Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-block.git] / arch / ia64 / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  arch/ia64/kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  * Copyright (C) Intel Corporation, 2005
8  *
9  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
10  *              <anil.s.keshavamurthy@intel.com> adapted from i386
11  */
12
13 #include <linux/kprobes.h>
14 #include <linux/ptrace.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/preempt.h>
18 #include <linux/extable.h>
19 #include <linux/kdebug.h>
20
21 #include <asm/pgtable.h>
22 #include <asm/sections.h>
23 #include <asm/exception.h>
24
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27
28 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
29
30 enum instruction_type {A, I, M, F, B, L, X, u};
31 static enum instruction_type bundle_encoding[32][3] = {
32   { M, I, I },                          /* 00 */
33   { M, I, I },                          /* 01 */
34   { M, I, I },                          /* 02 */
35   { M, I, I },                          /* 03 */
36   { M, L, X },                          /* 04 */
37   { M, L, X },                          /* 05 */
38   { u, u, u },                          /* 06 */
39   { u, u, u },                          /* 07 */
40   { M, M, I },                          /* 08 */
41   { M, M, I },                          /* 09 */
42   { M, M, I },                          /* 0A */
43   { M, M, I },                          /* 0B */
44   { M, F, I },                          /* 0C */
45   { M, F, I },                          /* 0D */
46   { M, M, F },                          /* 0E */
47   { M, M, F },                          /* 0F */
48   { M, I, B },                          /* 10 */
49   { M, I, B },                          /* 11 */
50   { M, B, B },                          /* 12 */
51   { M, B, B },                          /* 13 */
52   { u, u, u },                          /* 14 */
53   { u, u, u },                          /* 15 */
54   { B, B, B },                          /* 16 */
55   { B, B, B },                          /* 17 */
56   { M, M, B },                          /* 18 */
57   { M, M, B },                          /* 19 */
58   { u, u, u },                          /* 1A */
59   { u, u, u },                          /* 1B */
60   { M, F, B },                          /* 1C */
61   { M, F, B },                          /* 1D */
62   { u, u, u },                          /* 1E */
63   { u, u, u },                          /* 1F */
64 };
65
66 /* Insert a long branch code */
67 static void __kprobes set_brl_inst(void *from, void *to)
68 {
69         s64 rel = ((s64) to - (s64) from) >> 4;
70         bundle_t *brl;
71         brl = (bundle_t *) ((u64) from & ~0xf);
72         brl->quad0.template = 0x05;     /* [MLX](stop) */
73         brl->quad0.slot0 = NOP_M_INST;  /* nop.m 0x0 */
74         brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
75         brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
76         /* brl.cond.sptk.many.clr rel<<4 (qp=0) */
77         brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
78 }
79
80 /*
81  * In this function we check to see if the instruction
82  * is IP relative instruction and update the kprobe
83  * inst flag accordingly
84  */
85 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
86                                               uint major_opcode,
87                                               unsigned long kprobe_inst,
88                                               struct kprobe *p)
89 {
90         p->ainsn.inst_flag = 0;
91         p->ainsn.target_br_reg = 0;
92         p->ainsn.slot = slot;
93
94         /* Check for Break instruction
95          * Bits 37:40 Major opcode to be zero
96          * Bits 27:32 X6 to be zero
97          * Bits 32:35 X3 to be zero
98          */
99         if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
100                 /* is a break instruction */
101                 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
102                 return;
103         }
104
105         if (bundle_encoding[template][slot] == B) {
106                 switch (major_opcode) {
107                   case INDIRECT_CALL_OPCODE:
108                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
109                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
110                         break;
111                   case IP_RELATIVE_PREDICT_OPCODE:
112                   case IP_RELATIVE_BRANCH_OPCODE:
113                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
114                         break;
115                   case IP_RELATIVE_CALL_OPCODE:
116                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
117                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
118                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
119                         break;
120                 }
121         } else if (bundle_encoding[template][slot] == X) {
122                 switch (major_opcode) {
123                   case LONG_CALL_OPCODE:
124                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
125                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
126                   break;
127                 }
128         }
129         return;
130 }
131
132 /*
133  * In this function we check to see if the instruction
134  * (qp) cmpx.crel.ctype p1,p2=r2,r3
135  * on which we are inserting kprobe is cmp instruction
136  * with ctype as unc.
