regs->ctr);
1413         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1414                regs, regs->trap, print_tainted(), init_utsname()->release);
1415         printk("MSR:  "REG" ", regs->msr);
1416         print_msr_bits(regs->msr);
1417         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1418         trap = TRAP(regs);
1419         if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1420                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1421         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1422 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1423                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1424 #else
1425                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1426 #endif
1427 #ifdef CONFIG_PPC64
1428         pr_cont("IRQMASK: %lx ", regs->softe);
1429 #endif
1430 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1431         if (MSR_TM_ACTIVE(regs->msr))
1432                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1433 #endif
1434
1435         for (i = 0;  i < 32;  i++) {
1436                 if ((i % REGS_PER_LINE) == 0)
1437                         pr_cont("\nGPR%02d: ", i);
1438                 pr_cont(REG " ", regs->gpr[i]);
1439                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1440                         break;
1441         }
1442         pr_cont("\n");
1443 #ifdef CONFIG_KALLSYMS
1444         /*
1445          * Lookup NIP late so we have the best change of getting the
1446          * above info out without failing
1447          */
1448         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1449         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1450 #endif
1451         show_stack(current, (unsigned long *) regs->gpr[1]);
1452         if (!user_mode(regs))
1453                 show_instructions(regs);
1454 }
1455
1456 void flush_thread(void)
1457 {
1458 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1459         flush_ptrace_hw_breakpoint(current);
1460 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1461         set_debug_reg_defaults(&current->thread);
1462 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1463 }
1464
1465 #ifdef CONFIG_PPC_BOOK3S_64
1466 void arch_setup_new_exec(void)
1467 {
1468         if (radix_enabled())
1469                 return;
1470         hash__setup_new_exec();
1471 }
1472 #endif
1473
1474 int set_thread_uses_vas(void)
1475 {
1476 #ifdef CONFIG_PPC_BOOK3S_64
1477         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1478                 return -EINVAL;
1479
1480         current->thread.used_vas = 1;
1481
1482         /*
1483          * Even a process that has no foreign real address mapping can use
1484          * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1485          * to clear any pending COPY and prevent a covert channel.
1486          *
1487          * __switch_to() will issue CP_ABORT on future context switches.
1488          */
1489         asm volatile(PPC_CP_ABORT);
1490
1491 #endif /* CONFIG_PPC_BOOK3S_64 */
1492         return 0;
1493 }
1494
1495 #ifdef CONFIG_PPC64
1496 /**
1497  * Assign a TIDR (thread ID) for task @t and set it in the thread
1498  * structure. For now, we only support setting TIDR for 'current' task.
1499  *
1500  * Since the TID value is a truncated form of it PID, it is possible
1501  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1502  * that 2 threads share the same TID and are waiting, one of the following
1503  * cases will happen:
1504  *
1505  * 1. The correct thread is running, the wrong thread is not
1506  * In this situation, the correct thread is woken and proceeds to pass it's
1507  * condition check.
1508  *
1509  * 2. Neither threads are running
1510  * In this situation, neither thread will be woken. When scheduled, the waiting
1511  * threads will execute either a wait, which will return immediately, followed
1512  * by a condition check, which will pass for the correct thread and fail
1513  * for the wrong thread, or they will execute the condition check immediately.
1514  *
1515  * 3. The wrong thread is running, the correct thread is not
1516  * The wrong thread will be woken, but will fail it's condition check and
1517  * re-execute wait. The correct thread, when scheduled, will execute either
1518  * it's condition check (which will pass), or wait, which returns immediately
1519  * when called the first time after the thread is scheduled, followed by it's
1520  * condition check (which will pass).
1521  *
1522  * 4. Both threads are running
1523  * Both threads will be woken. The wrong thread will fail it's condition check
1524  * and execute another wait, while the correct thread will pass it's condition
1525  * check.
