a673d3d68254bde4c15386939cab21c898c835e8
[linux-2.6-block.git] / arch / mips / mm / init.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 2000 Ralf Baechle
7  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9  * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
10  */
11 #include <linux/bug.h>
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/memblock.h>
26 #include <linux/highmem.h>
27 #include <linux/swap.h>
28 #include <linux/proc_fs.h>
29 #include <linux/pfn.h>
30 #include <linux/hardirq.h>
31 #include <linux/gfp.h>
32 #include <linux/kcore.h>
33 #include <linux/initrd.h>
34 #include <linux/execmem.h>
35
36 #include <asm/bootinfo.h>
37 #include <asm/cachectl.h>
38 #include <asm/cpu.h>
39 #include <asm/dma.h>
40 #include <asm/maar.h>
41 #include <asm/mmu_context.h>
42 #include <asm/mmzone.h>
43 #include <asm/sections.h>
44 #include <asm/pgalloc.h>
45 #include <asm/tlb.h>
46 #include <asm/fixmap.h>
47
48 /*
49  * We have up to 8 empty zeroed pages so we can map one of the right colour
50  * when needed.  This is necessary only on R4000 / R4400 SC and MC versions
51  * where we have to avoid VCED / VECI exceptions for good performance at
52  * any price.  Since page is never written to after the initialization we
53  * don't have to care about aliases on other CPUs.
54  */
55 unsigned long empty_zero_page, zero_page_mask;
56 EXPORT_SYMBOL_GPL(empty_zero_page);
57 EXPORT_SYMBOL(zero_page_mask);
58
59 /*
60  * Not static inline because used by IP27 special magic initialization code
61  */
62 static void __init setup_zero_pages(void)
63 {
64         unsigned int order;
65
66         if (cpu_has_vce)
67                 order = 3;
68         else
69                 order = 0;
70
71         empty_zero_page = (unsigned long)memblock_alloc_or_panic(PAGE_SIZE << order, PAGE_SIZE);
72
73         zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK;
74 }
75
76 static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot)
77 {
78         enum fixed_addresses idx;
79         unsigned int old_mmid;
80         unsigned long vaddr, flags, entrylo;
81         unsigned long old_ctx;
82         pte_t pte;
83         int tlbidx;
84
85         BUG_ON(folio_test_dcache_dirty(page_folio(page)));
86
87         preempt_disable();
88         pagefault_disable();
89         idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1);
90         idx += in_interrupt() ? FIX_N_COLOURS : 0;
91         vaddr = __fix_to_virt(FIX_CMAP_END - idx);
92         pte = mk_pte(page, prot);
93 #if defined(CONFIG_XPA)
94         entrylo = pte_to_entrylo(pte.pte_high);
95 #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32)
96         entrylo = pte.pte_high;
97 #else
98         entrylo = pte_to_entrylo(pte_val(pte));
99 #endif
100
101         local_irq_save(flags);
102         old_ctx = read_c0_entryhi();
103         write_c0_entryhi(vaddr & (PAGE_MASK << 1));
104         write_c0_entrylo0(entrylo);
105         write_c0_entrylo1(entrylo);
106         if (cpu_has_mmid) {
107                 old_mmid = read_c0_memorymapid();
108                 write_c0_memorymapid(MMID_KERNEL_WIRED);
109         }
110 #ifdef CONFIG_XPA
111         if (cpu_has_xpa) {
112                 entrylo = (pte.pte_low & _PFNX_MASK);
113                 writex_c0_entrylo0(entrylo);
114                 writex_c0_entrylo1(entrylo);
115         }
116 #endif
117         tlbidx = num_wired_entries();
118         write_c0_wired(tlbidx + 1);
119         write_c0_index(tlbidx);
120         mtc0_tlbw_hazard();
121         tlb_write_indexed();
122         tlbw_use_hazard();
123         write_c0_entryhi(old_ctx);
124         if (cpu_has_mmid)
125                 write_c0_memorymapid(old_mmid);
126         local_irq_restore(flags);
127
128         return (void*) vaddr;
129 }
130
131 void *kmap_coherent(struct page *page, unsigned long addr)
132 {
133         return __kmap_pgprot(page, addr, PAGE_KERNEL);
134 }
135
136 void *kmap_noncoherent(struct page *page, unsigned long addr)
137 {
138         return __kmap_pgprot(page, addr, PAGE_KERNEL_NC);
139 }
140
141 void kunmap_coherent(void)
142 {
143         unsigned int wired;
144         unsigned long flags, old_ctx;
145
146         local_irq_save(flags);
147         old_ctx = read_c0_entryhi();
148         wired = num_wired_entries() - 1;
149         write_c0_wired(wired);
150         write_c0_index(wired);
151         write_c0_entryhi(UNIQUE_ENTRYHI(wired));
152         write_c0_entrylo0(0);
153         write_c0_entrylo1(0);
154         mtc0_tlbw_hazard();
155         tlb_write_indexed();
156         tlbw_use_hazard();
157         write_c0_entryhi(old_ctx);
158         local_irq_restore(flags);
159         pagefault_enable();
160         preempt_enable();
