76c2f0da821f8c992cc4a706555dc5b099438316
[linux-2.6-block.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 #include <linux/irqchip/arm-gic-v3.h>
21
22 #include <asm/arm_pmuv3.h>
23 #include <asm/cacheflush.h>
24 #include <asm/cputype.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/esr.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_hyp.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/kvm_nested.h>
32 #include <asm/perf_event.h>
33 #include <asm/sysreg.h>
34
35 #include <trace/events/kvm.h>
36
37 #include "sys_regs.h"
38 #include "vgic/vgic.h"
39
40 #include "trace.h"
41
42 /*
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47
48 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
49 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
50                       u64 val);
51
52 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
53                          const struct sys_reg_desc *r)
54 {
55         kvm_inject_undefined(vcpu);
56         return false;
57 }
58
59 static bool bad_trap(struct kvm_vcpu *vcpu,
60                      struct sys_reg_params *params,
61                      const struct sys_reg_desc *r,
62                      const char *msg)
63 {
64         WARN_ONCE(1, "Unexpected %s\n", msg);
65         print_sys_reg_instr(params);
66         return undef_access(vcpu, params, r);
67 }
68
69 static bool read_from_write_only(struct kvm_vcpu *vcpu,
70                                  struct sys_reg_params *params,
71                                  const struct sys_reg_desc *r)
72 {
73         return bad_trap(vcpu, params, r,
74                         "sys_reg read to write-only register");
75 }
76
77 static bool write_to_read_only(struct kvm_vcpu *vcpu,
78                                struct sys_reg_params *params,
79                                const struct sys_reg_desc *r)
80 {
81         return bad_trap(vcpu, params, r,
82                         "sys_reg write to read-only register");
83 }
84
85 #define PURE_EL2_SYSREG(el2)                                            \
86         case el2: {                                                     \
87                 *el1r = el2;                                            \
88                 return true;                                            \
89         }
90
91 #define MAPPED_EL2_SYSREG(el2, el1, fn)                                 \
92         case el2: {                                                     \
93                 *xlate = fn;                                            \
94                 *el1r = el1;                                            \
95                 return true;                                            \
96         }
97
98 static bool get_el2_to_el1_mapping(unsigned int reg,
99                                    unsigned int *el1r, u64 (**xlate)(u64))
100 {
101         switch (reg) {
102                 PURE_EL2_SYSREG(  VPIDR_EL2     );
103                 PURE_EL2_SYSREG(  VMPIDR_EL2    );
104                 PURE_EL2_SYSREG(  ACTLR_EL2     );
105                 PURE_EL2_SYSREG(  HCR_EL2       );
106                 PURE_EL2_SYSREG(  MDCR_EL2      );
107                 PURE_EL2_SYSREG(  HSTR_EL2      );
108                 PURE_EL2_SYSREG(  HACR_EL2      );
109                 PURE_EL2_SYSREG(  VTTBR_EL2     );
110                 PURE_EL2_SYSREG(  VTCR_EL2      );
111                 PURE_EL2_SYSREG(  RVBAR_EL2     );
112                 PURE_EL2_SYSREG(  TPIDR_EL2     );
113                 PURE_EL2_SYSREG(  HPFAR_EL2     );
114                 PURE_EL2_SYSREG(  HCRX_EL2      );
115                 PURE_EL2_SYSREG(  HFGRTR_EL2    );
116                 PURE_EL2_SYSREG(  HFGWTR_EL2    );
117                 PURE_EL2_SYSREG(  HFGITR_EL2    );
118                 PURE_EL2_SYSREG(  HDFGRTR_EL2   );
119                 PURE_EL2_SYSREG(  HDFGWTR_EL2   );
120                 PURE_EL2_SYSREG(  HAFGRTR_EL2   );
121                 PURE_EL2_SYSREG(  CNTVOFF_EL2   );
122                 PURE_EL2_SYSREG(  CNTHCTL_EL2   );
123                 MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
124                                   translate_sctlr_el2_to_sctlr_el1           );
125                 MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
126                                   translate_cptr_el2_to_cpacr_el1            );
127                 MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
128                                   translate_ttbr0_el2_to_ttbr0_el1           );
129                 MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL             );
130                 MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
131                                   translate_tcr_el2_to_tcr_el1               );
132                 MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL             );
133                 MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL             );
134                 MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL             );
135                 MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL             );
136                 MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL             );
137                 MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL             );
138                 MAPPED_EL2_SYSREG(TCR2_EL2,    TCR2_EL1,    NULL             );
139                 MAPPED_EL2_SYSREG(PIR_EL2,     PIR_EL1,     NULL             );
140                 MAPPED_EL2_SYSREG(PIRE0_EL2,   PIRE0_EL1,   NULL             );
141                 MAPPED_EL2_SYSREG(POR_EL2,     POR_EL1,     NULL             );
142                 MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL             );
143                 MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,     NULL             );
144                 MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL             );
145                 MAPPED_EL2_SYSREG(ZCR_EL2,     ZCR_EL1,     NULL             );
146                 MAPPED_EL2_SYSREG(CONTEXTIDR_EL2, CONTEXTIDR_EL1, NULL       );
147         default:
148                 return false;
149         }
150 }
151
152 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
153 {
154         u64 val = 0x8badf00d8badf00d;
155         u64 (*xlate)(u64) = NULL;
156         unsigned int el1r;
157
158         if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
159                 goto memory_read;
160
161         if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
162                 if (!is_hyp_ctxt(vcpu))
163                         goto memory_read;
164
165                 /*
166                  * CNTHCTL_EL2 requires some special treatment to
167                  * account for the bits that can be set via CNTKCTL_EL1.
168                  */
169                 switch (reg) {
170                 case CNTHCTL_EL2:
171                         if (vcpu_el2_e2h_is_set(vcpu)) {
172                                 val = read_sysreg_el1(SYS_CNTKCTL);
173                                 val &= CNTKCTL_VALID_BITS;
174                                 val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS;
175                                 return val;
176                         }
177                         break;
178                 }
179
180                 /*
181                  * If this register does not have an EL1 counterpart,
182                  * then read the stored EL2 version.
183                  */
184                 if (reg == el1r)
185                         goto memory_read;
186
187                 /*
188                  * If we have a non-VHE guest and that the sysreg
189                  * requires translation to be used at EL1, use the
190                  * in-memory copy instead.
191                  */
192                 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
193                         goto memory_read;
194
195                 /* Get the current version of the EL1 counterpart. */
196                 WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
197                 if (reg >= __SANITISED_REG_START__)
198                         val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
199
200                 return val;
201         }
202
203         /* EL1 register can't be on the CPU if the guest is in vEL2. */
204         if (unlikely(is_hyp_ctxt(vcpu)))
205                 goto memory_read;
206
207         if (__vcpu_read_sys_reg_from_cpu(reg, &val))
208                 return val;
209
210 memory_read:
211         return __vcpu_sys_reg(vcpu, reg);
212 }
213
214 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
215 {
216         u64 (*xlate)(u64) = NULL;
217         unsigned int el1r;
218
219         if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
220                 goto memory_write;
221
222         if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
223                 if (!is_hyp_ctxt(vcpu))
224                         goto memory_write;
225
226                 /*
227                  * Always store a copy of the write to memory to avoid having
228                  * to reverse-translate virtual EL2 system registers for a
229                  * non-VHE guest hypervisor.
230                  */
231                 __vcpu_assign_sys_reg(vcpu, reg, val);
232
233                 switch (reg) {
234                 case CNTHCTL_EL2:
235                         /*
236                          * If E2H=0, CNHTCTL_EL2 is a pure shadow register.
237                          * Otherwise, some of the bits are backed by
238                          * CNTKCTL_EL1, while the rest is kept in memory.
239                          * Yes, this is fun stuff.
240                          */
241                         if (vcpu_el2_e2h_is_set(vcpu))
242                                 write_sysreg_el1(val, SYS_CNTKCTL);
243                         return;
244                 }
245
246                 /* No EL1 counterpart? We're done here.? */
247                 if (reg == el1r)
248                         return;
249
250                 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
251                         val = xlate(val);
252
253                 /* Redirect this to the EL1 version of the register. */
254                 WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
255                 return;
256         }
257
258         /* EL1 register can't be on the CPU if the guest is in vEL2. */
259         if (unlikely(is_hyp_ctxt(vcpu)))
260                 goto memory_write;
261
262         if (__vcpu_write_sys_reg_to_cpu(val, reg))
263                 return;
264
265 memory_write:
266         __vcpu_assign_sys_reg(vcpu, reg, val);
267 }
268
269 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
270 #define CSSELR_MAX 14
271
272 /*
273  * Returns the minimum line size for the selected cache, expressed as
274  * Log2(bytes).
275  */
276 static u8 get_min_cache_line_size(bool icache)
277 {
278         u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
279         u8 field;
280
281         if (icache)
282                 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
283         else
284                 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
285
286         /*
287          * Cache line size is represented as Log2(words) in CTR_EL0.
288          * Log2(bytes) can be derived with the following:
289          *
290          * Log2(words) + 2 = Log2(bytes / 4) + 2
291          *                 = Log2(bytes) - 2 + 2
292          *                 = Log2(bytes)
293          */
294         return field + 2;
295 }
296
297 /* Which cache CCSIDR represents depends on CSSELR value. */
298 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
299 {
300         u8 line_size;
301
302         if (vcpu->arch.ccsidr)
303                 return vcpu->arch.ccsidr[csselr];
304
305         line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
306
307         /*
308          * Fabricate a CCSIDR value as the overriding value does not exist.
309          * The real CCSIDR value will not be used as it can vary by the
310          * physical CPU which the vcpu currently resides in.
311          *
312          * The line size is determined with get_min_cache_line_size(), which
313          * should be valid for all CPUs even if they have different cache
314          * configuration.
315          *
316          * The associativity bits are cleared, meaning the geometry of all data
317          * and unified caches (which are guaranteed to be PIPT and thus
318          * non-aliasing) are 1 set and 1 way.
319          * Guests should not be doing cache operations by set/way at all, and
320          * for this reason, we trap them and attempt to infer the intent, so
321          * that we can flush the entire guest's address space at the appropriate
322          * time. The exposed geometry minimizes the number of the traps.
323          * [If guests should attempt to infer aliasing properties from the
324          * geometry (which is not permitted by the architecture), they would
325          * only do so for virtually indexed caches.]
326          *
327          * We don't check if the cache level exists as it is allowed to return
328          * an UNKNOWN value if not.
329          */
330         return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
331 }
332
333 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
334 {
335         u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
336         u32 *ccsidr = vcpu->arch.ccsidr;
337         u32 i;
338
339         if ((val & CCSIDR_EL1_RES0) ||
340             line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
341                 return -EINVAL;
342
343         if (!ccsidr) {
344                 if (val == get_ccsidr(vcpu, csselr))
345                         return 0;
346
347                 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
348                 if (!ccsidr)
349                         return -ENOMEM;
350
351                 for (i = 0; i < CSSELR_MAX; i++)
352                         ccsidr[i] = get_ccsidr(vcpu, i);
353
354                 vcpu->arch.ccsidr = ccsidr;
355         }
356
357         ccsidr[csselr] = val;
358
359         return 0;
360 }
361
362 static bool access_rw(struct kvm_vcpu *vcpu,
363                       struct sys_reg_params *p,
364                       const struct sys_reg_desc *r)
365 {
366         if (p->is_write)
367                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
368         else
369                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
370
371         return true;
372 }
373
374 /*
375  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
376  */
377 static bool access_dcsw(struct kvm_vcpu *vcpu,
378                         struct sys_reg_params *p,
379                         const struct sys_reg_desc *r)
380 {
381         if (!p->is_write)
382                 return read_from_write_only(vcpu, p, r);
383
384         /*
385          * Only track S/W ops if we don't have FWB. It still indicates
386          * that the guest is a bit broken (S/W operations should only
387          * be done by firmware, knowing that there is only a single
388          * CPU left in the system, and certainly not from non-secure
389          * software).
