memblock: remove _virt from APIs returning virtual address
[linux-2.6-block.git] / arch / mips / kernel / setup.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31
32 #include <asm/addrspace.h>
33 #include <asm/bootinfo.h>
34 #include <asm/bugs.h>
35 #include <asm/cache.h>
36 #include <asm/cdmm.h>
37 #include <asm/cpu.h>
38 #include <asm/debug.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/sections.h>
41 #include <asm/setup.h>
42 #include <asm/smp-ops.h>
43 #include <asm/prom.h>
44
45 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
46 const char __section(.appended_dtb) __appended_dtb[0x100000];
47 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
48
49 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
50
51 EXPORT_SYMBOL(cpu_data);
52
53 #ifdef CONFIG_VT
54 struct screen_info screen_info;
55 #endif
56
57 /*
58  * Setup information
59  *
60  * These are initialized so they are in the .data section
61  */
62 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
63
64 EXPORT_SYMBOL(mips_machtype);
65
66 struct boot_mem_map boot_mem_map;
67
68 static char __initdata command_line[COMMAND_LINE_SIZE];
69 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
70
71 #ifdef CONFIG_CMDLINE_BOOL
72 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
73 #endif
74
75 /*
76  * mips_io_port_base is the begin of the address space to which x86 style
77  * I/O ports are mapped.
78  */
79 const unsigned long mips_io_port_base = -1;
80 EXPORT_SYMBOL(mips_io_port_base);
81
82 static struct resource code_resource = { .name = "Kernel code", };
83 static struct resource data_resource = { .name = "Kernel data", };
84 static struct resource bss_resource = { .name = "Kernel bss", };
85
86 static void *detect_magic __initdata = detect_memory_region;
87
88 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
89 unsigned long ARCH_PFN_OFFSET;
90 EXPORT_SYMBOL(ARCH_PFN_OFFSET);
91 #endif
92
93 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
94 {
95         int x = boot_mem_map.nr_map;
96         int i;
97
98         /*
99          * If the region reaches the top of the physical address space, adjust
100          * the size slightly so that (start + size) doesn't overflow
101          */
102         if (start + size - 1 == PHYS_ADDR_MAX)
103                 --size;
104
105         /* Sanity check */
106         if (start + size < start) {
107                 pr_warn("Trying to add an invalid memory region, skipped\n");
108                 return;
109         }
110
111         /*
112          * Try to merge with existing entry, if any.
113          */
114         for (i = 0; i < boot_mem_map.nr_map; i++) {
115                 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
116                 unsigned long top;
117
118                 if (entry->type != type)
119                         continue;
120
121                 if (start + size < entry->addr)
122                         continue;                       /* no overlap */
123
124                 if (entry->addr + entry->size < start)
125                         continue;                       /* no overlap */
126
127                 top = max(entry->addr + entry->size, start + size);
128                 entry->addr = min(entry->addr, start);
129                 entry->size = top - entry->addr;
130
131                 return;
132         }
133
134         if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
135                 pr_err("Ooops! Too many entries in the memory map!\n");
136                 return;
137         }
138
139         boot_mem_map.map[x].addr = start;
140         boot_mem_map.map[x].size = size;
141         boot_mem_map.map[x].type = type;
142         boot_mem_map.nr_map++;
143 }
144
145 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
146 {
147         void *dm = &detect_magic;
148         phys_addr_t size;
149
150         for (size = sz_min; size < sz_max; size <<= 1) {
151                 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
152                         break;
153         }
154
155         pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
156                 ((unsigned long long) size) / SZ_1M,
157                 (unsigned long long) start,
158                 ((unsigned long long) sz_min) / SZ_1M,
159                 ((unsigned long long) sz_max) / SZ_1M);
160
161         add_memory_region(start, size, BOOT_MEM_RAM);
162 }
163
164 static bool __init __maybe_unused memory_region_available(phys_addr_t start,
165                                                           phys_addr_t size)
166 {
167         int i;
168         bool in_ram = false, free = true;
169
170         for (i = 0; i < boot_mem_map.nr_map; i++) {
171                 phys_addr_t start_, end_;
172
173                 start_ = boot_mem_map.map[i].addr;
174                 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
175
176                 switch (boot_mem_map.map[i].type) {
177                 case BOOT_MEM_RAM:
178                         if (start >= start_ && start + size <= end_)
179                                 in_ram = true;
180                         break;
181                 case BOOT_MEM_RESERVED:
182                         if ((start >= start_ && start < end_) ||
183                             (start < start_ && start + size >= start_))
184                                 free = false;
185                         break;
186                 default:
187                         continue;
188                 }
189         }
190
191         return in_ram && free;
192 }
193
194 static void __init print_memory_map(void)