161 }
162
163 void copy_user_highpage(struct page *to, struct page *from,
164         unsigned long vaddr, struct vm_area_struct *vma)
165 {
166         struct folio *src = page_folio(from);
167         void *vfrom, *vto;
168
169         vto = kmap_atomic(to);
170         if (cpu_has_dc_aliases &&
171             folio_mapped(src) && !folio_test_dcache_dirty(src)) {
172                 vfrom = kmap_coherent(from, vaddr);
173                 copy_page(vto, vfrom);
174                 kunmap_coherent();
175         } else {
176                 vfrom = kmap_atomic(from);
177                 copy_page(vto, vfrom);
178                 kunmap_atomic(vfrom);
179         }
180         if ((!cpu_has_ic_fills_f_dc) ||
181             pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK))
182                 flush_data_cache_page((unsigned long)vto);
183         kunmap_atomic(vto);
184         /* Make sure this page is cleared on other CPU's too before using it */
185         smp_wmb();
186 }
187
188 void copy_to_user_page(struct vm_area_struct *vma,
189         struct page *page, unsigned long vaddr, void *dst, const void *src,
190         unsigned long len)
191 {
192         struct folio *folio = page_folio(page);
193
194         if (cpu_has_dc_aliases &&
195             folio_mapped(folio) && !folio_test_dcache_dirty(folio)) {
196                 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
197                 memcpy(vto, src, len);
198                 kunmap_coherent();
199         } else {
200                 memcpy(dst, src, len);
201                 if (cpu_has_dc_aliases)
202                         folio_set_dcache_dirty(folio);
203         }
204         if (vma->vm_flags & VM_EXEC)
205                 flush_cache_page(vma, vaddr, page_to_pfn(page));
206 }
207
208 void copy_from_user_page(struct vm_area_struct *vma,
209         struct page *page, unsigned long vaddr, void *dst, const void *src,
210         unsigned long len)
211 {
212         struct folio *folio = page_folio(page);
213
214         if (cpu_has_dc_aliases &&
215             folio_mapped(folio) && !folio_test_dcache_dirty(folio)) {
216                 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
217                 memcpy(dst, vfrom, len);
218                 kunmap_coherent();
219         } else {
220                 memcpy(dst, src, len);
221                 if (cpu_has_dc_aliases)
222                         folio_set_dcache_dirty(folio);
223         }
224 }
225 EXPORT_SYMBOL_GPL(copy_from_user_page);
226
227 void __init fixrange_init(unsigned long start, unsigned long end,
228         pgd_t *pgd_base)
229 {
230 #ifdef CONFIG_HIGHMEM
231         pgd_t *pgd;
232         pud_t *pud;
233         pmd_t *pmd;
234         pte_t *pte;
235         int i, j, k;
236         unsigned long vaddr;
237
238         vaddr = start;
239         i = pgd_index(vaddr);
240         j = pud_index(vaddr);
241         k = pmd_index(vaddr);
242         pgd = pgd_base + i;
243
244         for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) {
245                 pud = (pud_t *)pgd;
246                 for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) {
247                         pmd = (pmd_t *)pud;
248                         for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) {
249                                 if (pmd_none(*pmd)) {
250                                         pte = (pte_t *) memblock_alloc_low(PAGE_SIZE,
251                                                                            PAGE_SIZE);
252                                         if (!pte)
253                                                 panic("%s: Failed to allocate %lu bytes align=%lx\n",
254                                                       __func__, PAGE_SIZE,
255                                                       PAGE_SIZE);
256
257                                         set_pmd(pmd, __pmd((unsigned long)pte));
258                                         BUG_ON(pte != pte_offset_kernel(pmd, 0));
259                                 }
260                                 vaddr += PMD_SIZE;
261                         }
262                         k = 0;
263                 }
264                 j = 0;
265         }
266 #endif
267 }
268
269 struct maar_walk_info {
270         struct maar_config cfg[16];
271         unsigned int num_cfg;
272 };
273
274 static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages,
275                          void *data)
276 {
277         struct maar_walk_info *wi = data;
278         struct maar_config *cfg = &wi->cfg[wi->num_cfg];
279         unsigned int maar_align;
280
281         /* MAAR registers hold physical addresses right shifted by 4 bits */