1526  *
1527  * @t: the task to set the thread ID for
1528  */
1529 int set_thread_tidr(struct task_struct *t)
1530 {
1531         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1532                 return -EINVAL;
1533
1534         if (t != current)
1535                 return -EINVAL;
1536
1537         if (t->thread.tidr)
1538                 return 0;
1539
1540         t->thread.tidr = (u16)task_pid_nr(t);
1541         mtspr(SPRN_TIDR, t->thread.tidr);
1542
1543         return 0;
1544 }
1545 EXPORT_SYMBOL_GPL(set_thread_tidr);
1546
1547 #endif /* CONFIG_PPC64 */
1548
1549 void
1550 release_thread(struct task_struct *t)
1551 {
1552 }
1553
1554 /*
1555  * this gets called so that we can store coprocessor state into memory and
1556  * copy the current task into the new thread.
1557  */
1558 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1559 {
1560         flush_all_to_thread(src);
1561         /*
1562          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1563          * flush but it removes the checkpointed state from the current CPU and
1564          * transitions the CPU out of TM mode.  Hence we need to call
1565          * tm_recheckpoint_new_task() (on the same task) to restore the
1566          * checkpointed state back and the TM mode.
1567          *
1568          * Can't pass dst because it isn't ready. Doesn't matter, passing
1569          * dst is only important for __switch_to()
1570          */
1571         __switch_to_tm(src, src);
1572
1573         *dst = *src;
1574
1575         clear_task_ebb(dst);
1576
1577         return 0;
1578 }
1579
1580 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1581 {
1582 #ifdef CONFIG_PPC_BOOK3S_64
1583         unsigned long sp_vsid;
1584         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1585
1586         if (radix_enabled())
1587                 return;
1588
1589         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1590                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1591                         << SLB_VSID_SHIFT_1T;
1592         else
1593                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1594                         << SLB_VSID_SHIFT;
1595         sp_vsid |= SLB_VSID_KERNEL | llp;
1596         p->thread.ksp_vsid = sp_vsid;
1597 #endif
1598 }
1599
1600 /*
1601  * Copy a thread..
1602  */
1603
1604 /*
1605  * Copy architecture-specific thread state
1606  */
1607 int copy_thread(unsigned long clone_flags, unsigned long usp,
1608                 unsigned long kthread_arg, struct task_struct *p)
1609 {
1610         struct pt_regs *childregs, *kregs;
1611         extern void ret_from_fork(void);
1612         extern void ret_from_kernel_thread(void);
1613         void (*f)(void);
1614         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1615         struct thread_info *ti = task_thread_info(p);
1616
1617         klp_init_thread_info(p);
1618
1619         /* Copy registers */
1620         sp -= sizeof(struct pt_regs);
1621         childregs = (struct pt_regs *) sp;
1622         if (unlikely(p->flags & PF_KTHREAD)) {
1623                 /* kernel thread */
1624                 memset(childregs, 0, sizeof(struct pt_regs));
1625                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1626                 /* function */
1627                 if (usp)
1628                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1629 #ifdef CONFIG_PPC64
1630                 clear_tsk_thread_flag(p, TIF_32BIT);
1631                 childregs->softe = IRQS_ENABLED;
1632 #endif
1633                 childregs->gpr[15] = kthread_arg;
1634                 p->thread.regs = NULL;  /* no user register state */
1635                 ti->flags |= _TIF_RESTOREALL;
1636                 f = ret_from_kernel_thread;
1637         } else {
1638                 /* user thread */
1639                 struct pt_regs *regs = current_pt_regs();
1640                 CHECK_FULL_REGS(regs);
1641                 *childregs = *regs;
1642                 if (usp)
1643                         childregs->gpr[1] = usp;
1644                 p->thread.regs = childregs;
1645                 childregs->gpr[3] = 0;  /* Result from fork() */
1646                 if (clone_flags & CLONE_SETTLS) {
1647 #ifdef CONFIG_PPC64
1648                         if (!is_32bit_task())
1649                                 childregs->gpr[13] = childregs->gpr[6];
1650                         else
1651 #endif
1652                                 childregs->gpr[2] = childregs->gpr[6];
1653                 }
1654
1655                 f = ret_from_fork;
1656         }
1657         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1658         sp -= STACK_FRAME_OVERHEAD;
1659
1660         /*
1661          * The way this works is that at some point in the future
1662          * some task will call _switch to switch to the new task.
1663          * That will pop off the stack frame created below and start
1664          * the new task running at ret_from_fork.  The new task will
1665          * do some house keeping and then return from the fork or clone
1666          * system call, using the stack frame created above.