195 {
196         int i;
197         const int field = 2 * sizeof(unsigned long);
198
199         for (i = 0; i < boot_mem_map.nr_map; i++) {
200                 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
201                        field, (unsigned long long) boot_mem_map.map[i].size,
202                        field, (unsigned long long) boot_mem_map.map[i].addr);
203
204                 switch (boot_mem_map.map[i].type) {
205                 case BOOT_MEM_RAM:
206                         printk(KERN_CONT "(usable)\n");
207                         break;
208                 case BOOT_MEM_INIT_RAM:
209                         printk(KERN_CONT "(usable after init)\n");
210                         break;
211                 case BOOT_MEM_ROM_DATA:
212                         printk(KERN_CONT "(ROM data)\n");
213                         break;
214                 case BOOT_MEM_RESERVED:
215                         printk(KERN_CONT "(reserved)\n");
216                         break;
217                 default:
218                         printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
219                         break;
220                 }
221         }
222 }
223
224 /*
225  * Manage initrd
226  */
227 #ifdef CONFIG_BLK_DEV_INITRD
228
229 static int __init rd_start_early(char *p)
230 {
231         unsigned long start = memparse(p, &p);
232
233 #ifdef CONFIG_64BIT
234         /* Guess if the sign extension was forgotten by bootloader */
235         if (start < XKPHYS)
236                 start = (int)start;
237 #endif
238         initrd_start = start;
239         initrd_end += start;
240         return 0;
241 }
242 early_param("rd_start", rd_start_early);
243
244 static int __init rd_size_early(char *p)
245 {
246         initrd_end += memparse(p, &p);
247         return 0;
248 }
249 early_param("rd_size", rd_size_early);
250
251 /* it returns the next free pfn after initrd */
252 static unsigned long __init init_initrd(void)
253 {
254         unsigned long end;
255
256         /*
257          * Board specific code or command line parser should have
258          * already set up initrd_start and initrd_end. In these cases
259          * perfom sanity checks and use them if all looks good.
260          */
261         if (!initrd_start || initrd_end <= initrd_start)
262                 goto disable;
263
264         if (initrd_start & ~PAGE_MASK) {
265                 pr_err("initrd start must be page aligned\n");
266                 goto disable;
267         }
268         if (initrd_start < PAGE_OFFSET) {
269                 pr_err("initrd start < PAGE_OFFSET\n");
270                 goto disable;
271         }
272
273         /*
274          * Sanitize initrd addresses. For example firmware
275          * can't guess if they need to pass them through
276          * 64-bits values if the kernel has been built in pure
277          * 32-bit. We need also to switch from KSEG0 to XKPHYS
278          * addresses now, so the code can now safely use __pa().
279          */
280         end = __pa(initrd_end);
281         initrd_end = (unsigned long)__va(end);
282         initrd_start = (unsigned long)__va(__pa(initrd_start));
283
284         ROOT_DEV = Root_RAM0;
285         return PFN_UP(end);
286 disable:
287         initrd_start = 0;
288         initrd_end = 0;
289         return 0;
290 }
291
292 /* In some conditions (e.g. big endian bootloader with a little endian
293    kernel), the initrd might appear byte swapped.  Try to detect this and
294    byte swap it if needed.  */
295 static void __init maybe_bswap_initrd(void)
296 {
297 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
298         u64 buf;
299
300         /* Check for CPIO signature */
301         if (!memcmp((void *)initrd_start, "070701", 6))
302                 return;
303
304         /* Check for compressed initrd */
305         if (decompress_method((unsigned char *)initrd_start, 8, NULL))
306                 return;
307
308         /* Try again with a byte swapped header */
309         buf = swab64p((u64 *)initrd_start);
310         if (!memcmp(&buf, "070701", 6) ||
311             decompress_method((unsigned char *)(&buf), 8, NULL)) {
312                 unsigned long i;
313
314                 pr_info("Byteswapped initrd detected\n");
315                 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
316                         swab64s((u64 *)i);
317         }
318 #endif
319 }
320
321 static void __init finalize_initrd(void)
322 {
323         unsigned long size = initrd_end - initrd_start;
324
325         if (size == 0) {
326                 printk(KERN_INFO "Initrd not found or empty");
327                 goto disable;
328         }
329         if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
330                 printk(KERN_ERR "Initrd extends beyond end of memory");
331                 goto disable;
332         }
333
334         maybe_bswap_initrd();
335
336         memblock_reserve(__pa(initrd_start), size);
337         initrd_below_start_ok = 1;
338
339         pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
340                 initrd_start, size);
341         return;
342 disable:
343         printk(KERN_CONT " - disabling initrd\n");
344         initrd_start = 0;
345         initrd_end = 0;
346 }
347
348 #else  /* !CONFIG_BLK_DEV_INITRD */
349
350 static unsigned long __init init_initrd(void)
351 {
352         return 0;
353 }
354
355 #define finalize_initrd()       do {} while (0)
356
357 #endif
358
359 /*
360  * Initialize the bootmem allocator. It also setup initrd related data
361  * if needed.
