KVM: MIPS/VZ: Support guest load-linked bit
[linux-2.6-block.git] / arch / mips / kvm / vz.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Support for hardware virtualization extensions
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Yann Le Du <ledu@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/preempt.h>
16 #include <linux/vmalloc.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cacheops.h>
19 #include <asm/cmpxchg.h>
20 #include <asm/fpu.h>
21 #include <asm/hazards.h>
22 #include <asm/inst.h>
23 #include <asm/mmu_context.h>
24 #include <asm/r4kcache.h>
25 #include <asm/time.h>
26 #include <asm/tlb.h>
27 #include <asm/tlbex.h>
28
29 #include <linux/kvm_host.h>
30
31 #include "interrupt.h"
32
33 #include "trace.h"
34
35 /* Pointers to last VCPU loaded on each physical CPU */
36 static struct kvm_vcpu *last_vcpu[NR_CPUS];
37 /* Pointers to last VCPU executed on each physical CPU */
38 static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
39
40 /*
41  * Number of guest VTLB entries to use, so we can catch inconsistency between
42  * CPUs.
43  */
44 static unsigned int kvm_vz_guest_vtlb_size;
45
46 static inline long kvm_vz_read_gc0_ebase(void)
47 {
48         if (sizeof(long) == 8 && cpu_has_ebase_wg)
49                 return read_gc0_ebase_64();
50         else
51                 return read_gc0_ebase();
52 }
53
54 static inline void kvm_vz_write_gc0_ebase(long v)
55 {
56         /*
57          * First write with WG=1 to write upper bits, then write again in case
58          * WG should be left at 0.
59          * write_gc0_ebase_64() is no longer UNDEFINED since R6.
60          */
61         if (sizeof(long) == 8 &&
62             (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
63                 write_gc0_ebase_64(v | MIPS_EBASE_WG);
64                 write_gc0_ebase_64(v);
65         } else {
66                 write_gc0_ebase(v | MIPS_EBASE_WG);
67                 write_gc0_ebase(v);
68         }
69 }
70
71 /*
72  * These Config bits may be writable by the guest:
73  * Config:      [K23, KU] (!TLB), K0
74  * Config1:     (none)
75  * Config2:     [TU, SU] (impl)
76  * Config3:     ISAOnExc
77  * Config4:     FTLBPageSize
78  * Config5:     K, CV, MSAEn, UFE, FRE, SBRI, UFR
79  */
80
81 static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
82 {
83         return CONF_CM_CMASK;
84 }
85
86 static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
87 {
88         return 0;
89 }
90
91 static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
92 {
93         return 0;
94 }
95
96 static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
97 {
98         return MIPS_CONF3_ISA_OE;
99 }
100
101 static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
102 {
103         /* no need to be exact */
104         return MIPS_CONF4_VFTLBPAGESIZE;
105 }
106
107 static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
108 {
109         unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
110
111         /* Permit MSAEn changes if MSA supported and enabled */
112         if (kvm_mips_guest_has_msa(&vcpu->arch))
113                 mask |= MIPS_CONF5_MSAEN;
114
115         /*
116          * Permit guest FPU mode changes if FPU is enabled and the relevant
117          * feature exists according to FIR register.
118          */
119         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
120                 if (cpu_has_ufr)
121                         mask |= MIPS_CONF5_UFR;
122                 if (cpu_has_fre)
123                         mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
124         }
125
126         return mask;
127 }
128
129 /*
130  * VZ optionally allows these additional Config bits to be written by root:
131  * Config:      M, [MT]
132  * Config1:     M, [MMUSize-1, C2, MD, PC, WR, CA], FP
133  * Config2:     M
134  * Config3:     M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
135  *              VInt, SP, CDMM, MT, SM, TL]
136  * Config4:     M, [VTLBSizeExt, MMUSizeExt]
137  * Config5:     [MRP]
138  */
139
140 static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
141 {
142         return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
143 }
144
145 static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
146 {
147         unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
148
149         /* Permit FPU to be present if FPU is supported */
150         if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
151                 mask |= MIPS_CONF1_FP;
152
153         return mask;
154 }
155
156 static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
157 {
158         return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
159 }
160
161 static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
162 {
163         unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
164                 MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
165
166         /* Permit MSA to be present if MSA is supported */
167         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
168                 mask |= MIPS_CONF3_MSA;
169
170         return mask;
171 }
172
173 static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
174 {
175         return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
176 }
177
178 static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
179 {
180         return kvm_vz_config5_guest_wrmask(vcpu);
181 }
182
183 static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
184 {
185         /* VZ guest has already converted gva to gpa */
186         return gva;
187 }
188
189 static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
190 {
191         set_bit(priority, &vcpu->arch.pending_exceptions);
192         clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
193 }
194
195 static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
196 {
197         clear_bit(priority, &vcpu->arch.pending_exceptions);
198         set_bit(priority, &vcpu->arch.pending_exceptions_clr);
199 }
200
201 static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
202 {
203         /*
204          * timer expiry is asynchronous to vcpu execution therefore defer guest
205          * cp0 accesses
206          */
207         kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
208 }
209
210 static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
211 {
212         /*
213          * timer expiry is asynchronous to vcpu execution therefore defer guest
214          * cp0 accesses
215          */
216         kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
217 }
218
219 static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
220                                    struct kvm_mips_interrupt *irq)
221 {
222         int intr = (int)irq->irq;
223
224         /*
225          * interrupts are asynchronous to vcpu execution therefore defer guest
226          * cp0 accesses
227          */
228         switch (intr) {
229         case 2:
230                 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IO);
231                 break;
232
233         case 3:
234                 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_1);
235                 break;
236
237         case 4:
238                 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_2);
239                 break;
240
241         default:
242                 break;
243         }
244
245 }
246
247 static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
248                                      struct kvm_mips_interrupt *irq)
249 {
250         int intr = (int)irq->irq;
251
252         /*
253          * interrupts are asynchronous to vcpu execution therefore defer guest
254          * cp0 accesses
255          */
256         switch (intr) {
257         case -2:
258                 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IO);
259                 break;
260
261         case -3:
262                 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_1);
263                 break;
264
265         case -4:
266                 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_2);
267                 break;
268
269         default:
270                 break;
271         }
272
273 }
274
275 static u32 kvm_vz_priority_to_irq[MIPS_EXC_MAX] = {
276         [MIPS_EXC_INT_TIMER] = C_IRQ5,
277         [MIPS_EXC_INT_IO]    = C_IRQ0,
278         [MIPS_EXC_INT_IPI_1] = C_IRQ1,
279         [MIPS_EXC_INT_IPI_2] = C_IRQ2,
280 };
281
282 static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
283                                  u32 cause)
284 {
285         u32 irq = (priority < MIPS_EXC_MAX) ?
286                 kvm_vz_priority_to_irq[priority] : 0;
287
288         switch (priority) {
289         case MIPS_EXC_INT_TIMER:
290                 set_gc0_cause(C_TI);
291                 break;
292
293         case MIPS_EXC_INT_IO:
294         case MIPS_EXC_INT_IPI_1:
295         case MIPS_EXC_INT_IPI_2:
296                 if (cpu_has_guestctl2)
297                         set_c0_guestctl2(irq);
298                 else
299                         set_gc0_cause(irq);
300                 break;
301
302         default:
303                 break;
304         }
305
306         clear_bit(priority, &vcpu->arch.pending_exceptions);
307         return 1;
308 }
309
310 static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
311                                u32 cause)
312 {
313         u32 irq = (priority < MIPS_EXC_MAX) ?
314                 kvm_vz_priority_to_irq[priority] : 0;
315
316         switch (priority) {
317         case MIPS_EXC_INT_TIMER:
318                 /*
319                  * Call to kvm_write_c0_guest_compare() clears Cause.TI in
320                  * kvm_mips_emulate_CP0(). Explicitly clear irq associated with
321                  * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not
322                  * supported or if not using GuestCtl2 Hardware Clear.
323                  */
324                 if (cpu_has_guestctl2) {
325                         if (!(read_c0_guestctl2() & (irq << 14)))
326                                 clear_c0_guestctl2(irq);
327                 } else {
328                         clear_gc0_cause(irq);
329                 }
330                 break;
331
332         case MIPS_EXC_INT_IO:
333         case MIPS_EXC_INT_IPI_1:
334         case MIPS_EXC_INT_IPI_2:
335                 /* Clear GuestCtl2.VIP irq if not using Hardware Clear */
336                 if (cpu_has_guestctl2) {
337                         if (!(read_c0_guestctl2() & (irq << 14)))
338                                 clear_c0_guestctl2(irq);
339                 } else {
340                         clear_gc0_cause(irq);
341                 }
342                 break;
343
344         default:
345                 break;
346         }
347
348         clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
349         return 1;
350 }
351
352 /*
353  * VZ guest timer handling.
354  */
355
356 /**
357  * _kvm_vz_restore_stimer() - Restore soft timer state.
358  * @vcpu:       Virtual CPU.
359  * @compare:    CP0_Compare register value, restored by caller.
360  * @cause:      CP0_Cause register to restore.
361  *
362  * Restore VZ state relating to the soft timer.
363  */
364 static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
365                                    u32 cause)
366 {
367         /*
368          * Avoid spurious counter interrupts by setting Guest CP0_Count to just
369          * after Guest CP0_Compare.
370          */
371         write_c0_gtoffset(compare - read_c0_count());
372
373         back_to_back_c0_hazard();
374         write_gc0_cause(cause);
375 }
376
377 /**
378  * kvm_vz_restore_timer() - Restore guest timer state.
379  * @vcpu:       Virtual CPU.
380  *
381  * Restore soft timer state from saved context.
382  */
383 static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
384 {
385         struct mips_coproc *cop0 = vcpu->arch.cop0;
386         u32 cause, compare;
387
388         compare = kvm_read_sw_gc0_compare(cop0);
389         cause = kvm_read_sw_gc0_cause(cop0);
390
391         write_gc0_compare(compare);
392         _kvm_vz_restore_stimer(vcpu, compare, cause);
393 }
394
395 /**
396  * kvm_vz_save_timer() - Save guest timer state.
397  * @vcpu:       Virtual CPU.
398  *
399  * Save VZ guest timer state.
400  */
401 static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
402 {
403         struct mips_coproc *cop0 = vcpu->arch.cop0;
404         u32 compare, cause;
405
406         compare = read_gc0_compare();
407         cause = read_gc0_cause();
408
409         /* save timer-related state to VCPU context */
410         kvm_write_sw_gc0_cause(cop0, cause);
411         kvm_write_sw_gc0_compare(cop0, compare);
412 }
413
414 /**
415  * is_eva_access() - Find whether an instruction is an EVA memory accessor.
416  * @inst:       32-bit instruction encoding.
417  *
418  * Finds whether @inst encodes an EVA memory access instruction, which would
419  * indicate that emulation of it should access the user mode address space
420  * instead of the kernel mode address space. This matters for MUSUK segments
421  * which are TLB mapped for user mode but unmapped for kernel mode.
422  *
423  * Returns:     Whether @inst encodes an EVA accessor instruction.
424  */
425 static bool is_eva_access(union mips_instruction inst)
426 {
427         if (inst.spec3_format.opcode != spec3_op)
428                 return false;
429
430         switch (inst.spec3_format.func) {
431         case lwle_op:
432         case lwre_op:
433         case cachee_op:
434         case sbe_op:
435         case she_op:
436         case sce_op:
437         case swe_op:
438         case swle_op:
439         case swre_op:
440         case prefe_op:
441         case lbue_op:
442         case lhue_op:
443         case lbe_op:
444         case lhe_op:
445         case lle_op:
446         case lwe_op:
447                 return true;
448         default:
449                 return false;
450         }
451 }
452
453 /**
454  * is_eva_am_mapped() - Find whether an access mode is mapped.
455  * @vcpu:       KVM VCPU state.
456  * @am:         3-bit encoded access mode.
457  * @eu:         Segment becomes unmapped and uncached when Status.ERL=1.
458  *
459  * Decode @am to find whether it encodes a mapped segment for the current VCPU
460  * state. Where necessary @eu and the actual instruction causing the fault are
461  * taken into account to make the decision.
