2 * arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces
4 * Copyright 2005-2008 Analog Devices Inc.
6 * Licensed under the GPL-2 or later.
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/smp.h>
13 #include <linux/spinlock.h>
14 #include <linux/delay.h>
15 #include <linux/ptrace.h> /* for linux pt_regs struct */
16 #include <linux/kgdb.h>
17 #include <linux/console.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/irq.h>
21 #include <linux/uaccess.h>
22 #include <asm/system.h>
23 #include <asm/traps.h>
24 #include <asm/blackfin.h>
27 /* Put the error code here just in case the user cares. */
29 /* Likewise, the vector number here (since GDB only gets the signal
30 number through the usual means, and that's not very specific). */
31 int gdb_bfin_vector = -1;
33 #if KGDB_MAX_NO_CPUS != 8
34 #error change the definition of slavecpulocks
37 #define IN_MEM(addr, size, l1_addr, l1_size) \
39 unsigned long __addr = (unsigned long)(addr); \
40 (l1_size && __addr >= l1_addr && __addr + (size) <= l1_addr + l1_size); \
42 #define ASYNC_BANK_SIZE \
43 (ASYNC_BANK0_SIZE + ASYNC_BANK1_SIZE + \
44 ASYNC_BANK2_SIZE + ASYNC_BANK3_SIZE)
46 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
48 gdb_regs[BFIN_R0] = regs->r0;
49 gdb_regs[BFIN_R1] = regs->r1;
50 gdb_regs[BFIN_R2] = regs->r2;
51 gdb_regs[BFIN_R3] = regs->r3;
52 gdb_regs[BFIN_R4] = regs->r4;
53 gdb_regs[BFIN_R5] = regs->r5;
54 gdb_regs[BFIN_R6] = regs->r6;
55 gdb_regs[BFIN_R7] = regs->r7;
56 gdb_regs[BFIN_P0] = regs->p0;
57 gdb_regs[BFIN_P1] = regs->p1;
58 gdb_regs[BFIN_P2] = regs->p2;
59 gdb_regs[BFIN_P3] = regs->p3;
60 gdb_regs[BFIN_P4] = regs->p4;
61 gdb_regs[BFIN_P5] = regs->p5;
62 gdb_regs[BFIN_SP] = regs->reserved;
63 gdb_regs[BFIN_FP] = regs->fp;
64 gdb_regs[BFIN_I0] = regs->i0;
65 gdb_regs[BFIN_I1] = regs->i1;
66 gdb_regs[BFIN_I2] = regs->i2;
67 gdb_regs[BFIN_I3] = regs->i3;
68 gdb_regs[BFIN_M0] = regs->m0;
69 gdb_regs[BFIN_M1] = regs->m1;
70 gdb_regs[BFIN_M2] = regs->m2;
71 gdb_regs[BFIN_M3] = regs->m3;
72 gdb_regs[BFIN_B0] = regs->b0;
73 gdb_regs[BFIN_B1] = regs->b1;
74 gdb_regs[BFIN_B2] = regs->b2;
75 gdb_regs[BFIN_B3] = regs->b3;
76 gdb_regs[BFIN_L0] = regs->l0;
77 gdb_regs[BFIN_L1] = regs->l1;
78 gdb_regs[BFIN_L2] = regs->l2;
79 gdb_regs[BFIN_L3] = regs->l3;
80 gdb_regs[BFIN_A0_DOT_X] = regs->a0x;
81 gdb_regs[BFIN_A0_DOT_W] = regs->a0w;
82 gdb_regs[BFIN_A1_DOT_X] = regs->a1x;
83 gdb_regs[BFIN_A1_DOT_W] = regs->a1w;
84 gdb_regs[BFIN_ASTAT] = regs->astat;
85 gdb_regs[BFIN_RETS] = regs->rets;
86 gdb_regs[BFIN_LC0] = regs->lc0;
87 gdb_regs[BFIN_LT0] = regs->lt0;
88 gdb_regs[BFIN_LB0] = regs->lb0;
89 gdb_regs[BFIN_LC1] = regs->lc1;
90 gdb_regs[BFIN_LT1] = regs->lt1;
91 gdb_regs[BFIN_LB1] = regs->lb1;
92 gdb_regs[BFIN_CYCLES] = 0;
93 gdb_regs[BFIN_CYCLES2] = 0;
94 gdb_regs[BFIN_USP] = regs->usp;
95 gdb_regs[BFIN_SEQSTAT] = regs->seqstat;
96 gdb_regs[BFIN_SYSCFG] = regs->syscfg;
97 gdb_regs[BFIN_RETI] = regs->pc;
98 gdb_regs[BFIN_RETX] = regs->retx;
99 gdb_regs[BFIN_RETN] = regs->retn;
100 gdb_regs[BFIN_RETE] = regs->rete;
101 gdb_regs[BFIN_PC] = regs->pc;
102 gdb_regs[BFIN_CC] = 0;
103 gdb_regs[BFIN_EXTRA1] = 0;
104 gdb_regs[BFIN_EXTRA2] = 0;
105 gdb_regs[BFIN_EXTRA3] = 0;
106 gdb_regs[BFIN_IPEND] = regs->ipend;
110 * Extracts ebp, esp and eip values understandable by gdb from the values
111 * saved by switch_to.