390          */
391         if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
392                 kvm_set_way_flush(vcpu);
393
394         return true;
395 }
396
397 static bool access_dcgsw(struct kvm_vcpu *vcpu,
398                          struct sys_reg_params *p,
399                          const struct sys_reg_desc *r)
400 {
401         if (!kvm_has_mte(vcpu->kvm))
402                 return undef_access(vcpu, p, r);
403
404         /* Treat MTE S/W ops as we treat the classic ones: with contempt */
405         return access_dcsw(vcpu, p, r);
406 }
407
408 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
409 {
410         switch (r->aarch32_map) {
411         case AA32_LO:
412                 *mask = GENMASK_ULL(31, 0);
413                 *shift = 0;
414                 break;
415         case AA32_HI:
416                 *mask = GENMASK_ULL(63, 32);
417                 *shift = 32;
418                 break;
419         default:
420                 *mask = GENMASK_ULL(63, 0);
421                 *shift = 0;
422                 break;
423         }
424 }
425
426 /*
427  * Generic accessor for VM registers. Only called as long as HCR_TVM
428  * is set. If the guest enables the MMU, we stop trapping the VM
429  * sys_regs and leave it in complete control of the caches.
430  */
431 static bool access_vm_reg(struct kvm_vcpu *vcpu,
432                           struct sys_reg_params *p,
433                           const struct sys_reg_desc *r)
434 {
435         bool was_enabled = vcpu_has_cache_enabled(vcpu);
436         u64 val, mask, shift;
437
438         BUG_ON(!p->is_write);
439
440         get_access_mask(r, &mask, &shift);
441
442         if (~mask) {
443                 val = vcpu_read_sys_reg(vcpu, r->reg);
444                 val &= ~mask;
445         } else {
446                 val = 0;
447         }
448
449         val |= (p->regval & (mask >> shift)) << shift;
450         vcpu_write_sys_reg(vcpu, val, r->reg);
451
452         kvm_toggle_cache(vcpu, was_enabled);
453         return true;
454 }
455
456 static bool access_actlr(struct kvm_vcpu *vcpu,
457                          struct sys_reg_params *p,
458                          const struct sys_reg_desc *r)
459 {
460         u64 mask, shift;
461
462         if (p->is_write)
463                 return ignore_write(vcpu, p);
464
465         get_access_mask(r, &mask, &shift);
466         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
467
468         return true;
469 }
470
471 /*
472  * Trap handler for the GICv3 SGI generation system register.
473  * Forward the request to the VGIC emulation.
474  * The cp15_64 code makes sure this automatically works
475  * for both AArch64 and AArch32 accesses.
476  */
477 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
478                            struct sys_reg_params *p,
479                            const struct sys_reg_desc *r)
480 {
481         bool g1;
482
483         if (!kvm_has_gicv3(vcpu->kvm))
484                 return undef_access(vcpu, p, r);
485
486         if (!p->is_write)
487                 return read_from_write_only(vcpu, p, r);
488
489         /*
490          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
491          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
492          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
493          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
494          * group.
495          */
496         if (p->Op0 == 0) {              /* AArch32 */
497                 switch (p->Op1) {
498                 default:                /* Keep GCC quiet */
499                 case 0:                 /* ICC_SGI1R */
500                         g1 = true;
501                         break;
502                 case 1:                 /* ICC_ASGI1R */
503                 case 2:                 /* ICC_SGI0R */
504                         g1 = false;
505                         break;
506                 }
507         } else {                        /* AArch64 */
508                 switch (p->Op2) {
509                 default:                /* Keep GCC quiet */
510                 case 5:                 /* ICC_SGI1R_EL1 */
511                         g1 = true;
512                         break;
513                 case 6:                 /* ICC_ASGI1R_EL1 */
514                 case 7:                 /* ICC_SGI0R_EL1 */
515                         g1 = false;
516                         break;
517                 }
518         }
519
520         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
521
522         return true;
523 }
524
525 static bool access_gic_sre(struct kvm_vcpu *vcpu,
526                            struct sys_reg_params *p,
527                            const struct sys_reg_desc *r)
528 {
529         if (!kvm_has_gicv3(vcpu->kvm))
530                 return undef_access(vcpu, p, r);
531
532         if (p->is_write)
533                 return ignore_write(vcpu, p);
534
535         if (p->Op1 == 4) {      /* ICC_SRE_EL2 */
536                 p->regval = (ICC_SRE_EL2_ENABLE | ICC_SRE_EL2_SRE |
537                              ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB);
538         } else {                /* ICC_SRE_EL1 */
539                 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
540         }
541
542         return true;
543 }
544
545 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
546                         struct sys_reg_params *p,
547                         const struct sys_reg_desc *r)
548 {
549         if (p->is_write)
550                 return ignore_write(vcpu, p);
551         else
552                 return read_zero(vcpu, p);
553 }
554
555 /*
556  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
557  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
558  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
559  * treat it separately.
560  */
561 static bool trap_loregion(struct kvm_vcpu *vcpu,
562                           struct sys_reg_params *p,
563                           const struct sys_reg_desc *r)
564 {
565         u32 sr = reg_to_encoding(r);
566
567         if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP))
568                 return undef_access(vcpu, p, r);
569
570         if (p->is_write && sr == SYS_LORID_EL1)
571                 return write_to_read_only(vcpu, p, r);
572
573         return trap_raz_wi(vcpu, p, r);
574 }
575
576 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
577                            struct sys_reg_params *p,
578                            const struct sys_reg_desc *r)
579 {
580         if (!p->is_write)
581                 return read_from_write_only(vcpu, p, r);
582
583         kvm_debug_handle_oslar(vcpu, p->regval);
584         return true;
585 }
586
587 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
588                            struct sys_reg_params *p,
589                            const struct sys_reg_desc *r)
590 {
591         if (p->is_write)
592                 return write_to_read_only(vcpu, p, r);
593
594         p->regval = __vcpu_sys_reg(vcpu, r->reg);
595         return true;
596 }
597
598 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
599                          u64 val)
600 {
601         /*
602          * The only modifiable bit is the OSLK bit. Refuse the write if
603          * userspace attempts to change any other bit in the register.
604          */
605         if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
606                 return -EINVAL;
607
608         __vcpu_assign_sys_reg(vcpu, rd->reg, val);
609         return 0;
610 }
611
612 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
613                                    struct sys_reg_params *p,
614                                    const struct sys_reg_desc *r)
615 {
616         if (p->is_write) {
617                 return ignore_write(vcpu, p);
618         } else {
619                 p->regval = read_sysreg(dbgauthstatus_el1);
620                 return true;
621         }
622 }
623
624 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
625                             struct sys_reg_params *p,
626                             const struct sys_reg_desc *r)
627 {
628         access_rw(vcpu, p, r);
629
630         kvm_debug_set_guest_ownership(vcpu);
631         return true;
632 }
633
634 /*
635  * reg_to_dbg/dbg_to_reg
636  *
637  * A 32 bit write to a debug register leave top bits alone
638  * A 32 bit read from a debug register only returns the bottom bits
639  */
640 static void reg_to_dbg(struct kvm_vcpu *vcpu,
641                        struct sys_reg_params *p,
642                        const struct sys_reg_desc *rd,
643                        u64 *dbg_reg)
644 {
645         u64 mask, shift, val;
646
647         get_access_mask(rd, &mask, &shift);
648
649         val = *dbg_reg;
650         val &= ~mask;
651         val |= (p->regval & (mask >> shift)) << shift;
652         *dbg_reg = val;
653 }
654
655 static void dbg_to_reg(struct kvm_vcpu *vcpu,
656                        struct sys_reg_params *p,
657                        const struct sys_reg_desc *rd,
658                        u64 *dbg_reg)
659 {
660         u64 mask, shift;
661
662         get_access_mask(rd, &mask, &shift);
663         p->regval = (*dbg_reg & mask) >> shift;
664 }
665
666 static u64 *demux_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
667 {
668         struct kvm_guest_debug_arch *dbg = &vcpu->arch.vcpu_debug_state;
669
670         switch (rd->Op2) {
671         case 0b100:
672                 return &dbg->dbg_bvr[rd->CRm];
673         case 0b101:
674                 return &dbg->dbg_bcr[rd->CRm];
675         case 0b110:
676                 return &dbg->dbg_wvr[rd->CRm];
677         case 0b111:
678                 return &dbg->dbg_wcr[rd->CRm];
679         default:
680                 KVM_BUG_ON(1, vcpu->kvm);
681                 return NULL;
682         }
683 }
684
685 static bool trap_dbg_wb_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
686                             const struct sys_reg_desc *rd)
687 {
688         u64 *reg = demux_wb_reg(vcpu, rd);
689
690         if (!reg)
691                 return false;
692
693         if (p->is_write)
694                 reg_to_dbg(vcpu, p, rd, reg);
695         else
696                 dbg_to_reg(vcpu, p, rd, reg);
697
698         kvm_debug_set_guest_ownership(vcpu);
699         return true;
700 }
701
702 static int set_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
703                           u64 val)
704 {
705         u64 *reg = demux_wb_reg(vcpu, rd);
706
707         if (!reg)
708                 return -EINVAL;
709
710         *reg = val;
711         return 0;
712 }
713
714 static int get_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715                           u64 *val)
716 {
717         u64 *reg = demux_wb_reg(vcpu, rd);
718
719         if (!reg)
720                 return -EINVAL;
721
722         *val = *reg;
723         return 0;
724 }
725
726 static u64 reset_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
727 {
728         u64 *reg = demux_wb_reg(vcpu, rd);
729
730         /*
731          * Bail early if we couldn't find storage for the register, the
732          * KVM_BUG_ON() in demux_wb_reg() will prevent this VM from ever
733          * being run.
734          */
735         if (!reg)
736                 return 0;
737
738         *reg = rd->val;
739         return rd->val;
740 }
741
742 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
743 {
744         u64 amair = read_sysreg(amair_el1);
745         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
746         return amair;
747 }
748
749 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
750 {
751         u64 actlr = read_sysreg(actlr_el1);
752         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
753         return actlr;
754 }
755
756 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
757 {
758         u64 mpidr;
759
760         /*
761          * Map the vcpu_id into the first three affinity level fields of
762          * the MPIDR. We limit the number of VCPUs in level 0 due to a
763          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
764          * of the GICv3 to be able to address each CPU directly when
765          * sending IPIs.
766          */
767         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
768         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
769         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
770         mpidr |= (1ULL << 31);
771         vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
772
773         return mpidr;
774 }
775
776 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
777                                    const struct sys_reg_desc *r)
778 {
779         if (kvm_vcpu_has_pmu(vcpu))
780                 return 0;
781
782         return REG_HIDDEN;
783 }
784
785 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
786 {
787         u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
788         u8 n = vcpu->kvm->arch.nr_pmu_counters;
789
790         if (n)
791                 mask |= GENMASK(n - 1, 0);
792
793         reset_unknown(vcpu, r);
794         __vcpu_rmw_sys_reg(vcpu, r->reg, &=, mask);
795
796         return __vcpu_sys_reg(vcpu, r->reg);
797 }
798
799 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
800 {
801         reset_unknown(vcpu, r);
802         __vcpu_rmw_sys_reg(vcpu, r->reg, &=, GENMASK(31, 0));
803
804         return __vcpu_sys_reg(vcpu, r->reg);
805 }
806
807 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
808 {
809         /* This thing will UNDEF, who cares about the reset value? */
810         if (!kvm_vcpu_has_pmu(vcpu))
811                 return 0;
812
813         reset_unknown(vcpu, r);
814         __vcpu_rmw_sys_reg(vcpu, r->reg, &=, kvm_pmu_evtyper_mask(vcpu->kvm));
815
816         return __vcpu_sys_reg(vcpu, r->reg);
817 }
818
819 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
820 {
821         reset_unknown(vcpu, r);
822         __vcpu_rmw_sys_reg(vcpu, r->reg, &=, PMSELR_EL0_SEL_MASK);
823
824         return __vcpu_sys_reg(vcpu, r->reg);
825 }
826
827 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
828 {
829         u64 pmcr = 0;
830
831         if (!kvm_supports_32bit_el0())
832                 pmcr |= ARMV8_PMU_PMCR_LC;
833
834         /*
835          * The value of PMCR.N field is included when the
836          * vCPU register is read via kvm_vcpu_read_pmcr().