462  *
463  * Returns:     Whether the VCPU faulted on a TLB mapped address.
464  */
465 static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
466 {
467         u32 am_lookup;
468         int err;
469
470         /*
471          * Interpret access control mode. We assume address errors will already
472          * have been caught by the guest, leaving us with:
473          *      AM      UM  SM  KM  31..24 23..16
474          * UK    0 000          Unm   0      0
475          * MK    1 001          TLB   1
476          * MSK   2 010      TLB TLB   1
477          * MUSK  3 011  TLB TLB TLB   1
478          * MUSUK 4 100  TLB TLB Unm   0      1
479          * USK   5 101      Unm Unm   0      0
480          * -     6 110                0      0
481          * UUSK  7 111  Unm Unm Unm   0      0
482          *
483          * We shift a magic value by AM across the sign bit to find if always
484          * TLB mapped, and if not shift by 8 again to find if it depends on KM.
485          */
486         am_lookup = 0x70080000 << am;
487         if ((s32)am_lookup < 0) {
488                 /*
489                  * MK, MSK, MUSK
490                  * Always TLB mapped, unless SegCtl.EU && ERL
491                  */
492                 if (!eu || !(read_gc0_status() & ST0_ERL))
493                         return true;
494         } else {
495                 am_lookup <<= 8;
496                 if ((s32)am_lookup < 0) {
497                         union mips_instruction inst;
498                         unsigned int status;
499                         u32 *opc;
500
501                         /*
502                          * MUSUK
503                          * TLB mapped if not in kernel mode
504                          */
505                         status = read_gc0_status();
506                         if (!(status & (ST0_EXL | ST0_ERL)) &&
507                             (status & ST0_KSU))
508                                 return true;
509                         /*
510                          * EVA access instructions in kernel
511                          * mode access user address space.
512                          */
513                         opc = (u32 *)vcpu->arch.pc;
514                         if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
515                                 opc += 1;
516                         err = kvm_get_badinstr(opc, vcpu, &inst.word);
517                         if (!err && is_eva_access(inst))
518                                 return true;
519                 }
520         }
521
522         return false;
523 }
524
525 /**
526  * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
527  * @vcpu:       KVM VCPU state.
528  * @gva:        Guest virtual address to convert.
529  * @gpa:        Output guest physical address.
530  *
531  * Convert a guest virtual address (GVA) which is valid according to the guest
532  * context, to a guest physical address (GPA).
533  *
534  * Returns:     0 on success.
535  *              -errno on failure.
536  */
537 static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
538                              unsigned long *gpa)
539 {
540         u32 gva32 = gva;
541         unsigned long segctl;
542
543         if ((long)gva == (s32)gva32) {
544                 /* Handle canonical 32-bit virtual address */
545                 if (cpu_guest_has_segments) {
546                         unsigned long mask, pa;
547
548                         switch (gva32 >> 29) {
549                         case 0:
550                         case 1: /* CFG5 (1GB) */
551                                 segctl = read_gc0_segctl2() >> 16;
552                                 mask = (unsigned long)0xfc0000000ull;
553                                 break;
554                         case 2:
555                         case 3: /* CFG4 (1GB) */
556                                 segctl = read_gc0_segctl2();
557                                 mask = (unsigned long)0xfc0000000ull;
558                                 break;
559                         case 4: /* CFG3 (512MB) */
560                                 segctl = read_gc0_segctl1() >> 16;
561                                 mask = (unsigned long)0xfe0000000ull;
562                                 break;
563                         case 5: /* CFG2 (512MB) */
564                                 segctl = read_gc0_segctl1();
565                                 mask = (unsigned long)0xfe0000000ull;
566                                 break;
567                         case 6: /* CFG1 (512MB) */
568                                 segctl = read_gc0_segctl0() >> 16;
569                                 mask = (unsigned long)0xfe0000000ull;
570                                 break;
571                         case 7: /* CFG0 (512MB) */
572                                 segctl = read_gc0_segctl0();
573                                 mask = (unsigned long)0xfe0000000ull;
574                                 break;
575                         default:
576                                 /*
577                                  * GCC 4.9 isn't smart enough to figure out that
578                                  * segctl and mask are always initialised.
579                                  */
580                                 unreachable();
581                         }
582
583                         if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
584                                              segctl & 0x0008))
585                                 goto tlb_mapped;
586
587                         /* Unmapped, find guest physical address */
588                         pa = (segctl << 20) & mask;
589                         pa |= gva32 & ~mask;
590                         *gpa = pa;
591                         return 0;
592                 } else if ((s32)gva32 < (s32)0xc0000000) {
593                         /* legacy unmapped KSeg0 or KSeg1 */
594                         *gpa = gva32 & 0x1fffffff;
595                         return 0;
596                 }
597 #ifdef CONFIG_64BIT
598         } else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
599                 /* XKPHYS */
600                 if (cpu_guest_has_segments) {
601                         /*
602                          * Each of the 8 regions can be overridden by SegCtl2.XR
603                          * to use SegCtl1.XAM.
604                          */
605                         segctl = read_gc0_segctl2();
606                         if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
607                                 segctl = read_gc0_segctl1();
608                                 if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
609                                                      0))
610                                         goto tlb_mapped;
611                         }
612
613                 }
614                 /*
615                  * Traditionally fully unmapped.
616                  * Bits 61:59 specify the CCA, which we can just mask off here.
617                  * Bits 58:PABITS should be zero, but we shouldn't have got here
618                  * if it wasn't.
619                  */
620                 *gpa = gva & 0x07ffffffffffffff;
621                 return 0;
622 #endif
623         }
624
625 tlb_mapped:
626         return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
627 }
628
629 /**
630  * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
631  * @vcpu:       KVM VCPU state.
632  * @badvaddr:   Root BadVAddr.
633  * @gpa:        Output guest physical address.
634  *
635  * VZ implementations are permitted to report guest virtual addresses (GVA) in
636  * BadVAddr on a root exception during guest execution, instead of the more
637  * convenient guest physical addresses (GPA). When we get a GVA, this function
638  * converts it to a GPA, taking into account guest segmentation and guest TLB
639  * state.
640  *
641  * Returns:     0 on success.
642  *              -errno on failure.
643  */
644 static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
645                                   unsigned long *gpa)
646 {
647         unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
648                                  MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
649
650         /* If BadVAddr is GPA, then all is well in the world */
651         if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
652                 *gpa = badvaddr;
653                 return 0;
654         }
655
656         /* Otherwise we'd expect it to be GVA ... */
657         if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
658                  "Unexpected gexccode %#x\n", gexccode))
659                 return -EINVAL;
660
661         /* ... and we need to perform the GVA->GPA translation in software */
662         return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
663 }
664
665 static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
666 {
667         u32 *opc = (u32 *) vcpu->arch.pc;
668         u32 cause = vcpu->arch.host_cp0_cause;
669         u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
670         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
671         u32 inst = 0;
672
673         /*
674          *  Fetch the instruction.
675          */
676         if (cause & CAUSEF_BD)
677                 opc += 1;
678         kvm_get_badinstr(opc, vcpu, &inst);
679
680         kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
681                 exccode, opc, inst, badvaddr,
682                 read_gc0_status());
683         kvm_arch_vcpu_dump_regs(vcpu);
684         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
685         return RESUME_HOST;
686 }
687
688 static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
689                                               u32 *opc, u32 cause,
690                                               struct kvm_run *run,
691                                               struct kvm_vcpu *vcpu)
692 {
693         struct mips_coproc *cop0 = vcpu->arch.cop0;
694         enum emulation_result er = EMULATE_DONE;
695         u32 rt, rd, sel;
696         unsigned long curr_pc;
697         unsigned long val;
698
699         /*
700          * Update PC and hold onto current PC in case there is
701          * an error and we want to rollback the PC
702          */
703         curr_pc = vcpu->arch.pc;
704         er = update_pc(vcpu, cause);
705         if (er == EMULATE_FAIL)
706                 return er;
707
708         if (inst.co_format.co) {
709                 switch (inst.co_format.func) {
710                 case wait_op:
711                         er = kvm_mips_emul_wait(vcpu);
712                         break;
713                 default:
714                         er = EMULATE_FAIL;
715                 }
716         } else {
717                 rt = inst.c0r_format.rt;
718                 rd = inst.c0r_format.rd;
719                 sel = inst.c0r_format.sel;
720
721                 switch (inst.c0r_format.rs) {
722                 case dmfc_op:
723                 case mfc_op:
724 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
725                         cop0->stat[rd][sel]++;
726 #endif
727                         if (rd == MIPS_CP0_COUNT &&
728                             sel == 0) {                 /* Count */
729                                 val = kvm_mips_read_count(vcpu);
730                         } else if (rd == MIPS_CP0_COMPARE &&
731                                    sel == 0) {          /* Compare */
732                                 val = read_gc0_compare();
733                         } else if (rd == MIPS_CP0_LLADDR &&
734                                    sel == 0) {          /* LLAddr */
735                                 if (cpu_guest_has_rw_llb)
736                                         val = read_gc0_lladdr() &
737                                                 MIPS_LLADDR_LLB;
738                                 else
739                                         val = 0;
740                         } else if ((rd == MIPS_CP0_PRID &&
741                                     (sel == 0 ||        /* PRid */
742                                      sel == 2 ||        /* CDMMBase */
743                                      sel == 3)) ||      /* CMGCRBase */
744                                    (rd == MIPS_CP0_STATUS &&
745                                     (sel == 2 ||        /* SRSCtl */
746                                      sel == 3)) ||      /* SRSMap */
747                                    (rd == MIPS_CP0_CONFIG &&
748                                     (sel == 7)) ||      /* Config7 */
749                                    (rd == MIPS_CP0_ERRCTL &&
750                                     (sel == 0))) {      /* ErrCtl */
751                                 val = cop0->reg[rd][sel];
752                         } else {
753                                 val = 0;
754                                 er = EMULATE_FAIL;
755                         }
756
757                         if (er != EMULATE_FAIL) {
758                                 /* Sign extend */
759                                 if (inst.c0r_format.rs == mfc_op)
760                                         val = (int)val;
761                                 vcpu->arch.gprs[rt] = val;
762                         }
763
764                         trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
765                                         KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
766                                       KVM_TRACE_COP0(rd, sel), val);
767                         break;
768
769                 case dmtc_op:
770                 case mtc_op:
771 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
772                         cop0->stat[rd][sel]++;
773 #endif
774                         val = vcpu->arch.gprs[rt];
775                         trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
776                                         KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
777                                       KVM_TRACE_COP0(rd, sel), val);
778
779                         if (rd == MIPS_CP0_COUNT &&
780                             sel == 0) {                 /* Count */
781                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
782                         } else if (rd == MIPS_CP0_COMPARE &&
783                                    sel == 0) {          /* Compare */
784                                 kvm_mips_write_compare(vcpu,
785                                                        vcpu->arch.gprs[rt],
786                                                        true);
787                         } else if (rd == MIPS_CP0_LLADDR &&
788                                    sel == 0) {          /* LLAddr */
789                                 /*
790                                  * P5600 generates GPSI on guest MTC0 LLAddr.
791                                  * Only allow the guest to clear LLB.
