8ca49e40c473ede2cce82bba2acbd3b29886c408
[linux-2.6-block.git] / arch / powerpc / kernel / fadump.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30
31 #include <asm/page.h>
32 #include <asm/fadump.h>
33 #include <asm/fadump-internal.h>
34 #include <asm/setup.h>
35 #include <asm/interrupt.h>
36 #include <asm/prom.h>
37
38 /*
39  * The CPU who acquired the lock to trigger the fadump crash should
40  * wait for other CPUs to enter.
41  *
42  * The timeout is in milliseconds.
43  */
44 #define CRASH_TIMEOUT           500
45
46 static struct fw_dump fw_dump;
47
48 static void __init fadump_reserve_crash_area(u64 base);
49
50 #ifndef CONFIG_PRESERVE_FA_DUMP
51
52 static struct kobject *fadump_kobj;
53
54 static atomic_t cpus_in_fadump;
55 static DEFINE_MUTEX(fadump_mutex);
56
57 #define RESERVED_RNGS_SZ        16384 /* 16K - 128 entries */
58 #define RESERVED_RNGS_CNT       (RESERVED_RNGS_SZ / \
59                                  sizeof(struct fadump_memory_range))
60 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
61 static struct fadump_mrange_info
62 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
63
64 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
65
66 #ifdef CONFIG_CMA
67 static struct cma *fadump_cma;
68
69 /*
70  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
71  *
72  * This function initializes CMA area from fadump reserved memory.
73  * The total size of fadump reserved memory covers for boot memory size
74  * + cpu data size + hpte size and metadata.
75  * Initialize only the area equivalent to boot memory size for CMA use.
76  * The remaining portion of fadump reserved memory will be not given
77  * to CMA and pages for those will stay reserved. boot memory size is
78  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
79  * But for some reason even if it fails we still have the memory reservation
80  * with us and we can still continue doing fadump.
81  */
82 void __init fadump_cma_init(void)
83 {
84         unsigned long long base, size, end;
85         int rc;
86
87         if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled ||
88                         fw_dump.dump_active)
89                 return;
90         /*
91          * Do not use CMA if user has provided fadump=nocma kernel parameter.
92          */
93         if (fw_dump.nocma || !fw_dump.boot_memory_size)
94                 return;
95
96         /*
97          * [base, end) should be reserved during early init in
98          * fadump_reserve_mem(). No need to check this here as
99          * cma_init_reserved_mem() already checks for overlap.
100          * Here we give the aligned chunk of this reserved memory to CMA.
101          */
102         base = fw_dump.reserve_dump_area_start;
103         size = fw_dump.boot_memory_size;
104         end = base + size;
105
106         base = ALIGN(base, CMA_MIN_ALIGNMENT_BYTES);
107         end = ALIGN_DOWN(end, CMA_MIN_ALIGNMENT_BYTES);
108         size = end - base;
109
110         if (end <= base) {
111                 pr_warn("%s: Too less memory to give to CMA\n", __func__);
112                 return;
113         }
114
115         rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
116         if (rc) {
117                 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
118                 /*
119                  * Though the CMA init has failed we still have memory
120                  * reservation with us. The reserved memory will be
121                  * blocked from production system usage.  Hence return 1,
122                  * so that we can continue with fadump.
123                  */
124                 return;
125         }
126
127         /*
128          *  If CMA activation fails, keep the pages reserved, instead of
129          *  exposing them to buddy allocator. Same as 'fadump=nocma' case.
130          */
131         cma_reserve_pages_on_error(fadump_cma);
132
133         /*
134          * So we now have successfully initialized cma area for fadump.
135          */
136         pr_info("Initialized [0x%llx, %luMB] cma area from [0x%lx, %luMB] "
137                 "bytes of memory reserved for firmware-assisted dump\n",
138                 cma_get_base(fadump_cma), cma_get_size(fadump_cma) >> 20,
139                 fw_dump.reserve_dump_area_start,
140                 fw_dump.boot_memory_size >> 20);
141         return;
142 }
143 #endif /* CONFIG_CMA */
144
145 /*
146  * Additional parameters meant for capture kernel are placed in a dedicated area.
147  * If this is capture kernel boot, append these parameters to bootargs.
148  */
149 void __init fadump_append_bootargs(void)
150 {
151         char *append_args;
152         size_t len;
153
154         if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area)
155                 return;
156
157         if (fw_dump.param_area < fw_dump.boot_mem_top) {
158                 if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) {
159                         pr_warn("WARNING: Can't use additional parameters area!\n");
160                         fw_dump.param_area = 0;
161                         return;
162                 }
163         }
164
165         append_args = (char *)fw_dump.param_area;
166         len = strlen(boot_command_line);
167
168         /*
169          * Too late to fail even if cmdline size exceeds. Truncate additional parameters
170          * to cmdline size and proceed anyway.
171          */
172         if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1)
173                 pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n");
174
175         pr_debug("Cmdline: %s\n", boot_command_line);
176         snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args);
177         pr_info("Updated cmdline: %s\n", boot_command_line);
178 }
179
180 /* Scan the Firmware Assisted dump configuration details. */
181 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
182                                       int depth, void *data)
183 {
184         if (depth == 0) {
185                 early_init_dt_scan_reserved_ranges(node);
186                 return 0;
187         }
188
189         if (depth != 1)
190                 return 0;
191
192         if (strcmp(uname, "rtas") == 0) {
193                 rtas_fadump_dt_scan(&fw_dump, node);
194                 return 1;
195         }
196
197         if (strcmp(uname, "ibm,opal") == 0) {
198                 opal_fadump_dt_scan(&fw_dump, node);
199                 return 1;
200         }
201
202         return 0;
203 }
204
205 /*
206  * If fadump is registered, check if the memory provided
207  * falls within boot memory area and reserved memory area.
208  */
209 int is_fadump_memory_area(u64 addr, unsigned long size)
210 {
211         u64 d_start, d_end;
212
213         if (!fw_dump.dump_registered)
214                 return 0;
215
216         if (!size)
217                 return 0;
218
219         d_start = fw_dump.reserve_dump_area_start;
220         d_end = d_start + fw_dump.reserve_dump_area_size;
221         if (((addr + size) > d_start) && (addr <= d_end))
222                 return 1;
223
224         return (addr <= fw_dump.boot_mem_top);
225 }
226
227 int should_fadump_crash(void)
228 {
229         if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
230                 return 0;
231         return 1;
232 }
233
234 int is_fadump_active(void)
235 {
236         return fw_dump.dump_active;
237 }
238
239 /*
240  * Returns true, if there are no holes in memory area between d_start to d_end,
241  * false otherwise.
242  */
243 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
244 {
245         phys_addr_t reg_start, reg_end;
246         bool ret = false;
247         u64 i, start, end;
248
249         for_each_mem_range(i, &reg_start, &reg_end) {
250                 start = max_t(u64, d_start, reg_start);
251                 end = min_t(u64, d_end, reg_end);
252                 if (d_start < end) {
253                         /* Memory hole from d_start to start */
254                         if (start > d_start)
255                                 break;
256
257                         if (end == d_end) {
258                                 ret = true;
259                                 break;
260                         }
261
262                         d_start = end + 1;
263                 }
264         }
265
266         return ret;
267 }
268
269 /*
270  * Returns true, if there are no holes in reserved memory area,
271  * false otherwise.