837          */
838         __vcpu_assign_sys_reg(vcpu, r->reg, pmcr);
839
840         return __vcpu_sys_reg(vcpu, r->reg);
841 }
842
843 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
844 {
845         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
846         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
847
848         if (!enabled)
849                 kvm_inject_undefined(vcpu);
850
851         return !enabled;
852 }
853
854 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
855 {
856         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
857 }
858
859 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
860 {
861         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
862 }
863
864 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
865 {
866         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
867 }
868
869 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
870 {
871         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
872 }
873
874 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
875                         const struct sys_reg_desc *r)
876 {
877         u64 val;
878
879         if (pmu_access_el0_disabled(vcpu))
880                 return false;
881
882         if (p->is_write) {
883                 /*
884                  * Only update writeable bits of PMCR (continuing into
885                  * kvm_pmu_handle_pmcr() as well)
886                  */
887                 val = kvm_vcpu_read_pmcr(vcpu);
888                 val &= ~ARMV8_PMU_PMCR_MASK;
889                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
890                 if (!kvm_supports_32bit_el0())
891                         val |= ARMV8_PMU_PMCR_LC;
892                 kvm_pmu_handle_pmcr(vcpu, val);
893         } else {
894                 /* PMCR.P & PMCR.C are RAZ */
895                 val = kvm_vcpu_read_pmcr(vcpu)
896                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
897                 p->regval = val;
898         }
899
900         return true;
901 }
902
903 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
904                           const struct sys_reg_desc *r)
905 {
906         if (pmu_access_event_counter_el0_disabled(vcpu))
907                 return false;
908
909         if (p->is_write)
910                 __vcpu_assign_sys_reg(vcpu, PMSELR_EL0, p->regval);
911         else
912                 /* return PMSELR.SEL field */
913                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
914                             & PMSELR_EL0_SEL_MASK;
915
916         return true;
917 }
918
919 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
920                           const struct sys_reg_desc *r)
921 {
922         u64 pmceid, mask, shift;
923
924         BUG_ON(p->is_write);
925
926         if (pmu_access_el0_disabled(vcpu))
927                 return false;
928
929         get_access_mask(r, &mask, &shift);
930
931         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
932         pmceid &= mask;
933         pmceid >>= shift;
934
935         p->regval = pmceid;
936
937         return true;
938 }
939
940 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
941 {
942         u64 pmcr, val;
943
944         pmcr = kvm_vcpu_read_pmcr(vcpu);
945         val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
946         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
947                 kvm_inject_undefined(vcpu);
948                 return false;
949         }
950
951         return true;
952 }
953
954 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
955                           u64 *val)
956 {
957         u64 idx;
958
959         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
960                 /* PMCCNTR_EL0 */
961                 idx = ARMV8_PMU_CYCLE_IDX;
962         else
963                 /* PMEVCNTRn_EL0 */
964                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
965
966         *val = kvm_pmu_get_counter_value(vcpu, idx);
967         return 0;
968 }
969
970 static int set_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
971                           u64 val)
972 {
973         u64 idx;
974
975         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
976                 /* PMCCNTR_EL0 */
977                 idx = ARMV8_PMU_CYCLE_IDX;
978         else
979                 /* PMEVCNTRn_EL0 */
980                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
981
982         kvm_pmu_set_counter_value_user(vcpu, idx, val);
983         return 0;
984 }
985
986 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
987                               struct sys_reg_params *p,
988                               const struct sys_reg_desc *r)
989 {
990         u64 idx = ~0UL;
991
992         if (r->CRn == 9 && r->CRm == 13) {
993                 if (r->Op2 == 2) {
994                         /* PMXEVCNTR_EL0 */
995                         if (pmu_access_event_counter_el0_disabled(vcpu))
996                                 return false;
997
998                         idx = SYS_FIELD_GET(PMSELR_EL0, SEL,
999                                             __vcpu_sys_reg(vcpu, PMSELR_EL0));
1000                 } else if (r->Op2 == 0) {
1001                         /* PMCCNTR_EL0 */
1002                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
1003                                 return false;
1004
1005                         idx = ARMV8_PMU_CYCLE_IDX;
1006                 }
1007         } else if (r->CRn == 0 && r->CRm == 9) {
1008                 /* PMCCNTR */
1009                 if (pmu_access_event_counter_el0_disabled(vcpu))
1010                         return false;
1011
1012                 idx = ARMV8_PMU_CYCLE_IDX;
1013         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1014                 /* PMEVCNTRn_EL0 */
1015                 if (pmu_access_event_counter_el0_disabled(vcpu))
1016                         return false;
1017
1018                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1019         }
1020
1021         /* Catch any decoding mistake */
1022         WARN_ON(idx == ~0UL);
1023
1024         if (!pmu_counter_idx_valid(vcpu, idx))
1025                 return false;
1026
1027         if (p->is_write) {
1028                 if (pmu_access_el0_disabled(vcpu))
1029                         return false;
1030
1031                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1032         } else {
1033                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1034         }
1035
1036         return true;
1037 }
1038
1039 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1040                                const struct sys_reg_desc *r)
1041 {
1042         u64 idx, reg;
1043
1044         if (pmu_access_el0_disabled(vcpu))
1045                 return false;
1046
1047         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1048                 /* PMXEVTYPER_EL0 */
1049                 idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0));
1050                 reg = PMEVTYPER0_EL0 + idx;
1051         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1052                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1053                 if (idx == ARMV8_PMU_CYCLE_IDX)
1054                         reg = PMCCFILTR_EL0;
1055                 else
1056                         /* PMEVTYPERn_EL0 */
1057                         reg = PMEVTYPER0_EL0 + idx;
1058         } else {
1059                 BUG();
1060         }
1061
1062         if (!pmu_counter_idx_valid(vcpu, idx))
1063                 return false;
1064
1065         if (p->is_write) {
1066                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1067                 kvm_vcpu_pmu_restore_guest(vcpu);
1068         } else {
1069                 p->regval = __vcpu_sys_reg(vcpu, reg);
1070         }
1071
1072         return true;
1073 }
1074
1075 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1076 {
1077         u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1078
1079         __vcpu_assign_sys_reg(vcpu, r->reg, val & mask);
1080         kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1081
1082         return 0;
1083 }
1084
1085 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1086 {
1087         u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1088
1089         *val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1090         return 0;
1091 }
1092
1093 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1094                            const struct sys_reg_desc *r)
1095 {
1096         u64 val, mask;
1097
1098         if (pmu_access_el0_disabled(vcpu))
1099                 return false;
1100
1101         mask = kvm_pmu_accessible_counter_mask(vcpu);
1102         if (p->is_write) {
1103                 val = p->regval & mask;
1104                 if (r->Op2 & 0x1)
1105                         /* accessing PMCNTENSET_EL0 */
1106                         __vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, |=, val);
1107                 else
1108                         /* accessing PMCNTENCLR_EL0 */
1109                         __vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, &=, ~val);
1110
1111                 kvm_pmu_reprogram_counter_mask(vcpu, val);
1112         } else {
1113                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1114         }
1115
1116         return true;
1117 }
1118
1119 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1120                            const struct sys_reg_desc *r)
1121 {
1122         u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1123
1124         if (check_pmu_access_disabled(vcpu, 0))
1125                 return false;
1126
1127         if (p->is_write) {
1128                 u64 val = p->regval & mask;
1129
1130                 if (r->Op2 & 0x1)
1131                         /* accessing PMINTENSET_EL1 */
1132                         __vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, |=, val);
1133                 else
1134                         /* accessing PMINTENCLR_EL1 */
1135                         __vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, &=, ~val);
1136         } else {
1137                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1138         }
1139
1140         return true;
1141 }
1142
1143 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1144                          const struct sys_reg_desc *r)
1145 {
1146         u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1147
1148         if (pmu_access_el0_disabled(vcpu))
1149                 return false;
1150
1151         if (p->is_write) {
1152                 if (r->CRm & 0x2)
1153                         /* accessing PMOVSSET_EL0 */
1154                         __vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, (p->regval & mask));
1155                 else
1156                         /* accessing PMOVSCLR_EL0 */
1157                         __vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, &=, ~(p->regval & mask));
1158         } else {
1159                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1160         }
1161
1162         return true;
1163 }
1164
1165 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1166                            const struct sys_reg_desc *r)
1167 {
1168         u64 mask;
1169
1170         if (!p->is_write)
1171                 return read_from_write_only(vcpu, p, r);
1172
1173         if (pmu_write_swinc_el0_disabled(vcpu))
1174                 return false;
1175
1176         mask = kvm_pmu_accessible_counter_mask(vcpu);
1177         kvm_pmu_software_increment(vcpu, p->regval & mask);
1178         return true;
1179 }
1180
1181 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182                              const struct sys_reg_desc *r)
1183 {
1184         if (p->is_write) {
1185                 if (!vcpu_mode_priv(vcpu))
1186                         return undef_access(vcpu, p, r);
1187
1188                 __vcpu_assign_sys_reg(vcpu, PMUSERENR_EL0,
1189                                       (p->regval & ARMV8_PMU_USERENR_MASK));
1190         } else {
1191                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1192                             & ARMV8_PMU_USERENR_MASK;
1193         }
1194
1195         return true;
1196 }
1197
1198 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1199                     u64 *val)
1200 {
1201         *val = kvm_vcpu_read_pmcr(vcpu);
1202         return 0;
1203 }
1204
1205 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1206                     u64 val)
1207 {
1208         u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1209         struct kvm *kvm = vcpu->kvm;
1210
1211         mutex_lock(&kvm->arch.config_lock);
1212
1213         /*
1214          * The vCPU can't have more counters than the PMU hardware
1215          * implements. Ignore this error to maintain compatibility
1216          * with the existing KVM behavior.
1217          */
1218         if (!kvm_vm_has_ran_once(kvm) &&
1219             !vcpu_has_nv(vcpu)        &&
1220             new_n <= kvm_arm_pmu_get_max_counters(kvm))
1221                 kvm->arch.nr_pmu_counters = new_n;
1222
1223         mutex_unlock(&kvm->arch.config_lock);
1224
1225         /*
1226          * Ignore writes to RES0 bits, read only bits that are cleared on
1227          * vCPU reset, and writable bits that KVM doesn't support yet.
1228          * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1229          * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1230          * But, we leave the bit as it is here, as the vCPU's PMUver might
1231          * be changed later (NOTE: the bit will be cleared on first vCPU run
1232          * if necessary).
1233          */
1234         val &= ARMV8_PMU_PMCR_MASK;
1235
1236         /* The LC bit is RES1 when AArch32 is not supported */
1237         if (!kvm_supports_32bit_el0())
1238                 val |= ARMV8_PMU_PMCR_LC;
1239
1240         __vcpu_assign_sys_reg(vcpu, r->reg, val);
1241         kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1242
1243         return 0;
1244 }
1245
1246 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1247 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1248         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1249           trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,                      \
1250           get_dbg_wb_reg, set_dbg_wb_reg },                             \
1251         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1252           trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,                      \
1253           get_dbg_wb_reg, set_dbg_wb_reg },                             \
1254         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1255           trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,                      \
1256           get_dbg_wb_reg, set_dbg_wb_reg },                             \
1257         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1258           trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,                      \
1259           get_dbg_wb_reg, set_dbg_wb_reg }
1260
1261 #define PMU_SYS_REG(name)                                               \
1262         SYS_DESC(SYS_##name), .reset = reset_pmu_reg,                   \
1263         .visibility = pmu_visibility
1264
1265 /* Macro to expand the PMEVCNTRn_EL0 register */
1266 #define PMU_PMEVCNTR_EL0(n)                                             \
1267         { PMU_SYS_REG(PMEVCNTRn_EL0(n)),                                \
1268           .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,          \
1269           .set_user = set_pmu_evcntr,                                   \
1270           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1271
1272 /* Macro to expand the PMEVTYPERn_EL0 register */
1273 #define PMU_PMEVTYPER_EL0(n)                                            \
1274         { PMU_SYS_REG(PMEVTYPERn_EL0(n)),                               \
1275           .reset = reset_pmevtyper,                                     \
1276           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1277
1278 /* Macro to expand the AMU counter and type registers*/
1279 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1280 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1281 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1282 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1283
1284 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1285                         const struct sys_reg_desc *rd)
1286 {
1287         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1288 }
1289
1290 /*
1291  * If we land here on a PtrAuth access, that is because we didn't
1292  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1293  * way this happens is when the guest does not have PtrAuth support
1294  * enabled.