792                                  */
793                                 if (cpu_guest_has_rw_llb &&
794                                     !(val & MIPS_LLADDR_LLB))
795                                         write_gc0_lladdr(0);
796                         } else if (rd == MIPS_CP0_ERRCTL &&
797                                    (sel == 0)) {        /* ErrCtl */
798                                 /* ignore the written value */
799                         } else {
800                                 er = EMULATE_FAIL;
801                         }
802                         break;
803
804                 default:
805                         er = EMULATE_FAIL;
806                         break;
807                 }
808         }
809         /* Rollback PC only if emulation was unsuccessful */
810         if (er == EMULATE_FAIL) {
811                 kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
812                         curr_pc, __func__, inst.word);
813
814                 vcpu->arch.pc = curr_pc;
815         }
816
817         return er;
818 }
819
820 static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
821                                                u32 *opc, u32 cause,
822                                                struct kvm_run *run,
823                                                struct kvm_vcpu *vcpu)
824 {
825         enum emulation_result er = EMULATE_DONE;
826         u32 cache, op_inst, op, base;
827         s16 offset;
828         struct kvm_vcpu_arch *arch = &vcpu->arch;
829         unsigned long va, curr_pc;
830
831         /*
832          * Update PC and hold onto current PC in case there is
833          * an error and we want to rollback the PC
834          */
835         curr_pc = vcpu->arch.pc;
836         er = update_pc(vcpu, cause);
837         if (er == EMULATE_FAIL)
838                 return er;
839
840         base = inst.i_format.rs;
841         op_inst = inst.i_format.rt;
842         if (cpu_has_mips_r6)
843                 offset = inst.spec3_format.simmediate;
844         else
845                 offset = inst.i_format.simmediate;
846         cache = op_inst & CacheOp_Cache;
847         op = op_inst & CacheOp_Op;
848
849         va = arch->gprs[base] + offset;
850
851         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
852                   cache, op, base, arch->gprs[base], offset);
853
854         /* Secondary or tirtiary cache ops ignored */
855         if (cache != Cache_I && cache != Cache_D)
856                 return EMULATE_DONE;
857
858         switch (op_inst) {
859         case Index_Invalidate_I:
860                 flush_icache_line_indexed(va);
861                 return EMULATE_DONE;
862         case Index_Writeback_Inv_D:
863                 flush_dcache_line_indexed(va);
864                 return EMULATE_DONE;
865         default:
866                 break;
867         };
868
869         kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
870                 curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
871                 offset);
872         /* Rollback PC */
873         vcpu->arch.pc = curr_pc;
874
875         return EMULATE_FAIL;
876 }
877
878 static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
879                                                      struct kvm_vcpu *vcpu)
880 {
881         enum emulation_result er = EMULATE_DONE;
882         struct kvm_vcpu_arch *arch = &vcpu->arch;
883         struct kvm_run *run = vcpu->run;
884         union mips_instruction inst;
885         int rd, rt, sel;
886         int err;
887
888         /*
889          *  Fetch the instruction.
890          */
891         if (cause & CAUSEF_BD)
892                 opc += 1;
893         err = kvm_get_badinstr(opc, vcpu, &inst.word);
894         if (err)
895                 return EMULATE_FAIL;
896
897         switch (inst.r_format.opcode) {
898         case cop0_op:
899                 er = kvm_vz_gpsi_cop0(inst, opc, cause, run, vcpu);
900                 break;
901 #ifndef CONFIG_CPU_MIPSR6
902         case cache_op:
903                 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
904                 er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu);
905                 break;
906 #endif
907         case spec3_op:
908                 switch (inst.spec3_format.func) {
909 #ifdef CONFIG_CPU_MIPSR6
910                 case cache6_op:
911                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
912                         er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu);
913                         break;
914 #endif
915                 case rdhwr_op:
916                         if (inst.r_format.rs || (inst.r_format.re >> 3))
917                                 goto unknown;
918
919                         rd = inst.r_format.rd;
920                         rt = inst.r_format.rt;
921                         sel = inst.r_format.re & 0x7;
922
923                         switch (rd) {
924                         case MIPS_HWR_CC:       /* Read count register */
925                                 arch->gprs[rt] =
926                                         (long)(int)kvm_mips_read_count(vcpu);
927                                 break;
928                         default:
929                                 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
930                                               KVM_TRACE_HWR(rd, sel), 0);
931                                 goto unknown;
932                         };
933
934                         trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
935                                       KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
936
937                         er = update_pc(vcpu, cause);
938                         break;
939                 default:
940                         goto unknown;
941                 };
942                 break;
943 unknown:
944
945         default:
946                 kvm_err("GPSI exception not supported (%p/%#x)\n",
947                                 opc, inst.word);
948                 kvm_arch_vcpu_dump_regs(vcpu);
949                 er = EMULATE_FAIL;
950                 break;
951         }
952
953         return er;
954 }
955
956 static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
957                                                      struct kvm_vcpu *vcpu)
958 {
959         enum emulation_result er = EMULATE_DONE;
960         struct kvm_vcpu_arch *arch = &vcpu->arch;
961         union mips_instruction inst;
962         int err;
963
964         /*
965          *  Fetch the instruction.
966          */
967         if (cause & CAUSEF_BD)
968                 opc += 1;
969         err = kvm_get_badinstr(opc, vcpu, &inst.word);
970         if (err)
971                 return EMULATE_FAIL;
972
973         /* complete MTC0 on behalf of guest and advance EPC */
974         if (inst.c0r_format.opcode == cop0_op &&
975             inst.c0r_format.rs == mtc_op &&
976             inst.c0r_format.z == 0) {
977                 int rt = inst.c0r_format.rt;
978                 int rd = inst.c0r_format.rd;
979                 int sel = inst.c0r_format.sel;
980                 unsigned int val = arch->gprs[rt];
981                 unsigned int old_val, change;
982
983                 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
984                               val);
985
986                 if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
987                         /* FR bit should read as zero if no FPU */
988                         if (!kvm_mips_guest_has_fpu(&vcpu->arch))
989                                 val &= ~(ST0_CU1 | ST0_FR);
990
991                         /*
992                          * Also don't allow FR to be set if host doesn't support
993                          * it.
994                          */
995                         if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
996                                 val &= ~ST0_FR;
997
998                         old_val = read_gc0_status();
999                         change = val ^ old_val;
1000
1001                         if (change & ST0_FR) {
1002                                 /*
1003                                  * FPU and Vector register state is made
1004                                  * UNPREDICTABLE by a change of FR, so don't
1005                                  * even bother saving it.
1006                                  */
1007                                 kvm_drop_fpu(vcpu);
1008                         }
1009
1010                         /*
1011                          * If MSA state is already live, it is undefined how it
1012                          * interacts with FR=0 FPU state, and we don't want to
1013                          * hit reserved instruction exceptions trying to save
1014                          * the MSA state later when CU=1 && FR=1, so play it
1015                          * safe and save it first.
1016                          */
1017                         if (change & ST0_CU1 && !(val & ST0_FR) &&
1018                             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1019                                 kvm_lose_fpu(vcpu);
1020
1021                         write_gc0_status(val);
1022                 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1023                         u32 old_cause = read_gc0_cause();
1024                         u32 change = old_cause ^ val;
1025
1026                         /* DC bit enabling/disabling timer? */
1027                         if (change & CAUSEF_DC) {
1028                                 if (val & CAUSEF_DC)
1029                                         kvm_mips_count_disable_cause(vcpu);
1030                                 else
1031                                         kvm_mips_count_enable_cause(vcpu);
1032                         }
1033
1034                         /* Only certain bits are RW to the guest */
1035                         change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
1036                                    CAUSEF_IP0 | CAUSEF_IP1);
1037
1038                         /* WP can only be cleared */
1039                         change &= ~CAUSEF_WP | old_cause;
1040
1041                         write_gc0_cause(old_cause ^ change);
1042                 } else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
1043                         write_gc0_intctl(val);
1044                 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1045                         old_val = read_gc0_config5();
1046                         change = val ^ old_val;
1047                         /* Handle changes in FPU/MSA modes */
1048                         preempt_disable();
1049
1050                         /*
1051                          * Propagate FRE changes immediately if the FPU
1052                          * context is already loaded.
1053                          */
1054                         if (change & MIPS_CONF5_FRE &&
1055                             vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1056                                 change_c0_config5(MIPS_CONF5_FRE, val);
1057
1058                         preempt_enable();
1059
1060                         val = old_val ^
1061                                 (change & kvm_vz_config5_guest_wrmask(vcpu));
1062                         write_gc0_config5(val);
1063                 } else {
1064                         kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
1065                             opc, inst.word);
1066                         er = EMULATE_FAIL;
1067                 }
1068
1069                 if (er != EMULATE_FAIL)
1070                         er = update_pc(vcpu, cause);
1071         } else {
1072                 kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
1073                         opc, inst.word);
1074                 er = EMULATE_FAIL;
1075         }
1076
1077         return er;
1078 }
1079
1080 static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
1081                                                    struct kvm_vcpu *vcpu)
1082 {
1083         enum emulation_result er;
1084         union mips_instruction inst;
1085         unsigned long curr_pc;
1086         int err;
1087
1088         if (cause & CAUSEF_BD)
1089                 opc += 1;
1090         err = kvm_get_badinstr(opc, vcpu, &inst.word);
1091         if (err)
1092                 return EMULATE_FAIL;
1093
1094         /*
1095          * Update PC and hold onto current PC in case there is
1096          * an error and we want to rollback the PC
1097          */
1098         curr_pc = vcpu->arch.pc;
1099         er = update_pc(vcpu, cause);
1100         if (er == EMULATE_FAIL)
1101                 return er;
1102
1103         er = kvm_mips_emul_hypcall(vcpu, inst);
1104         if (er == EMULATE_FAIL)
1105                 vcpu->arch.pc = curr_pc;
1106
1107         return er;
1108 }
1109
1110 static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
1111                                                         u32 cause,
1112                                                         u32 *opc,
1113                                                         struct kvm_vcpu *vcpu)
1114 {
1115         u32 inst;
1116
1117         /*
1118          *  Fetch the instruction.
1119          */
1120         if (cause & CAUSEF_BD)
1121                 opc += 1;
1122         kvm_get_badinstr(opc, vcpu, &inst);
1123
1124         kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x  Status: %#x\n",
1125                 gexccode, opc, inst, read_gc0_status());
1126
1127         return EMULATE_FAIL;
1128 }
1129
1130 static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
1131 {
1132         u32 *opc = (u32 *) vcpu->arch.pc;
1133         u32 cause = vcpu->arch.host_cp0_cause;
1134         enum emulation_result er = EMULATE_DONE;
1135         u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
1136                         MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
1137         int ret = RESUME_GUEST;
1138
1139         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
1140         switch (gexccode) {
1141         case MIPS_GCTL0_GEXC_GPSI:
1142                 ++vcpu->stat.vz_gpsi_exits;
1143                 er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
1144                 break;
1145         case MIPS_GCTL0_GEXC_GSFC:
1146                 ++vcpu->stat.vz_gsfc_exits;
1147                 er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
1148                 break;
1149         case MIPS_GCTL0_GEXC_HC:
1150                 ++vcpu->stat.vz_hc_exits;
1151                 er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
1152                 break;
1153         case MIPS_GCTL0_GEXC_GRR:
1154                 ++vcpu->stat.vz_grr_exits;
1155                 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1156                                                        vcpu);
1157                 break;
1158         case MIPS_GCTL0_GEXC_GVA:
1159                 ++vcpu->stat.vz_gva_exits;
1160                 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1161                                                        vcpu);
1162                 break;
1163         case MIPS_GCTL0_GEXC_GHFC:
1164                 ++vcpu->stat.vz_ghfc_exits;
1165                 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1166                                                        vcpu);
1167                 break;
1168         case MIPS_GCTL0_GEXC_GPA:
1169                 ++vcpu->stat.vz_gpa_exits;
1170                 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1171                                                        vcpu);
1172                 break;
1173         default:
1174                 ++vcpu->stat.vz_resvd_exits;
1175                 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1176                                                        vcpu);
1177                 break;
1178
1179         }
1180
1181         if (er == EMULATE_DONE) {
1182                 ret = RESUME_GUEST;
1183         } else if (er == EMULATE_HYPERCALL) {
1184                 ret = kvm_mips_handle_hypcall(vcpu);
1185         } else {
1186                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1187                 ret = RESUME_HOST;
1188         }
1189         return ret;
1190 }
1191
1192 /**
1193  * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor.
1194  * @vcpu:       Virtual CPU context.
1195  *
1196  * Handle when the guest attempts to use a coprocessor which hasn't been allowed
1197  * by the root context.
1198  */
1199 static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
1200 {
1201         struct kvm_run *run = vcpu->run;
1202         u32 cause = vcpu->arch.host_cp0_cause;
1203         enum emulation_result er = EMULATE_FAIL;
1204         int ret = RESUME_GUEST;
1205
1206         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
1207                 /*
1208                  * If guest FPU not present, the FPU operation should have been
1209                  * treated as a reserved instruction!
1210                  * If FPU already in use, we shouldn't get this at all.