362  */
363 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
364
365 static void __init bootmem_init(void)
366 {
367         init_initrd();
368         finalize_initrd();
369 }
370
371 #else  /* !CONFIG_SGI_IP27 */
372
373 static void __init bootmem_init(void)
374 {
375         unsigned long reserved_end;
376         phys_addr_t ramstart = PHYS_ADDR_MAX;
377         int i;
378
379         /*
380          * Sanity check any INITRD first. We don't take it into account
381          * for bootmem setup initially, rely on the end-of-kernel-code
382          * as our memory range starting point. Once bootmem is inited we
383          * will reserve the area used for the initrd.
384          */
385         init_initrd();
386         reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
387
388         memblock_reserve(PHYS_OFFSET, reserved_end << PAGE_SHIFT);
389
390         /*
391          * max_low_pfn is not a number of pages. The number of pages
392          * of the system is given by 'max_low_pfn - min_low_pfn'.
393          */
394         min_low_pfn = ~0UL;
395         max_low_pfn = 0;
396
397         /*
398          * Find the highest page frame number we have available
399          * and the lowest used RAM address
400          */
401         for (i = 0; i < boot_mem_map.nr_map; i++) {
402                 unsigned long start, end;
403
404                 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
405                         continue;
406
407                 start = PFN_UP(boot_mem_map.map[i].addr);
408                 end = PFN_DOWN(boot_mem_map.map[i].addr
409                                 + boot_mem_map.map[i].size);
410
411                 ramstart = min(ramstart, boot_mem_map.map[i].addr);
412
413 #ifndef CONFIG_HIGHMEM
414                 /*
415                  * Skip highmem here so we get an accurate max_low_pfn if low
416                  * memory stops short of high memory.
417                  * If the region overlaps HIGHMEM_START, end is clipped so
418                  * max_pfn excludes the highmem portion.
419                  */
420                 if (start >= PFN_DOWN(HIGHMEM_START))
421                         continue;
422                 if (end > PFN_DOWN(HIGHMEM_START))
423                         end = PFN_DOWN(HIGHMEM_START);
424 #endif
425
426                 if (end > max_low_pfn)
427                         max_low_pfn = end;
428                 if (start < min_low_pfn)
429                         min_low_pfn = start;
430                 if (end <= reserved_end)
431                         continue;
432 #ifdef CONFIG_BLK_DEV_INITRD
433                 /* Skip zones before initrd and initrd itself */
434                 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
435                         continue;
436 #endif
437         }
438
439         if (min_low_pfn >= max_low_pfn)
440                 panic("Incorrect memory mapping !!!");
441
442 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
443         ARCH_PFN_OFFSET = PFN_UP(ramstart);
444 #else
445         /*
446          * Reserve any memory between the start of RAM and PHYS_OFFSET
447          */
448         if (ramstart > PHYS_OFFSET) {
449                 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
450                                   BOOT_MEM_RESERVED);
451                 memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET);
452         }
453
454         if (min_low_pfn > ARCH_PFN_OFFSET) {
455                 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
456                         (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
457                         min_low_pfn - ARCH_PFN_OFFSET);
458         } else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) {
459                 pr_info("%lu free pages won't be used\n",
460                         ARCH_PFN_OFFSET - min_low_pfn);
461         }
462         min_low_pfn = ARCH_PFN_OFFSET;
463 #endif
464
465         /*
466          * Determine low and high memory ranges
467          */
468         max_pfn = max_low_pfn;
469         if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
470 #ifdef CONFIG_HIGHMEM
471                 highstart_pfn = PFN_DOWN(HIGHMEM_START);
472                 highend_pfn = max_low_pfn;
473 #endif
474                 max_low_pfn = PFN_DOWN(HIGHMEM_START);
475         }
476
477         for (i = 0; i < boot_mem_map.nr_map; i++) {
478                 unsigned long start, end;
479
480                 start = PFN_UP(boot_mem_map.map[i].addr);
481                 end = PFN_DOWN(boot_mem_map.map[i].addr
482                                 + boot_mem_map.map[i].size);
483
484                 if (start <= min_low_pfn)
485                         start = min_low_pfn;
486                 if (start >= end)
487                         continue;
488
489 #ifndef CONFIG_HIGHMEM
490                 if (end > max_low_pfn)
491                         end = max_low_pfn;
492
493                 /*
494                  * ... finally, is the area going away?