1295  */
1296 #define __PTRAUTH_KEY(k)                                                \
1297         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
1298         .visibility = ptrauth_visibility}
1299
1300 #define PTRAUTH_KEY(k)                                                  \
1301         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1302         __PTRAUTH_KEY(k ## KEYHI_EL1)
1303
1304 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1305                               struct sys_reg_params *p,
1306                               const struct sys_reg_desc *r)
1307 {
1308         enum kvm_arch_timers tmr;
1309         enum kvm_arch_timer_regs treg;
1310         u64 reg = reg_to_encoding(r);
1311
1312         switch (reg) {
1313         case SYS_CNTP_TVAL_EL0:
1314                 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1315                         tmr = TIMER_HPTIMER;
1316                 else
1317                         tmr = TIMER_PTIMER;
1318                 treg = TIMER_REG_TVAL;
1319                 break;
1320
1321         case SYS_CNTV_TVAL_EL0:
1322                 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1323                         tmr = TIMER_HVTIMER;
1324                 else
1325                         tmr = TIMER_VTIMER;
1326                 treg = TIMER_REG_TVAL;
1327                 break;
1328
1329         case SYS_AARCH32_CNTP_TVAL:
1330         case SYS_CNTP_TVAL_EL02:
1331                 tmr = TIMER_PTIMER;
1332                 treg = TIMER_REG_TVAL;
1333                 break;
1334
1335         case SYS_CNTV_TVAL_EL02:
1336                 tmr = TIMER_VTIMER;
1337                 treg = TIMER_REG_TVAL;
1338                 break;
1339
1340         case SYS_CNTHP_TVAL_EL2:
1341                 tmr = TIMER_HPTIMER;
1342                 treg = TIMER_REG_TVAL;
1343                 break;
1344
1345         case SYS_CNTHV_TVAL_EL2:
1346                 tmr = TIMER_HVTIMER;
1347                 treg = TIMER_REG_TVAL;
1348                 break;
1349
1350         case SYS_CNTP_CTL_EL0:
1351                 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1352                         tmr = TIMER_HPTIMER;
1353                 else
1354                         tmr = TIMER_PTIMER;
1355                 treg = TIMER_REG_CTL;
1356                 break;
1357
1358         case SYS_CNTV_CTL_EL0:
1359                 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1360                         tmr = TIMER_HVTIMER;
1361                 else
1362                         tmr = TIMER_VTIMER;
1363                 treg = TIMER_REG_CTL;
1364                 break;
1365
1366         case SYS_AARCH32_CNTP_CTL:
1367         case SYS_CNTP_CTL_EL02:
1368                 tmr = TIMER_PTIMER;
1369                 treg = TIMER_REG_CTL;
1370                 break;
1371
1372         case SYS_CNTV_CTL_EL02:
1373                 tmr = TIMER_VTIMER;
1374                 treg = TIMER_REG_CTL;
1375                 break;
1376
1377         case SYS_CNTHP_CTL_EL2:
1378                 tmr = TIMER_HPTIMER;
1379                 treg = TIMER_REG_CTL;
1380                 break;
1381
1382         case SYS_CNTHV_CTL_EL2:
1383                 tmr = TIMER_HVTIMER;
1384                 treg = TIMER_REG_CTL;
1385                 break;
1386
1387         case SYS_CNTP_CVAL_EL0:
1388                 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1389                         tmr = TIMER_HPTIMER;
1390                 else
1391                         tmr = TIMER_PTIMER;
1392                 treg = TIMER_REG_CVAL;
1393                 break;
1394
1395         case SYS_CNTV_CVAL_EL0:
1396                 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1397                         tmr = TIMER_HVTIMER;
1398                 else
1399                         tmr = TIMER_VTIMER;
1400                 treg = TIMER_REG_CVAL;
1401                 break;
1402
1403         case SYS_AARCH32_CNTP_CVAL:
1404         case SYS_CNTP_CVAL_EL02:
1405                 tmr = TIMER_PTIMER;
1406                 treg = TIMER_REG_CVAL;
1407                 break;
1408
1409         case SYS_CNTV_CVAL_EL02:
1410                 tmr = TIMER_VTIMER;
1411                 treg = TIMER_REG_CVAL;
1412                 break;
1413
1414         case SYS_CNTHP_CVAL_EL2:
1415                 tmr = TIMER_HPTIMER;
1416                 treg = TIMER_REG_CVAL;
1417                 break;
1418
1419         case SYS_CNTHV_CVAL_EL2:
1420                 tmr = TIMER_HVTIMER;
1421                 treg = TIMER_REG_CVAL;
1422                 break;
1423
1424         case SYS_CNTPCT_EL0:
1425         case SYS_CNTPCTSS_EL0:
1426                 if (is_hyp_ctxt(vcpu))
1427                         tmr = TIMER_HPTIMER;
1428                 else
1429                         tmr = TIMER_PTIMER;
1430                 treg = TIMER_REG_CNT;
1431                 break;
1432
1433         case SYS_AARCH32_CNTPCT:
1434         case SYS_AARCH32_CNTPCTSS:
1435                 tmr = TIMER_PTIMER;
1436                 treg = TIMER_REG_CNT;
1437                 break;
1438
1439         case SYS_CNTVCT_EL0:
1440         case SYS_CNTVCTSS_EL0:
1441                 if (is_hyp_ctxt(vcpu))
1442                         tmr = TIMER_HVTIMER;
1443                 else
1444                         tmr = TIMER_VTIMER;
1445                 treg = TIMER_REG_CNT;
1446                 break;
1447
1448         case SYS_AARCH32_CNTVCT:
1449         case SYS_AARCH32_CNTVCTSS:
1450                 tmr = TIMER_VTIMER;
1451                 treg = TIMER_REG_CNT;
1452                 break;
1453
1454         default:
1455                 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1456                 return undef_access(vcpu, p, r);
1457         }
1458
1459         if (p->is_write)
1460                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1461         else
1462                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1463
1464         return true;
1465 }
1466
1467 static bool access_hv_timer(struct kvm_vcpu *vcpu,
1468                             struct sys_reg_params *p,
1469                             const struct sys_reg_desc *r)
1470 {
1471         if (!vcpu_el2_e2h_is_set(vcpu))
1472                 return undef_access(vcpu, p, r);
1473
1474         return access_arch_timer(vcpu, p, r);
1475 }
1476
1477 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1478                                     s64 new, s64 cur)
1479 {
1480         struct arm64_ftr_bits kvm_ftr = *ftrp;
1481
1482         /* Some features have different safe value type in KVM than host features */
1483         switch (id) {
1484         case SYS_ID_AA64DFR0_EL1:
1485                 switch (kvm_ftr.shift) {
1486                 case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1487                         kvm_ftr.type = FTR_LOWER_SAFE;
1488                         break;
1489                 case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1490                         kvm_ftr.type = FTR_LOWER_SAFE;
1491                         break;
1492                 }
1493                 break;
1494         case SYS_ID_DFR0_EL1:
1495                 if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1496                         kvm_ftr.type = FTR_LOWER_SAFE;
1497                 break;
1498         }
1499
1500         return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1501 }
1502
1503 /*
1504  * arm64_check_features() - Check if a feature register value constitutes
1505  * a subset of features indicated by the idreg's KVM sanitised limit.
1506  *
1507  * This function will check if each feature field of @val is the "safe" value
1508  * against idreg's KVM sanitised limit return from reset() callback.
1509  * If a field value in @val is the same as the one in limit, it is always
1510  * considered the safe value regardless For register fields that are not in
1511  * writable, only the value in limit is considered the safe value.
1512  *
1513  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1514  */
1515 static int arm64_check_features(struct kvm_vcpu *vcpu,
1516                                 const struct sys_reg_desc *rd,
1517                                 u64 val)
1518 {
1519         const struct arm64_ftr_reg *ftr_reg;
1520         const struct arm64_ftr_bits *ftrp = NULL;
1521         u32 id = reg_to_encoding(rd);
1522         u64 writable_mask = rd->val;
1523         u64 limit = rd->reset(vcpu, rd);
1524         u64 mask = 0;
1525
1526         /*
1527          * Hidden and unallocated ID registers may not have a corresponding
1528          * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1529          * only safe value is 0.
1530          */
1531         if (sysreg_visible_as_raz(vcpu, rd))
1532                 return val ? -E2BIG : 0;
1533
1534         ftr_reg = get_arm64_ftr_reg(id);
1535         if (!ftr_reg)
1536                 return -EINVAL;
1537
1538         ftrp = ftr_reg->ftr_bits;
1539
1540         for (; ftrp && ftrp->width; ftrp++) {
1541                 s64 f_val, f_lim, safe_val;
1542                 u64 ftr_mask;
1543
1544                 ftr_mask = arm64_ftr_mask(ftrp);
1545                 if ((ftr_mask & writable_mask) != ftr_mask)
1546                         continue;
1547
1548                 f_val = arm64_ftr_value(ftrp, val);
1549                 f_lim = arm64_ftr_value(ftrp, limit);
1550                 mask |= ftr_mask;
1551
1552                 if (f_val == f_lim)
1553                         safe_val = f_val;
1554                 else
1555                         safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1556
1557                 if (safe_val != f_val)
1558                         return -E2BIG;
1559         }
1560
1561         /* For fields that are not writable, values in limit are the safe values. */
1562         if ((val & ~mask) != (limit & ~mask))
1563                 return -E2BIG;
1564
1565         return 0;
1566 }
1567
1568 static u8 pmuver_to_perfmon(u8 pmuver)
1569 {
1570         switch (pmuver) {
1571         case ID_AA64DFR0_EL1_PMUVer_IMP:
1572                 return ID_DFR0_EL1_PerfMon_PMUv3;
1573         case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1574                 return ID_DFR0_EL1_PerfMon_IMPDEF;
1575         default:
1576                 /* Anything ARMv8.1+ and NI have the same value. For now. */
1577                 return pmuver;
1578         }
1579 }
1580
1581 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1582 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1583
1584 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1585 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1586                                        const struct sys_reg_desc *r)
1587 {
1588         u32 id = reg_to_encoding(r);
1589         u64 val;
1590
1591         if (sysreg_visible_as_raz(vcpu, r))
1592                 return 0;
1593
1594         val = read_sanitised_ftr_reg(id);
1595
1596         switch (id) {
1597         case SYS_ID_AA64DFR0_EL1:
1598                 val = sanitise_id_aa64dfr0_el1(vcpu, val);
1599                 break;
1600         case SYS_ID_AA64PFR0_EL1:
1601                 val = sanitise_id_aa64pfr0_el1(vcpu, val);
1602                 break;
1603         case SYS_ID_AA64PFR1_EL1:
1604                 if (!kvm_has_mte(vcpu->kvm)) {
1605                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1606                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac);
1607                 }
1608
1609                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1610                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap);
1611                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI);
1612                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS);
1613                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE);
1614                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX);
1615                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_DF2);
1616                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_PFAR);
1617                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MPAM_frac);
1618                 break;
1619         case SYS_ID_AA64PFR2_EL1:
1620                 /* We only expose FPMR */
1621                 val &= ID_AA64PFR2_EL1_FPMR;
1622                 break;
1623         case SYS_ID_AA64ISAR1_EL1:
1624                 if (!vcpu_has_ptrauth(vcpu))
1625                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1626                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1627                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1628                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1629                 break;
1630         case SYS_ID_AA64ISAR2_EL1:
1631                 if (!vcpu_has_ptrauth(vcpu))
1632                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1633                                  ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1634                 if (!cpus_have_final_cap(ARM64_HAS_WFXT) ||
1635                     has_broken_cntvoff())
1636                         val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1637                 break;
1638         case SYS_ID_AA64ISAR3_EL1:
1639                 val &= ID_AA64ISAR3_EL1_FPRCVT | ID_AA64ISAR3_EL1_FAMINMAX;
1640                 break;
1641         case SYS_ID_AA64MMFR2_EL1:
1642                 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1643                 val &= ~ID_AA64MMFR2_EL1_NV;
1644                 break;
1645         case SYS_ID_AA64MMFR3_EL1:
1646                 val &= ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1POE |
1647                         ID_AA64MMFR3_EL1_S1PIE;
1648                 break;
1649         case SYS_ID_MMFR4_EL1:
1650                 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1651                 break;
1652         }
1653
1654         if (vcpu_has_nv(vcpu))
1655                 val = limit_nv_id_reg(vcpu->kvm, id, val);
1656
1657         return val;
1658 }
1659
1660 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1661                                      const struct sys_reg_desc *r)
1662 {
1663         return __kvm_read_sanitised_id_reg(vcpu, r);
1664 }
1665
1666 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1667 {
1668         return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r));
1669 }
1670
1671 static bool is_feature_id_reg(u32 encoding)
1672 {
1673         return (sys_reg_Op0(encoding) == 3 &&
1674                 (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1675                 sys_reg_CRn(encoding) == 0 &&
1676                 sys_reg_CRm(encoding) <= 7);
1677 }
1678
1679 /*
1680  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1681  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1682  * registers KVM maintains on a per-VM basis.