1211                  */
1212                 if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
1213                             vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1214                         preempt_enable();
1215                         return EMULATE_FAIL;
1216                 }
1217
1218                 kvm_own_fpu(vcpu);
1219                 er = EMULATE_DONE;
1220         }
1221         /* other coprocessors not handled */
1222
1223         switch (er) {
1224         case EMULATE_DONE:
1225                 ret = RESUME_GUEST;
1226                 break;
1227
1228         case EMULATE_FAIL:
1229                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1230                 ret = RESUME_HOST;
1231                 break;
1232
1233         default:
1234                 BUG();
1235         }
1236         return ret;
1237 }
1238
1239 /**
1240  * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
1241  * @vcpu:       Virtual CPU context.
1242  *
1243  * Handle when the guest attempts to use MSA when it is disabled in the root
1244  * context.
1245  */
1246 static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
1247 {
1248         struct kvm_run *run = vcpu->run;
1249
1250         /*
1251          * If MSA not present or not exposed to guest or FR=0, the MSA operation
1252          * should have been treated as a reserved instruction!
1253          * Same if CU1=1, FR=0.
1254          * If MSA already in use, we shouldn't get this at all.
1255          */
1256         if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
1257             (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
1258             !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
1259             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1260                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1261                 return RESUME_HOST;
1262         }
1263
1264         kvm_own_msa(vcpu);
1265
1266         return RESUME_GUEST;
1267 }
1268
1269 static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
1270 {
1271         struct kvm_run *run = vcpu->run;
1272         u32 *opc = (u32 *) vcpu->arch.pc;
1273         u32 cause = vcpu->arch.host_cp0_cause;
1274         ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1275         union mips_instruction inst;
1276         enum emulation_result er = EMULATE_DONE;
1277         int err, ret = RESUME_GUEST;
1278
1279         if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
1280                 /* A code fetch fault doesn't count as an MMIO */
1281                 if (kvm_is_ifetch_fault(&vcpu->arch)) {
1282                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1283                         return RESUME_HOST;
1284                 }
1285
1286                 /* Fetch the instruction */
1287                 if (cause & CAUSEF_BD)
1288                         opc += 1;
1289                 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1290                 if (err) {
1291                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1292                         return RESUME_HOST;
1293                 }
1294
1295                 /* Treat as MMIO */
1296                 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1297                 if (er == EMULATE_FAIL) {
1298                         kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1299                                 opc, badvaddr);
1300                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1301                 }
1302         }
1303
1304         if (er == EMULATE_DONE) {
1305                 ret = RESUME_GUEST;
1306         } else if (er == EMULATE_DO_MMIO) {
1307                 run->exit_reason = KVM_EXIT_MMIO;
1308                 ret = RESUME_HOST;
1309         } else {
1310                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1311                 ret = RESUME_HOST;
1312         }
1313         return ret;
1314 }
1315
1316 static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
1317 {
1318         struct kvm_run *run = vcpu->run;
1319         u32 *opc = (u32 *) vcpu->arch.pc;
1320         u32 cause = vcpu->arch.host_cp0_cause;
1321         ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1322         union mips_instruction inst;
1323         enum emulation_result er = EMULATE_DONE;
1324         int err;
1325         int ret = RESUME_GUEST;
1326
1327         /* Just try the access again if we couldn't do the translation */
1328         if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
1329                 return RESUME_GUEST;
1330         vcpu->arch.host_cp0_badvaddr = badvaddr;
1331
1332         if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
1333                 /* Fetch the instruction */
1334                 if (cause & CAUSEF_BD)
1335                         opc += 1;
1336                 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1337                 if (err) {
1338                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1339                         return RESUME_HOST;
1340                 }
1341
1342                 /* Treat as MMIO */
1343                 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1344                 if (er == EMULATE_FAIL) {
1345                         kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1346                                 opc, badvaddr);
1347                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1348                 }
1349         }
1350
1351         if (er == EMULATE_DONE) {
1352                 ret = RESUME_GUEST;
1353         } else if (er == EMULATE_DO_MMIO) {
1354                 run->exit_reason = KVM_EXIT_MMIO;
1355                 ret = RESUME_HOST;
1356         } else {
1357                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1358                 ret = RESUME_HOST;
1359         }
1360         return ret;
1361 }
1362
1363 static u64 kvm_vz_get_one_regs[] = {
1364         KVM_REG_MIPS_CP0_INDEX,
1365         KVM_REG_MIPS_CP0_ENTRYLO0,
1366         KVM_REG_MIPS_CP0_ENTRYLO1,
1367         KVM_REG_MIPS_CP0_CONTEXT,
1368         KVM_REG_MIPS_CP0_PAGEMASK,
1369         KVM_REG_MIPS_CP0_PAGEGRAIN,
1370         KVM_REG_MIPS_CP0_WIRED,
1371         KVM_REG_MIPS_CP0_HWRENA,
1372         KVM_REG_MIPS_CP0_BADVADDR,
1373         KVM_REG_MIPS_CP0_COUNT,
1374         KVM_REG_MIPS_CP0_ENTRYHI,
1375         KVM_REG_MIPS_CP0_COMPARE,
1376         KVM_REG_MIPS_CP0_STATUS,
1377         KVM_REG_MIPS_CP0_INTCTL,
1378         KVM_REG_MIPS_CP0_CAUSE,
1379         KVM_REG_MIPS_CP0_EPC,
1380         KVM_REG_MIPS_CP0_PRID,
1381         KVM_REG_MIPS_CP0_EBASE,
1382         KVM_REG_MIPS_CP0_CONFIG,
1383         KVM_REG_MIPS_CP0_CONFIG1,
1384         KVM_REG_MIPS_CP0_CONFIG2,
1385         KVM_REG_MIPS_CP0_CONFIG3,
1386         KVM_REG_MIPS_CP0_CONFIG4,
1387         KVM_REG_MIPS_CP0_CONFIG5,
1388 #ifdef CONFIG_64BIT
1389         KVM_REG_MIPS_CP0_XCONTEXT,
1390 #endif
1391         KVM_REG_MIPS_CP0_ERROREPC,
1392
1393         KVM_REG_MIPS_COUNT_CTL,
1394         KVM_REG_MIPS_COUNT_RESUME,
1395         KVM_REG_MIPS_COUNT_HZ,
1396 };
1397
1398 static u64 kvm_vz_get_one_regs_contextconfig[] = {
1399         KVM_REG_MIPS_CP0_CONTEXTCONFIG,
1400 #ifdef CONFIG_64BIT
1401         KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
1402 #endif
1403 };
1404
1405 static u64 kvm_vz_get_one_regs_segments[] = {
1406         KVM_REG_MIPS_CP0_SEGCTL0,
1407         KVM_REG_MIPS_CP0_SEGCTL1,
1408         KVM_REG_MIPS_CP0_SEGCTL2,
1409 };
1410
1411 static u64 kvm_vz_get_one_regs_htw[] = {
1412         KVM_REG_MIPS_CP0_PWBASE,
1413         KVM_REG_MIPS_CP0_PWFIELD,
1414         KVM_REG_MIPS_CP0_PWSIZE,
1415         KVM_REG_MIPS_CP0_PWCTL,
1416 };
1417
1418 static u64 kvm_vz_get_one_regs_kscratch[] = {
1419         KVM_REG_MIPS_CP0_KSCRATCH1,
1420         KVM_REG_MIPS_CP0_KSCRATCH2,
1421         KVM_REG_MIPS_CP0_KSCRATCH3,
1422         KVM_REG_MIPS_CP0_KSCRATCH4,
1423         KVM_REG_MIPS_CP0_KSCRATCH5,
1424         KVM_REG_MIPS_CP0_KSCRATCH6,
1425 };
1426
1427 static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
1428 {
1429         unsigned long ret;
1430
1431         ret = ARRAY_SIZE(kvm_vz_get_one_regs);
1432         if (cpu_guest_has_userlocal)
1433                 ++ret;
1434         if (cpu_guest_has_badinstr)
1435                 ++ret;
1436         if (cpu_guest_has_badinstrp)
1437                 ++ret;
1438         if (cpu_guest_has_contextconfig)
1439                 ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1440         if (cpu_guest_has_segments)
1441                 ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1442         if (cpu_guest_has_htw)
1443                 ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1444         ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
1445
1446         return ret;
1447 }
1448
1449 static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
1450 {
1451         u64 index;
1452         unsigned int i;
1453
1454         if (copy_to_user(indices, kvm_vz_get_one_regs,
1455                          sizeof(kvm_vz_get_one_regs)))
1456                 return -EFAULT;
1457         indices += ARRAY_SIZE(kvm_vz_get_one_regs);
1458
1459         if (cpu_guest_has_userlocal) {
1460                 index = KVM_REG_MIPS_CP0_USERLOCAL;
1461                 if (copy_to_user(indices, &index, sizeof(index)))
1462                         return -EFAULT;
1463                 ++indices;
1464         }
1465         if (cpu_guest_has_badinstr) {
1466                 index = KVM_REG_MIPS_CP0_BADINSTR;
1467                 if (copy_to_user(indices, &index, sizeof(index)))
1468                         return -EFAULT;
1469                 ++indices;
1470         }
1471         if (cpu_guest_has_badinstrp) {
1472                 index = KVM_REG_MIPS_CP0_BADINSTRP;
1473                 if (copy_to_user(indices, &index, sizeof(index)))
1474                         return -EFAULT;
1475                 ++indices;
1476         }
1477         if (cpu_guest_has_contextconfig) {
1478                 if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
1479                                  sizeof(kvm_vz_get_one_regs_contextconfig)))
1480                         return -EFAULT;
1481                 indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1482         }
1483         if (cpu_guest_has_segments) {
1484                 if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
1485                                  sizeof(kvm_vz_get_one_regs_segments)))
1486                         return -EFAULT;
1487                 indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1488         }
1489         if (cpu_guest_has_htw) {
1490                 if (copy_to_user(indices, kvm_vz_get_one_regs_htw,
1491                                  sizeof(kvm_vz_get_one_regs_htw)))
1492                         return -EFAULT;
1493                 indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1494         }
1495         for (i = 0; i < 6; ++i) {
1496                 if (!cpu_guest_has_kscr(i + 2))
1497                         continue;
1498
1499                 if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
1500                                  sizeof(kvm_vz_get_one_regs_kscratch[i])))
1501                         return -EFAULT;
1502                 ++indices;
1503         }
1504
1505         return 0;
1506 }
1507
1508 static inline s64 entrylo_kvm_to_user(unsigned long v)
1509 {
1510         s64 mask, ret = v;
1511
1512         if (BITS_PER_LONG == 32) {
1513                 /*
1514                  * KVM API exposes 64-bit version of the register, so move the
1515                  * RI/XI bits up into place.
1516                  */
1517                 mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1518                 ret &= ~mask;
1519                 ret |= ((s64)v & mask) << 32;
1520         }
1521         return ret;
1522 }
1523
1524 static inline unsigned long entrylo_user_to_kvm(s64 v)
1525 {
1526         unsigned long mask, ret = v;
1527
1528         if (BITS_PER_LONG == 32) {
1529                 /*
1530                  * KVM API exposes 64-bit versiono of the register, so move the
1531                  * RI/XI bits down into place.