495                  */
496                 if (end <= start)
497                         continue;
498 #endif
499
500                 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
501         }
502
503         /*
504          * Register fully available low RAM pages with the bootmem allocator.
505          */
506         for (i = 0; i < boot_mem_map.nr_map; i++) {
507                 unsigned long start, end, size;
508
509                 start = PFN_UP(boot_mem_map.map[i].addr);
510                 end   = PFN_DOWN(boot_mem_map.map[i].addr
511                                     + boot_mem_map.map[i].size);
512
513                 /*
514                  * Reserve usable memory.
515                  */
516                 switch (boot_mem_map.map[i].type) {
517                 case BOOT_MEM_RAM:
518                         break;
519                 case BOOT_MEM_INIT_RAM:
520                         memory_present(0, start, end);
521                         continue;
522                 default:
523                         /* Not usable memory */
524                         if (start > min_low_pfn && end < max_low_pfn)
525                                 memblock_reserve(boot_mem_map.map[i].addr,
526                                                 boot_mem_map.map[i].size);
527
528                         continue;
529                 }
530
531                 /*
532                  * We are rounding up the start address of usable memory
533                  * and at the end of the usable range downwards.
534                  */
535                 if (start >= max_low_pfn)
536                         continue;
537                 if (start < reserved_end)
538                         start = reserved_end;
539                 if (end > max_low_pfn)
540                         end = max_low_pfn;
541
542                 /*
543                  * ... finally, is the area going away?
544                  */
545                 if (end <= start)
546                         continue;
547                 size = end - start;
548
549                 /* Register lowmem ranges */
550                 memory_present(0, start, end);
551         }
552
553 #ifdef CONFIG_RELOCATABLE
554         /*
555          * The kernel reserves all memory below its _end symbol as bootmem,
556          * but the kernel may now be at a much higher address. The memory
557          * between the original and new locations may be returned to the system.
558          */
559         if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
560                 unsigned long offset;
561                 extern void show_kernel_relocation(const char *level);
562
563                 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
564                 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
565
566 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
567                 /*
568                  * This information is necessary when debugging the kernel
569                  * But is a security vulnerability otherwise!
570                  */
571                 show_kernel_relocation(KERN_INFO);
572 #endif
573         }
574 #endif
575
576         /*
577          * Reserve initrd memory if needed.
578          */
579         finalize_initrd();
580 }
581
582 #endif  /* CONFIG_SGI_IP27 */
583
584 static int usermem __initdata;
585
586 static int __init early_parse_mem(char *p)
587 {
588         phys_addr_t start, size;
589
590         /*
591          * If a user specifies memory size, we
592          * blow away any automatically generated
593          * size.