1683  *
1684  * Additionally, the implementation ID registers and CTR_EL0 are handled as
1685  * per-VM registers.
1686  */
1687 static inline bool is_vm_ftr_id_reg(u32 id)
1688 {
1689         switch (id) {
1690         case SYS_CTR_EL0:
1691         case SYS_MIDR_EL1:
1692         case SYS_REVIDR_EL1:
1693         case SYS_AIDR_EL1:
1694                 return true;
1695         default:
1696                 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1697                         sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1698                         sys_reg_CRm(id) < 8);
1699
1700         }
1701 }
1702
1703 static inline bool is_vcpu_ftr_id_reg(u32 id)
1704 {
1705         return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1706 }
1707
1708 static inline bool is_aa32_id_reg(u32 id)
1709 {
1710         return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1711                 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1712                 sys_reg_CRm(id) <= 3);
1713 }
1714
1715 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1716                                   const struct sys_reg_desc *r)
1717 {
1718         u32 id = reg_to_encoding(r);
1719
1720         switch (id) {
1721         case SYS_ID_AA64ZFR0_EL1:
1722                 if (!vcpu_has_sve(vcpu))
1723                         return REG_RAZ;
1724                 break;
1725         }
1726
1727         return 0;
1728 }
1729
1730 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1731                                        const struct sys_reg_desc *r)
1732 {
1733         /*
1734          * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1735          * EL. Promote to RAZ/WI in order to guarantee consistency between
1736          * systems.
1737          */
1738         if (!kvm_supports_32bit_el0())
1739                 return REG_RAZ | REG_USER_WI;
1740
1741         return id_visibility(vcpu, r);
1742 }
1743
1744 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1745                                    const struct sys_reg_desc *r)
1746 {
1747         return REG_RAZ;
1748 }
1749
1750 /* cpufeature ID register access trap handlers */
1751
1752 static bool access_id_reg(struct kvm_vcpu *vcpu,
1753                           struct sys_reg_params *p,
1754                           const struct sys_reg_desc *r)
1755 {
1756         if (p->is_write)
1757                 return write_to_read_only(vcpu, p, r);
1758
1759         p->regval = read_id_reg(vcpu, r);
1760
1761         return true;
1762 }
1763
1764 /* Visibility overrides for SVE-specific control registers */
1765 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1766                                    const struct sys_reg_desc *rd)
1767 {
1768         if (vcpu_has_sve(vcpu))
1769                 return 0;
1770
1771         return REG_HIDDEN;
1772 }
1773
1774 static unsigned int sme_visibility(const struct kvm_vcpu *vcpu,
1775                                    const struct sys_reg_desc *rd)
1776 {
1777         if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP))
1778                 return 0;
1779
1780         return REG_HIDDEN;
1781 }
1782
1783 static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu,
1784                                    const struct sys_reg_desc *rd)
1785 {
1786         if (kvm_has_fpmr(vcpu->kvm))
1787                 return 0;
1788
1789         return REG_HIDDEN;
1790 }
1791
1792 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1793 {
1794         if (!vcpu_has_sve(vcpu))
1795                 val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1796
1797         /*
1798          * The default is to expose CSV2 == 1 if the HW isn't affected.
1799          * Although this is a per-CPU feature, we make it global because
1800          * asymmetric systems are just a nuisance.
1801          *
1802          * Userspace can override this as long as it doesn't promise
1803          * the impossible.
1804          */
1805         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1806                 val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1807                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1808         }
1809         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1810                 val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1811                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1812         }
1813
1814         if (kvm_vgic_global_state.type == VGIC_V3) {
1815                 val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1816                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1817         }
1818
1819         val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1820
1821         /*
1822          * MPAM is disabled by default as KVM also needs a set of PARTID to
1823          * program the MPAMVPMx_EL2 PARTID remapping registers with. But some
1824          * older kernels let the guest see the ID bit.
1825          */
1826         val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1827
1828         return val;
1829 }
1830
1831 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1832 {
1833         val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1834
1835         /*
1836          * Only initialize the PMU version if the vCPU was configured with one.
1837          */
1838         val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1839         if (kvm_vcpu_has_pmu(vcpu))
1840                 val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1841                                       kvm_arm_pmu_get_pmuver_limit());
1842
1843         /* Hide SPE from guests */
1844         val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1845
1846         /* Hide BRBE from guests */
1847         val &= ~ID_AA64DFR0_EL1_BRBE_MASK;
1848
1849         return val;
1850 }
1851
1852 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1853                                const struct sys_reg_desc *rd,
1854                                u64 val)
1855 {
1856         u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1857         u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1858
1859         /*
1860          * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1861          * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1862          * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1863          * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1864          * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1865          *
1866          * At minimum, we're on the hook to allow values that were given to
1867          * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1868          * with a more sensible NI. The value of an ID register changing under
1869          * the nose of the guest is unfortunate, but is certainly no more
1870          * surprising than an ill-guided PMU driver poking at impdef system
1871          * registers that end in an UNDEF...
1872          */
1873         if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1874                 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1875
1876         /*
1877          * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1878          * nonzero minimum safe value.
1879          */
1880         if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1881                 return -EINVAL;
1882
1883         return set_id_reg(vcpu, rd, val);
1884 }
1885
1886 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1887                                       const struct sys_reg_desc *rd)
1888 {
1889         u8 perfmon;
1890         u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1891
1892         val &= ~ID_DFR0_EL1_PerfMon_MASK;
1893         if (kvm_vcpu_has_pmu(vcpu)) {
1894                 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1895                 val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1896         }
1897
1898         val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1899
1900         return val;
1901 }
1902
1903 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1904                            const struct sys_reg_desc *rd,
1905                            u64 val)
1906 {
1907         u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1908         u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1909
1910         if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1911                 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1912                 perfmon = 0;
1913         }
1914
1915         /*
1916          * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1917          * it doesn't promise more than what the HW gives us on the
1918          * AArch64 side (as everything is emulated with that), and
1919          * that this is a PMUv3.
1920          */
1921         if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1922                 return -EINVAL;
1923
1924         if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1925                 return -EINVAL;
1926
1927         return set_id_reg(vcpu, rd, val);
1928 }
1929
1930 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1931                                const struct sys_reg_desc *rd, u64 user_val)
1932 {
1933         u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1934         u64 mpam_mask = ID_AA64PFR0_EL1_MPAM_MASK;
1935
1936         /*
1937          * Commit 011e5f5bf529f ("arm64/cpufeature: Add remaining feature bits
1938          * in ID_AA64PFR0 register") exposed the MPAM field of AA64PFR0_EL1 to
1939          * guests, but didn't add trap handling. KVM doesn't support MPAM and
1940          * always returns an UNDEF for these registers. The guest must see 0
1941          * for this field.
1942          *
1943          * But KVM must also accept values from user-space that were provided
1944          * by KVM. On CPUs that support MPAM, permit user-space to write
1945          * the sanitizied value to ID_AA64PFR0_EL1.MPAM, but ignore this field.
1946          */
1947         if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1948                 user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1949
1950         /* Fail the guest's request to disable the AA64 ISA at EL{0,1,2} */
1951         if (!FIELD_GET(ID_AA64PFR0_EL1_EL0, user_val) ||
1952             !FIELD_GET(ID_AA64PFR0_EL1_EL1, user_val) ||
1953             (vcpu_has_nv(vcpu) && !FIELD_GET(ID_AA64PFR0_EL1_EL2, user_val)))
1954                 return -EINVAL;
1955
1956         return set_id_reg(vcpu, rd, user_val);
1957 }
1958
1959 static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu,
1960                                const struct sys_reg_desc *rd, u64 user_val)
1961 {
1962         u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1963         u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK;
1964         u8 mte = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE, hw_val);
1965         u8 user_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, user_val);
1966         u8 hw_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, hw_val);
1967
1968         /* See set_id_aa64pfr0_el1 for comment about MPAM */
1969         if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1970                 user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
1971
1972         /*
1973          * Previously MTE_frac was hidden from guest. However, if the
1974          * hardware supports MTE2 but not MTE_ASYM_FAULT then a value
1975          * of 0 for this field indicates that the hardware supports
1976          * MTE_ASYNC. Whereas, 0xf indicates MTE_ASYNC is not supported.
1977          *
1978          * As KVM must accept values from KVM provided by user-space,
1979          * when ID_AA64PFR1_EL1.MTE is 2 allow user-space to set
1980          * ID_AA64PFR1_EL1.MTE_frac to 0. However, ignore it to avoid
1981          * incorrectly claiming hardware support for MTE_ASYNC in the
1982          * guest.
1983          */
1984
1985         if (mte == ID_AA64PFR1_EL1_MTE_MTE2 &&
1986             hw_mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI &&
1987             user_mte_frac == ID_AA64PFR1_EL1_MTE_frac_ASYNC) {
1988                 user_val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK;
1989                 user_val |= hw_val & ID_AA64PFR1_EL1_MTE_frac_MASK;
1990         }
1991
1992         return set_id_reg(vcpu, rd, user_val);
1993 }
1994
1995 static int set_id_aa64mmfr0_el1(struct kvm_vcpu *vcpu,
1996                                 const struct sys_reg_desc *rd, u64 user_val)
1997 {
1998         u64 sanitized_val = kvm_read_sanitised_id_reg(vcpu, rd);
1999         u64 tgran2_mask = ID_AA64MMFR0_EL1_TGRAN4_2_MASK |
2000                           ID_AA64MMFR0_EL1_TGRAN16_2_MASK |
2001                           ID_AA64MMFR0_EL1_TGRAN64_2_MASK;
2002
2003         if (vcpu_has_nv(vcpu) &&
2004             ((sanitized_val & tgran2_mask) != (user_val & tgran2_mask)))
2005                 return -EINVAL;
2006
2007         return set_id_reg(vcpu, rd, user_val);
2008 }
2009
2010 static int set_id_aa64mmfr2_el1(struct kvm_vcpu *vcpu,
2011                                 const struct sys_reg_desc *rd, u64 user_val)
2012 {
2013         u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2014         u64 nv_mask = ID_AA64MMFR2_EL1_NV_MASK;
2015
2016         /*
2017          * We made the mistake to expose the now deprecated NV field,
2018          * so allow userspace to write it, but silently ignore it.
2019          */
2020         if ((hw_val & nv_mask) == (user_val & nv_mask))
2021                 user_val &= ~nv_mask;
2022
2023         return set_id_reg(vcpu, rd, user_val);
2024 }
2025
2026 static int set_ctr_el0(struct kvm_vcpu *vcpu,
2027                        const struct sys_reg_desc *rd, u64 user_val)
2028 {
2029         u8 user_L1Ip = SYS_FIELD_GET(CTR_EL0, L1Ip, user_val);
2030
2031         /*
2032          * Both AIVIVT (0b01) and VPIPT (0b00) are documented as reserved.
2033          * Hence only allow to set VIPT(0b10) or PIPT(0b11) for L1Ip based
2034          * on what hardware reports.
2035          *
2036          * Using a VIPT software model on PIPT will lead to over invalidation,
2037          * but still correct. Hence, we can allow downgrading PIPT to VIPT,
2038          * but not the other way around. This is handled via arm64_ftr_safe_value()
2039          * as CTR_EL0 ftr_bits has L1Ip field with type FTR_EXACT and safe value
2040          * set as VIPT.