137  */
138 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
139                                             uint major_opcode,
140                                             unsigned long kprobe_inst)
141 {
142         cmp_inst_t cmp_inst;
143         uint ctype_unc = 0;
144
145         if (!((bundle_encoding[template][slot] == I) ||
146                 (bundle_encoding[template][slot] == M)))
147                 goto out;
148
149         if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
150                 (major_opcode == 0xE)))
151                 goto out;
152
153         cmp_inst.l = kprobe_inst;
154         if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
155                 /* Integer compare - Register Register (A6 type)*/
156                 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
157                                 &&(cmp_inst.f.c == 1))
158                         ctype_unc = 1;
159         } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
160                 /* Integer compare - Immediate Register (A8 type)*/
161                 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
162                         ctype_unc = 1;
163         }
164 out:
165         return ctype_unc;
166 }
167
168 /*
169  * In this function we check to see if the instruction
170  * on which we are inserting kprobe is supported.
171  * Returns qp value if supported
172  * Returns -EINVAL if unsupported
173  */
174 static int __kprobes unsupported_inst(uint template, uint  slot,
175                                       uint major_opcode,
176                                       unsigned long kprobe_inst,
177                                       unsigned long addr)
178 {
179         int qp;
180
181         qp = kprobe_inst & 0x3f;
182         if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
183                 if (slot == 1 && qp)  {
184                         printk(KERN_WARNING "Kprobes on cmp unc "
185                                         "instruction on slot 1 at <0x%lx> "
186                                         "is not supported\n", addr);
187                         return -EINVAL;
188
189                 }
190                 qp = 0;
191         }
192         else if (bundle_encoding[template][slot] == I) {
193                 if (major_opcode == 0) {
194                         /*
195                          * Check for Integer speculation instruction
196                          * - Bit 33-35 to be equal to 0x1
197                          */
198                         if (((kprobe_inst >> 33) & 0x7) == 1) {
199                                 printk(KERN_WARNING
200                                         "Kprobes on speculation inst at <0x%lx> not supported\n",
201                                                 addr);
202                                 return -EINVAL;
203                         }
204                         /*
205                          * IP relative mov instruction
206                          *  - Bit 27-35 to be equal to 0x30
207                          */
208                         if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
209                                 printk(KERN_WARNING
210                                         "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
211                                                 addr);
212                                 return -EINVAL;
213
214                         }
215                 }
216                 else if ((major_opcode == 5) && !(kprobe_inst & (0xFUl << 33)) &&
217                                 (kprobe_inst & (0x1UL << 12))) {
218                         /* test bit instructions, tbit,tnat,tf
219                          * bit 33-36 to be equal to 0
220                          * bit 12 to be equal to 1
221                          */
222                         if (slot == 1 && qp) {
223                                 printk(KERN_WARNING "Kprobes on test bit "
224                                                 "instruction on slot at <0x%lx> "
225                                                 "is not supported\n", addr);
226                                 return -EINVAL;
227                         }
228                         qp = 0;
229                 }
230         }
231         else if (bundle_encoding[template][slot] == B) {
232                 if (major_opcode == 7) {
233                         /* IP-Relative Predict major code is 7 */
234                         printk(KERN_WARNING "Kprobes on IP-Relative"
235                                         "Predict is not supported\n");
236                         return -EINVAL;
237                 }
238                 else if (major_opcode == 2) {
239                         /* Indirect Predict, major code is 2
240                          * bit 27-32 to be equal to 10 or 11
241                          */
242                         int x6=(kprobe_inst >> 27) & 0x3F;
243                         if ((x6 == 0x10) || (x6 == 0x11)) {
244                                 printk(KERN_WARNING "Kprobes on "
245                                         "Indirect Predict is not supported\n");
246                                 return -EINVAL;
247                         }
248                 }
249         }
250         /* kernel does not use float instruction, here for safety kprobe
251          * will judge whether it is fcmp/flass/float approximation instruction
252          */
253         else if (unlikely(bundle_encoding[template][slot] == F)) {
254                 if ((major_opcode == 4 || major_opcode == 5) &&
255                                 (kprobe_inst  & (0x1 << 12))) {
256                         /* fcmp/fclass unc instruction */
257                         if (slot == 1 && qp) {
258                                 printk(KERN_WARNING "Kprobes on fcmp/fclass "
259                                         "instruction on slot at <0x%lx> "
260                                         "is not supported\n", addr);
261                                 return -EINVAL;
262
263                         }
264                         qp = 0;
265                 }
266                 if ((major_opcode == 0 || major_opcode == 1) &&
267                         (kprobe_inst & (0x1UL << 33))) {
268                         /* float Approximation instruction */
269                         if (slot == 1 && qp) {
270                                 printk(KERN_WARNING "Kprobes on float Approx "
271                                         "instr at <0x%lx> is not supported\n",
272                                                 addr);
273                                 return -EINVAL;
274                         }
275                         qp = 0;
276                 }
277         }
278         return qp;
279 }
280
281 /*
282  * In this function we override the bundle with
283  * the break instruction at the given slot.