594          */
595         if (usermem == 0) {
596                 boot_mem_map.nr_map = 0;
597                 usermem = 1;
598         }
599         start = 0;
600         size = memparse(p, &p);
601         if (*p == '@')
602                 start = memparse(p + 1, &p);
603
604         add_memory_region(start, size, BOOT_MEM_RAM);
605
606         return 0;
607 }
608 early_param("mem", early_parse_mem);
609
610 static int __init early_parse_memmap(char *p)
611 {
612         char *oldp;
613         u64 start_at, mem_size;
614
615         if (!p)
616                 return -EINVAL;
617
618         if (!strncmp(p, "exactmap", 8)) {
619                 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
620                 return 0;
621         }
622
623         oldp = p;
624         mem_size = memparse(p, &p);
625         if (p == oldp)
626                 return -EINVAL;
627
628         if (*p == '@') {
629                 start_at = memparse(p+1, &p);
630                 add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
631         } else if (*p == '#') {
632                 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
633                 return -EINVAL;
634         } else if (*p == '$') {
635                 start_at = memparse(p+1, &p);
636                 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
637         } else {
638                 pr_err("\"memmap\" invalid format!\n");
639                 return -EINVAL;
640         }
641
642         if (*p == '\0') {
643                 usermem = 1;
644                 return 0;
645         } else
646                 return -EINVAL;
647 }
648 early_param("memmap", early_parse_memmap);
649
650 #ifdef CONFIG_PROC_VMCORE
651 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
652 static int __init early_parse_elfcorehdr(char *p)
653 {
654         int i;
655
656         setup_elfcorehdr = memparse(p, &p);
657
658         for (i = 0; i < boot_mem_map.nr_map; i++) {
659                 unsigned long start = boot_mem_map.map[i].addr;
660                 unsigned long end = (boot_mem_map.map[i].addr +
661                                      boot_mem_map.map[i].size);
662                 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
663                         /*
664                          * Reserve from the elf core header to the end of
665                          * the memory segment, that should all be kdump
666                          * reserved memory.
667                          */
668                         setup_elfcorehdr_size = end - setup_elfcorehdr;
669                         break;
670                 }
671         }
672         /*
673          * If we don't find it in the memory map, then we shouldn't
674          * have to worry about it, as the new kernel won't use it.
675          */
676         return 0;
677 }
678 early_param("elfcorehdr", early_parse_elfcorehdr);
679 #endif
680
681 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
682 {
683         phys_addr_t size;
684         int i;
685
686         size = end - mem;
687         if (!size)
688                 return;
689
690         /* Make sure it is in the boot_mem_map */
691         for (i = 0; i < boot_mem_map.nr_map; i++) {
692                 if (mem >= boot_mem_map.map[i].addr &&
693                     mem < (boot_mem_map.map[i].addr +
694                            boot_mem_map.map[i].size))
695                         return;
696         }
697         add_memory_region(mem, size, type);
698 }
699
700 #ifdef CONFIG_KEXEC
701 static inline unsigned long long get_total_mem(void)
702 {
703         unsigned long long total;
704
705         total = max_pfn - min_low_pfn;
706         return total << PAGE_SHIFT;
707 }
708
709 static void __init mips_parse_crashkernel(void)
710 {
711         unsigned long long total_mem;
712         unsigned long long crash_size, crash_base;
713         int ret;
714
715         total_mem = get_total_mem();
716         ret = parse_crashkernel(boot_command_line, total_mem,
717                                 &crash_size, &crash_base);
718         if (ret != 0 || crash_size <= 0)
719                 return;
720
721         if (!memory_region_available(crash_base, crash_size)) {
722                 pr_warn("Invalid memory region reserved for crash kernel\n");
723                 return;
724         }
725
726         crashk_res.start = crash_base;
727         crashk_res.end   = crash_base + crash_size - 1;
728 }
729
730 static void __init request_crashkernel(struct resource *res)
731 {
732         int ret;
733
734         if (crashk_res.start == crashk_res.end)
735                 return;
736
737         ret = request_resource(res, &crashk_res);
738         if (!ret)
739                 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
740                         (unsigned long)((crashk_res.end -
741                                          crashk_res.start + 1) >> 20),
742                         (unsigned long)(crashk_res.start  >> 20));
743 }
744 #else /* !defined(CONFIG_KEXEC)         */
745 static void __init mips_parse_crashkernel(void)
746 {
747 }
748
749 static void __init request_crashkernel(struct resource *res)
750 {
751 }
752 #endif /* !defined(CONFIG_KEXEC)  */
753
754 #define USE_PROM_CMDLINE        IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
755 #define USE_DTB_CMDLINE         IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
756 #define EXTEND_WITH_PROM        IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
757 #define BUILTIN_EXTEND_WITH_PROM        \
758         IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
759
760 /*
761  * arch_mem_init - initialize memory management subsystem
762  *
763  *  o plat_mem_setup() detects the memory configuration and will record detected
764  *    memory areas using add_memory_region.