1532                  */
1533                 mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1534                 ret &= ~mask;
1535                 ret |= (v >> 32) & mask;
1536         }
1537         return ret;
1538 }
1539
1540 static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
1541                               const struct kvm_one_reg *reg,
1542                               s64 *v)
1543 {
1544         struct mips_coproc *cop0 = vcpu->arch.cop0;
1545         unsigned int idx;
1546
1547         switch (reg->id) {
1548         case KVM_REG_MIPS_CP0_INDEX:
1549                 *v = (long)read_gc0_index();
1550                 break;
1551         case KVM_REG_MIPS_CP0_ENTRYLO0:
1552                 *v = entrylo_kvm_to_user(read_gc0_entrylo0());
1553                 break;
1554         case KVM_REG_MIPS_CP0_ENTRYLO1:
1555                 *v = entrylo_kvm_to_user(read_gc0_entrylo1());
1556                 break;
1557         case KVM_REG_MIPS_CP0_CONTEXT:
1558                 *v = (long)read_gc0_context();
1559                 break;
1560         case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
1561                 if (!cpu_guest_has_contextconfig)
1562                         return -EINVAL;
1563                 *v = read_gc0_contextconfig();
1564                 break;
1565         case KVM_REG_MIPS_CP0_USERLOCAL:
1566                 if (!cpu_guest_has_userlocal)
1567                         return -EINVAL;
1568                 *v = read_gc0_userlocal();
1569                 break;
1570 #ifdef CONFIG_64BIT
1571         case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
1572                 if (!cpu_guest_has_contextconfig)
1573                         return -EINVAL;
1574                 *v = read_gc0_xcontextconfig();
1575                 break;
1576 #endif
1577         case KVM_REG_MIPS_CP0_PAGEMASK:
1578                 *v = (long)read_gc0_pagemask();
1579                 break;
1580         case KVM_REG_MIPS_CP0_PAGEGRAIN:
1581                 *v = (long)read_gc0_pagegrain();
1582                 break;
1583         case KVM_REG_MIPS_CP0_SEGCTL0:
1584                 if (!cpu_guest_has_segments)
1585                         return -EINVAL;
1586                 *v = read_gc0_segctl0();
1587                 break;
1588         case KVM_REG_MIPS_CP0_SEGCTL1:
1589                 if (!cpu_guest_has_segments)
1590                         return -EINVAL;
1591                 *v = read_gc0_segctl1();
1592                 break;
1593         case KVM_REG_MIPS_CP0_SEGCTL2:
1594                 if (!cpu_guest_has_segments)
1595                         return -EINVAL;
1596                 *v = read_gc0_segctl2();
1597                 break;
1598         case KVM_REG_MIPS_CP0_PWBASE:
1599                 if (!cpu_guest_has_htw)
1600                         return -EINVAL;
1601                 *v = read_gc0_pwbase();
1602                 break;
1603         case KVM_REG_MIPS_CP0_PWFIELD:
1604                 if (!cpu_guest_has_htw)
1605                         return -EINVAL;
1606                 *v = read_gc0_pwfield();
1607                 break;
1608         case KVM_REG_MIPS_CP0_PWSIZE:
1609                 if (!cpu_guest_has_htw)
1610                         return -EINVAL;
1611                 *v = read_gc0_pwsize();
1612                 break;
1613         case KVM_REG_MIPS_CP0_WIRED:
1614                 *v = (long)read_gc0_wired();
1615                 break;
1616         case KVM_REG_MIPS_CP0_PWCTL:
1617                 if (!cpu_guest_has_htw)
1618                         return -EINVAL;
1619                 *v = read_gc0_pwctl();
1620                 break;
1621         case KVM_REG_MIPS_CP0_HWRENA:
1622                 *v = (long)read_gc0_hwrena();
1623                 break;
1624         case KVM_REG_MIPS_CP0_BADVADDR:
1625                 *v = (long)read_gc0_badvaddr();
1626                 break;
1627         case KVM_REG_MIPS_CP0_BADINSTR:
1628                 if (!cpu_guest_has_badinstr)
1629                         return -EINVAL;
1630                 *v = read_gc0_badinstr();
1631                 break;
1632         case KVM_REG_MIPS_CP0_BADINSTRP:
1633                 if (!cpu_guest_has_badinstrp)
1634                         return -EINVAL;
1635                 *v = read_gc0_badinstrp();
1636                 break;
1637         case KVM_REG_MIPS_CP0_COUNT:
1638                 *v = kvm_mips_read_count(vcpu);
1639                 break;
1640         case KVM_REG_MIPS_CP0_ENTRYHI:
1641                 *v = (long)read_gc0_entryhi();
1642                 break;
1643         case KVM_REG_MIPS_CP0_COMPARE:
1644                 *v = (long)read_gc0_compare();
1645                 break;
1646         case KVM_REG_MIPS_CP0_STATUS:
1647                 *v = (long)read_gc0_status();
1648                 break;
1649         case KVM_REG_MIPS_CP0_INTCTL:
1650                 *v = read_gc0_intctl();
1651                 break;
1652         case KVM_REG_MIPS_CP0_CAUSE:
1653                 *v = (long)read_gc0_cause();
1654                 break;
1655         case KVM_REG_MIPS_CP0_EPC:
1656                 *v = (long)read_gc0_epc();
1657                 break;
1658         case KVM_REG_MIPS_CP0_PRID:
1659                 *v = (long)kvm_read_c0_guest_prid(cop0);
1660                 break;
1661         case KVM_REG_MIPS_CP0_EBASE:
1662                 *v = kvm_vz_read_gc0_ebase();
1663                 break;
1664         case KVM_REG_MIPS_CP0_CONFIG:
1665                 *v = read_gc0_config();
1666                 break;
1667         case KVM_REG_MIPS_CP0_CONFIG1:
1668                 if (!cpu_guest_has_conf1)
1669                         return -EINVAL;
1670                 *v = read_gc0_config1();
1671                 break;
1672         case KVM_REG_MIPS_CP0_CONFIG2:
1673                 if (!cpu_guest_has_conf2)
1674                         return -EINVAL;
1675                 *v = read_gc0_config2();
1676                 break;
1677         case KVM_REG_MIPS_CP0_CONFIG3:
1678                 if (!cpu_guest_has_conf3)
1679                         return -EINVAL;
1680                 *v = read_gc0_config3();
1681                 break;
1682         case KVM_REG_MIPS_CP0_CONFIG4:
1683                 if (!cpu_guest_has_conf4)
1684                         return -EINVAL;
1685                 *v = read_gc0_config4();
1686                 break;
1687         case KVM_REG_MIPS_CP0_CONFIG5:
1688                 if (!cpu_guest_has_conf5)
1689                         return -EINVAL;
1690                 *v = read_gc0_config5();
1691                 break;
1692 #ifdef CONFIG_64BIT
1693         case KVM_REG_MIPS_CP0_XCONTEXT:
1694                 *v = read_gc0_xcontext();
1695                 break;
1696 #endif
1697         case KVM_REG_MIPS_CP0_ERROREPC:
1698                 *v = (long)read_gc0_errorepc();
1699                 break;
1700         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1701                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1702                 if (!cpu_guest_has_kscr(idx))
1703                         return -EINVAL;
1704                 switch (idx) {
1705                 case 2:
1706                         *v = (long)read_gc0_kscratch1();
1707                         break;
1708                 case 3:
1709                         *v = (long)read_gc0_kscratch2();
1710                         break;
1711                 case 4:
1712                         *v = (long)read_gc0_kscratch3();
1713                         break;
1714                 case 5:
1715                         *v = (long)read_gc0_kscratch4();
1716                         break;
1717                 case 6:
1718                         *v = (long)read_gc0_kscratch5();
1719                         break;
1720                 case 7:
1721                         *v = (long)read_gc0_kscratch6();
1722                         break;
1723                 }
1724                 break;
1725         case KVM_REG_MIPS_COUNT_CTL:
1726                 *v = vcpu->arch.count_ctl;
1727                 break;
1728         case KVM_REG_MIPS_COUNT_RESUME:
1729                 *v = ktime_to_ns(vcpu->arch.count_resume);
1730                 break;
1731         case KVM_REG_MIPS_COUNT_HZ:
1732                 *v = vcpu->arch.count_hz;
1733                 break;
1734         default:
1735                 return -EINVAL;
1736         }
1737         return 0;
1738 }
1739
1740 static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
1741                               const struct kvm_one_reg *reg,
1742                               s64 v)
1743 {
1744         struct mips_coproc *cop0 = vcpu->arch.cop0;
1745         unsigned int idx;
1746         int ret = 0;
1747         unsigned int cur, change;
1748
1749         switch (reg->id) {
1750         case KVM_REG_MIPS_CP0_INDEX:
1751                 write_gc0_index(v);
1752                 break;
1753         case KVM_REG_MIPS_CP0_ENTRYLO0:
1754                 write_gc0_entrylo0(entrylo_user_to_kvm(v));
1755                 break;
1756         case KVM_REG_MIPS_CP0_ENTRYLO1:
1757                 write_gc0_entrylo1(entrylo_user_to_kvm(v));
1758                 break;
1759         case KVM_REG_MIPS_CP0_CONTEXT:
1760                 write_gc0_context(v);
1761                 break;
1762         case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
1763                 if (!cpu_guest_has_contextconfig)
1764                         return -EINVAL;
1765                 write_gc0_contextconfig(v);
1766                 break;
1767         case KVM_REG_MIPS_CP0_USERLOCAL:
1768                 if (!cpu_guest_has_userlocal)
1769                         return -EINVAL;
1770                 write_gc0_userlocal(v);
1771                 break;
1772 #ifdef CONFIG_64BIT
1773         case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
1774                 if (!cpu_guest_has_contextconfig)
1775                         return -EINVAL;
1776                 write_gc0_xcontextconfig(v);
1777                 break;
1778 #endif
1779         case KVM_REG_MIPS_CP0_PAGEMASK:
1780                 write_gc0_pagemask(v);
1781                 break;
1782         case KVM_REG_MIPS_CP0_PAGEGRAIN:
1783                 write_gc0_pagegrain(v);
1784                 break;
1785         case KVM_REG_MIPS_CP0_SEGCTL0:
1786                 if (!cpu_guest_has_segments)
1787                         return -EINVAL;
1788                 write_gc0_segctl0(v);
1789                 break;
1790         case KVM_REG_MIPS_CP0_SEGCTL1:
1791                 if (!cpu_guest_has_segments)
1792                         return -EINVAL;
1793                 write_gc0_segctl1(v);
1794                 break;
1795         case KVM_REG_MIPS_CP0_SEGCTL2:
1796                 if (!cpu_guest_has_segments)
1797                         return -EINVAL;
1798                 write_gc0_segctl2(v);
1799                 break;
1800         case KVM_REG_MIPS_CP0_PWBASE:
1801                 if (!cpu_guest_has_htw)
1802                         return -EINVAL;
1803                 write_gc0_pwbase(v);
1804                 break;
1805         case KVM_REG_MIPS_CP0_PWFIELD:
1806                 if (!cpu_guest_has_htw)
1807                         return -EINVAL;
1808                 write_gc0_pwfield(v);
1809                 break;
1810         case KVM_REG_MIPS_CP0_PWSIZE:
1811                 if (!cpu_guest_has_htw)
1812                         return -EINVAL;
1813                 write_gc0_pwsize(v);
1814                 break;
1815         case KVM_REG_MIPS_CP0_WIRED:
1816                 change_gc0_wired(MIPSR6_WIRED_WIRED, v);
1817                 break;
1818         case KVM_REG_MIPS_CP0_PWCTL:
1819                 if (!cpu_guest_has_htw)
1820                         return -EINVAL;
1821                 write_gc0_pwctl(v);
1822                 break;
1823         case KVM_REG_MIPS_CP0_HWRENA:
1824                 write_gc0_hwrena(v);
1825                 break;
1826         case KVM_REG_MIPS_CP0_BADVADDR:
1827                 write_gc0_badvaddr(v);
1828                 break;
1829         case KVM_REG_MIPS_CP0_BADINSTR:
1830                 if (!cpu_guest_has_badinstr)
1831                         return -EINVAL;
1832                 write_gc0_badinstr(v);
1833                 break;
1834         case KVM_REG_MIPS_CP0_BADINSTRP:
1835                 if (!cpu_guest_has_badinstrp)
1836                         return -EINVAL;
1837                 write_gc0_badinstrp(v);
1838                 break;
1839         case KVM_REG_MIPS_CP0_COUNT:
1840                 kvm_mips_write_count(vcpu, v);
1841                 break;
1842         case KVM_REG_MIPS_CP0_ENTRYHI:
1843                 write_gc0_entryhi(v);
1844                 break;
1845         case KVM_REG_MIPS_CP0_COMPARE:
1846                 kvm_mips_write_compare(vcpu, v, false);
1847                 break;
1848         case KVM_REG_MIPS_CP0_STATUS:
1849                 write_gc0_status(v);
1850                 break;
1851         case KVM_REG_MIPS_CP0_INTCTL:
1852                 write_gc0_intctl(v);
1853                 break;
1854         case KVM_REG_MIPS_CP0_CAUSE:
1855                 /*
1856                  * If the timer is stopped or started (DC bit) it must look
1857                  * atomic with changes to the timer interrupt pending bit (TI).