284  */
285 static void __kprobes prepare_break_inst(uint template, uint  slot,
286                                          uint major_opcode,
287                                          unsigned long kprobe_inst,
288                                          struct kprobe *p,
289                                          int qp)
290 {
291         unsigned long break_inst = BREAK_INST;
292         bundle_t *bundle = &p->opcode.bundle;
293
294         /*
295          * Copy the original kprobe_inst qualifying predicate(qp)
296          * to the break instruction
297          */
298         break_inst |= qp;
299
300         switch (slot) {
301           case 0:
302                 bundle->quad0.slot0 = break_inst;
303                 break;
304           case 1:
305                 bundle->quad0.slot1_p0 = break_inst;
306                 bundle->quad1.slot1_p1 = break_inst >> (64-46);
307                 break;
308           case 2:
309                 bundle->quad1.slot2 = break_inst;
310                 break;
311         }
312
313         /*
314          * Update the instruction flag, so that we can
315          * emulate the instruction properly after we
316          * single step on original instruction
317          */
318         update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
319 }
320
321 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
322                 unsigned long *kprobe_inst, uint *major_opcode)
323 {
324         unsigned long kprobe_inst_p0, kprobe_inst_p1;
325         unsigned int template;
326
327         template = bundle->quad0.template;
328
329         switch (slot) {
330           case 0:
331                 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
332                 *kprobe_inst = bundle->quad0.slot0;
333                   break;
334           case 1:
335                 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
336                 kprobe_inst_p0 = bundle->quad0.slot1_p0;
337                 kprobe_inst_p1 = bundle->quad1.slot1_p1;
338                 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
339                 break;
340           case 2:
341                 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
342                 *kprobe_inst = bundle->quad1.slot2;
343                 break;
344         }
345 }
346
347 /* Returns non-zero if the addr is in the Interrupt Vector Table */
348 static int __kprobes in_ivt_functions(unsigned long addr)
349 {
350         return (addr >= (unsigned long)__start_ivt_text
351                 && addr < (unsigned long)__end_ivt_text);
352 }
353
354 static int __kprobes valid_kprobe_addr(int template, int slot,
355                                        unsigned long addr)
356 {
357         if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
358                 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
359                                 "at 0x%lx\n", addr);
360                 return -EINVAL;
361         }
362
363         if (in_ivt_functions(addr)) {
364                 printk(KERN_WARNING "Kprobes can't be inserted inside "
365                                 "IVT functions at 0x%lx\n", addr);
366                 return -EINVAL;
367         }
368
369         return 0;
370 }
371
372 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
373 {
374         unsigned int i;
375         i = atomic_add_return(1, &kcb->prev_kprobe_index);
376         kcb->prev_kprobe[i-1].kp = kprobe_running();
377         kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
378 }
379
380 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
381 {
382         unsigned int i;
383         i = atomic_read(&kcb->prev_kprobe_index);
384         __this_cpu_write(current_kprobe, kcb->prev_kprobe[i-1].kp);
385         kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
386         atomic_sub(1, &kcb->prev_kprobe_index);
387 }
388
389 static void __kprobes set_current_kprobe(struct kprobe *p,
390                         struct kprobe_ctlblk *kcb)
391 {
392         __this_cpu_write(current_kprobe, p);
393 }
394
395 static void kretprobe_trampoline(void)
396 {
397 }
398
399 /*
400  * At this point the target function has been tricked into
401  * returning into our trampoline.  Lookup the associated instance
402  * and then:
403  *    - call the handler function
404  *    - cleanup by marking the instance as unused
405  *    - long jump back to the original return address
406  */
407 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
408 {
409         struct kretprobe_instance *ri = NULL;
410         struct hlist_head *head, empty_rp;
411         struct hlist_node *tmp;
412         unsigned long flags, orig_ret_address = 0;
413         unsigned long trampoline_address =
414                 ((struct fnptr *)kretprobe_trampoline)->ip;
415
416         INIT_HLIST_HEAD(&empty_rp);
417         kretprobe_hash_lock(current, &head, &flags);
418
419         /*
420          * It is possible to have multiple instances associated with a given
421          * task either because an multiple functions in the call path
422          * have a return probe installed on them, and/or more than one return
423          * return probe was registered for a target function.