1667          */
1668         ((unsigned long *)sp)[0] = 0;
1669         sp -= sizeof(struct pt_regs);
1670         kregs = (struct pt_regs *) sp;
1671         sp -= STACK_FRAME_OVERHEAD;
1672         p->thread.ksp = sp;
1673 #ifdef CONFIG_PPC32
1674         p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1675 #endif
1676 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1677         p->thread.ptrace_bps[0] = NULL;
1678 #endif
1679
1680         p->thread.fp_save_area = NULL;
1681 #ifdef CONFIG_ALTIVEC
1682         p->thread.vr_save_area = NULL;
1683 #endif
1684
1685         setup_ksp_vsid(p, sp);
1686
1687 #ifdef CONFIG_PPC64 
1688         if (cpu_has_feature(CPU_FTR_DSCR)) {
1689                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1690                 p->thread.dscr = mfspr(SPRN_DSCR);
1691         }
1692         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1693                 childregs->ppr = DEFAULT_PPR;
1694
1695         p->thread.tidr = 0;
1696 #endif
1697         kregs->nip = ppc_function_entry(f);
1698         return 0;
1699 }
1700
1701 void preload_new_slb_context(unsigned long start, unsigned long sp);
1702
1703 /*
1704  * Set up a thread for executing a new program
1705  */
1706 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1707 {
1708 #ifdef CONFIG_PPC64
1709         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1710
1711 #ifdef CONFIG_PPC_BOOK3S_64
1712         if (!radix_enabled())
1713                 preload_new_slb_context(start, sp);
1714 #endif
1715 #endif
1716
1717         /*
1718          * If we exec out of a kernel thread then thread.regs will not be
1719          * set.  Do it now.
1720          */
1721         if (!current->thread.regs) {
1722                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1723                 current->thread.regs = regs - 1;
1724         }
1725
1726 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1727         /*
1728          * Clear any transactional state, we're exec()ing. The cause is
1729          * not important as there will never be a recheckpoint so it's not
1730          * user visible.
1731          */
1732         if (MSR_TM_SUSPENDED(mfmsr()))
1733                 tm_reclaim_current(0);
1734 #endif
1735
1736         memset(regs->gpr, 0, sizeof(regs->gpr));
1737         regs->ctr = 0;
1738         regs->link = 0;
1739         regs->xer = 0;
1740         regs->ccr = 0;
1741         regs->gpr[1] = sp;
1742
1743         /*
1744          * We have just cleared all the nonvolatile GPRs, so make
1745          * FULL_REGS(regs) return true.  This is necessary to allow
1746          * ptrace to examine the thread immediately after exec.
1747          */
1748         regs->trap &= ~1UL;
1749
1750 #ifdef CONFIG_PPC32
1751         regs->mq = 0;
1752         regs->nip = start;
1753         regs->msr = MSR_USER;
1754 #else
1755         if (!is_32bit_task()) {
1756                 unsigned long entry;
1757
1758                 if (is_elf2_task()) {
1759                         /* Look ma, no function descriptors! */
1760                         entry = start;
1761
1762                         /*
1763                          * Ulrich says:
1764                          *   The latest iteration of the ABI requires that when
1765                          *   calling a function (at its global entry point),
1766                          *   the caller must ensure r12 holds the entry point
1767                          *   address (so that the function can quickly
1768                          *   establish addressability).
1769                          */
1770                         regs->gpr[12] = start;
1771                         /* Make sure that's restored on entry to userspace. */
1772                         set_thread_flag(TIF_RESTOREALL);
1773                 } else {
1774                         unsigned long toc;
1775
1776                         /* start is a relocated pointer to the function
1777                          * descriptor for the elf _start routine.  The first
1778                          * entry in the function descriptor is the entry
1779                          * address of _start and the second entry is the TOC
1780                          * value we need to use.
1781                          */
1782                         __get_user(entry, (unsigned long __user *)start);
1783                         __get_user(toc, (unsigned long __user *)start+1);
1784
1785                         /* Check whether the e_entry function descriptor entries
1786                          * need to be relocated before we can use them.