272  */
273 bool is_fadump_reserved_mem_contiguous(void)
274 {
275         u64 d_start, d_end;
276
277         d_start = fw_dump.reserve_dump_area_start;
278         d_end   = d_start + fw_dump.reserve_dump_area_size;
279         return is_fadump_mem_area_contiguous(d_start, d_end);
280 }
281
282 /* Print firmware assisted dump configurations for debugging purpose. */
283 static void __init fadump_show_config(void)
284 {
285         int i;
286
287         pr_debug("Support for firmware-assisted dump (fadump): %s\n",
288                         (fw_dump.fadump_supported ? "present" : "no support"));
289
290         if (!fw_dump.fadump_supported)
291                 return;
292
293         pr_debug("Fadump enabled    : %s\n", str_yes_no(fw_dump.fadump_enabled));
294         pr_debug("Dump Active       : %s\n", str_yes_no(fw_dump.dump_active));
295         pr_debug("Dump section sizes:\n");
296         pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
297         pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
298         pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
299         pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
300         pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
301         for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
302                 pr_debug("[%03d] base = %llx, size = %llx\n", i,
303                          fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
304         }
305 }
306
307 /**
308  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
309  *
310  * Function to find the largest memory size we need to reserve during early
311  * boot process. This will be the size of the memory that is required for a
312  * kernel to boot successfully.
313  *
314  * This function has been taken from phyp-assisted dump feature implementation.
315  *
316  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
317  *
318  * TODO: Come up with better approach to find out more accurate memory size
319  * that is required for a kernel to boot successfully.
320  *
321  */
322 static __init u64 fadump_calculate_reserve_size(void)
323 {
324         u64 base, size, bootmem_min;
325         int ret;
326
327         if (fw_dump.reserve_bootvar)
328                 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
329
330         /*
331          * Check if the size is specified through crashkernel= cmdline
332          * option. If yes, then use that but ignore base as fadump reserves
333          * memory at a predefined offset.
334          */
335         ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
336                                 &size, &base, NULL, NULL);
337         if (ret == 0 && size > 0) {
338                 unsigned long max_size;
339
340                 if (fw_dump.reserve_bootvar)
341                         pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
342
343                 fw_dump.reserve_bootvar = (unsigned long)size;
344
345                 /*
346                  * Adjust if the boot memory size specified is above
347                  * the upper limit.
348                  */
349                 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
350                 if (fw_dump.reserve_bootvar > max_size) {
351                         fw_dump.reserve_bootvar = max_size;
352                         pr_info("Adjusted boot memory size to %luMB\n",
353                                 (fw_dump.reserve_bootvar >> 20));
354                 }
355
356                 return fw_dump.reserve_bootvar;
357         } else if (fw_dump.reserve_bootvar) {
358                 /*
359                  * 'fadump_reserve_mem=' is being used to reserve memory
360                  * for firmware-assisted dump.
361                  */
362                 return fw_dump.reserve_bootvar;
363         }
364
365         /* divide by 20 to get 5% of value */
366         size = memblock_phys_mem_size() / 20;
367
368         /* round it down in multiples of 256 */
369         size = size & ~0x0FFFFFFFUL;
370
371         /* Truncate to memory_limit. We don't want to over reserve the memory.*/
372         if (memory_limit && size > memory_limit)
373                 size = memory_limit;
374
375         bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
376         return (size > bootmem_min ? size : bootmem_min);
377 }
378
379 /*
380  * Calculate the total memory size required to be reserved for
381  * firmware-assisted dump registration.
382  */
383 static unsigned long __init get_fadump_area_size(void)
384 {
385         unsigned long size = 0;
386
387         size += fw_dump.cpu_state_data_size;
388         size += fw_dump.hpte_region_size;
389         /*
390          * Account for pagesize alignment of boot memory area destination address.
391          * This faciliates in mmap reading of first kernel's memory.
392          */
393         size = PAGE_ALIGN(size);
394         size += fw_dump.boot_memory_size;
395         size += sizeof(struct fadump_crash_info_header);
396
397         /* This is to hold kernel metadata on platforms that support it */
398         size += (fw_dump.ops->fadump_get_metadata_size ?
399                  fw_dump.ops->fadump_get_metadata_size() : 0);
400         return size;
401 }
402
403 static int __init add_boot_mem_region(unsigned long rstart,
404                                       unsigned long rsize)
405 {
406         int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns();
407         int i = fw_dump.boot_mem_regs_cnt++;
408
409         if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) {
410                 fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns;
411                 return 0;
412         }
413
414         pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
415                  i, rstart, (rstart + rsize));
416         fw_dump.boot_mem_addr[i] = rstart;
417         fw_dump.boot_mem_sz[i] = rsize;
418         return 1;
419 }
420
421 /*
422  * Firmware usually has a hard limit on the data it can copy per region.
423  * Honour that by splitting a memory range into multiple regions.
424  */
425 static int __init add_boot_mem_regions(unsigned long mstart,
426                                        unsigned long msize)
427 {
428         unsigned long rstart, rsize, max_size;
429         int ret = 1;
430
431         rstart = mstart;
432         max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
433         while (msize) {
434                 if (msize > max_size)
435                         rsize = max_size;
436                 else
437                         rsize = msize;
438
439                 ret = add_boot_mem_region(rstart, rsize);
440                 if (!ret)
441                         break;
442
443                 msize -= rsize;
444                 rstart += rsize;
445         }
446
447         return ret;
448 }
449
450 static int __init fadump_get_boot_mem_regions(void)
451 {
452         unsigned long size, cur_size, hole_size, last_end;
453         unsigned long mem_size = fw_dump.boot_memory_size;
454         phys_addr_t reg_start, reg_end;
455         int ret = 1;
456         u64 i;
457
458         fw_dump.boot_mem_regs_cnt = 0;
459
460         last_end = 0;
461         hole_size = 0;
462         cur_size = 0;
463         for_each_mem_range(i, &reg_start, &reg_end) {
464                 size = reg_end - reg_start;
465                 hole_size += (reg_start - last_end);
466
467                 if ((cur_size + size) >= mem_size) {
468                         size = (mem_size - cur_size);
469                         ret = add_boot_mem_regions(reg_start, size);
470                         break;
471                 }
472
473                 mem_size -= size;
474                 cur_size += size;
475                 ret = add_boot_mem_regions(reg_start, size);
476                 if (!ret)
477                         break;
478
479                 last_end = reg_end;
480         }
481         fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
482
483         return ret;
484 }
485
486 /*
487  * Returns true, if the given range overlaps with reserved memory ranges
488  * starting at idx. Also, updates idx to index of overlapping memory range
489  * with the given memory range.
490  * False, otherwise.