2041          */
2042         switch (user_L1Ip) {
2043         case CTR_EL0_L1Ip_RESERVED_VPIPT:
2044         case CTR_EL0_L1Ip_RESERVED_AIVIVT:
2045                 return -EINVAL;
2046         case CTR_EL0_L1Ip_VIPT:
2047         case CTR_EL0_L1Ip_PIPT:
2048                 return set_id_reg(vcpu, rd, user_val);
2049         default:
2050                 return -ENOENT;
2051         }
2052 }
2053
2054 /*
2055  * cpufeature ID register user accessors
2056  *
2057  * For now, these registers are immutable for userspace, so no values
2058  * are stored, and for set_id_reg() we don't allow the effective value
2059  * to be changed.
2060  */
2061 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2062                       u64 *val)
2063 {
2064         /*
2065          * Avoid locking if the VM has already started, as the ID registers are
2066          * guaranteed to be invariant at that point.
2067          */
2068         if (kvm_vm_has_ran_once(vcpu->kvm)) {
2069                 *val = read_id_reg(vcpu, rd);
2070                 return 0;
2071         }
2072
2073         mutex_lock(&vcpu->kvm->arch.config_lock);
2074         *val = read_id_reg(vcpu, rd);
2075         mutex_unlock(&vcpu->kvm->arch.config_lock);
2076
2077         return 0;
2078 }
2079
2080 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2081                       u64 val)
2082 {
2083         u32 id = reg_to_encoding(rd);
2084         int ret;
2085
2086         mutex_lock(&vcpu->kvm->arch.config_lock);
2087
2088         /*
2089          * Once the VM has started the ID registers are immutable. Reject any
2090          * write that does not match the final register value.
2091          */
2092         if (kvm_vm_has_ran_once(vcpu->kvm)) {
2093                 if (val != read_id_reg(vcpu, rd))
2094                         ret = -EBUSY;
2095                 else
2096                         ret = 0;
2097
2098                 mutex_unlock(&vcpu->kvm->arch.config_lock);
2099                 return ret;
2100         }
2101
2102         ret = arm64_check_features(vcpu, rd, val);
2103         if (!ret)
2104                 kvm_set_vm_id_reg(vcpu->kvm, id, val);
2105
2106         mutex_unlock(&vcpu->kvm->arch.config_lock);
2107
2108         /*
2109          * arm64_check_features() returns -E2BIG to indicate the register's
2110          * feature set is a superset of the maximally-allowed register value.
2111          * While it would be nice to precisely describe this to userspace, the
2112          * existing UAPI for KVM_SET_ONE_REG has it that invalid register
2113          * writes return -EINVAL.
2114          */
2115         if (ret == -E2BIG)
2116                 ret = -EINVAL;
2117         return ret;
2118 }
2119
2120 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val)
2121 {
2122         u64 *p = __vm_id_reg(&kvm->arch, reg);
2123
2124         lockdep_assert_held(&kvm->arch.config_lock);
2125
2126         if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm))
2127                 return;
2128
2129         *p = val;
2130 }
2131
2132 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2133                        u64 *val)
2134 {
2135         *val = 0;
2136         return 0;
2137 }
2138
2139 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2140                       u64 val)
2141 {
2142         return 0;
2143 }
2144
2145 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2146                        const struct sys_reg_desc *r)
2147 {
2148         if (p->is_write)
2149                 return write_to_read_only(vcpu, p, r);
2150
2151         p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0);
2152         return true;
2153 }
2154
2155 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2156                          const struct sys_reg_desc *r)
2157 {
2158         if (p->is_write)
2159                 return write_to_read_only(vcpu, p, r);
2160
2161         p->regval = __vcpu_sys_reg(vcpu, r->reg);
2162         return true;
2163 }
2164
2165 /*
2166  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
2167  * by the physical CPU which the vcpu currently resides in.
2168  */
2169 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2170 {
2171         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2172         u64 clidr;
2173         u8 loc;
2174
2175         if ((ctr_el0 & CTR_EL0_IDC)) {
2176                 /*
2177                  * Data cache clean to the PoU is not required so LoUU and LoUIS
2178                  * will not be set and a unified cache, which will be marked as
2179                  * LoC, will be added.
2180                  *
2181                  * If not DIC, let the unified cache L2 so that an instruction
2182                  * cache can be added as L1 later.
2183                  */
2184                 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
2185                 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
2186         } else {
2187                 /*
2188                  * Data cache clean to the PoU is required so let L1 have a data
2189                  * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
2190                  * it can be marked as LoC too.
2191                  */
2192                 loc = 1;
2193                 clidr = 1 << CLIDR_LOUU_SHIFT;
2194                 clidr |= 1 << CLIDR_LOUIS_SHIFT;
2195                 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
2196         }
2197
2198         /*
2199          * Instruction cache invalidation to the PoU is required so let L1 have
2200          * an instruction cache. If L1 already has a data cache, it will be
2201          * CACHE_TYPE_SEPARATE.
2202          */
2203         if (!(ctr_el0 & CTR_EL0_DIC))
2204                 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
2205
2206         clidr |= loc << CLIDR_LOC_SHIFT;
2207
2208         /*
2209          * Add tag cache unified to data cache. Allocation tags and data are
2210          * unified in a cache line so that it looks valid even if there is only
2211          * one cache line.
2212          */
2213         if (kvm_has_mte(vcpu->kvm))
2214                 clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc);
2215
2216         __vcpu_assign_sys_reg(vcpu, r->reg, clidr);
2217
2218         return __vcpu_sys_reg(vcpu, r->reg);
2219 }
2220
2221 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2222                       u64 val)
2223 {
2224         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2225         u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
2226
2227         if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
2228                 return -EINVAL;
2229
2230         __vcpu_assign_sys_reg(vcpu, rd->reg, val);
2231
2232         return 0;
2233 }
2234
2235 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2236                           const struct sys_reg_desc *r)
2237 {
2238         int reg = r->reg;
2239
2240         if (p->is_write)
2241                 vcpu_write_sys_reg(vcpu, p->regval, reg);
2242         else
2243                 p->regval = vcpu_read_sys_reg(vcpu, reg);
2244         return true;
2245 }
2246
2247 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2248                           const struct sys_reg_desc *r)
2249 {
2250         u32 csselr;
2251
2252         if (p->is_write)
2253                 return write_to_read_only(vcpu, p, r);
2254
2255         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
2256         csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
2257         if (csselr < CSSELR_MAX)
2258                 p->regval = get_ccsidr(vcpu, csselr);
2259
2260         return true;
2261 }
2262
2263 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2264                                    const struct sys_reg_desc *rd)
2265 {
2266         if (kvm_has_mte(vcpu->kvm))
2267                 return 0;
2268
2269         return REG_HIDDEN;
2270 }
2271
2272 #define MTE_REG(name) {                         \
2273         SYS_DESC(SYS_##name),                   \
2274         .access = undef_access,                 \
2275         .reset = reset_unknown,                 \
2276         .reg = name,                            \
2277         .visibility = mte_visibility,           \
2278 }
2279
2280 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2281                                    const struct sys_reg_desc *rd)
2282 {
2283         if (vcpu_has_nv(vcpu))
2284                 return 0;
2285
2286         return REG_HIDDEN;
2287 }
2288
2289 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2290                           struct sys_reg_params *p,
2291                           const struct sys_reg_desc *r)
2292 {
2293         /*
2294          * We really shouldn't be here, and this is likely the result
2295          * of a misconfigured trap, as this register should target the
2296          * VNCR page, and nothing else.
2297          */
2298         return bad_trap(vcpu, p, r,
2299                         "trap of VNCR-backed register");
2300 }
2301
2302 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2303                            struct sys_reg_params *p,
2304                            const struct sys_reg_desc *r)
2305 {
2306         /*
2307          * We really shouldn't be here, and this is likely the result
2308          * of a misconfigured trap, as this register should target the
2309          * corresponding EL1, and nothing else.
2310          */
2311         return bad_trap(vcpu, p, r,
2312                         "trap of EL2 register redirected to EL1");
2313 }
2314
2315 #define EL2_REG_FILTERED(name, acc, rst, v, filter) {   \
2316         SYS_DESC(SYS_##name),                   \
2317         .access = acc,                          \
2318         .reset = rst,                           \
2319         .reg = name,                            \
2320         .visibility = filter,                   \
2321         .val = v,                               \
2322 }
2323
2324 #define EL2_REG(name, acc, rst, v)                      \
2325         EL2_REG_FILTERED(name, acc, rst, v, el2_visibility)
2326
2327 #define EL2_REG_VNCR(name, rst, v)      EL2_REG(name, bad_vncr_trap, rst, v)
2328 #define EL2_REG_REDIR(name, rst, v)     EL2_REG(name, bad_redir_trap, rst, v)
2329
2330 /*
2331  * Since reset() callback and field val are not used for idregs, they will be
2332  * used for specific purposes for idregs.
2333  * The reset() would return KVM sanitised register value. The value would be the
2334  * same as the host kernel sanitised value if there is no KVM sanitisation.
2335  * The val would be used as a mask indicating writable fields for the idreg.
2336  * Only bits with 1 are writable from userspace. This mask might not be
2337  * necessary in the future whenever all ID registers are enabled as writable
2338  * from userspace.
2339  */
2340
2341 #define ID_DESC_DEFAULT_CALLBACKS               \
2342         .access = access_id_reg,                \
2343         .get_user = get_id_reg,                 \
2344         .set_user = set_id_reg,                 \
2345         .visibility = id_visibility,            \
2346         .reset = kvm_read_sanitised_id_reg
2347
2348 #define ID_DESC(name)                           \
2349         SYS_DESC(SYS_##name),                   \
2350         ID_DESC_DEFAULT_CALLBACKS
2351
2352 /* sys_reg_desc initialiser for known cpufeature ID registers */
2353 #define ID_SANITISED(name) {                    \
2354         ID_DESC(name),                          \
2355         .val = 0,                               \
2356 }
2357
2358 /* sys_reg_desc initialiser for known cpufeature ID registers */
2359 #define AA32_ID_SANITISED(name) {               \
2360         ID_DESC(name),                          \
2361         .visibility = aa32_id_visibility,       \
2362         .val = 0,                               \
2363 }
2364
2365 /* sys_reg_desc initialiser for writable ID registers */
2366 #define ID_WRITABLE(name, mask) {               \
2367         ID_DESC(name),                          \
2368         .val = mask,                            \
2369 }
2370
2371 /* sys_reg_desc initialiser for cpufeature ID registers that need filtering */
2372 #define ID_FILTERED(sysreg, name, mask) {       \
2373         ID_DESC(sysreg),                                \
2374         .set_user = set_##name,                         \
2375         .val = (mask),                                  \
2376 }
2377
2378 /*
2379  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2380  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2381  * (1 <= crm < 8, 0 <= Op2 < 8).
2382  */
2383 #define ID_UNALLOCATED(crm, op2) {                      \
2384         .name = "S3_0_0_" #crm "_" #op2,                \
2385         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
2386         ID_DESC_DEFAULT_CALLBACKS,                      \
2387         .visibility = raz_visibility,                   \
2388         .val = 0,                                       \
2389 }
2390
2391 /*
2392  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2393  * For now, these are exposed just like unallocated ID regs: they appear
2394  * RAZ for the guest.