765  *
766  * At this stage the memory configuration of the system is known to the
767  * kernel but generic memory management system is still entirely uninitialized.
768  *
769  *  o bootmem_init()
770  *  o sparse_init()
771  *  o paging_init()
772  *  o dma_contiguous_reserve()
773  *
774  * At this stage the bootmem allocator is ready to use.
775  *
776  * NOTE: historically plat_mem_setup did the entire platform initialization.
777  *       This was rather impractical because it meant plat_mem_setup had to
778  * get away without any kind of memory allocator.  To keep old code from
779  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
780  * initialization hook for anything else was introduced.
781  */
782 static void __init arch_mem_init(char **cmdline_p)
783 {
784         struct memblock_region *reg;
785         extern void plat_mem_setup(void);
786
787         /*
788          * Initialize boot_command_line to an innocuous but non-empty string in
789          * order to prevent early_init_dt_scan_chosen() from copying
790          * CONFIG_CMDLINE into it without our knowledge. We handle
791          * CONFIG_CMDLINE ourselves below & don't want to duplicate its
792          * content because repeating arguments can be problematic.
793          */
794         strlcpy(boot_command_line, " ", COMMAND_LINE_SIZE);
795
796         /* call board setup routine */
797         plat_mem_setup();
798
799         /*
800          * Make sure all kernel memory is in the maps.  The "UP" and
801          * "DOWN" are opposite for initdata since if it crosses over
802          * into another memory section you don't want that to be
803          * freed when the initdata is freed.
804          */
805         arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
806                          PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
807                          BOOT_MEM_RAM);
808         arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
809                          PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
810                          BOOT_MEM_INIT_RAM);
811
812         pr_info("Determined physical RAM map:\n");
813         print_memory_map();
814
815 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
816         strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
817 #else
818         if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
819             (USE_DTB_CMDLINE && !boot_command_line[0]))
820                 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
821
822         if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
823                 if (boot_command_line[0])
824                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
825                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
826         }
827
828 #if defined(CONFIG_CMDLINE_BOOL)
829         if (builtin_cmdline[0]) {
830                 if (boot_command_line[0])
831                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
832                 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
833         }
834
835         if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
836                 if (boot_command_line[0])
837                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
838                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
839         }
840 #endif
841 #endif
842         strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
843
844         *cmdline_p = command_line;
845
846         parse_early_param();
847
848         if (usermem) {
849                 pr_info("User-defined physical RAM map:\n");
850                 print_memory_map();
851         }
852
853         early_init_fdt_reserve_self();
854         early_init_fdt_scan_reserved_mem();
855
856         bootmem_init();
857
858         /*
859          * Prevent memblock from allocating high memory.
860          * This cannot be done before max_low_pfn is detected, so up
861          * to this point is possible to only reserve physical memory
862          * with memblock_reserve; memblock_alloc* can be used
863          * only after this point
864          */
865         memblock_set_current_limit(PFN_PHYS(max_low_pfn));
866
867 #ifdef CONFIG_PROC_VMCORE
868         if (setup_elfcorehdr && setup_elfcorehdr_size) {
869                 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
870                        setup_elfcorehdr, setup_elfcorehdr_size);
871                 memblock_reserve(setup_elfcorehdr, setup_elfcorehdr_size);
872         }
873 #endif
874
875         mips_parse_crashkernel();
876 #ifdef CONFIG_KEXEC
877         if (crashk_res.start != crashk_res.end)
878                 memblock_reserve(crashk_res.start,
879                                  crashk_res.end - crashk_res.start + 1);
880 #endif
881         device_tree_init();
882         sparse_init();
883         plat_swiotlb_setup();
884
885         dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
886         /* Tell bootmem about cma reserved memblock section */
887         for_each_memblock(reserved, reg)
888                 if (reg->size != 0)
889                         memblock_reserve(reg->base, reg->size);
890
891         reserve_bootmem_region(__pa_symbol(&__nosave_begin),
892                         __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
893 }
894
895 static void __init resource_init(void)
896 {
897         int i;
898
899         if (UNCAC_BASE != IO_BASE)
900                 return;
901
902         code_resource.start = __pa_symbol(&_text);
903         code_resource.end = __pa_symbol(&_etext) - 1;
904         data_resource.start = __pa_symbol(&_etext);
905         data_resource.end = __pa_symbol(&_edata) - 1;
906         bss_resource.start = __pa_symbol(&__bss_start);
907         bss_resource.end = __pa_symbol(&__bss_stop) - 1;
908
909         for (i = 0; i < boot_mem_map.nr_map; i++) {
910                 struct resource *res;
911                 unsigned long start, end;
912
913                 start = boot_mem_map.map[i].addr;
914                 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
915                 if (start >= HIGHMEM_START)
916                         continue;
917                 if (end >= HIGHMEM_START)
918                         end = HIGHMEM_START - 1;
919
920                 res = alloc_bootmem(sizeof(struct resource));
921
922                 res->start = start;
923                 res->end = end;
924                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
925
926                 switch (boot_mem_map.map[i].type) {
927                 case BOOT_MEM_RAM:
928                 case BOOT_MEM_INIT_RAM:
929                 case BOOT_MEM_ROM_DATA:
930                         res->name = "System RAM";
931                         res->flags |= IORESOURCE_SYSRAM;
932                         break;
933                 case BOOT_MEM_RESERVED:
934                 default:
935                         res->name = "reserved";
936                 }
937
938                 request_resource(&iomem_resource, res);
939
940                 /*
941                  *  We don't know which RAM region contains kernel data,
942                  *  so we try it repeatedly and let the resource manager
943                  *  test it.