491  */
492 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
493 {
494         bool ret = false;
495         int i;
496
497         for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
498                 u64 rbase = reserved_mrange_info.mem_ranges[i].base;
499                 u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
500
501                 if (end <= rbase)
502                         break;
503
504                 if ((end > rbase) &&  (base < rend)) {
505                         *idx = i;
506                         ret = true;
507                         break;
508                 }
509         }
510
511         return ret;
512 }
513
514 /*
515  * Locate a suitable memory area to reserve memory for FADump. While at it,
516  * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
517  */
518 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
519 {
520         struct fadump_memory_range *mrngs;
521         phys_addr_t mstart, mend;
522         int idx = 0;
523         u64 i, ret = 0;
524
525         mrngs = reserved_mrange_info.mem_ranges;
526         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
527                                 &mstart, &mend, NULL) {
528                 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
529                          i, mstart, mend, base);
530
531                 if (mstart > base)
532                         base = PAGE_ALIGN(mstart);
533
534                 while ((mend > base) && ((mend - base) >= size)) {
535                         if (!overlaps_reserved_ranges(base, base+size, &idx)) {
536                                 ret = base;
537                                 goto out;
538                         }
539
540                         base = mrngs[idx].base + mrngs[idx].size;
541                         base = PAGE_ALIGN(base);
542                 }
543         }
544
545 out:
546         return ret;
547 }
548
549 int __init fadump_reserve_mem(void)
550 {
551         u64 base, size, mem_boundary, bootmem_min;
552         int ret = 1;
553
554         if (!fw_dump.fadump_enabled)
555                 return 0;
556
557         if (!fw_dump.fadump_supported) {
558                 pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
559                 goto error_out;
560         }
561
562         /*
563          * Initialize boot memory size
564          * If dump is active then we have already calculated the size during
565          * first kernel.
566          */
567         if (!fw_dump.dump_active) {
568                 fw_dump.boot_memory_size =
569                         PAGE_ALIGN(fadump_calculate_reserve_size());
570
571                 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
572                 if (fw_dump.boot_memory_size < bootmem_min) {
573                         pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
574                                fw_dump.boot_memory_size, bootmem_min);
575                         goto error_out;
576                 }
577
578                 if (!fadump_get_boot_mem_regions()) {
579                         pr_err("Too many holes in boot memory area to enable fadump\n");
580                         goto error_out;
581                 }
582         }
583
584         if (memory_limit)
585                 mem_boundary = memory_limit;
586         else
587                 mem_boundary = memblock_end_of_DRAM();
588
589         base = fw_dump.boot_mem_top;
590         size = get_fadump_area_size();
591         fw_dump.reserve_dump_area_size = size;
592         if (fw_dump.dump_active) {
593                 pr_info("Firmware-assisted dump is active.\n");
594
595 #ifdef CONFIG_HUGETLB_PAGE
596                 /*
597                  * FADump capture kernel doesn't care much about hugepages.
598                  * In fact, handling hugepages in capture kernel is asking for
599                  * trouble. So, disable HugeTLB support when fadump is active.
600                  */
601                 hugetlb_disabled = true;
602 #endif
603                 /*
604                  * If last boot has crashed then reserve all the memory
605                  * above boot memory size so that we don't touch it until
606                  * dump is written to disk by userspace tool. This memory
607                  * can be released for general use by invalidating fadump.
608                  */
609                 fadump_reserve_crash_area(base);
610
611                 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
612                 pr_debug("Reserve dump area start address: 0x%lx\n",
613                          fw_dump.reserve_dump_area_start);
614         } else {
615                 /*
616                  * Reserve memory at an offset closer to bottom of the RAM to
617                  * minimize the impact of memory hot-remove operation.
618                  */
619                 base = fadump_locate_reserve_mem(base, size);
620
621                 if (!base || (base + size > mem_boundary)) {
622                         pr_err("Failed to find memory chunk for reservation!\n");
623                         goto error_out;
624                 }
625                 fw_dump.reserve_dump_area_start = base;
626
627                 /*
628                  * Calculate the kernel metadata address and register it with
629                  * f/w if the platform supports.
630                  */
631                 if (fw_dump.ops->fadump_setup_metadata &&
632                     (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
633                         goto error_out;
634
635                 if (memblock_reserve(base, size)) {
636                         pr_err("Failed to reserve memory!\n");
637                         goto error_out;
638                 }
639
640                 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
641                         (size >> 20), base, (memblock_phys_mem_size() >> 20));
642         }
643
644         return ret;
645 error_out:
646         fw_dump.fadump_enabled = 0;
647         fw_dump.reserve_dump_area_size = 0;
648         return 0;
649 }
650
651 /* Look for fadump= cmdline option. */
652 static int __init early_fadump_param(char *p)
653 {
654         if (!p)
655                 return 1;
656
657         if (strncmp(p, "on", 2) == 0)
658                 fw_dump.fadump_enabled = 1;
659         else if (strncmp(p, "off", 3) == 0)
660                 fw_dump.fadump_enabled = 0;
661         else if (strncmp(p, "nocma", 5) == 0) {
662                 fw_dump.fadump_enabled = 1;
663                 fw_dump.nocma = 1;
664         }
665
666         return 0;
667 }
668 early_param("fadump", early_fadump_param);
669
670 /*
671  * Look for fadump_reserve_mem= cmdline option
672  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
673  *       the sooner 'crashkernel=' parameter is accustomed to.
674  */
675 static int __init early_fadump_reserve_mem(char *p)
676 {
677         if (p)
678                 fw_dump.reserve_bootvar = memparse(p, &p);
679         return 0;
680 }
681 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
682
683 void crash_fadump(struct pt_regs *regs, const char *str)
684 {
685         unsigned int msecs;
686         struct fadump_crash_info_header *fdh = NULL;
687         int old_cpu, this_cpu;
688         /* Do not include first CPU */
689         unsigned int ncpus = num_online_cpus() - 1;
690
691         if (!should_fadump_crash())
692                 return;
693
694         /*
695          * old_cpu == -1 means this is the first CPU which has come here,
696          * go ahead and trigger fadump.
697          *
698          * old_cpu != -1 means some other CPU has already on its way
699          * to trigger fadump, just keep looping here.
700          */
701         this_cpu = smp_processor_id();
702         old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
703
704         if (old_cpu != -1) {
705                 atomic_inc(&cpus_in_fadump);
706
707                 /*
708                  * We can't loop here indefinitely. Wait as long as fadump
709                  * is in force. If we race with fadump un-registration this
710                  * loop will break and then we go down to normal panic path
711                  * and reboot. If fadump is in force the first crashing
712                  * cpu will definitely trigger fadump.
713                  */
714                 while (fw_dump.dump_registered)
715                         cpu_relax();
716                 return;
717         }
718
719         fdh = __va(fw_dump.fadumphdr_addr);
720         fdh->crashing_cpu = crashing_cpu;
721         crash_save_vmcoreinfo();
722
723         if (regs)
724                 fdh->regs = *regs;
725         else
726                 ppc_save_regs(&fdh->regs);
727
728         fdh->cpu_mask = *cpu_online_mask;
729
730         /*
731          * If we came in via system reset, wait a while for the secondary
732          * CPUs to enter.
733          */
734         if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
735                 msecs = CRASH_TIMEOUT;
736                 while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
737                         mdelay(1);
738         }
739
740         fw_dump.ops->fadump_trigger(fdh, str);
741 }
742
743 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
744 {
745         struct elf_prstatus prstatus;
746
747         memset(&prstatus, 0, sizeof(prstatus));
748         /*
749          * FIXME: How do i get PID? Do I really need it?
750          * prstatus.pr_pid = ????