2395  */
2396 #define ID_HIDDEN(name) {                       \
2397         ID_DESC(name),                          \
2398         .visibility = raz_visibility,           \
2399         .val = 0,                               \
2400 }
2401
2402 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2403                           struct sys_reg_params *p,
2404                           const struct sys_reg_desc *r)
2405 {
2406         if (p->is_write)
2407                 __vcpu_assign_sys_reg(vcpu, SP_EL1, p->regval);
2408         else
2409                 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2410
2411         return true;
2412 }
2413
2414 static bool access_elr(struct kvm_vcpu *vcpu,
2415                        struct sys_reg_params *p,
2416                        const struct sys_reg_desc *r)
2417 {
2418         if (p->is_write)
2419                 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2420         else
2421                 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2422
2423         return true;
2424 }
2425
2426 static bool access_spsr(struct kvm_vcpu *vcpu,
2427                         struct sys_reg_params *p,
2428                         const struct sys_reg_desc *r)
2429 {
2430         if (p->is_write)
2431                 __vcpu_assign_sys_reg(vcpu, SPSR_EL1, p->regval);
2432         else
2433                 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2434
2435         return true;
2436 }
2437
2438 static bool access_cntkctl_el12(struct kvm_vcpu *vcpu,
2439                                 struct sys_reg_params *p,
2440                                 const struct sys_reg_desc *r)
2441 {
2442         if (p->is_write)
2443                 __vcpu_assign_sys_reg(vcpu, CNTKCTL_EL1, p->regval);
2444         else
2445                 p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1);
2446
2447         return true;
2448 }
2449
2450 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2451 {
2452         u64 val = r->val;
2453
2454         if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2455                 val |= HCR_E2H;
2456
2457         __vcpu_assign_sys_reg(vcpu, r->reg, val);
2458
2459         return __vcpu_sys_reg(vcpu, r->reg);
2460 }
2461
2462 static unsigned int __el2_visibility(const struct kvm_vcpu *vcpu,
2463                                      const struct sys_reg_desc *rd,
2464                                      unsigned int (*fn)(const struct kvm_vcpu *,
2465                                                         const struct sys_reg_desc *))
2466 {
2467         return el2_visibility(vcpu, rd) ?: fn(vcpu, rd);
2468 }
2469
2470 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2471                                        const struct sys_reg_desc *rd)
2472 {
2473         return __el2_visibility(vcpu, rd, sve_visibility);
2474 }
2475
2476 static unsigned int vncr_el2_visibility(const struct kvm_vcpu *vcpu,
2477                                         const struct sys_reg_desc *rd)
2478 {
2479         if (el2_visibility(vcpu, rd) == 0 &&
2480             kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
2481                 return 0;
2482
2483         return REG_HIDDEN;
2484 }
2485
2486 static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2487                            struct sys_reg_params *p,
2488                            const struct sys_reg_desc *r)
2489 {
2490         unsigned int vq;
2491
2492         if (guest_hyp_sve_traps_enabled(vcpu)) {
2493                 kvm_inject_nested_sve_trap(vcpu);
2494                 return true;
2495         }
2496
2497         if (!p->is_write) {
2498                 p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2);
2499                 return true;
2500         }
2501
2502         vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2503         vq = min(vq, vcpu_sve_max_vq(vcpu));
2504         vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2);
2505
2506         return true;
2507 }
2508
2509 static bool access_gic_vtr(struct kvm_vcpu *vcpu,
2510                            struct sys_reg_params *p,
2511                            const struct sys_reg_desc *r)
2512 {
2513         if (p->is_write)
2514                 return write_to_read_only(vcpu, p, r);
2515
2516         p->regval = kvm_vgic_global_state.ich_vtr_el2;
2517         p->regval &= ~(ICH_VTR_EL2_DVIM         |
2518                        ICH_VTR_EL2_A3V          |
2519                        ICH_VTR_EL2_IDbits);
2520         p->regval |= ICH_VTR_EL2_nV4;
2521
2522         return true;
2523 }
2524
2525 static bool access_gic_misr(struct kvm_vcpu *vcpu,
2526                             struct sys_reg_params *p,
2527                             const struct sys_reg_desc *r)
2528 {
2529         if (p->is_write)
2530                 return write_to_read_only(vcpu, p, r);
2531
2532         p->regval = vgic_v3_get_misr(vcpu);
2533
2534         return true;
2535 }
2536
2537 static bool access_gic_eisr(struct kvm_vcpu *vcpu,
2538                             struct sys_reg_params *p,
2539                             const struct sys_reg_desc *r)
2540 {
2541         if (p->is_write)
2542                 return write_to_read_only(vcpu, p, r);
2543
2544         p->regval = vgic_v3_get_eisr(vcpu);
2545
2546         return true;
2547 }
2548
2549 static bool access_gic_elrsr(struct kvm_vcpu *vcpu,
2550                              struct sys_reg_params *p,
2551                              const struct sys_reg_desc *r)
2552 {
2553         if (p->is_write)
2554                 return write_to_read_only(vcpu, p, r);
2555
2556         p->regval = vgic_v3_get_elrsr(vcpu);
2557
2558         return true;
2559 }
2560
2561 static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu,
2562                                      const struct sys_reg_desc *rd)
2563 {
2564         if (kvm_has_s1poe(vcpu->kvm))
2565                 return 0;
2566
2567         return REG_HIDDEN;
2568 }
2569
2570 static unsigned int s1poe_el2_visibility(const struct kvm_vcpu *vcpu,
2571                                          const struct sys_reg_desc *rd)
2572 {
2573         return __el2_visibility(vcpu, rd, s1poe_visibility);
2574 }
2575
2576 static unsigned int tcr2_visibility(const struct kvm_vcpu *vcpu,
2577                                     const struct sys_reg_desc *rd)
2578 {
2579         if (kvm_has_tcr2(vcpu->kvm))
2580                 return 0;
2581
2582         return REG_HIDDEN;
2583 }
2584
2585 static unsigned int tcr2_el2_visibility(const struct kvm_vcpu *vcpu,
2586                                     const struct sys_reg_desc *rd)
2587 {
2588         return __el2_visibility(vcpu, rd, tcr2_visibility);
2589 }
2590
2591 static unsigned int s1pie_visibility(const struct kvm_vcpu *vcpu,
2592                                      const struct sys_reg_desc *rd)
2593 {
2594         if (kvm_has_s1pie(vcpu->kvm))
2595                 return 0;
2596
2597         return REG_HIDDEN;
2598 }
2599
2600 static unsigned int s1pie_el2_visibility(const struct kvm_vcpu *vcpu,
2601                                          const struct sys_reg_desc *rd)
2602 {
2603         return __el2_visibility(vcpu, rd, s1pie_visibility);
2604 }
2605
2606 static bool access_mdcr(struct kvm_vcpu *vcpu,
2607                         struct sys_reg_params *p,
2608                         const struct sys_reg_desc *r)
2609 {
2610         u64 hpmn, val, old = __vcpu_sys_reg(vcpu, MDCR_EL2);
2611
2612         if (!p->is_write) {
2613                 p->regval = old;
2614                 return true;
2615         }
2616
2617         val = p->regval;
2618         hpmn = FIELD_GET(MDCR_EL2_HPMN, val);
2619
2620         /*
2621          * If HPMN is out of bounds, limit it to what we actually
2622          * support. This matches the UNKNOWN definition of the field
2623          * in that case, and keeps the emulation simple. Sort of.
2624          */
2625         if (hpmn > vcpu->kvm->arch.nr_pmu_counters) {
2626                 hpmn = vcpu->kvm->arch.nr_pmu_counters;
2627                 u64_replace_bits(val, hpmn, MDCR_EL2_HPMN);
2628         }
2629
2630         __vcpu_assign_sys_reg(vcpu, MDCR_EL2, val);
2631
2632         /*
2633          * Request a reload of the PMU to enable/disable the counters
2634          * affected by HPME.
2635          */
2636         if ((old ^ val) & MDCR_EL2_HPME)
2637                 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
2638
2639         return true;
2640 }
2641
2642 /*
2643  * For historical (ahem ABI) reasons, KVM treated MIDR_EL1, REVIDR_EL1, and
2644  * AIDR_EL1 as "invariant" registers, meaning userspace cannot change them.
2645  * The values made visible to userspace were the register values of the boot
2646  * CPU.
2647  *
2648  * At the same time, reads from these registers at EL1 previously were not
2649  * trapped, allowing the guest to read the actual hardware value. On big-little
2650  * machines, this means the VM can see different values depending on where a
2651  * given vCPU got scheduled.
2652  *
2653  * These registers are now trapped as collateral damage from SME, and what
2654  * follows attempts to give a user / guest view consistent with the existing
2655  * ABI.
2656  */
2657 static bool access_imp_id_reg(struct kvm_vcpu *vcpu,
2658                               struct sys_reg_params *p,
2659                               const struct sys_reg_desc *r)
2660 {
2661         if (p->is_write)
2662                 return write_to_read_only(vcpu, p, r);
2663
2664         /*
2665          * Return the VM-scoped implementation ID register values if userspace
2666          * has made them writable.
2667          */
2668         if (test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &vcpu->kvm->arch.flags))
2669                 return access_id_reg(vcpu, p, r);
2670
2671         /*
2672          * Otherwise, fall back to the old behavior of returning the value of
2673          * the current CPU.
2674          */
2675         switch (reg_to_encoding(r)) {
2676         case SYS_REVIDR_EL1:
2677                 p->regval = read_sysreg(revidr_el1);
2678                 break;
2679         case SYS_AIDR_EL1:
2680                 p->regval = read_sysreg(aidr_el1);
2681                 break;
2682         default:
2683                 WARN_ON_ONCE(1);
2684         }
2685
2686         return true;
2687 }
2688
2689 static u64 __ro_after_init boot_cpu_midr_val;
2690 static u64 __ro_after_init boot_cpu_revidr_val;
2691 static u64 __ro_after_init boot_cpu_aidr_val;
2692
2693 static void init_imp_id_regs(void)
2694 {
2695         boot_cpu_midr_val = read_sysreg(midr_el1);
2696         boot_cpu_revidr_val = read_sysreg(revidr_el1);
2697         boot_cpu_aidr_val = read_sysreg(aidr_el1);
2698 }
2699
2700 static u64 reset_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2701 {
2702         switch (reg_to_encoding(r)) {
2703         case SYS_MIDR_EL1:
2704                 return boot_cpu_midr_val;
2705         case SYS_REVIDR_EL1:
2706                 return boot_cpu_revidr_val;
2707         case SYS_AIDR_EL1:
2708                 return boot_cpu_aidr_val;
2709         default:
2710                 KVM_BUG_ON(1, vcpu->kvm);
2711                 return 0;
2712         }
2713 }
2714
2715 static int set_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
2716                           u64 val)
2717 {
2718         struct kvm *kvm = vcpu->kvm;
2719         u64 expected;
2720
2721         guard(mutex)(&kvm->arch.config_lock);
2722
2723         expected = read_id_reg(vcpu, r);
2724         if (expected == val)
2725                 return 0;
2726
2727         if (!test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags))
2728                 return -EINVAL;
2729
2730         /*
2731          * Once the VM has started the ID registers are immutable. Reject the
2732          * write if userspace tries to change it.
2733          */
2734         if (kvm_vm_has_ran_once(kvm))
2735                 return -EBUSY;
2736
2737         /*
2738          * Any value is allowed for the implementation ID registers so long as
2739          * it is within the writable mask.
2740          */
2741         if ((val & r->val) != val)
2742                 return -EINVAL;
2743
2744         kvm_set_vm_id_reg(kvm, reg_to_encoding(r), val);
2745         return 0;
2746 }
2747
2748 #define IMPLEMENTATION_ID(reg, mask) {                  \
2749         SYS_DESC(SYS_##reg),                            \
2750         .access = access_imp_id_reg,                    \
2751         .get_user = get_id_reg,                         \
2752         .set_user = set_imp_id_reg,                     \
2753         .reset = reset_imp_id_reg,                      \
2754         .val = mask,                                    \
2755         }
2756
2757 static u64 reset_mdcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2758 {
2759         __vcpu_assign_sys_reg(vcpu, r->reg, vcpu->kvm->arch.nr_pmu_counters);
2760         return vcpu->kvm->arch.nr_pmu_counters;
2761 }
2762
2763 /*
2764  * Architected system registers.
2765  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2766  *
2767  * Debug handling: We do trap most, if not all debug related system
2768  * registers. The implementation is good enough to ensure that a guest
2769  * can use these with minimal performance degradation. The drawback is
2770  * that we don't implement any of the external debug architecture.
2771  * This should be revisited if we ever encounter a more demanding
2772  * guest...