424          *
425          * We can handle this because:
426          *     - instances are always inserted at the head of the list
427          *     - when multiple return probes are registered for the same
428          *       function, the first instance's ret_addr will point to the
429          *       real return address, and all the rest will point to
430          *       kretprobe_trampoline
431          */
432         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
433                 if (ri->task != current)
434                         /* another task is sharing our hash bucket */
435                         continue;
436
437                 orig_ret_address = (unsigned long)ri->ret_addr;
438                 if (orig_ret_address != trampoline_address)
439                         /*
440                          * This is the real return address. Any other
441                          * instances associated with this task are for
442                          * other calls deeper on the call stack
443                          */
444                         break;
445         }
446
447         regs->cr_iip = orig_ret_address;
448
449         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
450                 if (ri->task != current)
451                         /* another task is sharing our hash bucket */
452                         continue;
453
454                 if (ri->rp && ri->rp->handler)
455                         ri->rp->handler(ri, regs);
456
457                 orig_ret_address = (unsigned long)ri->ret_addr;
458                 recycle_rp_inst(ri, &empty_rp);
459
460                 if (orig_ret_address != trampoline_address)
461                         /*
462                          * This is the real return address. Any other
463                          * instances associated with this task are for
464                          * other calls deeper on the call stack
465                          */
466                         break;
467         }
468         kretprobe_assert(ri, orig_ret_address, trampoline_address);
469
470         kretprobe_hash_unlock(current, &flags);
471
472         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
473                 hlist_del(&ri->hlist);
474                 kfree(ri);
475         }
476         /*
477          * By returning a non-zero value, we are telling
478          * kprobe_handler() that we don't want the post_handler
479          * to run (and have re-enabled preemption)
480          */
481         return 1;
482 }
483
484 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
485                                       struct pt_regs *regs)
486 {
487         ri->ret_addr = (kprobe_opcode_t *)regs->b0;
488
489         /* Replace the return addr with trampoline addr */
490         regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
491 }
492
493 /* Check the instruction in the slot is break */
494 static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
495 {
496         unsigned int major_opcode;
497         unsigned int template = bundle->quad0.template;
498         unsigned long kprobe_inst;
499
500         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
501         if (slot == 1 && bundle_encoding[template][1] == L)
502                 slot++;
503
504         /* Get Kprobe probe instruction at given slot*/
505         get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
506
507         /* For break instruction,
508          * Bits 37:40 Major opcode to be zero
509          * Bits 27:32 X6 to be zero
510          * Bits 32:35 X3 to be zero
511          */
512         if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
513                 /* Not a break instruction */
514                 return 0;
515         }
516
517         /* Is a break instruction */
518         return 1;
519 }
520
521 /*
522  * In this function, we check whether the target bundle modifies IP or
523  * it triggers an exception. If so, it cannot be boostable.