751          */
752         elf_core_copy_regs(&prstatus.pr_reg, regs);
753         buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS,
754                               &prstatus, sizeof(prstatus));
755         return buf;
756 }
757
758 void __init fadump_update_elfcore_header(char *bufp)
759 {
760         struct elf_phdr *phdr;
761
762         bufp += sizeof(struct elfhdr);
763
764         /* First note is a place holder for cpu notes info. */
765         phdr = (struct elf_phdr *)bufp;
766
767         if (phdr->p_type == PT_NOTE) {
768                 phdr->p_paddr   = __pa(fw_dump.cpu_notes_buf_vaddr);
769                 phdr->p_offset  = phdr->p_paddr;
770                 phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
771                 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
772         }
773         return;
774 }
775
776 static void *__init fadump_alloc_buffer(unsigned long size)
777 {
778         unsigned long count, i;
779         struct page *page;
780         void *vaddr;
781
782         vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
783         if (!vaddr)
784                 return NULL;
785
786         count = PAGE_ALIGN(size) / PAGE_SIZE;
787         page = virt_to_page(vaddr);
788         for (i = 0; i < count; i++)
789                 mark_page_reserved(page + i);
790         return vaddr;
791 }
792
793 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
794 {
795         free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
796 }
797
798 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
799 {
800         /* Allocate buffer to hold cpu crash notes. */
801         fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
802         fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
803         fw_dump.cpu_notes_buf_vaddr =
804                 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
805         if (!fw_dump.cpu_notes_buf_vaddr) {
806                 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
807                        fw_dump.cpu_notes_buf_size);
808                 return -ENOMEM;
809         }
810
811         pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
812                  fw_dump.cpu_notes_buf_size,
813                  fw_dump.cpu_notes_buf_vaddr);
814         return 0;
815 }
816
817 void fadump_free_cpu_notes_buf(void)
818 {
819         if (!fw_dump.cpu_notes_buf_vaddr)
820                 return;
821
822         fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
823                            fw_dump.cpu_notes_buf_size);
824         fw_dump.cpu_notes_buf_vaddr = 0;
825         fw_dump.cpu_notes_buf_size = 0;
826 }
827
828 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
829 {
830         if (mrange_info->is_static) {
831                 mrange_info->mem_range_cnt = 0;
832                 return;
833         }
834
835         kfree(mrange_info->mem_ranges);
836         memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
837                (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
838 }
839
840 /*
841  * Allocate or reallocate mem_ranges array in incremental units
842  * of PAGE_SIZE.
843  */
844 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
845 {
846         struct fadump_memory_range *new_array;
847         u64 new_size;
848
849         new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
850         pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
851                  new_size, mrange_info->name);
852
853         new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
854         if (new_array == NULL) {
855                 pr_err("Insufficient memory for setting up %s memory ranges\n",
856                        mrange_info->name);
857                 fadump_free_mem_ranges(mrange_info);
858                 return -ENOMEM;
859         }
860
861         mrange_info->mem_ranges = new_array;
862         mrange_info->mem_ranges_sz = new_size;
863         mrange_info->max_mem_ranges = (new_size /
864                                        sizeof(struct fadump_memory_range));
865         return 0;
866 }
867 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
868                                        u64 base, u64 end)
869 {
870         struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
871         bool is_adjacent = false;
872         u64 start, size;
873
874         if (base == end)
875                 return 0;
876
877         /*
878          * Fold adjacent memory ranges to bring down the memory ranges/
879          * PT_LOAD segments count.
880          */
881         if (mrange_info->mem_range_cnt) {
882                 start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
883                 size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
884
885                 /*
886                  * Boot memory area needs separate PT_LOAD segment(s) as it
887                  * is moved to a different location at the time of crash.
888                  * So, fold only if the region is not boot memory area.
889                  */
890                 if ((start + size) == base && start >= fw_dump.boot_mem_top)
891                         is_adjacent = true;
892         }
893         if (!is_adjacent) {
894                 /* resize the array on reaching the limit */
895                 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
896                         int ret;
897
898                         if (mrange_info->is_static) {
899                                 pr_err("Reached array size limit for %s memory ranges\n",
900                                        mrange_info->name);
901                                 return -ENOSPC;
902                         }
903
904                         ret = fadump_alloc_mem_ranges(mrange_info);
905                         if (ret)
906                                 return ret;
907
908                         /* Update to the new resized array */
909                         mem_ranges = mrange_info->mem_ranges;
910                 }
911
912                 start = base;
913                 mem_ranges[mrange_info->mem_range_cnt].base = start;
914                 mrange_info->mem_range_cnt++;
915         }
916
917         mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
918         pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
919                  mrange_info->name, (mrange_info->mem_range_cnt - 1),
920                  start, end - 1, (end - start));
921         return 0;
922 }
923
924 static int fadump_init_elfcore_header(char *bufp)
925 {
926         struct elfhdr *elf;
927
928         elf = (struct elfhdr *) bufp;
929         bufp += sizeof(struct elfhdr);
930         memcpy(elf->e_ident, ELFMAG, SELFMAG);
931         elf->e_ident[EI_CLASS] = ELF_CLASS;
932         elf->e_ident[EI_DATA] = ELF_DATA;
933         elf->e_ident[EI_VERSION] = EV_CURRENT;
934         elf->e_ident[EI_OSABI] = ELF_OSABI;
935         memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
936         elf->e_type = ET_CORE;
937         elf->e_machine = ELF_ARCH;
938         elf->e_version = EV_CURRENT;
939         elf->e_entry = 0;
940         elf->e_phoff = sizeof(struct elfhdr);
941         elf->e_shoff = 0;
942
943         if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
944                 elf->e_flags = 2;
945         else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
946                 elf->e_flags = 1;
947         else
948                 elf->e_flags = 0;
949
950         elf->e_ehsize = sizeof(struct elfhdr);
951         elf->e_phentsize = sizeof(struct elf_phdr);
952         elf->e_phnum = 0;
953         elf->e_shentsize = 0;
954         elf->e_shnum = 0;
955         elf->e_shstrndx = 0;
956
957         return 0;
958 }
959
960 /*
961  * If the given physical address falls within the boot memory region then
962  * return the relocated address that points to the dump region reserved
963  * for saving initial boot memory contents.
964  */
965 static inline unsigned long fadump_relocate(unsigned long paddr)
966 {
967         unsigned long raddr, rstart, rend, rlast, hole_size;
968         int i;
969
970         hole_size = 0;
971         rlast = 0;
972         raddr = paddr;
973         for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
974                 rstart = fw_dump.boot_mem_addr[i];
975                 rend = rstart + fw_dump.boot_mem_sz[i];
976                 hole_size += (rstart - rlast);
977
978                 if (paddr >= rstart && paddr < rend) {
979                         raddr += fw_dump.boot_mem_dest_addr - hole_size;
980                         break;
981                 }
982
983                 rlast = rend;
984         }
985
986         pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
987         return raddr;
988 }
989
990 static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start,
991                              u64 size, unsigned long long offset)
992 {
993         phdr->p_align   = 0;
994         phdr->p_memsz   = size;
995         phdr->p_filesz  = size;
996         phdr->p_paddr   = start;
997         phdr->p_offset  = offset;
998         phdr->p_type    = PT_LOAD;
999         phdr->p_flags   = PF_R|PF_W|PF_X;
1000         phdr->p_vaddr   = (unsigned long)__va(start);
1001 }
1002
1003 static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh)
1004 {
1005         char *bufp;
1006         struct elfhdr *elf;
1007         struct elf_phdr *phdr;
1008         u64 boot_mem_dest_offset;
1009         unsigned long long i, ra_start, ra_end, ra_size, mstart, mend;
1010
1011         bufp = (char *) fw_dump.elfcorehdr_addr;
1012         fadump_init_elfcore_header(bufp);
1013         elf = (struct elfhdr *)bufp;
1014         bufp += sizeof(struct elfhdr);
1015
1016         /*
1017          * Set up ELF PT_NOTE, a placeholder for CPU notes information.