282         maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4);
283
284         /* Fill in the MAAR config entry */
285         cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align);
286         cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1;
287         cfg->attrs = MIPS_MAAR_S;
288
289         /* Ensure we don't overflow the cfg array */
290         if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg)))
291                 wi->num_cfg++;
292
293         return 0;
294 }
295
296
297 unsigned __weak platform_maar_init(unsigned num_pairs)
298 {
299         unsigned int num_configured;
300         struct maar_walk_info wi;
301
302         wi.num_cfg = 0;
303         walk_system_ram_range(0, max_pfn, &wi, maar_res_walk);
304
305         num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs);
306         if (num_configured < wi.num_cfg)
307                 pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n",
308                         num_pairs, wi.num_cfg);
309
310         return num_configured;
311 }
312
313 void maar_init(void)
314 {
315         unsigned num_maars, used, i;
316         phys_addr_t lower, upper, attr;
317         static struct {
318                 struct maar_config cfgs[3];
319                 unsigned used;
320         } recorded = { { { 0 } }, 0 };
321
322         if (!cpu_has_maar)
323                 return;
324
325         /* Detect the number of MAARs */
326         write_c0_maari(~0);
327         back_to_back_c0_hazard();
328         num_maars = read_c0_maari() + 1;
329
330         /* MAARs should be in pairs */
331         WARN_ON(num_maars % 2);
332
333         /* Set MAARs using values we recorded already */
334         if (recorded.used) {
335                 used = maar_config(recorded.cfgs, recorded.used, num_maars / 2);
336                 BUG_ON(used != recorded.used);
337         } else {
338                 /* Configure the required MAARs */
339                 used = platform_maar_init(num_maars / 2);
340         }
341
342         /* Disable any further MAARs */
343         for (i = (used * 2); i < num_maars; i++) {
344                 write_c0_maari(i);
345                 back_to_back_c0_hazard();
346                 write_c0_maar(0);
347                 back_to_back_c0_hazard();
348         }
349
350         if (recorded.used)
351                 return;
352
353         pr_info("MAAR configuration:\n");
354         for (i = 0; i < num_maars; i += 2) {
355                 write_c0_maari(i);
356                 back_to_back_c0_hazard();
357                 upper = read_c0_maar();
358 #ifdef CONFIG_XPA
359                 upper |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
360 #endif
361
362                 write_c0_maari(i + 1);
363                 back_to_back_c0_hazard();
364                 lower = read_c0_maar();
365 #ifdef CONFIG_XPA
366                 lower |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
367 #endif
368
369                 attr = lower & upper;
370                 lower = (lower & MIPS_MAAR_ADDR) << 4;
371                 upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff;
372
373                 pr_info("  [%d]: ", i / 2);
374                 if ((attr & MIPS_MAAR_V) != MIPS_MAAR_V) {
375                         pr_cont("disabled\n");
376                         continue;
377                 }
378
379                 pr_cont("%pa-%pa", &lower, &upper);
380
381                 if (attr & MIPS_MAAR_S)
382                         pr_cont(" speculate");
383
384                 pr_cont("\n");
385
386                 /* Record the setup for use on secondary CPUs */
387                 if (used <= ARRAY_SIZE(recorded.cfgs)) {
388                         recorded.cfgs[recorded.used].lower = lower;
389                         recorded.cfgs[recorded.used].upper = upper;
390                         recorded.cfgs[recorded.used].attrs = attr;
391                         recorded.used++;
392                 }
393         }
394 }
395
396 #ifndef CONFIG_NUMA
397 void __init paging_init(void)
398 {
399         unsigned long max_zone_pfns[MAX_NR_ZONES];
400
401         pagetable_init();
402
403 #ifdef CONFIG_ZONE_DMA
404         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
405 #endif
406 #ifdef CONFIG_ZONE_DMA32
407         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
408 #endif
409         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
410 #ifdef CONFIG_HIGHMEM
411         max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
412
413         if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) {
414                 printk(KERN_WARNING "This processor doesn't support highmem."