1858                  * A timer interrupt should not happen in between.
1859                  */
1860                 if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
1861                         if (v & CAUSEF_DC) {
1862                                 /* disable timer first */
1863                                 kvm_mips_count_disable_cause(vcpu);
1864                                 change_gc0_cause((u32)~CAUSEF_DC, v);
1865                         } else {
1866                                 /* enable timer last */
1867                                 change_gc0_cause((u32)~CAUSEF_DC, v);
1868                                 kvm_mips_count_enable_cause(vcpu);
1869                         }
1870                 } else {
1871                         write_gc0_cause(v);
1872                 }
1873                 break;
1874         case KVM_REG_MIPS_CP0_EPC:
1875                 write_gc0_epc(v);
1876                 break;
1877         case KVM_REG_MIPS_CP0_PRID:
1878                 kvm_write_c0_guest_prid(cop0, v);
1879                 break;
1880         case KVM_REG_MIPS_CP0_EBASE:
1881                 kvm_vz_write_gc0_ebase(v);
1882                 break;
1883         case KVM_REG_MIPS_CP0_CONFIG:
1884                 cur = read_gc0_config();
1885                 change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
1886                 if (change) {
1887                         v = cur ^ change;
1888                         write_gc0_config(v);
1889                 }
1890                 break;
1891         case KVM_REG_MIPS_CP0_CONFIG1:
1892                 if (!cpu_guest_has_conf1)
1893                         break;
1894                 cur = read_gc0_config1();
1895                 change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
1896                 if (change) {
1897                         v = cur ^ change;
1898                         write_gc0_config1(v);
1899                 }
1900                 break;
1901         case KVM_REG_MIPS_CP0_CONFIG2:
1902                 if (!cpu_guest_has_conf2)
1903                         break;
1904                 cur = read_gc0_config2();
1905                 change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
1906                 if (change) {
1907                         v = cur ^ change;
1908                         write_gc0_config2(v);
1909                 }
1910                 break;
1911         case KVM_REG_MIPS_CP0_CONFIG3:
1912                 if (!cpu_guest_has_conf3)
1913                         break;
1914                 cur = read_gc0_config3();
1915                 change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
1916                 if (change) {
1917                         v = cur ^ change;
1918                         write_gc0_config3(v);
1919                 }
1920                 break;
1921         case KVM_REG_MIPS_CP0_CONFIG4:
1922                 if (!cpu_guest_has_conf4)
1923                         break;
1924                 cur = read_gc0_config4();
1925                 change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
1926                 if (change) {
1927                         v = cur ^ change;
1928                         write_gc0_config4(v);
1929                 }
1930                 break;
1931         case KVM_REG_MIPS_CP0_CONFIG5:
1932                 if (!cpu_guest_has_conf5)
1933                         break;
1934                 cur = read_gc0_config5();
1935                 change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
1936                 if (change) {
1937                         v = cur ^ change;
1938                         write_gc0_config5(v);
1939                 }
1940                 break;
1941 #ifdef CONFIG_64BIT
1942         case KVM_REG_MIPS_CP0_XCONTEXT:
1943                 write_gc0_xcontext(v);
1944                 break;
1945 #endif
1946         case KVM_REG_MIPS_CP0_ERROREPC:
1947                 write_gc0_errorepc(v);
1948                 break;
1949         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1950                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1951                 if (!cpu_guest_has_kscr(idx))
1952                         return -EINVAL;
1953                 switch (idx) {
1954                 case 2:
1955                         write_gc0_kscratch1(v);
1956                         break;
1957                 case 3:
1958                         write_gc0_kscratch2(v);
1959                         break;
1960                 case 4:
1961                         write_gc0_kscratch3(v);
1962                         break;
1963                 case 5:
1964                         write_gc0_kscratch4(v);
1965                         break;
1966                 case 6:
1967                         write_gc0_kscratch5(v);
1968                         break;
1969                 case 7:
1970                         write_gc0_kscratch6(v);
1971                         break;
1972                 }
1973                 break;
1974         case KVM_REG_MIPS_COUNT_CTL:
1975                 ret = kvm_mips_set_count_ctl(vcpu, v);
1976                 break;
1977         case KVM_REG_MIPS_COUNT_RESUME:
1978                 ret = kvm_mips_set_count_resume(vcpu, v);
1979                 break;
1980         case KVM_REG_MIPS_COUNT_HZ:
1981                 ret = kvm_mips_set_count_hz(vcpu, v);
1982                 break;
1983         default:
1984                 return -EINVAL;
1985         }
1986         return ret;
1987 }
1988
1989 #define guestid_cache(cpu)      (cpu_data[cpu].guestid_cache)
1990 static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
1991 {
1992         unsigned long guestid = guestid_cache(cpu);
1993
1994         if (!(++guestid & GUESTID_MASK)) {
1995                 if (cpu_has_vtag_icache)
1996                         flush_icache_all();
1997
1998                 if (!guestid)           /* fix version if needed */
1999                         guestid = GUESTID_FIRST_VERSION;
2000
2001                 ++guestid;              /* guestid 0 reserved for root */
2002
2003                 /* start new guestid cycle */
2004                 kvm_vz_local_flush_roottlb_all_guests();
2005                 kvm_vz_local_flush_guesttlb_all();
2006         }
2007
2008         guestid_cache(cpu) = guestid;
2009 }
2010
2011 /* Returns 1 if the guest TLB may be clobbered */
2012 static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
2013 {
2014         int ret = 0;
2015         int i;
2016
2017         if (!vcpu->requests)
2018                 return 0;
2019
2020         if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2021                 if (cpu_has_guestid) {
2022                         /* Drop all GuestIDs for this VCPU */
2023                         for_each_possible_cpu(i)
2024                                 vcpu->arch.vzguestid[i] = 0;
2025                         /* This will clobber guest TLB contents too */
2026                         ret = 1;
2027                 }
2028                 /*
2029                  * For Root ASID Dealias (RAD) we don't do anything here, but we
2030                  * still need the request to ensure we recheck asid_flush_mask.
2031                  * We can still return 0 as only the root TLB will be affected
2032                  * by a root ASID flush.
2033                  */
2034         }
2035
2036         return ret;
2037 }
2038
2039 static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
2040 {
2041         unsigned int wired = read_gc0_wired();
2042         struct kvm_mips_tlb *tlbs;
2043         int i;
2044
2045         /* Expand the wired TLB array if necessary */
2046         wired &= MIPSR6_WIRED_WIRED;
2047         if (wired > vcpu->arch.wired_tlb_limit) {
2048                 tlbs = krealloc(vcpu->arch.wired_tlb, wired *
2049                                 sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
2050                 if (WARN_ON(!tlbs)) {
2051                         /* Save whatever we can */
2052                         wired = vcpu->arch.wired_tlb_limit;
2053                 } else {
2054                         vcpu->arch.wired_tlb = tlbs;
2055                         vcpu->arch.wired_tlb_limit = wired;
2056                 }
2057         }
2058
2059         if (wired)
2060                 /* Save wired entries from the guest TLB */
2061                 kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
2062         /* Invalidate any dropped entries since last time */
2063         for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
2064                 vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
2065                 vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
2066                 vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
2067                 vcpu->arch.wired_tlb[i].tlb_mask = 0;
2068         }
2069         vcpu->arch.wired_tlb_used = wired;
2070 }
2071
2072 static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
2073 {
2074         /* Load wired entries into the guest TLB */
2075         if (vcpu->arch.wired_tlb)
2076                 kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
2077                                      vcpu->arch.wired_tlb_used);
2078 }
2079
2080 static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
2081 {
2082         struct kvm *kvm = vcpu->kvm;
2083         struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
2084         bool migrated;
2085
2086         /*
2087          * Are we entering guest context on a different CPU to last time?
2088          * If so, the VCPU's guest TLB state on this CPU may be stale.
2089          */
2090         migrated = (vcpu->arch.last_exec_cpu != cpu);
2091         vcpu->arch.last_exec_cpu = cpu;
2092
2093         /*
2094          * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
2095          * remains set until another vcpu is loaded in.  As a rule GuestRID
2096          * remains zeroed when in root context unless the kernel is busy
2097          * manipulating guest tlb entries.
2098          */
2099         if (cpu_has_guestid) {
2100                 /*
2101                  * Check if our GuestID is of an older version and thus invalid.
2102                  *
2103                  * We also discard the stored GuestID if we've executed on
2104                  * another CPU, as the guest mappings may have changed without
2105                  * hypervisor knowledge.
2106                  */
2107                 if (migrated ||
2108                     (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
2109                                         GUESTID_VERSION_MASK) {
2110                         kvm_vz_get_new_guestid(cpu, vcpu);
2111                         vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
2112                         trace_kvm_guestid_change(vcpu,
2113                                                  vcpu->arch.vzguestid[cpu]);
2114                 }
2115
2116                 /* Restore GuestID */
2117                 change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
2118         } else {
2119                 /*
2120                  * The Guest TLB only stores a single guest's TLB state, so
2121                  * flush it if another VCPU has executed on this CPU.
2122                  *
2123                  * We also flush if we've executed on another CPU, as the guest
2124                  * mappings may have changed without hypervisor knowledge.
2125                  */
2126                 if (migrated || last_exec_vcpu[cpu] != vcpu)
2127                         kvm_vz_local_flush_guesttlb_all();
2128                 last_exec_vcpu[cpu] = vcpu;
2129
2130                 /*
2131                  * Root ASID dealiases guest GPA mappings in the root TLB.
2132                  * Allocate new root ASID if needed.
2133                  */
2134                 if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask)
2135                     || (cpu_context(cpu, gpa_mm) ^ asid_cache(cpu)) &
2136                                                 asid_version_mask(cpu))
2137                         get_new_mmu_context(gpa_mm, cpu);
2138         }
2139 }
2140
2141 static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2142 {
2143         struct mips_coproc *cop0 = vcpu->arch.cop0;
2144         bool migrated, all;
2145
2146         /*
2147          * Have we migrated to a different CPU?
2148          * If so, any old guest TLB state may be stale.
2149          */
2150         migrated = (vcpu->arch.last_sched_cpu != cpu);
2151
2152         /*
2153          * Was this the last VCPU to run on this CPU?
2154          * If not, any old guest state from this VCPU will have been clobbered.
2155          */
2156         all = migrated || (last_vcpu[cpu] != vcpu);
2157         last_vcpu[cpu] = vcpu;
2158
2159         /*
2160          * Restore CP0_Wired unconditionally as we clear it after use, and
2161          * restore wired guest TLB entries (while in guest context).
2162          */
2163         kvm_restore_gc0_wired(cop0);
2164         if (current->flags & PF_VCPU) {
2165                 tlbw_use_hazard();
2166                 kvm_vz_vcpu_load_tlb(vcpu, cpu);
2167                 kvm_vz_vcpu_load_wired(vcpu);
2168         }
2169
2170         /*
2171          * Restore timer state regardless, as e.g. Cause.TI can change over time
2172          * if left unmaintained.
2173          */
2174         kvm_vz_restore_timer(vcpu);
2175
2176         /* Don't bother restoring registers multiple times unless necessary */
2177         if (!all)
2178                 return 0;
2179
2180         /*
2181          * Restore config registers first, as some implementations restrict
2182          * writes to other registers when the corresponding feature bits aren't
2183          * set. For example Status.CU1 cannot be set unless Config1.FP is set.