1018          * The notes info will be populated later by platform-specific code.
1019          * Hence, this PT_NOTE will always be the first ELF note.
1020          *
1021          * NOTE: Any new ELF note addition should be placed after this note.
1022          */
1023         phdr = (struct elf_phdr *)bufp;
1024         bufp += sizeof(struct elf_phdr);
1025         phdr->p_type = PT_NOTE;
1026         phdr->p_flags   = 0;
1027         phdr->p_vaddr   = 0;
1028         phdr->p_align   = 0;
1029         phdr->p_offset  = 0;
1030         phdr->p_paddr   = 0;
1031         phdr->p_filesz  = 0;
1032         phdr->p_memsz   = 0;
1033         /* Increment number of program headers. */
1034         (elf->e_phnum)++;
1035
1036         /* setup ELF PT_NOTE for vmcoreinfo */
1037         phdr = (struct elf_phdr *)bufp;
1038         bufp += sizeof(struct elf_phdr);
1039         phdr->p_type    = PT_NOTE;
1040         phdr->p_flags   = 0;
1041         phdr->p_vaddr   = 0;
1042         phdr->p_align   = 0;
1043         phdr->p_paddr   = phdr->p_offset = fdh->vmcoreinfo_raddr;
1044         phdr->p_memsz   = phdr->p_filesz = fdh->vmcoreinfo_size;
1045         /* Increment number of program headers. */
1046         (elf->e_phnum)++;
1047
1048         /*
1049          * Setup PT_LOAD sections. first include boot memory regions
1050          * and then add rest of the memory regions.
1051          */
1052         boot_mem_dest_offset = fw_dump.boot_mem_dest_addr;
1053         for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1054                 phdr = (struct elf_phdr *)bufp;
1055                 bufp += sizeof(struct elf_phdr);
1056                 populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i],
1057                                      fw_dump.boot_mem_sz[i],
1058                                      boot_mem_dest_offset);
1059                 /* Increment number of program headers. */
1060                 (elf->e_phnum)++;
1061                 boot_mem_dest_offset += fw_dump.boot_mem_sz[i];
1062         }
1063
1064         /* Memory reserved for fadump in first kernel */
1065         ra_start = fw_dump.reserve_dump_area_start;
1066         ra_size = get_fadump_area_size();
1067         ra_end = ra_start + ra_size;
1068
1069         phdr = (struct elf_phdr *)bufp;
1070         for_each_mem_range(i, &mstart, &mend) {
1071                 /* Boot memory regions already added, skip them now */
1072                 if (mstart < fw_dump.boot_mem_top) {
1073                         if (mend > fw_dump.boot_mem_top)
1074                                 mstart = fw_dump.boot_mem_top;
1075                         else
1076                                 continue;
1077                 }
1078
1079                 /* Handle memblock regions overlaps with fadump reserved area */
1080                 if ((ra_start < mend) && (ra_end > mstart)) {
1081                         if ((mstart < ra_start) && (mend > ra_end)) {
1082                                 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1083                                 /* Increment number of program headers. */
1084                                 (elf->e_phnum)++;
1085                                 bufp += sizeof(struct elf_phdr);
1086                                 phdr = (struct elf_phdr *)bufp;
1087                                 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1088                         } else if (mstart < ra_start) {
1089                                 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1090                         } else if (ra_end < mend) {
1091                                 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1092                         }
1093                 } else {
1094                 /* No overlap with fadump reserved memory region */
1095                         populate_elf_pt_load(phdr, mstart, mend - mstart, mstart);
1096                 }
1097
1098                 /* Increment number of program headers. */
1099                 (elf->e_phnum)++;
1100                 bufp += sizeof(struct elf_phdr);
1101                 phdr = (struct elf_phdr *) bufp;
1102         }
1103 }
1104
1105 static unsigned long init_fadump_header(unsigned long addr)
1106 {
1107         struct fadump_crash_info_header *fdh;
1108
1109         if (!addr)
1110                 return 0;
1111
1112         fdh = __va(addr);
1113         addr += sizeof(struct fadump_crash_info_header);
1114
1115         memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1116         fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1117         fdh->version = FADUMP_HEADER_VERSION;
1118         /* We will set the crashing cpu id in crash_fadump() during crash. */
1119         fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1120
1121         /*
1122          * The physical address and size of vmcoreinfo are required in the
1123          * second kernel to prepare elfcorehdr.
1124          */
1125         fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note());
1126         fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE;
1127
1128
1129         fdh->pt_regs_sz = sizeof(struct pt_regs);
1130         /*
1131          * When LPAR is terminated by PYHP, ensure all possible CPUs'
1132          * register data is processed while exporting the vmcore.
1133          */
1134         fdh->cpu_mask = *cpu_possible_mask;
1135         fdh->cpu_mask_sz = sizeof(struct cpumask);
1136
1137         return addr;
1138 }
1139
1140 static int register_fadump(void)
1141 {
1142         unsigned long addr;
1143
1144         /*
1145          * If no memory is reserved then we can not register for firmware-
1146          * assisted dump.
1147          */
1148         if (!fw_dump.reserve_dump_area_size)
1149                 return -ENODEV;
1150
1151         addr = fw_dump.fadumphdr_addr;
1152
1153         /* Initialize fadump crash info header. */
1154         addr = init_fadump_header(addr);
1155
1156         /* register the future kernel dump with firmware. */
1157         pr_debug("Registering for firmware-assisted kernel dump...\n");
1158         return fw_dump.ops->fadump_register(&fw_dump);
1159 }
1160
1161 void fadump_cleanup(void)
1162 {
1163         if (!fw_dump.fadump_supported)
1164                 return;
1165
1166         /* Invalidate the registration only if dump is active. */
1167         if (fw_dump.dump_active) {
1168                 pr_debug("Invalidating firmware-assisted dump registration\n");
1169                 fw_dump.ops->fadump_invalidate(&fw_dump);
1170         } else if (fw_dump.dump_registered) {
1171                 /* Un-register Firmware-assisted dump if it was registered. */
1172                 fw_dump.ops->fadump_unregister(&fw_dump);
1173         }
1174
1175         if (fw_dump.ops->fadump_cleanup)
1176                 fw_dump.ops->fadump_cleanup(&fw_dump);
1177 }
1178
1179 static void fadump_free_reserved_memory(unsigned long start_pfn,
1180                                         unsigned long end_pfn)
1181 {
1182         unsigned long pfn;
1183         unsigned long time_limit = jiffies + HZ;
1184
1185         pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1186                 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1187
1188         for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1189                 free_reserved_page(pfn_to_page(pfn));
1190
1191                 if (time_after(jiffies, time_limit)) {
1192                         cond_resched();
1193                         time_limit = jiffies + HZ;
1194                 }
1195         }
1196 }
1197
1198 /*
1199  * Skip memory holes and free memory that was actually reserved.