112 * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
113 * prior to entering switch_to is 8 greater than the value that is saved.
114 * If switch_to changes, change following code appropriately.
116 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
118 gdb_regs[BFIN_SP] = p->thread.ksp;
119 gdb_regs[BFIN_PC] = p->thread.pc;
120 gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat;
123 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
125 regs->r0 = gdb_regs[BFIN_R0];
126 regs->r1 = gdb_regs[BFIN_R1];
127 regs->r2 = gdb_regs[BFIN_R2];
128 regs->r3 = gdb_regs[BFIN_R3];
129 regs->r4 = gdb_regs[BFIN_R4];
130 regs->r5 = gdb_regs[BFIN_R5];
131 regs->r6 = gdb_regs[BFIN_R6];
132 regs->r7 = gdb_regs[BFIN_R7];
133 regs->p0 = gdb_regs[BFIN_P0];
134 regs->p1 = gdb_regs[BFIN_P1];
135 regs->p2 = gdb_regs[BFIN_P2];
136 regs->p3 = gdb_regs[BFIN_P3];
137 regs->p4 = gdb_regs[BFIN_P4];
138 regs->p5 = gdb_regs[BFIN_P5];
139 regs->fp = gdb_regs[BFIN_FP];
140 regs->i0 = gdb_regs[BFIN_I0];
141 regs->i1 = gdb_regs[BFIN_I1];
142 regs->i2 = gdb_regs[BFIN_I2];
143 regs->i3 = gdb_regs[BFIN_I3];
144 regs->m0 = gdb_regs[BFIN_M0];
145 regs->m1 = gdb_regs[BFIN_M1];
146 regs->m2 = gdb_regs[BFIN_M2];
147 regs->m3 = gdb_regs[BFIN_M3];
148 regs->b0 = gdb_regs[BFIN_B0];
149 regs->b1 = gdb_regs[BFIN_B1];
150 regs->b2 = gdb_regs[BFIN_B2];
151 regs->b3 = gdb_regs[BFIN_B3];
152 regs->l0 = gdb_regs[BFIN_L0];
153 regs->l1 = gdb_regs[BFIN_L1];
154 regs->l2 = gdb_regs[BFIN_L2];
155 regs->l3 = gdb_regs[BFIN_L3];
156 regs->a0x = gdb_regs[BFIN_A0_DOT_X];
157 regs->a0w = gdb_regs[BFIN_A0_DOT_W];
158 regs->a1x = gdb_regs[BFIN_A1_DOT_X];
159 regs->a1w = gdb_regs[BFIN_A1_DOT_W];
160 regs->rets = gdb_regs[BFIN_RETS];
161 regs->lc0 = gdb_regs[BFIN_LC0];
162 regs->lt0 = gdb_regs[BFIN_LT0];
163 regs->lb0 = gdb_regs[BFIN_LB0];
164 regs->lc1 = gdb_regs[BFIN_LC1];
165 regs->lt1 = gdb_regs[BFIN_LT1];
166 regs->lb1 = gdb_regs[BFIN_LB1];
167 regs->usp = gdb_regs[BFIN_USP];
168 regs->syscfg = gdb_regs[BFIN_SYSCFG];
169 regs->retx = gdb_regs[BFIN_PC];
170 regs->retn = gdb_regs[BFIN_RETN];
171 regs->rete = gdb_regs[BFIN_RETE];
172 regs->pc = gdb_regs[BFIN_PC];
174 #if 0 /* can't change these */
175 regs->astat = gdb_regs[BFIN_ASTAT];
176 regs->seqstat = gdb_regs[BFIN_SEQSTAT];
177 regs->ipend = gdb_regs[BFIN_IPEND];
181 struct hw_breakpoint {
182 unsigned int occupied:1;
184 unsigned int enabled:1;
186 unsigned int dataacc:2;
187 unsigned short count;
189 } breakinfo[HW_WATCHPOINT_NUM];
191 int bfin_set_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
198 case BP_HARDWARE_BREAKPOINT:
199 bfin_type = TYPE_INST_WATCHPOINT;
201 case BP_WRITE_WATCHPOINT:
203 bfin_type = TYPE_DATA_WATCHPOINT;
205 case BP_READ_WATCHPOINT:
207 bfin_type = TYPE_DATA_WATCHPOINT;
209 case BP_ACCESS_WATCHPOINT:
211 bfin_type = TYPE_DATA_WATCHPOINT;
217 /* Becasue hardware data watchpoint impelemented in current
218 * Blackfin can not trigger an exception event as the hardware
219 * instrction watchpoint does, we ignaore all data watch point here.