944                  */
945                 request_resource(res, &code_resource);
946                 request_resource(res, &data_resource);
947                 request_resource(res, &bss_resource);
948                 request_crashkernel(res);
949         }
950 }
951
952 #ifdef CONFIG_SMP
953 static void __init prefill_possible_map(void)
954 {
955         int i, possible = num_possible_cpus();
956
957         if (possible > nr_cpu_ids)
958                 possible = nr_cpu_ids;
959
960         for (i = 0; i < possible; i++)
961                 set_cpu_possible(i, true);
962         for (; i < NR_CPUS; i++)
963                 set_cpu_possible(i, false);
964
965         nr_cpu_ids = possible;
966 }
967 #else
968 static inline void prefill_possible_map(void) {}
969 #endif
970
971 void __init setup_arch(char **cmdline_p)
972 {
973         cpu_probe();
974         mips_cm_probe();
975         prom_init();
976
977         setup_early_fdc_console();
978 #ifdef CONFIG_EARLY_PRINTK
979         setup_early_printk();
980 #endif
981         cpu_report();
982         check_bugs_early();
983
984 #if defined(CONFIG_VT)
985 #if defined(CONFIG_VGA_CONSOLE)
986         conswitchp = &vga_con;
987 #elif defined(CONFIG_DUMMY_CONSOLE)
988         conswitchp = &dummy_con;
989 #endif
990 #endif
991
992         arch_mem_init(cmdline_p);
993
994         resource_init();
995         plat_smp_setup();
996         prefill_possible_map();
997
998         cpu_cache_init();
999         paging_init();
1000 }
1001
1002 unsigned long kernelsp[NR_CPUS];
1003 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1004
1005 #ifdef CONFIG_USE_OF
1006 unsigned long fw_passed_dtb;
1007 #endif
1008
1009 #ifdef CONFIG_DEBUG_FS
1010 struct dentry *mips_debugfs_dir;
1011 static int __init debugfs_mips(void)
1012 {
1013         struct dentry *d;
1014
1015         d = debugfs_create_dir("mips", NULL);
1016         if (!d)
1017                 return -ENOMEM;
1018         mips_debugfs_dir = d;
1019         return 0;
1020 }
1021 arch_initcall(debugfs_mips);
1022 #endif
1023
1024 #ifdef CONFIG_DMA_MAYBE_COHERENT
1025 /* User defined DMA coherency from command line. */
1026 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
1027 EXPORT_SYMBOL_GPL(coherentio);
1028 int hw_coherentio = 0;  /* Actual hardware supported DMA coherency setting. */
1029
1030 static int __init setcoherentio(char *str)
1031 {
1032         coherentio = IO_COHERENCE_ENABLED;
1033         pr_info("Hardware DMA cache coherency (command line)\n");
1034         return 0;
1035 }
1036 early_param("coherentio", setcoherentio);
1037
1038 static int __init setnocoherentio(char *str)
1039 {
1040         coherentio = IO_COHERENCE_DISABLED;
1041         pr_info("Software DMA cache coherency (command line)\n");
1042         return 0;
1043 }
1044 early_param("nocoherentio", setnocoherentio);
1045 #endif