1200  */
1201 static void fadump_release_reserved_area(u64 start, u64 end)
1202 {
1203         unsigned long reg_spfn, reg_epfn;
1204         u64 tstart, tend, spfn, epfn;
1205         int i;
1206
1207         spfn = PHYS_PFN(start);
1208         epfn = PHYS_PFN(end);
1209
1210         for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1211                 tstart = max_t(u64, spfn, reg_spfn);
1212                 tend   = min_t(u64, epfn, reg_epfn);
1213
1214                 if (tstart < tend) {
1215                         fadump_free_reserved_memory(tstart, tend);
1216
1217                         if (tend == epfn)
1218                                 break;
1219
1220                         spfn = tend;
1221                 }
1222         }
1223 }
1224
1225 /*
1226  * Sort the mem ranges in-place and merge adjacent ranges
1227  * to minimize the memory ranges count.
1228  */
1229 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1230 {
1231         struct fadump_memory_range *mem_ranges;
1232         u64 base, size;
1233         int i, j, idx;
1234
1235         if (!reserved_mrange_info.mem_range_cnt)
1236                 return;
1237
1238         /* Sort the memory ranges */
1239         mem_ranges = mrange_info->mem_ranges;
1240         for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1241                 idx = i;
1242                 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1243                         if (mem_ranges[idx].base > mem_ranges[j].base)
1244                                 idx = j;
1245                 }
1246                 if (idx != i)
1247                         swap(mem_ranges[idx], mem_ranges[i]);
1248         }
1249
1250         /* Merge adjacent reserved ranges */
1251         idx = 0;
1252         for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1253                 base = mem_ranges[i-1].base;
1254                 size = mem_ranges[i-1].size;
1255                 if (mem_ranges[i].base == (base + size))
1256                         mem_ranges[idx].size += mem_ranges[i].size;
1257                 else {
1258                         idx++;
1259                         if (i == idx)
1260                                 continue;
1261
1262                         mem_ranges[idx] = mem_ranges[i];
1263                 }
1264         }
1265         mrange_info->mem_range_cnt = idx + 1;
1266 }
1267
1268 /*
1269  * Scan reserved-ranges to consider them while reserving/releasing
1270  * memory for FADump.
1271  */
1272 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1273 {
1274         const __be32 *prop;
1275         int len, ret = -1;
1276         unsigned long i;
1277
1278         /* reserved-ranges already scanned */
1279         if (reserved_mrange_info.mem_range_cnt != 0)
1280                 return;
1281
1282         prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1283         if (!prop)
1284                 return;
1285
1286         /*
1287          * Each reserved range is an (address,size) pair, 2 cells each,
1288          * totalling 4 cells per range.
1289          */
1290         for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1291                 u64 base, size;
1292
1293                 base = of_read_number(prop + (i * 4) + 0, 2);
1294                 size = of_read_number(prop + (i * 4) + 2, 2);
1295
1296                 if (size) {
1297                         ret = fadump_add_mem_range(&reserved_mrange_info,
1298                                                    base, base + size);
1299                         if (ret < 0) {
1300                                 pr_warn("some reserved ranges are ignored!\n");
1301                                 break;
1302                         }
1303                 }
1304         }
1305
1306         /* Compact reserved ranges */
1307         sort_and_merge_mem_ranges(&reserved_mrange_info);
1308 }
1309
1310 /*
1311  * Release the memory that was reserved during early boot to preserve the
1312  * crash'ed kernel's memory contents except reserved dump area (permanent
1313  * reservation) and reserved ranges used by F/W. The released memory will
1314  * be available for general use.
1315  */
1316 static void fadump_release_memory(u64 begin, u64 end)
1317 {
1318         u64 ra_start, ra_end, tstart;
1319         int i, ret;
1320
1321         ra_start = fw_dump.reserve_dump_area_start;
1322         ra_end = ra_start + fw_dump.reserve_dump_area_size;
1323
1324         /*
1325          * If reserved ranges array limit is hit, overwrite the last reserved
1326          * memory range with reserved dump area to ensure it is excluded from
1327          * the memory being released (reused for next FADump registration).
1328          */
1329         if (reserved_mrange_info.mem_range_cnt ==
1330             reserved_mrange_info.max_mem_ranges)
1331                 reserved_mrange_info.mem_range_cnt--;
1332
1333         ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1334         if (ret != 0)
1335                 return;
1336
1337         /* Get the reserved ranges list in order first. */
1338         sort_and_merge_mem_ranges(&reserved_mrange_info);
1339
1340         /* Exclude reserved ranges and release remaining memory */
1341         tstart = begin;
1342         for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1343                 ra_start = reserved_mrange_info.mem_ranges[i].base;
1344                 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1345
1346                 if (tstart >= ra_end)
1347                         continue;
1348
1349                 if (tstart < ra_start)
1350                         fadump_release_reserved_area(tstart, ra_start);
1351                 tstart = ra_end;
1352         }
1353
1354         if (tstart < end)
1355                 fadump_release_reserved_area(tstart, end);
1356 }
1357
1358 static void fadump_free_elfcorehdr_buf(void)
1359 {
1360         if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0)
1361                 return;
1362
1363         /*
1364          * Before freeing the memory of `elfcorehdr`, reset the global
1365          * `elfcorehdr_addr` to prevent modules like `vmcore` from accessing
1366          * invalid memory.
1367          */
1368         elfcorehdr_addr = ELFCORE_ADDR_ERR;
1369         fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size);
1370         fw_dump.elfcorehdr_addr = 0;
1371         fw_dump.elfcorehdr_size = 0;
1372 }
1373
1374 static void fadump_invalidate_release_mem(void)
1375 {
1376         mutex_lock(&fadump_mutex);
1377         if (!fw_dump.dump_active) {
1378                 mutex_unlock(&fadump_mutex);
1379                 return;
1380         }
1381
1382         fadump_cleanup();
1383         mutex_unlock(&fadump_mutex);
1384
1385         fadump_free_elfcorehdr_buf();
1386         fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1387         fadump_free_cpu_notes_buf();
1388
1389         /*
1390          * Setup kernel metadata and initialize the kernel dump
1391          * memory structure for FADump re-registration.
1392          */
1393         if (fw_dump.ops->fadump_setup_metadata &&
1394             (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1395                 pr_warn("Failed to setup kernel metadata!\n");
1396         fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1397 }
1398
1399 static ssize_t release_mem_store(struct kobject *kobj,
1400                                  struct kobj_attribute *attr,
1401                                  const char *buf, size_t count)
1402 {
1403         int input = -1;
1404
1405         if (!fw_dump.dump_active)
1406                 return -EPERM;
1407
1408         if (kstrtoint(buf, 0, &input))
1409                 return -EINVAL;
1410
1411         if (input == 1) {
1412                 /*
1413                  * Take away the '/proc/vmcore'. We are releasing the dump
1414                  * memory, hence it will not be valid anymore.