524  */
525 static int __kprobes can_boost(bundle_t *bundle, uint slot,
526                                unsigned long bundle_addr)
527 {
528         unsigned int template = bundle->quad0.template;
529
530         do {
531                 if (search_exception_tables(bundle_addr + slot) ||
532                     __is_ia64_break_inst(bundle, slot))
533                         return 0;       /* exception may occur in this bundle*/
534         } while ((++slot) < 3);
535         template &= 0x1e;
536         if (template >= 0x10 /* including B unit */ ||
537             template == 0x04 /* including X unit */ ||
538             template == 0x06) /* undefined */
539                 return 0;
540
541         return 1;
542 }
543
544 /* Prepare long jump bundle and disables other boosters if need */
545 static void __kprobes prepare_booster(struct kprobe *p)
546 {
547         unsigned long addr = (unsigned long)p->addr & ~0xFULL;
548         unsigned int slot = (unsigned long)p->addr & 0xf;
549         struct kprobe *other_kp;
550
551         if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
552                 set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
553                 p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
554         }
555
556         /* disables boosters in previous slots */
557         for (; addr < (unsigned long)p->addr; addr++) {
558                 other_kp = get_kprobe((void *)addr);
559                 if (other_kp)
560                         other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
561         }
562 }
563
564 int __kprobes arch_prepare_kprobe(struct kprobe *p)
565 {
566         unsigned long addr = (unsigned long) p->addr;
567         unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
568         unsigned long kprobe_inst=0;
569         unsigned int slot = addr & 0xf, template, major_opcode = 0;
570         bundle_t *bundle;
571         int qp;
572
573         bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
574         template = bundle->quad0.template;
575
576         if(valid_kprobe_addr(template, slot, addr))
577                 return -EINVAL;
578
579         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
580         if (slot == 1 && bundle_encoding[template][1] == L)
581                 slot++;
582
583         /* Get kprobe_inst and major_opcode from the bundle */
584         get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
585
586         qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
587         if (qp < 0)
588                 return -EINVAL;
589
590         p->ainsn.insn = get_insn_slot();
591         if (!p->ainsn.insn)
592                 return -ENOMEM;
593         memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
594         memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
595
596         prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
597
598         prepare_booster(p);
599
600         return 0;
601 }
602
603 void __kprobes arch_arm_kprobe(struct kprobe *p)
604 {
605         unsigned long arm_addr;
606         bundle_t *src, *dest;
607
608         arm_addr = ((unsigned long)p->addr) & ~0xFUL;
609         dest = &((kprobe_opcode_t *)arm_addr)->bundle;
610         src = &p->opcode.bundle;
611
612         flush_icache_range((unsigned long)p->ainsn.insn,
613                            (unsigned long)p->ainsn.insn +
614                            sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
615
616         switch (p->ainsn.slot) {
617                 case 0:
618                         dest->quad0.slot0 = src->quad0.slot0;
619                         break;
620                 case 1:
621                         dest->quad1.slot1_p1 = src->quad1.slot1_p1;
622                         break;
623                 case 2:
624                         dest->quad1.slot2 = src->quad1.slot2;
625                         break;
626         }
627         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
628 }
629
630 void __kprobes arch_disarm_kprobe(struct kprobe *p)
631 {
632         unsigned long arm_addr;
633         bundle_t *src, *dest;
634
635         arm_addr = ((unsigned long)p->addr) & ~0xFUL;
636         dest = &((kprobe_opcode_t *)arm_addr)->bundle;
637         /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
638         src = &p->ainsn.insn->bundle;
639         switch (p->ainsn.slot) {
640                 case 0:
641                         dest->quad0.slot0 = src->quad0.slot0;
642                         break;
643                 case 1:
644                         dest->quad1.slot1_p1 = src->quad1.slot1_p1;
645                         break;
646                 case 2:
647                         dest->quad1.slot2 = src->quad1.slot2;
648                         break;
649         }
650         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
651 }
652
653 void __kprobes arch_remove_kprobe(struct kprobe *p)
654 {
655         if (p->ainsn.insn) {
656                 free_insn_slot(p->ainsn.insn,
657                                p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
658                 p->ainsn.insn = NULL;
659         }
660 }
661 /*
662  * We are resuming execution after a single step fault, so the pt_regs
663  * structure reflects the register state after we executed the instruction
664  * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
665  * the ip to point back to the original stack address. To set the IP address
666  * to original stack address, handle the case where we need to fixup the
667  * relative IP address and/or fixup branch register.