1787                          */
1788                         if (load_addr != 0) {
1789                                 entry += load_addr;
1790                                 toc   += load_addr;
1791                         }
1792                         regs->gpr[2] = toc;
1793                 }
1794                 regs->nip = entry;
1795                 regs->msr = MSR_USER64;
1796         } else {
1797                 regs->nip = start;
1798                 regs->gpr[2] = 0;
1799                 regs->msr = MSR_USER32;
1800         }
1801 #endif
1802 #ifdef CONFIG_VSX
1803         current->thread.used_vsr = 0;
1804 #endif
1805         current->thread.load_slb = 0;
1806         current->thread.load_fp = 0;
1807         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1808         current->thread.fp_save_area = NULL;
1809 #ifdef CONFIG_ALTIVEC
1810         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1811         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1812         current->thread.vr_save_area = NULL;
1813         current->thread.vrsave = 0;
1814         current->thread.used_vr = 0;
1815         current->thread.load_vec = 0;
1816 #endif /* CONFIG_ALTIVEC */
1817 #ifdef CONFIG_SPE
1818         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1819         current->thread.acc = 0;
1820         current->thread.spefscr = 0;
1821         current->thread.used_spe = 0;
1822 #endif /* CONFIG_SPE */
1823 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1824         current->thread.tm_tfhar = 0;
1825         current->thread.tm_texasr = 0;
1826         current->thread.tm_tfiar = 0;
1827         current->thread.load_tm = 0;
1828 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1829
1830         thread_pkey_regs_init(&current->thread);
1831 }
1832 EXPORT_SYMBOL(start_thread);
1833
1834 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1835                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1836
1837 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1838 {
1839         struct pt_regs *regs = tsk->thread.regs;
1840
1841         /* This is a bit hairy.  If we are an SPE enabled  processor
1842          * (have embedded fp) we store the IEEE exception enable flags in
1843          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1844          * mode (asyn, precise, disabled) for 'Classic' FP. */
1845         if (val & PR_FP_EXC_SW_ENABLE) {
1846 #ifdef CONFIG_SPE
1847                 if (cpu_has_feature(CPU_FTR_SPE)) {
1848                         /*
1849                          * When the sticky exception bits are set
1850                          * directly by userspace, it must call prctl
1851                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1852                          * in the existing prctl settings) or
1853                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1854                          * the bits being set).  <fenv.h> functions
1855                          * saving and restoring the whole
1856                          * floating-point environment need to do so
1857                          * anyway to restore the prctl settings from
1858                          * the saved environment.
1859                          */
1860                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1861                         tsk->thread.fpexc_mode = val &
1862                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1863                         return 0;
1864                 } else {
1865                         return -EINVAL;
1866                 }
1867 #else
1868                 return -EINVAL;
1869 #endif
1870         }
1871
1872         /* on a CONFIG_SPE this does not hurt us.  The bits that
1873          * __pack_fe01 use do not overlap with bits used for
1874          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1875          * on CONFIG_SPE implementations are reserved so writing to
1876          * them does not change anything */
1877         if (val > PR_FP_EXC_PRECISE)
1878                 return -EINVAL;
1879         tsk->thread.fpexc_mode = __pack_fe01(val);
1880         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1881                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1882                         | tsk->thread.fpexc_mode;
1883         return 0;
1884 }
1885
1886 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1887 {
1888         unsigned int val;
1889
1890         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1891 #ifdef CONFIG_SPE
1892                 if (cpu_has_feature(CPU_FTR_SPE)) {
1893                         /*
1894                          * When the sticky exception bits are set
1895                          * directly by userspace, it must call prctl
1896                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1897                          * in the existing prctl settings) or
1898                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1899                          * the bits being set).  <fenv.h> functions
1900                          * saving and restoring the whole
1901                          * floating-point environment need to do so
1902                          * anyway to restore the prctl settings from
1903                          * the saved environment.