1415                  */
1416 #ifdef CONFIG_PROC_VMCORE
1417                 vmcore_cleanup();
1418 #endif
1419                 fadump_invalidate_release_mem();
1420
1421         } else
1422                 return -EINVAL;
1423         return count;
1424 }
1425
1426 /* Release the reserved memory and disable the FADump */
1427 static void __init unregister_fadump(void)
1428 {
1429         fadump_cleanup();
1430         fadump_release_memory(fw_dump.reserve_dump_area_start,
1431                               fw_dump.reserve_dump_area_size);
1432         fw_dump.fadump_enabled = 0;
1433         kobject_put(fadump_kobj);
1434 }
1435
1436 static ssize_t enabled_show(struct kobject *kobj,
1437                             struct kobj_attribute *attr,
1438                             char *buf)
1439 {
1440         return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1441 }
1442
1443 /*
1444  * /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates
1445  * to usersapce that fadump re-registration is not required on memory
1446  * hotplug events.
1447  */
1448 static ssize_t hotplug_ready_show(struct kobject *kobj,
1449                                       struct kobj_attribute *attr,
1450                                       char *buf)
1451 {
1452         return sprintf(buf, "%d\n", 1);
1453 }
1454
1455 static ssize_t mem_reserved_show(struct kobject *kobj,
1456                                  struct kobj_attribute *attr,
1457                                  char *buf)
1458 {
1459         return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1460 }
1461
1462 static ssize_t registered_show(struct kobject *kobj,
1463                                struct kobj_attribute *attr,
1464                                char *buf)
1465 {
1466         return sprintf(buf, "%d\n", fw_dump.dump_registered);
1467 }
1468
1469 static ssize_t bootargs_append_show(struct kobject *kobj,
1470                                    struct kobj_attribute *attr,
1471                                    char *buf)
1472 {
1473         return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area));
1474 }
1475
1476 static ssize_t bootargs_append_store(struct kobject *kobj,
1477                                    struct kobj_attribute *attr,
1478                                    const char *buf, size_t count)
1479 {
1480         char *params;
1481
1482         if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1483                 return -EPERM;
1484
1485         if (count >= COMMAND_LINE_SIZE)
1486                 return -EINVAL;
1487
1488         /*
1489          * Fail here instead of handling this scenario with
1490          * some silly workaround in capture kernel.
1491          */
1492         if (saved_command_line_len + count >= COMMAND_LINE_SIZE) {
1493                 pr_err("Appending parameters exceeds cmdline size!\n");
1494                 return -ENOSPC;
1495         }
1496
1497         params = __va(fw_dump.param_area);
1498         strscpy_pad(params, buf, COMMAND_LINE_SIZE);
1499         /* Remove newline character at the end. */
1500         if (params[count-1] == '\n')
1501                 params[count-1] = '\0';
1502
1503         return count;
1504 }
1505
1506 static ssize_t registered_store(struct kobject *kobj,
1507                                 struct kobj_attribute *attr,
1508                                 const char *buf, size_t count)
1509 {
1510         int ret = 0;
1511         int input = -1;
1512
1513         if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1514                 return -EPERM;
1515
1516         if (kstrtoint(buf, 0, &input))
1517                 return -EINVAL;
1518
1519         mutex_lock(&fadump_mutex);
1520
1521         switch (input) {
1522         case 0:
1523                 if (fw_dump.dump_registered == 0) {
1524                         goto unlock_out;
1525                 }
1526
1527                 /* Un-register Firmware-assisted dump */
1528                 pr_debug("Un-register firmware-assisted dump\n");
1529                 fw_dump.ops->fadump_unregister(&fw_dump);
1530                 break;
1531         case 1:
1532                 if (fw_dump.dump_registered == 1) {
1533                         /* Un-register Firmware-assisted dump */
1534                         fw_dump.ops->fadump_unregister(&fw_dump);
1535                 }
1536                 /* Register Firmware-assisted dump */
1537                 ret = register_fadump();
1538                 break;
1539         default:
1540                 ret = -EINVAL;
1541                 break;
1542         }
1543
1544 unlock_out:
1545         mutex_unlock(&fadump_mutex);
1546         return ret < 0 ? ret : count;
1547 }
1548
1549 static int fadump_region_show(struct seq_file *m, void *private)
1550 {
1551         if (!fw_dump.fadump_enabled)
1552                 return 0;
1553
1554         mutex_lock(&fadump_mutex);
1555         fw_dump.ops->fadump_region_show(&fw_dump, m);
1556         mutex_unlock(&fadump_mutex);
1557         return 0;
1558 }
1559
1560 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1561 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1562 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1563 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1564 static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready);
1565 static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append);
1566
1567 static struct attribute *fadump_attrs[] = {
1568         &enable_attr.attr,
1569         &register_attr.attr,
1570         &mem_reserved_attr.attr,
1571         &hotplug_ready_attr.attr,
1572         NULL,
1573 };
1574
1575 ATTRIBUTE_GROUPS(fadump);
1576
1577 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1578
1579 static void __init fadump_init_files(void)
1580 {
1581         int rc = 0;
1582
1583         fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1584         if (!fadump_kobj) {
1585                 pr_err("failed to create fadump kobject\n");
1586                 return;
1587         }
1588
1589         if (fw_dump.param_area) {
1590                 rc = sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr);
1591                 if (rc)
1592                         pr_err("unable to create bootargs_append sysfs file (%d)\n", rc);
1593         }
1594
1595         debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1596                             &fadump_region_fops);
1597
1598         if (fw_dump.dump_active) {
1599                 rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1600                 if (rc)
1601                         pr_err("unable to create release_mem sysfs file (%d)\n",
1602                                rc);
1603         }
1604
1605         rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1606         if (rc) {
1607                 pr_err("sysfs group creation failed (%d), unregistering FADump",
1608                        rc);
1609                 unregister_fadump();
1610                 return;
1611         }
1612
1613         /*
1614          * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1615          * create symlink at old location to maintain backward compatibility.
1616          *
1617          *      - fadump_enabled -> fadump/enabled
1618          *      - fadump_registered -> fadump/registered
1619          *      - fadump_release_mem -> fadump/release_mem
1620          */
1621         rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1622                                                   "enabled", "fadump_enabled");
1623         if (rc) {
1624                 pr_err("unable to create fadump_enabled symlink (%d)", rc);
1625                 return;
1626         }
1627
1628         rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1629                                                   "registered",
1630                                                   "fadump_registered");
1631         if (rc) {
1632                 pr_err("unable to create fadump_registered symlink (%d)", rc);
1633                 sysfs_remove_link(kernel_kobj, "fadump_enabled");
1634                 return;
1635         }
1636
1637         if (fw_dump.dump_active) {
1638                 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1639                                                           fadump_kobj,
1640                                                           "release_mem",
1641                                                           "fadump_release_mem");
1642                 if (rc)
1643                         pr_err("unable to create fadump_release_mem symlink (%d)",
1644                                rc);
1645         }
1646         return;
1647 }
1648
1649 static int __init fadump_setup_elfcorehdr_buf(void)
1650 {
1651         int elf_phdr_cnt;
1652         unsigned long elfcorehdr_size;
1653
1654         /*
1655          * Program header for CPU notes comes first, followed by one for
1656          * vmcoreinfo, and the remaining program headers correspond to
1657          * memory regions.