668  */
669 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
670 {
671         unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
672         unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
673         unsigned long template;
674         int slot = ((unsigned long)p->addr & 0xf);
675
676         template = p->ainsn.insn->bundle.quad0.template;
677
678         if (slot == 1 && bundle_encoding[template][1] == L)
679                 slot = 2;
680
681         if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
682
683                 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
684                         /* Fix relative IP address */
685                         regs->cr_iip = (regs->cr_iip - bundle_addr) +
686                                         resume_addr;
687                 }
688
689                 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
690                 /*
691                  * Fix target branch register, software convention is
692                  * to use either b0 or b6 or b7, so just checking
693                  * only those registers
694                  */
695                         switch (p->ainsn.target_br_reg) {
696                         case 0:
697                                 if ((regs->b0 == bundle_addr) ||
698                                         (regs->b0 == bundle_addr + 0x10)) {
699                                         regs->b0 = (regs->b0 - bundle_addr) +
700                                                 resume_addr;
701                                 }
702                                 break;
703                         case 6:
704                                 if ((regs->b6 == bundle_addr) ||
705                                         (regs->b6 == bundle_addr + 0x10)) {
706                                         regs->b6 = (regs->b6 - bundle_addr) +
707                                                 resume_addr;
708                                 }
709                                 break;
710                         case 7:
711                                 if ((regs->b7 == bundle_addr) ||
712                                         (regs->b7 == bundle_addr + 0x10)) {
713                                         regs->b7 = (regs->b7 - bundle_addr) +
714                                                 resume_addr;
715                                 }
716                                 break;
717                         } /* end switch */
718                 }
719                 goto turn_ss_off;
720         }
721
722         if (slot == 2) {
723                 if (regs->cr_iip == bundle_addr + 0x10) {
724                         regs->cr_iip = resume_addr + 0x10;
725                 }
726         } else {
727                 if (regs->cr_iip == bundle_addr) {
728                         regs->cr_iip = resume_addr;
729                 }
730         }
731
732 turn_ss_off:
733         /* Turn off Single Step bit */
734         ia64_psr(regs)->ss = 0;
735 }
736
737 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
738 {
739         unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
740         unsigned long slot = (unsigned long)p->addr & 0xf;
741
742         /* single step inline if break instruction */
743         if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
744                 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
745         else
746                 regs->cr_iip = bundle_addr & ~0xFULL;
747
748         if (slot > 2)
749                 slot = 0;
750
751         ia64_psr(regs)->ri = slot;
752
753         /* turn on single stepping */
754         ia64_psr(regs)->ss = 1;
755 }
756
757 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
758 {
759         unsigned int slot = ia64_psr(regs)->ri;
760         unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
761         bundle_t bundle;
762
763         memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
764
765         return __is_ia64_break_inst(&bundle, slot);
766 }
767
768 static int __kprobes pre_kprobes_handler(struct die_args *args)
769 {
770         struct kprobe *p;
771         int ret = 0;
772         struct pt_regs *regs = args->regs;
773         kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
774         struct kprobe_ctlblk *kcb;
775
776         /*
777          * We don't want to be preempted for the entire
778          * duration of kprobe processing
779          */
780         preempt_disable();
781         kcb = get_kprobe_ctlblk();
782
783         /* Handle recursion cases */
784         if (kprobe_running()) {
785                 p = get_kprobe(addr);
786                 if (p) {
787                         if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
788                              (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
789                                 ia64_psr(regs)->ss = 0;
790                                 goto no_kprobe;
791                         }
792                         /* We have reentered the pre_kprobe_handler(), since
793                          * another probe was hit while within the handler.
794                          * We here save the original kprobes variables and
795                          * just single step on the instruction of the new probe
796                          * without calling any user handlers.
797                          */
798                         save_previous_kprobe(kcb);
799                         set_current_kprobe(p, kcb);
800                         kprobes_inc_nmissed_count(p);
801                         prepare_ss(p, regs);
802                         kcb->kprobe_status = KPROBE_REENTER;
803                         return 1;
804                 } else if (!is_ia64_break_inst(regs)) {
805                         /* The breakpoint instruction was removed by
806                          * another cpu right after we hit, no further
807                          * handling of this interrupt is appropriate
808                          */
809                         ret = 1;
810                         goto no_kprobe;
811                 } else {
812                         /* Not our break */
813                         goto no_kprobe;
814                 }
815         }
816
817         p = get_kprobe(addr);
818         if (!p) {
819                 if (!is_ia64_break_inst(regs)) {
820                         /*
821                          * The breakpoint instruction was removed right
822                          * after we hit it.  Another cpu has removed
823                          * either a probepoint or a debugger breakpoint
824                          * at this address.  In either case, no further
825                          * handling of this interrupt is appropriate.