2184          */
2185         kvm_restore_gc0_config(cop0);
2186         if (cpu_guest_has_conf1)
2187                 kvm_restore_gc0_config1(cop0);
2188         if (cpu_guest_has_conf2)
2189                 kvm_restore_gc0_config2(cop0);
2190         if (cpu_guest_has_conf3)
2191                 kvm_restore_gc0_config3(cop0);
2192         if (cpu_guest_has_conf4)
2193                 kvm_restore_gc0_config4(cop0);
2194         if (cpu_guest_has_conf5)
2195                 kvm_restore_gc0_config5(cop0);
2196         if (cpu_guest_has_conf6)
2197                 kvm_restore_gc0_config6(cop0);
2198         if (cpu_guest_has_conf7)
2199                 kvm_restore_gc0_config7(cop0);
2200
2201         kvm_restore_gc0_index(cop0);
2202         kvm_restore_gc0_entrylo0(cop0);
2203         kvm_restore_gc0_entrylo1(cop0);
2204         kvm_restore_gc0_context(cop0);
2205         if (cpu_guest_has_contextconfig)
2206                 kvm_restore_gc0_contextconfig(cop0);
2207 #ifdef CONFIG_64BIT
2208         kvm_restore_gc0_xcontext(cop0);
2209         if (cpu_guest_has_contextconfig)
2210                 kvm_restore_gc0_xcontextconfig(cop0);
2211 #endif
2212         kvm_restore_gc0_pagemask(cop0);
2213         kvm_restore_gc0_pagegrain(cop0);
2214         kvm_restore_gc0_hwrena(cop0);
2215         kvm_restore_gc0_badvaddr(cop0);
2216         kvm_restore_gc0_entryhi(cop0);
2217         kvm_restore_gc0_status(cop0);
2218         kvm_restore_gc0_intctl(cop0);
2219         kvm_restore_gc0_epc(cop0);
2220         kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
2221         if (cpu_guest_has_userlocal)
2222                 kvm_restore_gc0_userlocal(cop0);
2223
2224         kvm_restore_gc0_errorepc(cop0);
2225
2226         /* restore KScratch registers if enabled in guest */
2227         if (cpu_guest_has_conf4) {
2228                 if (cpu_guest_has_kscr(2))
2229                         kvm_restore_gc0_kscratch1(cop0);
2230                 if (cpu_guest_has_kscr(3))
2231                         kvm_restore_gc0_kscratch2(cop0);
2232                 if (cpu_guest_has_kscr(4))
2233                         kvm_restore_gc0_kscratch3(cop0);
2234                 if (cpu_guest_has_kscr(5))
2235                         kvm_restore_gc0_kscratch4(cop0);
2236                 if (cpu_guest_has_kscr(6))
2237                         kvm_restore_gc0_kscratch5(cop0);
2238                 if (cpu_guest_has_kscr(7))
2239                         kvm_restore_gc0_kscratch6(cop0);
2240         }
2241
2242         if (cpu_guest_has_badinstr)
2243                 kvm_restore_gc0_badinstr(cop0);
2244         if (cpu_guest_has_badinstrp)
2245                 kvm_restore_gc0_badinstrp(cop0);
2246
2247         if (cpu_guest_has_segments) {
2248                 kvm_restore_gc0_segctl0(cop0);
2249                 kvm_restore_gc0_segctl1(cop0);
2250                 kvm_restore_gc0_segctl2(cop0);
2251         }
2252
2253         /* restore HTW registers */
2254         if (cpu_guest_has_htw) {
2255                 kvm_restore_gc0_pwbase(cop0);
2256                 kvm_restore_gc0_pwfield(cop0);
2257                 kvm_restore_gc0_pwsize(cop0);
2258                 kvm_restore_gc0_pwctl(cop0);
2259         }
2260
2261         /* restore Root.GuestCtl2 from unused Guest guestctl2 register */
2262         if (cpu_has_guestctl2)
2263                 write_c0_guestctl2(
2264                         cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
2265
2266         /*
2267          * We should clear linked load bit to break interrupted atomics. This
2268          * prevents a SC on the next VCPU from succeeding by matching a LL on
2269          * the previous VCPU.
2270          */
2271         if (cpu_guest_has_rw_llb)
2272                 write_gc0_lladdr(0);
2273
2274         return 0;
2275 }
2276
2277 static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
2278 {
2279         struct mips_coproc *cop0 = vcpu->arch.cop0;
2280
2281         if (current->flags & PF_VCPU)
2282                 kvm_vz_vcpu_save_wired(vcpu);
2283
2284         kvm_lose_fpu(vcpu);
2285
2286         kvm_save_gc0_index(cop0);
2287         kvm_save_gc0_entrylo0(cop0);
2288         kvm_save_gc0_entrylo1(cop0);
2289         kvm_save_gc0_context(cop0);
2290         if (cpu_guest_has_contextconfig)
2291                 kvm_save_gc0_contextconfig(cop0);
2292 #ifdef CONFIG_64BIT
2293         kvm_save_gc0_xcontext(cop0);
2294         if (cpu_guest_has_contextconfig)
2295                 kvm_save_gc0_xcontextconfig(cop0);
2296 #endif
2297         kvm_save_gc0_pagemask(cop0);
2298         kvm_save_gc0_pagegrain(cop0);
2299         kvm_save_gc0_wired(cop0);
2300         /* allow wired TLB entries to be overwritten */
2301         clear_gc0_wired(MIPSR6_WIRED_WIRED);
2302         kvm_save_gc0_hwrena(cop0);
2303         kvm_save_gc0_badvaddr(cop0);
2304         kvm_save_gc0_entryhi(cop0);
2305         kvm_save_gc0_status(cop0);
2306         kvm_save_gc0_intctl(cop0);
2307         kvm_save_gc0_epc(cop0);
2308         kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
2309         if (cpu_guest_has_userlocal)
2310                 kvm_save_gc0_userlocal(cop0);
2311
2312         /* only save implemented config registers */
2313         kvm_save_gc0_config(cop0);
2314         if (cpu_guest_has_conf1)
2315                 kvm_save_gc0_config1(cop0);
2316         if (cpu_guest_has_conf2)
2317                 kvm_save_gc0_config2(cop0);
2318         if (cpu_guest_has_conf3)
2319                 kvm_save_gc0_config3(cop0);
2320         if (cpu_guest_has_conf4)
2321                 kvm_save_gc0_config4(cop0);
2322         if (cpu_guest_has_conf5)
2323                 kvm_save_gc0_config5(cop0);
2324         if (cpu_guest_has_conf6)
2325                 kvm_save_gc0_config6(cop0);
2326         if (cpu_guest_has_conf7)
2327                 kvm_save_gc0_config7(cop0);
2328
2329         kvm_save_gc0_errorepc(cop0);
2330
2331         /* save KScratch registers if enabled in guest */
2332         if (cpu_guest_has_conf4) {
2333                 if (cpu_guest_has_kscr(2))
2334                         kvm_save_gc0_kscratch1(cop0);
2335                 if (cpu_guest_has_kscr(3))
2336                         kvm_save_gc0_kscratch2(cop0);
2337                 if (cpu_guest_has_kscr(4))
2338                         kvm_save_gc0_kscratch3(cop0);
2339                 if (cpu_guest_has_kscr(5))
2340                         kvm_save_gc0_kscratch4(cop0);
2341                 if (cpu_guest_has_kscr(6))
2342                         kvm_save_gc0_kscratch5(cop0);
2343                 if (cpu_guest_has_kscr(7))
2344                         kvm_save_gc0_kscratch6(cop0);
2345         }
2346
2347         if (cpu_guest_has_badinstr)
2348                 kvm_save_gc0_badinstr(cop0);
2349         if (cpu_guest_has_badinstrp)
2350                 kvm_save_gc0_badinstrp(cop0);
2351
2352         if (cpu_guest_has_segments) {
2353                 kvm_save_gc0_segctl0(cop0);
2354                 kvm_save_gc0_segctl1(cop0);
2355                 kvm_save_gc0_segctl2(cop0);
2356         }
2357
2358         /* save HTW registers if enabled in guest */
2359         if (cpu_guest_has_htw &&
2360             kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW) {
2361                 kvm_save_gc0_pwbase(cop0);
2362                 kvm_save_gc0_pwfield(cop0);
2363                 kvm_save_gc0_pwsize(cop0);
2364                 kvm_save_gc0_pwctl(cop0);
2365         }
2366
2367         kvm_vz_save_timer(vcpu);
2368
2369         /* save Root.GuestCtl2 in unused Guest guestctl2 register */
2370         if (cpu_has_guestctl2)
2371                 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
2372                         read_c0_guestctl2();
2373
2374         return 0;
2375 }
2376
2377 /**
2378  * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
2379  * @size:       Number of guest VTLB entries (0 < @size <= root VTLB entries).
2380  *
2381  * Attempt to resize the guest VTLB by writing guest Config registers. This is
2382  * necessary for cores with a shared root/guest TLB to avoid overlap with wired
2383  * entries in the root VTLB.
2384  *
2385  * Returns:     The resulting guest VTLB size.
2386  */
2387 static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
2388 {
2389         unsigned int config4 = 0, ret = 0, limit;
2390
2391         /* Write MMUSize - 1 into guest Config registers */
2392         if (cpu_guest_has_conf1)
2393                 change_gc0_config1(MIPS_CONF1_TLBS,
2394                                    (size - 1) << MIPS_CONF1_TLBS_SHIFT);
2395         if (cpu_guest_has_conf4) {
2396                 config4 = read_gc0_config4();
2397                 if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2398                     MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
2399                         config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
2400                         config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2401                                 MIPS_CONF4_VTLBSIZEEXT_SHIFT;
2402                 } else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2403                            MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
2404                         config4 &= ~MIPS_CONF4_MMUSIZEEXT;
2405                         config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2406                                 MIPS_CONF4_MMUSIZEEXT_SHIFT;
2407                 }
2408                 write_gc0_config4(config4);
2409         }
2410
2411         /*
2412          * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
2413          * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
2414          * not dropped)
2415          */
2416         if (cpu_has_mips_r6) {
2417                 limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
2418                                                 MIPSR6_WIRED_LIMIT_SHIFT;
2419                 if (size - 1 <= limit)
2420                         limit = 0;
2421                 write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
2422         }
2423
2424         /* Read back MMUSize - 1 */
2425         back_to_back_c0_hazard();
2426         if (cpu_guest_has_conf1)
2427                 ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
2428                                                 MIPS_CONF1_TLBS_SHIFT;
2429         if (config4) {
2430                 if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2431                     MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
2432                         ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
2433                                 MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
2434                                 MIPS_CONF1_TLBS_SIZE;
2435                 else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2436                          MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
2437                         ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
2438                                 MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
2439                                 MIPS_CONF1_TLBS_SIZE;
2440         }
2441         return ret + 1;
2442 }
2443
2444 static int kvm_vz_hardware_enable(void)
2445 {
2446         unsigned int mmu_size, guest_mmu_size, ftlb_size;
2447
2448         /*
2449          * ImgTec cores tend to use a shared root/guest TLB. To avoid overlap of
2450          * root wired and guest entries, the guest TLB may need resizing.
2451          */
2452         mmu_size = current_cpu_data.tlbsizevtlb;
2453         ftlb_size = current_cpu_data.tlbsize - mmu_size;
2454
2455         /* Try switching to maximum guest VTLB size for flush */
2456         guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
2457         current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2458         kvm_vz_local_flush_guesttlb_all();
2459
2460         /*
2461          * Reduce to make space for root wired entries and at least 2 root
2462          * non-wired entries. This does assume that long-term wired entries
2463          * won't be added later.
2464          */
2465         guest_mmu_size = mmu_size - num_wired_entries() - 2;
2466         guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
2467         current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2468
2469         /*
2470          * Write the VTLB size, but if another CPU has already written, check it
2471          * matches or we won't provide a consistent view to the guest. If this
2472          * ever happens it suggests an asymmetric number of wired entries.
2473          */
2474         if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
2475             WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
2476                  "Available guest VTLB size mismatch"))
2477                 return -EINVAL;
2478
2479         /*
2480          * Enable virtualization features granting guest direct control of
2481          * certain features:
2482          * CP0=1:       Guest coprocessor 0 context.
2483          * AT=Guest:    Guest MMU.
2484          * CG=1:        Hit (virtual address) CACHE operations (optional).
2485          * CF=1:        Guest Config registers.
2486          * CGI=1:       Indexed flush CACHE operations (optional).