1658          */
1659         elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory);
1660         elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr));
1661         elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size);
1662
1663         fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size);
1664         if (!fw_dump.elfcorehdr_addr) {
1665                 pr_err("Failed to allocate %lu bytes for elfcorehdr\n",
1666                        elfcorehdr_size);
1667                 return -ENOMEM;
1668         }
1669         fw_dump.elfcorehdr_size = elfcorehdr_size;
1670         return 0;
1671 }
1672
1673 /*
1674  * Check if the fadump header of crashed kernel is compatible with fadump kernel.
1675  *
1676  * It checks the magic number, endianness, and size of non-primitive type
1677  * members of fadump header to ensure safe dump collection.
1678  */
1679 static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh)
1680 {
1681         if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) {
1682                 pr_err("Old magic number, can't process the dump.\n");
1683                 return false;
1684         }
1685
1686         if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
1687                 if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC))
1688                         pr_err("Endianness mismatch between the crashed and fadump kernels.\n");
1689                 else
1690                         pr_err("Fadump header is corrupted.\n");
1691
1692                 return false;
1693         }
1694
1695         /*
1696          * Dump collection is not safe if the size of non-primitive type members
1697          * of the fadump header do not match between crashed and fadump kernel.
1698          */
1699         if (fdh->pt_regs_sz != sizeof(struct pt_regs) ||
1700             fdh->cpu_mask_sz != sizeof(struct cpumask)) {
1701                 pr_err("Fadump header size mismatch.\n");
1702                 return false;
1703         }
1704
1705         return true;
1706 }
1707
1708 static void __init fadump_process(void)
1709 {
1710         struct fadump_crash_info_header *fdh;
1711
1712         fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr);
1713         if (!fdh) {
1714                 pr_err("Crash info header is empty.\n");
1715                 goto err_out;
1716         }
1717
1718         /* Avoid processing the dump if fadump header isn't compatible */
1719         if (!is_fadump_header_compatible(fdh))
1720                 goto err_out;
1721
1722         /* Allocate buffer for elfcorehdr */
1723         if (fadump_setup_elfcorehdr_buf())
1724                 goto err_out;
1725
1726         fadump_populate_elfcorehdr(fdh);
1727
1728         /* Let platform update the CPU notes in elfcorehdr */
1729         if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1730                 goto err_out;
1731
1732         /*
1733          * elfcorehdr is now ready to be exported.
1734          *
1735          * set elfcorehdr_addr so that vmcore module will export the
1736          * elfcorehdr through '/proc/vmcore'.
1737          */
1738         elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr);
1739         return;
1740
1741 err_out:
1742         fadump_invalidate_release_mem();
1743 }
1744
1745 /*
1746  * Reserve memory to store additional parameters to be passed
1747  * for fadump/capture kernel.
1748  */
1749 void __init fadump_setup_param_area(void)
1750 {
1751         phys_addr_t range_start, range_end;
1752
1753         if (!fw_dump.param_area_supported || fw_dump.dump_active)
1754                 return;
1755
1756         /* This memory can't be used by PFW or bootloader as it is shared across kernels */
1757         if (early_radix_enabled()) {
1758                 /*
1759                  * Anywhere in the upper half should be good enough as all memory
1760                  * is accessible in real mode.
1761                  */
1762                 range_start = memblock_end_of_DRAM() / 2;
1763                 range_end = memblock_end_of_DRAM();
1764         } else {
1765                 /*
1766                  * Memory range for passing additional parameters for HASH MMU
1767                  * must meet the following conditions:
1768                  * 1. The first memory block size must be higher than the
1769                  *    minimum RMA (MIN_RMA) size. Bootloader can use memory
1770                  *    upto RMA size. So it should be avoided.
1771                  * 2. The range should be between MIN_RMA and RMA size (ppc64_rma_size)
1772                  * 3. It must not overlap with the fadump reserved area.
1773                  */
1774                 if (ppc64_rma_size < MIN_RMA*1024*1024)
1775                         return;
1776
1777                 range_start = MIN_RMA * 1024 * 1024;
1778                 range_end = min(ppc64_rma_size, fw_dump.boot_mem_top);
1779         }
1780
1781         fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE,
1782                                                        COMMAND_LINE_SIZE,
1783                                                        range_start,
1784                                                        range_end);
1785         if (!fw_dump.param_area) {
1786                 pr_warn("WARNING: Could not setup area to pass additional parameters!\n");
1787                 return;
1788         }
1789
1790         memset((void *)fw_dump.param_area, 0, COMMAND_LINE_SIZE);
1791 }
1792
1793 /*
1794  * Prepare for firmware-assisted dump.
1795  */
1796 int __init setup_fadump(void)
1797 {
1798         if (!fw_dump.fadump_supported)
1799                 return 0;
1800
1801         fadump_init_files();
1802         fadump_show_config();
1803
1804         if (!fw_dump.fadump_enabled)
1805                 return 1;
1806
1807         /*
1808          * If dump data is available then see if it is valid and prepare for
1809          * saving it to the disk.
1810          */
1811         if (fw_dump.dump_active) {
1812                 fadump_process();
1813         }
1814         /* Initialize the kernel dump memory structure and register with f/w */
1815         else if (fw_dump.reserve_dump_area_size) {
1816                 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1817                 register_fadump();
1818         }
1819
1820         /*
1821          * In case of panic, fadump is triggered via ppc_panic_event()
1822          * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1823          * lets panic() function take crash friendly path before panic
1824          * notifiers are invoked.
1825          */
1826         crash_kexec_post_notifiers = true;
1827
1828         return 1;
1829 }
1830 /*
1831  * Use subsys_initcall_sync() here because there is dependency with
1832  * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1833  * is done before registering with f/w.
1834  */
1835 subsys_initcall_sync(setup_fadump);
1836 #else /* !CONFIG_PRESERVE_FA_DUMP */
1837
1838 /* Scan the Firmware Assisted dump configuration details. */
1839 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1840                                       int depth, void *data)
1841 {
1842         if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1843                 return 0;
1844
1845         opal_fadump_dt_scan(&fw_dump, node);
1846         return 1;
1847 }
1848
1849 /*
1850  * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1851  * preserve crash data. The subsequent memory preserving kernel boot
1852  * is likely to process this crash data.
1853  */
1854 int __init fadump_reserve_mem(void)
1855 {
1856         if (fw_dump.dump_active) {
1857                 /*
1858                  * If last boot has crashed then reserve all the memory
1859                  * above boot memory to preserve crash data.
1860                  */
1861                 pr_info("Preserving crash data for processing in next boot.\n");
1862                 fadump_reserve_crash_area(fw_dump.boot_mem_top);
1863         } else
1864                 pr_debug("FADump-aware kernel..\n");
1865
1866         return 1;
1867 }
1868 #endif /* CONFIG_PRESERVE_FA_DUMP */
1869
1870 /* Preserve everything above the base address */
1871 static void __init fadump_reserve_crash_area(u64 base)
1872 {
1873         u64 i, mstart, mend, msize;
1874
1875         for_each_mem_range(i, &mstart, &mend) {
1876                 msize  = mend - mstart;
1877
1878                 if ((mstart + msize) < base)
1879                         continue;
1880
1881                 if (mstart < base) {
1882                         msize -= (base - mstart);
1883                         mstart = base;
1884                 }
1885
1886                 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1887                         (msize >> 20), mstart);
1888                 memblock_reserve(mstart, msize);
1889         }
1890 }