220 * They can be turned on easily after future blackfin design
221 * supports this feature.
223 for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
224 if (bfin_type == breakinfo[breakno].type
225 && !breakinfo[breakno].occupied) {
226 breakinfo[breakno].occupied = 1;
227 breakinfo[breakno].skip = 0;
228 breakinfo[breakno].enabled = 1;
229 breakinfo[breakno].addr = addr;
230 breakinfo[breakno].dataacc = dataacc;
231 breakinfo[breakno].count = 0;
238 int bfin_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
244 case BP_HARDWARE_BREAKPOINT:
245 bfin_type = TYPE_INST_WATCHPOINT;
247 case BP_WRITE_WATCHPOINT:
248 case BP_READ_WATCHPOINT:
249 case BP_ACCESS_WATCHPOINT:
250 bfin_type = TYPE_DATA_WATCHPOINT;
255 for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
256 if (bfin_type == breakinfo[breakno].type
257 && breakinfo[breakno].occupied
258 && breakinfo[breakno].addr == addr) {
259 breakinfo[breakno].occupied = 0;
260 breakinfo[breakno].enabled = 0;
266 void bfin_remove_all_hw_break(void)
270 memset(breakinfo, 0, sizeof(struct hw_breakpoint)*HW_WATCHPOINT_NUM);
272 for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
273 breakinfo[breakno].type = TYPE_INST_WATCHPOINT;
274 for (; breakno < HW_WATCHPOINT_NUM; breakno++)
275 breakinfo[breakno].type = TYPE_DATA_WATCHPOINT;
278 void bfin_correct_hw_break(void)
281 unsigned int wpiactl = 0;
282 unsigned int wpdactl = 0;
285 for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
286 if (breakinfo[breakno].enabled) {
291 wpiactl |= WPIAEN0|WPICNTEN0;
292 bfin_write_WPIA0(breakinfo[breakno].addr);
293 bfin_write_WPIACNT0(breakinfo[breakno].count
297 wpiactl |= WPIAEN1|WPICNTEN1;
298 bfin_write_WPIA1(breakinfo[breakno].addr);
299 bfin_write_WPIACNT1(breakinfo[breakno].count
303 wpiactl |= WPIAEN2|WPICNTEN2;
304 bfin_write_WPIA2(breakinfo[breakno].addr);
305 bfin_write_WPIACNT2(breakinfo[breakno].count
309 wpiactl |= WPIAEN3|WPICNTEN3;
310 bfin_write_WPIA3(breakinfo[breakno].addr);
311 bfin_write_WPIACNT3(breakinfo[breakno].count
315 wpiactl |= WPIAEN4|WPICNTEN4;
316 bfin_write_WPIA4(breakinfo[breakno].addr);
317 bfin_write_WPIACNT4(breakinfo[breakno].count
321 wpiactl |= WPIAEN5|WPICNTEN5;
322 bfin_write_WPIA5(breakinfo[breakno].addr);
323 bfin_write_WPIACNT5(breakinfo[breakno].count
327 wpdactl |= WPDAEN0|WPDCNTEN0|WPDSRC0;
328 wpdactl |= breakinfo[breakno].dataacc
330 bfin_write_WPDA0(breakinfo[breakno].addr);
331 bfin_write_WPDACNT0(breakinfo[breakno].count
335 wpdactl |= WPDAEN1|WPDCNTEN1|WPDSRC1;
336 wpdactl |= breakinfo[breakno].dataacc
338 bfin_write_WPDA1(breakinfo[breakno].addr);
339 bfin_write_WPDACNT1(breakinfo[breakno].count
345 /* Should enable WPPWR bit first before set any other
346 * WPIACTL and WPDACTL bits */
348 bfin_write_WPIACTL(WPPWR);
350 bfin_write_WPIACTL(wpiactl|WPPWR);
351 bfin_write_WPDACTL(wpdactl);
356 void kgdb_disable_hw_debug(struct pt_regs *regs)
358 /* Disable hardware debugging while we are in kgdb */
359 bfin_write_WPIACTL(0);
360 bfin_write_WPDACTL(0);
365 void kgdb_passive_cpu_callback(void *info)
367 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
370 void kgdb_roundup_cpus(unsigned long flags)
372 smp_call_function(kgdb_passive_cpu_callback, NULL, 0);