1904                          */
1905                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1906                         val = tsk->thread.fpexc_mode;
1907                 } else
1908                         return -EINVAL;
1909 #else
1910                 return -EINVAL;
1911 #endif
1912         else
1913                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1914         return put_user(val, (unsigned int __user *) adr);
1915 }
1916
1917 int set_endian(struct task_struct *tsk, unsigned int val)
1918 {
1919         struct pt_regs *regs = tsk->thread.regs;
1920
1921         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1922             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1923                 return -EINVAL;
1924
1925         if (regs == NULL)
1926                 return -EINVAL;
1927
1928         if (val == PR_ENDIAN_BIG)
1929                 regs->msr &= ~MSR_LE;
1930         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1931                 regs->msr |= MSR_LE;
1932         else
1933                 return -EINVAL;
1934
1935         return 0;
1936 }
1937
1938 int get_endian(struct task_struct *tsk, unsigned long adr)
1939 {
1940         struct pt_regs *regs = tsk->thread.regs;
1941         unsigned int val;
1942
1943         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1944             !cpu_has_feature(CPU_FTR_REAL_LE))
1945                 return -EINVAL;
1946
1947         if (regs == NULL)
1948                 return -EINVAL;
1949
1950         if (regs->msr & MSR_LE) {
1951                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1952                         val = PR_ENDIAN_LITTLE;
1953                 else
1954                         val = PR_ENDIAN_PPC_LITTLE;
1955         } else
1956                 val = PR_ENDIAN_BIG;
1957
1958         return put_user(val, (unsigned int __user *)adr);
1959 }
1960
1961 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1962 {
1963         tsk->thread.align_ctl = val;
1964         return 0;
1965 }
1966
1967 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1968 {
1969         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1970 }
1971
1972 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1973                                   unsigned long nbytes)
1974 {
1975         unsigned long stack_page;
1976         unsigned long cpu = task_cpu(p);
1977
1978         stack_page = (unsigned long)hardirq_ctx[cpu];
1979         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1980                 return 1;
1981
1982         stack_page = (unsigned long)softirq_ctx[cpu];
1983         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1984                 return 1;
1985
1986         return 0;
1987 }
1988
1989 int validate_sp(unsigned long sp, struct task_struct *p,
1990                        unsigned long nbytes)
1991 {
1992         unsigned long stack_page = (unsigned long)task_stack_page(p);
1993
1994         if (sp < THREAD_SIZE)
1995                 return 0;
1996
1997         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1998                 return 1;
1999
2000         return valid_irq_stack(sp, p, nbytes);
2001 }
2002
2003 EXPORT_SYMBOL(validate_sp);
2004
2005 static unsigned long __get_wchan(struct task_struct *p)
2006 {
2007         unsigned long ip, sp;
2008         int count = 0;
2009
2010         if (!p || p == current || p->state == TASK_RUNNING)
2011                 return 0;
2012
2013         sp = p->thread.ksp;
2014         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2015                 return 0;
2016
2017         do {
2018                 sp = *(unsigned long *)sp;
2019                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2020                     p->state == TASK_RUNNING)
2021                         return 0;
2022                 if (count > 0) {
2023                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2024                         if (!in_sched_functions(ip))
2025                                 return ip;
2026                 }
2027         } while (count++ < 16);
2028         return 0;
2029 }
2030
2031 unsigned long get_wchan(struct task_struct *p)
2032 {
2033         unsigned long ret;
2034
2035         if (!try_get_task_stack(p))
2036                 return 0;
2037
2038         ret = __get_wchan(p);
2039
2040         put_task_stack(p);
2041
2042         return ret;
2043 }
2044
2045 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2046
2047 void show_stack(struct task_struct *tsk, unsigned long *stack)
2048 {
2049         unsigned long sp, ip, lr, newsp;
2050         int count = 0;
2051         int firstframe = 1;
2052 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2053         struct ftrace_ret_stack *ret_stack;
2054         extern void return_to_handler(void);
2055         unsigned long rth = (unsigned long)return_to_handler;
2056         int curr_frame = 0;
2057 #endif
2058
2059         if (tsk == NULL)
2060                 tsk = current;
2061
2062         if (!try_get_task_stack(tsk))
2063                 return;
2064
2065         sp = (unsigned long) stack;
2066         if (sp == 0) {
2067                 if (tsk == current)
2068                         sp = current_stack_pointer();
2069                 else
2070                         sp = tsk->thread.ksp;
2071         }
2072
2073         lr = 0;
2074         printk("Call Trace:\n");
2075         do {
2076                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2077                         break;
2078
2079                 stack = (unsigned long *) sp;
2080                 newsp = stack[0];
2081                 ip = stack[STACK_FRAME_LR_SAVE];
2082                 if (!firstframe || ip != lr) {
2083                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2084 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2085                         if ((ip == rth) && curr_frame >= 0) {
2086                                 ret_stack = ftrace_graph_get_ret_stack(current,
2087                                                                   curr_frame++);
2088                                 if (ret_stack)
2089                                         pr_cont(" (%pS)",
2090                                                 (void *)ret_stack->ret);
2091                                 else
2092                                         curr_frame = -1;
2093                         }
2094 #endif
2095                         if (firstframe)
2096                                 pr_cont(" (unreliable)");
2097                         pr_cont("\n");
2098                 }
2099                 firstframe = 0;
2100
2101                 /*
2102                  * See if this is an exception frame.