2487          */
2488         write_c0_guestctl0(MIPS_GCTL0_CP0 |
2489                            (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
2490                            MIPS_GCTL0_CG | MIPS_GCTL0_CF);
2491         if (cpu_has_guestctl0ext)
2492                 set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2493
2494         if (cpu_has_guestid) {
2495                 write_c0_guestctl1(0);
2496                 kvm_vz_local_flush_roottlb_all_guests();
2497
2498                 GUESTID_MASK = current_cpu_data.guestid_mask;
2499                 GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
2500                 GUESTID_VERSION_MASK = ~GUESTID_MASK;
2501
2502                 current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
2503         }
2504
2505         /* clear any pending injected virtual guest interrupts */
2506         if (cpu_has_guestctl2)
2507                 clear_c0_guestctl2(0x3f << 10);
2508
2509         return 0;
2510 }
2511
2512 static void kvm_vz_hardware_disable(void)
2513 {
2514         kvm_vz_local_flush_guesttlb_all();
2515
2516         if (cpu_has_guestid) {
2517                 write_c0_guestctl1(0);
2518                 kvm_vz_local_flush_roottlb_all_guests();
2519         }
2520 }
2521
2522 static int kvm_vz_check_extension(struct kvm *kvm, long ext)
2523 {
2524         int r;
2525
2526         switch (ext) {
2527         case KVM_CAP_MIPS_VZ:
2528                 /* we wouldn't be here unless cpu_has_vz */
2529                 r = 1;
2530                 break;
2531 #ifdef CONFIG_64BIT
2532         case KVM_CAP_MIPS_64BIT:
2533                 /* We support 64-bit registers/operations and addresses */
2534                 r = 2;
2535                 break;
2536 #endif
2537         default:
2538                 r = 0;
2539                 break;
2540         }
2541
2542         return r;
2543 }
2544
2545 static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
2546 {
2547         int i;
2548
2549         for_each_possible_cpu(i)
2550                 vcpu->arch.vzguestid[i] = 0;
2551
2552         return 0;
2553 }
2554
2555 static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
2556 {
2557         int cpu;
2558
2559         /*
2560          * If the VCPU is freed and reused as another VCPU, we don't want the
2561          * matching pointer wrongly hanging around in last_vcpu[] or
2562          * last_exec_vcpu[].
2563          */
2564         for_each_possible_cpu(cpu) {
2565                 if (last_vcpu[cpu] == vcpu)
2566                         last_vcpu[cpu] = NULL;
2567                 if (last_exec_vcpu[cpu] == vcpu)
2568                         last_exec_vcpu[cpu] = NULL;
2569         }
2570 }
2571
2572 static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
2573 {
2574         struct mips_coproc *cop0 = vcpu->arch.cop0;
2575         unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
2576
2577         /*
2578          * Start off the timer at the same frequency as the host timer, but the
2579          * soft timer doesn't handle frequencies greater than 1GHz yet.
2580          */
2581         if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
2582                 count_hz = mips_hpt_frequency;
2583         kvm_mips_init_count(vcpu, count_hz);
2584
2585         /*
2586          * Initialize guest register state to valid architectural reset state.
2587          */
2588
2589         /* PageGrain */
2590         if (cpu_has_mips_r6)
2591                 kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
2592         /* Wired */
2593         if (cpu_has_mips_r6)
2594                 kvm_write_sw_gc0_wired(cop0,
2595                                        read_gc0_wired() & MIPSR6_WIRED_LIMIT);
2596         /* Status */
2597         kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
2598         if (cpu_has_mips_r6)
2599                 kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
2600         /* IntCtl */
2601         kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
2602                                 (INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
2603         /* PRId */
2604         kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
2605         /* EBase */
2606         kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
2607         /* Config */
2608         kvm_save_gc0_config(cop0);
2609         /* architecturally writable (e.g. from guest) */
2610         kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
2611                                  _page_cachable_default >> _CACHE_SHIFT);
2612         /* architecturally read only, but maybe writable from root */
2613         kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
2614         if (cpu_guest_has_conf1) {
2615                 kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
2616                 /* Config1 */
2617                 kvm_save_gc0_config1(cop0);
2618                 /* architecturally read only, but maybe writable from root */
2619                 kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2    |
2620                                                MIPS_CONF1_MD    |
2621                                                MIPS_CONF1_PC    |
2622                                                MIPS_CONF1_WR    |
2623                                                MIPS_CONF1_CA    |
2624                                                MIPS_CONF1_FP);
2625         }
2626         if (cpu_guest_has_conf2) {
2627                 kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
2628                 /* Config2 */
2629                 kvm_save_gc0_config2(cop0);
2630         }
2631         if (cpu_guest_has_conf3) {
2632                 kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
2633                 /* Config3 */
2634                 kvm_save_gc0_config3(cop0);
2635                 /* architecturally writable (e.g. from guest) */
2636                 kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
2637                 /* architecturally read only, but maybe writable from root */
2638                 kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA   |
2639                                                MIPS_CONF3_BPG   |
2640                                                MIPS_CONF3_ULRI  |
2641                                                MIPS_CONF3_DSP   |
2642                                                MIPS_CONF3_CTXTC |
2643                                                MIPS_CONF3_ITL   |
2644                                                MIPS_CONF3_LPA   |
2645                                                MIPS_CONF3_VEIC  |
2646                                                MIPS_CONF3_VINT  |
2647                                                MIPS_CONF3_SP    |
2648                                                MIPS_CONF3_CDMM  |
2649                                                MIPS_CONF3_MT    |
2650                                                MIPS_CONF3_SM    |
2651                                                MIPS_CONF3_TL);
2652         }
2653         if (cpu_guest_has_conf4) {
2654                 kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
2655                 /* Config4 */
2656                 kvm_save_gc0_config4(cop0);
2657         }
2658         if (cpu_guest_has_conf5) {
2659                 kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
2660                 /* Config5 */
2661                 kvm_save_gc0_config5(cop0);
2662                 /* architecturally writable (e.g. from guest) */
2663                 kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K     |
2664                                                MIPS_CONF5_CV    |
2665                                                MIPS_CONF5_MSAEN |
2666                                                MIPS_CONF5_UFE   |
2667                                                MIPS_CONF5_FRE   |
2668                                                MIPS_CONF5_SBRI  |
2669                                                MIPS_CONF5_UFR);
2670                 /* architecturally read only, but maybe writable from root */
2671                 kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
2672         }
2673
2674         if (cpu_guest_has_contextconfig) {
2675                 /* ContextConfig */
2676                 kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
2677 #ifdef CONFIG_64BIT
2678                 /* XContextConfig */
2679                 /* bits SEGBITS-13+3:4 set */
2680                 kvm_write_sw_gc0_xcontextconfig(cop0,
2681                                         ((1ull << (cpu_vmbits - 13)) - 1) << 4);
2682 #endif
2683         }
2684
2685         /* Implementation dependent, use the legacy layout */
2686         if (cpu_guest_has_segments) {
2687                 /* SegCtl0, SegCtl1, SegCtl2 */
2688                 kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
2689                 kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
2690                                 (_page_cachable_default >> _CACHE_SHIFT) <<
2691                                                 (16 + MIPS_SEGCFG_C_SHIFT));
2692                 kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
2693         }
2694
2695         /* reset HTW registers */
2696         if (cpu_guest_has_htw && cpu_has_mips_r6) {
2697                 /* PWField */
2698                 kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302);
2699                 /* PWSize */
2700                 kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT);
2701         }
2702
2703         /* start with no pending virtual guest interrupts */
2704         if (cpu_has_guestctl2)
2705                 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
2706
2707         /* Put PC at reset vector */
2708         vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
2709
2710         return 0;
2711 }
2712
2713 static void kvm_vz_flush_shadow_all(struct kvm *kvm)
2714 {
2715         if (cpu_has_guestid) {
2716                 /* Flush GuestID for each VCPU individually */
2717                 kvm_flush_remote_tlbs(kvm);
2718         } else {
2719                 /*
2720                  * For each CPU there is a single GPA ASID used by all VCPUs in
2721                  * the VM, so it doesn't make sense for the VCPUs to handle
2722                  * invalidation of these ASIDs individually.
2723                  *
2724                  * Instead mark all CPUs as needing ASID invalidation in
2725                  * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to
2726                  * kick any running VCPUs so they check asid_flush_mask.
2727                  */
2728                 cpumask_setall(&kvm->arch.asid_flush_mask);
2729                 kvm_flush_remote_tlbs(kvm);
2730         }
2731 }
2732
2733 static void kvm_vz_flush_shadow_memslot(struct kvm *kvm,
2734                                         const struct kvm_memory_slot *slot)
2735 {
2736         kvm_vz_flush_shadow_all(kvm);
2737 }
2738
2739 static void kvm_vz_vcpu_reenter(struct kvm_run *run, struct kvm_vcpu *vcpu)
2740 {
2741         int cpu = smp_processor_id();
2742         int preserve_guest_tlb;
2743
2744         preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
2745
2746         if (preserve_guest_tlb)
2747                 kvm_vz_vcpu_save_wired(vcpu);
2748
2749         kvm_vz_vcpu_load_tlb(vcpu, cpu);
2750
2751         if (preserve_guest_tlb)
2752                 kvm_vz_vcpu_load_wired(vcpu);
2753 }
2754
2755 static int kvm_vz_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
2756 {
2757         int cpu = smp_processor_id();
2758         int r;
2759
2760         /* Check if we have any exceptions/interrupts pending */
2761         kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
2762
2763         kvm_vz_check_requests(vcpu, cpu);
2764         kvm_vz_vcpu_load_tlb(vcpu, cpu);
2765         kvm_vz_vcpu_load_wired(vcpu);
2766
2767         r = vcpu->arch.vcpu_run(run, vcpu);
2768
2769         kvm_vz_vcpu_save_wired(vcpu);
2770
2771         return r;
2772 }
2773
2774 static struct kvm_mips_callbacks kvm_vz_callbacks = {
2775         .handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
2776         .handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
2777         .handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
2778         .handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
2779         .handle_addr_err_st = kvm_trap_vz_no_handler,
2780         .handle_addr_err_ld = kvm_trap_vz_no_handler,
2781         .handle_syscall = kvm_trap_vz_no_handler,
2782         .handle_res_inst = kvm_trap_vz_no_handler,
2783         .handle_break = kvm_trap_vz_no_handler,
2784         .handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
2785         .handle_guest_exit = kvm_trap_vz_handle_guest_exit,
2786
2787         .hardware_enable = kvm_vz_hardware_enable,
2788         .hardware_disable = kvm_vz_hardware_disable,
2789         .check_extension = kvm_vz_check_extension,
2790         .vcpu_init = kvm_vz_vcpu_init,
2791         .vcpu_uninit = kvm_vz_vcpu_uninit,
2792         .vcpu_setup = kvm_vz_vcpu_setup,
2793         .flush_shadow_all = kvm_vz_flush_shadow_all,
2794         .flush_shadow_memslot = kvm_vz_flush_shadow_memslot,
2795         .gva_to_gpa = kvm_vz_gva_to_gpa_cb,
2796         .queue_timer_int = kvm_vz_queue_timer_int_cb,
2797         .dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
2798         .queue_io_int = kvm_vz_queue_io_int_cb,
2799         .dequeue_io_int = kvm_vz_dequeue_io_int_cb,
2800         .irq_deliver = kvm_vz_irq_deliver_cb,
2801         .irq_clear = kvm_vz_irq_clear_cb,
2802         .num_regs = kvm_vz_num_regs,
2803         .copy_reg_indices = kvm_vz_copy_reg_indices,
2804         .get_one_reg = kvm_vz_get_one_reg,
2805         .set_one_reg = kvm_vz_set_one_reg,
2806         .vcpu_load = kvm_vz_vcpu_load,
2807         .vcpu_put = kvm_vz_vcpu_put,
2808         .vcpu_run = kvm_vz_vcpu_run,
2809         .vcpu_reenter = kvm_vz_vcpu_reenter,
2810 };
2811
2812 int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
2813 {
2814         if (!cpu_has_vz)
2815                 return -ENODEV;
2816
2817         /*
2818          * VZ requires at least 2 KScratch registers, so it should have been
2819          * possible to allocate pgd_reg.
2820          */
2821         if (WARN(pgd_reg == -1,
2822                  "pgd_reg not allocated even though cpu_has_vz\n"))
2823                 return -ENODEV;
2824
2825         pr_info("Starting KVM with MIPS VZ extensions\n");
2826
2827         *install_callbacks = &kvm_vz_callbacks;
2828         return 0;
2829 }