375 void kgdb_roundup_cpu(int cpu, unsigned long flags)
377 smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0);
381 void kgdb_post_primary_code(struct pt_regs *regs, int eVector, int err_code)
383 /* Master processor is completely in the debugger */
384 gdb_bfin_vector = eVector;
385 gdb_bfin_errcode = err_code;
388 int kgdb_arch_handle_exception(int vector, int signo,
389 int err_code, char *remcom_in_buffer,
390 char *remcom_out_buffer,
391 struct pt_regs *regs)
398 switch (remcom_in_buffer[0]) {
401 if (kgdb_contthread && kgdb_contthread != current) {
402 strcpy(remcom_out_buffer, "E00");
406 kgdb_contthread = NULL;
408 /* try to read optional parameter, pc unchanged if no parm */
409 ptr = &remcom_in_buffer[1];
410 if (kgdb_hex2long(&ptr, &addr)) {
415 /* clear the trace bit */
416 regs->syscfg &= 0xfffffffe;
418 /* set the trace bit if we're stepping */
419 if (remcom_in_buffer[0] == 's') {
421 kgdb_single_step = regs->ipend;
422 kgdb_single_step >>= 6;
423 for (i = 10; i > 0; i--, kgdb_single_step >>= 1)
424 if (kgdb_single_step & 1)
426 /* i indicate event priority of current stopped instruction
427 * user space instruction is 0, IVG15 is 1, IVTMR is 10.
428 * kgdb_single_step > 0 means in single step mode
430 kgdb_single_step = i + 1;
433 bfin_correct_hw_break();
437 return -1; /* this means that we do not want to exit from the handler */
440 struct kgdb_arch arch_kgdb_ops = {
441 .gdb_bpt_instr = {0xa1},
443 .flags = KGDB_HW_BREAKPOINT|KGDB_THR_PROC_SWAP,
445 .flags = KGDB_HW_BREAKPOINT,
447 .set_hw_breakpoint = bfin_set_hw_break,
448 .remove_hw_breakpoint = bfin_remove_hw_break,
449 .remove_all_hw_break = bfin_remove_all_hw_break,
450 .correct_hw_break = bfin_correct_hw_break,
453 static int hex(char ch)
455 if ((ch >= 'a') && (ch <= 'f'))
456 return ch - 'a' + 10;
457 if ((ch >= '0') && (ch <= '9'))
459 if ((ch >= 'A') && (ch <= 'F'))
460 return ch - 'A' + 10;
464 static int validate_memory_access_address(unsigned long addr, int size)
466 int cpu = raw_smp_processor_id();
470 if (addr >= 0x1000 && (addr + size) <= physical_mem_end)
472 if (addr >= SYSMMR_BASE)
474 if (IN_MEM(addr, size, ASYNC_BANK0_BASE, ASYNC_BANK_SIZE))
477 if (IN_MEM(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
479 if (IN_MEM(addr, size, L1_CODE_START, L1_CODE_LENGTH))
481 if (IN_MEM(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
483 if (IN_MEM(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
486 } else if (cpu == 1) {
487 if (IN_MEM(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
489 if (IN_MEM(addr, size, COREB_L1_CODE_START, L1_CODE_LENGTH))
491 if (IN_MEM(addr, size, COREB_L1_DATA_A_START, L1_DATA_A_LENGTH))
493 if (IN_MEM(addr, size, COREB_L1_DATA_B_START, L1_DATA_B_LENGTH))
498 if (IN_MEM(addr, size, L2_START, L2_LENGTH))
505 * Convert the memory pointed to by mem into hex, placing result in buf.
506 * Return a pointer to the last char put in buf (null). May return an error.
508 int kgdb_mem2hex(char *mem, char *buf, int count)
513 unsigned short mmr16;
515 int cpu = raw_smp_processor_id();
517 if (validate_memory_access_address((unsigned long)mem, count))
521 * We use the upper half of buf as an intermediate buffer for the
522 * raw memory copy. Hex conversion will work against this one.