2103                  * We look for the "regshere" marker in the current frame.
2104                  */
2105                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2106                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2107                         struct pt_regs *regs = (struct pt_regs *)
2108                                 (sp + STACK_FRAME_OVERHEAD);
2109                         lr = regs->link;
2110                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2111                                regs->trap, (void *)regs->nip, (void *)lr);
2112                         firstframe = 1;
2113                 }
2114
2115                 sp = newsp;
2116         } while (count++ < kstack_depth_to_print);
2117
2118         put_task_stack(tsk);
2119 }
2120
2121 #ifdef CONFIG_PPC64
2122 /* Called with hard IRQs off */
2123 void notrace __ppc64_runlatch_on(void)
2124 {
2125         struct thread_info *ti = current_thread_info();
2126
2127         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2128                 /*
2129                  * Least significant bit (RUN) is the only writable bit of
2130                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2131                  * earliest ISA where this is the case, but it's convenient.
2132                  */
2133                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2134         } else {
2135                 unsigned long ctrl;
2136
2137                 /*
2138                  * Some architectures (e.g., Cell) have writable fields other
2139                  * than RUN, so do the read-modify-write.
2140                  */
2141                 ctrl = mfspr(SPRN_CTRLF);
2142                 ctrl |= CTRL_RUNLATCH;
2143                 mtspr(SPRN_CTRLT, ctrl);
2144         }
2145
2146         ti->local_flags |= _TLF_RUNLATCH;
2147 }
2148
2149 /* Called with hard IRQs off */
2150 void notrace __ppc64_runlatch_off(void)
2151 {
2152         struct thread_info *ti = current_thread_info();
2153
2154         ti->local_flags &= ~_TLF_RUNLATCH;
2155
2156         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2157                 mtspr(SPRN_CTRLT, 0);
2158         } else {
2159                 unsigned long ctrl;
2160
2161                 ctrl = mfspr(SPRN_CTRLF);
2162                 ctrl &= ~CTRL_RUNLATCH;
2163                 mtspr(SPRN_CTRLT, ctrl);
2164         }
2165 }
2166 #endif /* CONFIG_PPC64 */
2167
2168 unsigned long arch_align_stack(unsigned long sp)
2169 {
2170         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2171                 sp -= get_random_int() & ~PAGE_MASK;
2172         return sp & ~0xf;
2173 }
2174
2175 static inline unsigned long brk_rnd(void)
2176 {
2177         unsigned long rnd = 0;
2178
2179         /* 8MB for 32bit, 1GB for 64bit */
2180         if (is_32bit_task())
2181                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2182         else
2183                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2184
2185         return rnd << PAGE_SHIFT;
2186 }
2187
2188 unsigned long arch_randomize_brk(struct mm_struct *mm)
2189 {
2190         unsigned long base = mm->brk;
2191         unsigned long ret;
2192
2193 #ifdef CONFIG_PPC_BOOK3S_64
2194         /*
2195          * If we are using 1TB segments and we are allowed to randomise
2196          * the heap, we can put it above 1TB so it is backed by a 1TB
2197          * segment. Otherwise the heap will be in the bottom 1TB
2198          * which always uses 256MB segments and this may result in a
2199          * performance penalty. We don't need to worry about radix. For
2200          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2201          */
2202         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2203                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2204 #endif
2205
2206         ret = PAGE_ALIGN(base + brk_rnd());
2207
2208         if (ret < mm->brk)
2209                 return mm->brk;
2210
2211         return ret;
2212 }
2213