826                          */
827                         ret = 1;
828
829                 }
830
831                 /* Not one of our break, let kernel handle it */
832                 goto no_kprobe;
833         }
834
835         set_current_kprobe(p, kcb);
836         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
837
838         if (p->pre_handler && p->pre_handler(p, regs)) {
839                 reset_current_kprobe();
840                 preempt_enable_no_resched();
841                 return 1;
842         }
843
844 #if !defined(CONFIG_PREEMPT)
845         if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
846                 /* Boost up -- we can execute copied instructions directly */
847                 ia64_psr(regs)->ri = p->ainsn.slot;
848                 regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
849                 /* turn single stepping off */
850                 ia64_psr(regs)->ss = 0;
851
852                 reset_current_kprobe();
853                 preempt_enable_no_resched();
854                 return 1;
855         }
856 #endif
857         prepare_ss(p, regs);
858         kcb->kprobe_status = KPROBE_HIT_SS;
859         return 1;
860
861 no_kprobe:
862         preempt_enable_no_resched();
863         return ret;
864 }
865
866 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
867 {
868         struct kprobe *cur = kprobe_running();
869         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
870
871         if (!cur)
872                 return 0;
873
874         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
875                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
876                 cur->post_handler(cur, regs, 0);
877         }
878
879         resume_execution(cur, regs);
880
881         /*Restore back the original saved kprobes variables and continue. */
882         if (kcb->kprobe_status == KPROBE_REENTER) {
883                 restore_previous_kprobe(kcb);
884                 goto out;
885         }
886         reset_current_kprobe();
887
888 out:
889         preempt_enable_no_resched();
890         return 1;
891 }
892
893 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
894 {
895         struct kprobe *cur = kprobe_running();
896         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
897
898
899         switch(kcb->kprobe_status) {
900         case KPROBE_HIT_SS:
901         case KPROBE_REENTER:
902                 /*
903                  * We are here because the instruction being single
904                  * stepped caused a page fault. We reset the current
905                  * kprobe and the instruction pointer points back to
906                  * the probe address and allow the page fault handler
907                  * to continue as a normal page fault.
908                  */
909                 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
910                 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
911                 if (kcb->kprobe_status == KPROBE_REENTER)
912                         restore_previous_kprobe(kcb);
913                 else
914                         reset_current_kprobe();
915                 preempt_enable_no_resched();
916                 break;
917         case KPROBE_HIT_ACTIVE:
918         case KPROBE_HIT_SSDONE:
919                 /*
920                  * We increment the nmissed count for accounting,
921                  * we can also use npre/npostfault count for accounting
922                  * these specific fault cases.
923                  */
924                 kprobes_inc_nmissed_count(cur);
925
926                 /*
927                  * We come here because instructions in the pre/post
928                  * handler caused the page_fault, this could happen
929                  * if handler tries to access user space by
930                  * copy_from_user(), get_user() etc. Let the
931                  * user-specified handler try to fix it first.
932                  */
933                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
934                         return 1;
935                 /*
936                  * In case the user-specified fault handler returned
937                  * zero, try to fix up.
938                  */
939                 if (ia64_done_with_exception(regs))
940                         return 1;
941
942                 /*
943                  * Let ia64_do_page_fault() fix it.
944                  */
945                 break;
946         default:
947                 break;
948         }
949
950         return 0;
951 }
952
953 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
954                                        unsigned long val, void *data)
955 {
956         struct die_args *args = (struct die_args *)data;
957         int ret = NOTIFY_DONE;
958
959         if (args->regs && user_mode(args->regs))
960                 return ret;
961
962         switch(val) {
963         case DIE_BREAK:
964                 /* err is break number from ia64_bad_break() */
965                 if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
966                         || args->err == 0)
967                         if (pre_kprobes_handler(args))
968                                 ret = NOTIFY_STOP;
969                 break;
970         case DIE_FAULT:
971                 /* err is vector number from ia64_fault() */
972                 if (args->err == 36)
973                         if (post_kprobes_handler(args->regs))
974                                 ret = NOTIFY_STOP;
975                 break;
976         default:
977                 break;
978         }
979         return ret;
980 }
981
982 unsigned long arch_deref_entry_point(void *entry)
983 {
984         return ((struct fnptr *)entry)->ip;
985 }
986
987 static struct kprobe trampoline_p = {
988         .pre_handler = trampoline_probe_handler
989 };
990
991 int __init arch_init_kprobes(void)
992 {
993         trampoline_p.addr =
994                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
995         return register_kprobe(&trampoline_p);
996 }
997
998 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
999 {
1000         if (p->addr ==
1001                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1002                 return 1;
1003
1004         return 0;
1005 }