526 if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
529 if ((unsigned int)mem % 2 == 0) {
530 mmr16 = *(unsigned short *)mem;
531 pch = (unsigned char *)&mmr16;
539 if ((unsigned int)mem % 4 == 0) {
540 mmr32 = *(unsigned long *)mem;
541 pch = (unsigned char *)&mmr32;
553 } else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH))
555 || (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH))
558 /* access L1 instruction SRAM*/
559 if (dma_memcpy(tmp, mem, count) == NULL)
562 err = probe_kernel_read(tmp, mem, count);
566 buf = pack_hex_byte(buf, *tmp);
578 * Copy the binary array pointed to by buf into mem. Fix $, #, and
579 * 0x7d escaped with 0x7d. Return a pointer to the character after
580 * the last byte written.
582 int kgdb_ebin2mem(char *buf, char *mem, int count)
586 unsigned short *mmr16;
587 unsigned long *mmr32;
590 int cpu = raw_smp_processor_id();
592 tmp_old = tmp_new = buf;
594 while (count-- > 0) {
595 if (*tmp_old == 0x7d)
596 *tmp_new = *(++tmp_old) ^ 0x20;
604 if (validate_memory_access_address((unsigned long)mem, size))
607 if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
610 if ((unsigned int)mem % 2 == 0) {
611 mmr16 = (unsigned short *)buf;
612 *(unsigned short *)mem = *mmr16;
617 if ((unsigned int)mem % 4 == 0) {
618 mmr32 = (unsigned long *)buf;
619 *(unsigned long *)mem = *mmr32;
626 } else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH))
628 || (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH))
631 /* access L1 instruction SRAM */
632 if (dma_memcpy(mem, buf, size) == NULL)
635 err = probe_kernel_write(mem, buf, size);
641 * Convert the hex array pointed to by buf into binary to be placed in mem.
642 * Return a pointer to the character AFTER the last byte written.
643 * May return an error.
645 int kgdb_hex2mem(char *buf, char *mem, int count)
649 unsigned short *mmr16;
650 unsigned long *mmr32;
651 int cpu = raw_smp_processor_id();
653 if (validate_memory_access_address((unsigned long)mem, count))
657 * We use the upper half of buf as an intermediate buffer for the
658 * raw memory that is converted from hex.
660 tmp_raw = buf + count * 2;
662 tmp_hex = tmp_raw - 1;
663 while (tmp_hex >= buf) {
665 *tmp_raw = hex(*tmp_hex--);
666 *tmp_raw |= hex(*tmp_hex--) << 4;
669 if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
672 if ((unsigned int)mem % 2 == 0) {
673 mmr16 = (unsigned short *)tmp_raw;
674 *(unsigned short *)mem = *mmr16;
679 if ((unsigned int)mem % 4 == 0) {
680 mmr32 = (unsigned long *)tmp_raw;
681 *(unsigned long *)mem = *mmr32;
688 } else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH))
690 || (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH))
693 /* access L1 instruction SRAM */
694 if (dma_memcpy(mem, tmp_raw, count) == NULL)
697 return probe_kernel_write(mem, tmp_raw, count);
701 int kgdb_validate_break_address(unsigned long addr)
703 int cpu = raw_smp_processor_id();
705 if (addr >= 0x1000 && (addr + BREAK_INSTR_SIZE) <= physical_mem_end)
707 if (IN_MEM(addr, BREAK_INSTR_SIZE, ASYNC_BANK0_BASE, ASYNC_BANK_SIZE))
709 if (cpu == 0 && IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH))
712 else if (cpu == 1 && IN_MEM(addr, BREAK_INSTR_SIZE, COREB_L1_CODE_START, L1_CODE_LENGTH))
715 if (IN_MEM(addr, BREAK_INSTR_SIZE, L2_START, L2_LENGTH))
721 int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
724 int cpu = raw_smp_processor_id();
726 if ((cpu == 0 && IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH))
728 || (cpu == 1 && IN_MEM(addr, BREAK_INSTR_SIZE, COREB_L1_CODE_START, L1_CODE_LENGTH))
731 /* access L1 instruction SRAM */
732 if (dma_memcpy(saved_instr, (void *)addr, BREAK_INSTR_SIZE)
736 if (dma_memcpy((void *)addr, arch_kgdb_ops.gdb_bpt_instr,
737 BREAK_INSTR_SIZE) == NULL)
742 err = probe_kernel_read(saved_instr, (char *)addr,
747 return probe_kernel_write((char *)addr,
748 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
752 int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
754 if (IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH)) {
755 /* access L1 instruction SRAM */
756 if (dma_memcpy((void *)addr, bundle, BREAK_INSTR_SIZE) == NULL)
761 return probe_kernel_write((char *)addr,
762 (char *)bundle, BREAK_INSTR_SIZE);
765 int kgdb_arch_init(void)
767 kgdb_single_step = 0;
769 bfin_remove_all_hw_break();
773 void kgdb_arch_exit(void)