415                        " %ldk highmem ignored\n",
416                        (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10));
417                 max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn;
418         }
419 #endif
420
421         free_area_init(max_zone_pfns);
422 }
423
424 #ifdef CONFIG_64BIT
425 static struct kcore_list kcore_kseg0;
426 #endif
427
428 void __init arch_mm_preinit(void)
429 {
430         /*
431          * When PFN_PTE_SHIFT is greater than PAGE_SHIFT we won't have enough PTE
432          * bits to hold a full 32b physical address on MIPS32 systems.
433          */
434         BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (PFN_PTE_SHIFT > PAGE_SHIFT));
435
436         maar_init();
437         setup_zero_pages();     /* Setup zeroed pages.  */
438
439 #ifdef CONFIG_64BIT
440         if ((unsigned long) &_text > (unsigned long) CKSEG0)
441                 /* The -4 is a hack so that user tools don't have to handle
442                    the overflow.  */
443                 kclist_add(&kcore_kseg0, (void *) CKSEG0,
444                                 0x80000000 - 4, KCORE_TEXT);
445 #endif
446 }
447 #else  /* CONFIG_NUMA */
448 void __init arch_mm_preinit(void)
449 {
450         setup_zero_pages();     /* This comes from node 0 */
451 }
452 #endif /* !CONFIG_NUMA */
453
454 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
455 {
456         unsigned long pfn;
457
458         for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) {
459                 struct page *page = pfn_to_page(pfn);
460                 void *addr = phys_to_virt(PFN_PHYS(pfn));
461
462                 memset(addr, POISON_FREE_INITMEM, PAGE_SIZE);
463                 free_reserved_page(page);
464         }
465         printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
466 }
467
468 void (*free_init_pages_eva)(void *begin, void *end) = NULL;
469
470 void __weak __init prom_free_prom_memory(void)
471 {
472         /* nothing to do */
473 }
474
475 void __ref free_initmem(void)
476 {
477         prom_free_prom_memory();
478         /*
479          * Let the platform define a specific function to free the
480          * init section since EVA may have used any possible mapping
481          * between virtual and physical addresses.
482          */
483         if (free_init_pages_eva)
484                 free_init_pages_eva((void *)&__init_begin, (void *)&__init_end);
485         else
486                 free_initmem_default(POISON_FREE_INITMEM);
487 }
488
489 #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA
490 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
491 EXPORT_SYMBOL(__per_cpu_offset);
492
493 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
494 {
495         return node_distance(cpu_to_node(from), cpu_to_node(to));
496 }
497
498 static int __init pcpu_cpu_to_node(int cpu)
499 {
500         return cpu_to_node(cpu);
501 }
502
503 void __init setup_per_cpu_areas(void)
504 {
505         unsigned long delta;
506         unsigned int cpu;
507         int rc;
508
509         /*
510          * Always reserve area for module percpu variables.  That's
511          * what the legacy allocator did.
512          */
513         rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
514                                     PERCPU_DYNAMIC_RESERVE, PAGE_SIZE,
515                                     pcpu_cpu_distance,
516                                     pcpu_cpu_to_node);
517         if (rc < 0)
518                 panic("Failed to initialize percpu areas.");
519
520         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
521         for_each_possible_cpu(cpu)
522                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
523 }
524 #endif
525
526 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
527 unsigned long pgd_current[NR_CPUS];
528 #endif
529
530 /*
531  * Align swapper_pg_dir in to 64K, allows its address to be loaded
532  * with a single LUI instruction in the TLB handlers.  If we used
533  * __aligned(64K), its size would get rounded up to the alignment
534  * size, and waste space.  So we place it in its own section and align
535  * it in the linker script.
536  */
537 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".bss..swapper_pg_dir");
538 #ifndef __PAGETABLE_PUD_FOLDED
539 pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss;
540 #endif
541 #ifndef __PAGETABLE_PMD_FOLDED
542 pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
543 EXPORT_SYMBOL_GPL(invalid_pmd_table);
544 #endif
545 pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss;
546 EXPORT_SYMBOL(invalid_pte_table);
547
548 #ifdef CONFIG_EXECMEM
549 #ifdef MODULES_VADDR
550 static struct execmem_info execmem_info __ro_after_init;
551
552 struct execmem_info __init *execmem_arch_setup(void)
553 {
554         execmem_info = (struct execmem_info){
555                 .ranges = {
556                         [EXECMEM_DEFAULT] = {
557                                 .start  = MODULES_VADDR,
558                                 .end    = MODULES_END,
559                                 .pgprot = PAGE_KERNEL,
560                                 .alignment = 1,
561                         },
562                 },
563         };
564
565         return &execmem_info;
566 }
567 #endif
568 #endif /* CONFIG_EXECMEM */