2773  */
2774 static const struct sys_reg_desc sys_reg_descs[] = {
2775         DBG_BCR_BVR_WCR_WVR_EL1(0),
2776         DBG_BCR_BVR_WCR_WVR_EL1(1),
2777         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2778         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2779         DBG_BCR_BVR_WCR_WVR_EL1(2),
2780         DBG_BCR_BVR_WCR_WVR_EL1(3),
2781         DBG_BCR_BVR_WCR_WVR_EL1(4),
2782         DBG_BCR_BVR_WCR_WVR_EL1(5),
2783         DBG_BCR_BVR_WCR_WVR_EL1(6),
2784         DBG_BCR_BVR_WCR_WVR_EL1(7),
2785         DBG_BCR_BVR_WCR_WVR_EL1(8),
2786         DBG_BCR_BVR_WCR_WVR_EL1(9),
2787         DBG_BCR_BVR_WCR_WVR_EL1(10),
2788         DBG_BCR_BVR_WCR_WVR_EL1(11),
2789         DBG_BCR_BVR_WCR_WVR_EL1(12),
2790         DBG_BCR_BVR_WCR_WVR_EL1(13),
2791         DBG_BCR_BVR_WCR_WVR_EL1(14),
2792         DBG_BCR_BVR_WCR_WVR_EL1(15),
2793
2794         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2795         { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2796         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2797                 OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2798         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2799         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2800         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2801         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2802         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2803
2804         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2805         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2806         // DBGDTR[TR]X_EL0 share the same encoding
2807         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2808
2809         { SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 },
2810
2811         IMPLEMENTATION_ID(MIDR_EL1, GENMASK_ULL(31, 0)),
2812         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2813         IMPLEMENTATION_ID(REVIDR_EL1, GENMASK_ULL(63, 0)),
2814
2815         /*
2816          * ID regs: all ID_SANITISED() entries here must have corresponding
2817          * entries in arm64_ftr_regs[].
2818          */
2819
2820         /* AArch64 mappings of the AArch32 ID registers */
2821         /* CRm=1 */
2822         AA32_ID_SANITISED(ID_PFR0_EL1),
2823         AA32_ID_SANITISED(ID_PFR1_EL1),
2824         { SYS_DESC(SYS_ID_DFR0_EL1),
2825           .access = access_id_reg,
2826           .get_user = get_id_reg,
2827           .set_user = set_id_dfr0_el1,
2828           .visibility = aa32_id_visibility,
2829           .reset = read_sanitised_id_dfr0_el1,
2830           .val = ID_DFR0_EL1_PerfMon_MASK |
2831                  ID_DFR0_EL1_CopDbg_MASK, },
2832         ID_HIDDEN(ID_AFR0_EL1),
2833         AA32_ID_SANITISED(ID_MMFR0_EL1),
2834         AA32_ID_SANITISED(ID_MMFR1_EL1),
2835         AA32_ID_SANITISED(ID_MMFR2_EL1),
2836         AA32_ID_SANITISED(ID_MMFR3_EL1),
2837
2838         /* CRm=2 */
2839         AA32_ID_SANITISED(ID_ISAR0_EL1),
2840         AA32_ID_SANITISED(ID_ISAR1_EL1),
2841         AA32_ID_SANITISED(ID_ISAR2_EL1),
2842         AA32_ID_SANITISED(ID_ISAR3_EL1),
2843         AA32_ID_SANITISED(ID_ISAR4_EL1),
2844         AA32_ID_SANITISED(ID_ISAR5_EL1),
2845         AA32_ID_SANITISED(ID_MMFR4_EL1),
2846         AA32_ID_SANITISED(ID_ISAR6_EL1),
2847
2848         /* CRm=3 */
2849         AA32_ID_SANITISED(MVFR0_EL1),
2850         AA32_ID_SANITISED(MVFR1_EL1),
2851         AA32_ID_SANITISED(MVFR2_EL1),
2852         ID_UNALLOCATED(3,3),
2853         AA32_ID_SANITISED(ID_PFR2_EL1),
2854         ID_HIDDEN(ID_DFR1_EL1),
2855         AA32_ID_SANITISED(ID_MMFR5_EL1),
2856         ID_UNALLOCATED(3,7),
2857
2858         /* AArch64 ID registers */
2859         /* CRm=4 */
2860         ID_FILTERED(ID_AA64PFR0_EL1, id_aa64pfr0_el1,
2861                     ~(ID_AA64PFR0_EL1_AMU |
2862                       ID_AA64PFR0_EL1_MPAM |
2863                       ID_AA64PFR0_EL1_SVE |
2864                       ID_AA64PFR0_EL1_RAS |
2865                       ID_AA64PFR0_EL1_AdvSIMD |
2866                       ID_AA64PFR0_EL1_FP)),
2867         ID_FILTERED(ID_AA64PFR1_EL1, id_aa64pfr1_el1,
2868                                      ~(ID_AA64PFR1_EL1_PFAR |
2869                                        ID_AA64PFR1_EL1_DF2 |
2870                                        ID_AA64PFR1_EL1_MTEX |
2871                                        ID_AA64PFR1_EL1_THE |
2872                                        ID_AA64PFR1_EL1_GCS |
2873                                        ID_AA64PFR1_EL1_MTE_frac |
2874                                        ID_AA64PFR1_EL1_NMI |
2875                                        ID_AA64PFR1_EL1_RNDR_trap |
2876                                        ID_AA64PFR1_EL1_SME |
2877                                        ID_AA64PFR1_EL1_RES0 |
2878                                        ID_AA64PFR1_EL1_MPAM_frac |
2879                                        ID_AA64PFR1_EL1_RAS_frac |
2880                                        ID_AA64PFR1_EL1_MTE)),
2881         ID_WRITABLE(ID_AA64PFR2_EL1, ID_AA64PFR2_EL1_FPMR),
2882         ID_UNALLOCATED(4,3),
2883         ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2884         ID_HIDDEN(ID_AA64SMFR0_EL1),
2885         ID_UNALLOCATED(4,6),
2886         ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0),
2887
2888         /* CRm=5 */
2889         /*
2890          * Prior to FEAT_Debugv8.9, the architecture defines context-aware
2891          * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs).
2892          * KVM does not trap + emulate the breakpoint registers, and as such
2893          * cannot support a layout that misaligns with the underlying hardware.
2894          * While it may be possible to describe a subset that aligns with
2895          * hardware, just prevent changes to BRPs and CTX_CMPs altogether for
2896          * simplicity.
2897          *
2898          * See DDI0487K.a, section D2.8.3 Breakpoint types and linking
2899          * of breakpoints for more details.
2900          */
2901         ID_FILTERED(ID_AA64DFR0_EL1, id_aa64dfr0_el1,
2902                     ID_AA64DFR0_EL1_DoubleLock_MASK |
2903                     ID_AA64DFR0_EL1_WRPs_MASK |
2904                     ID_AA64DFR0_EL1_PMUVer_MASK |
2905                     ID_AA64DFR0_EL1_DebugVer_MASK),
2906         ID_SANITISED(ID_AA64DFR1_EL1),
2907         ID_UNALLOCATED(5,2),
2908         ID_UNALLOCATED(5,3),
2909         ID_HIDDEN(ID_AA64AFR0_EL1),
2910         ID_HIDDEN(ID_AA64AFR1_EL1),
2911         ID_UNALLOCATED(5,6),
2912         ID_UNALLOCATED(5,7),
2913
2914         /* CRm=6 */
2915         ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2916         ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2917                                         ID_AA64ISAR1_EL1_GPA |
2918                                         ID_AA64ISAR1_EL1_API |
2919                                         ID_AA64ISAR1_EL1_APA)),
2920         ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2921                                         ID_AA64ISAR2_EL1_APA3 |
2922                                         ID_AA64ISAR2_EL1_GPA3)),
2923         ID_WRITABLE(ID_AA64ISAR3_EL1, (ID_AA64ISAR3_EL1_FPRCVT |
2924                                        ID_AA64ISAR3_EL1_FAMINMAX)),
2925         ID_UNALLOCATED(6,4),
2926         ID_UNALLOCATED(6,5),
2927         ID_UNALLOCATED(6,6),
2928         ID_UNALLOCATED(6,7),
2929
2930         /* CRm=7 */
2931         ID_FILTERED(ID_AA64MMFR0_EL1, id_aa64mmfr0_el1,
2932                                       ~(ID_AA64MMFR0_EL1_RES0 |
2933                                         ID_AA64MMFR0_EL1_ASIDBITS)),
2934         ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2935                                         ID_AA64MMFR1_EL1_HCX |
2936                                         ID_AA64MMFR1_EL1_TWED |
2937                                         ID_AA64MMFR1_EL1_XNX |
2938                                         ID_AA64MMFR1_EL1_VH |
2939                                         ID_AA64MMFR1_EL1_VMIDBits)),
2940         ID_FILTERED(ID_AA64MMFR2_EL1,
2941                     id_aa64mmfr2_el1, ~(ID_AA64MMFR2_EL1_RES0 |
2942                                         ID_AA64MMFR2_EL1_EVT |
2943                                         ID_AA64MMFR2_EL1_FWB |
2944                                         ID_AA64MMFR2_EL1_IDS |
2945                                         ID_AA64MMFR2_EL1_NV |
2946                                         ID_AA64MMFR2_EL1_CCIDX)),
2947         ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX    |
2948                                        ID_AA64MMFR3_EL1_S1PIE   |
2949                                        ID_AA64MMFR3_EL1_S1POE)),
2950         ID_WRITABLE(ID_AA64MMFR4_EL1, ID_AA64MMFR4_EL1_NV_frac),
2951         ID_UNALLOCATED(7,5),
2952         ID_UNALLOCATED(7,6),
2953         ID_UNALLOCATED(7,7),
2954
2955         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2956         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2957         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2958
2959         MTE_REG(RGSR_EL1),
2960         MTE_REG(GCR_EL1),
2961
2962         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2963         { SYS_DESC(SYS_TRFCR_EL1), undef_access },
2964         { SYS_DESC(SYS_SMPRI_EL1), undef_access },
2965         { SYS_DESC(SYS_SMCR_EL1), undef_access },
2966         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2967         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2968         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2969         { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0,
2970           .visibility = tcr2_visibility },
2971
2972         PTRAUTH_KEY(APIA),
2973         PTRAUTH_KEY(APIB),
2974         PTRAUTH_KEY(APDA),
2975         PTRAUTH_KEY(APDB),
2976         PTRAUTH_KEY(APGA),
2977
2978         { SYS_DESC(SYS_SPSR_EL1), access_spsr},
2979         { SYS_DESC(SYS_ELR_EL1), access_elr},
2980
2981         { SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
2982
2983         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2984         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2985         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2986
2987         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2988         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2989         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2990         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2991         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2992         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2993         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2994         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2995
2996         MTE_REG(TFSR_EL1),
2997         MTE_REG(TFSRE0_EL1),
2998
2999         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
3000         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
3001
3002         { SYS_DESC(SYS_PMSCR_EL1), undef_access },
3003         { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
3004         { SYS_DESC(SYS_PMSICR_EL1), undef_access },
3005         { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
3006         { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
3007         { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
3008         { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
3009         { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
3010         { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
3011         { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
3012         { SYS_DESC(SYS_PMBSR_EL1), undef_access },
3013         /* PMBIDR_EL1 is not trapped */
3014
3015         { PMU_SYS_REG(PMINTENSET_EL1),
3016           .access = access_pminten, .reg = PMINTENSET_EL1,
3017           .get_user = get_pmreg, .set_user = set_pmreg },
3018         { PMU_SYS_REG(PMINTENCLR_EL1),
3019           .access = access_pminten, .reg = PMINTENSET_EL1,
3020           .get_user = get_pmreg, .set_user = set_pmreg },
3021         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
3022
3023         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
3024         { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1,
3025           .visibility = s1pie_visibility },
3026         { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1,
3027           .visibility = s1pie_visibility },
3028         { SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1,
3029           .visibility = s1poe_visibility },
3030         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
3031
3032         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
3033         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
3034         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
3035         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
3036         { SYS_DESC(SYS_MPAMIDR_EL1), undef_access },
3037         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
3038
3039         { SYS_DESC(SYS_MPAM1_EL1), undef_access },
3040         { SYS_DESC(SYS_MPAM0_EL1), undef_access },
3041         { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
3042         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
3043
3044         { SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
3045         { SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
3046         { SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
3047         { SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
3048         { SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
3049         { SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
3050         { SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
3051         { SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
3052         { SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
3053         { SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
3054         { SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
3055         { SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
3056         { SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
3057         { SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
3058         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
3059         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
3060         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
3061         { SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
3062         { SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
3063         { SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
3064         { SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
3065         { SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
3066         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
3067         { SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
3068         { SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
3069
3070         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
3071         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
3072
3073         { SYS_DESC(SYS_ACCDATA_EL1), undef_access },
3074
3075         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
3076
3077         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
3078
3079         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
3080         { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
3081           .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 },
3082         { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
3083         { SYS_DESC(SYS_SMIDR_EL1), undef_access },
3084         IMPLEMENTATION_ID(AIDR_EL1, GENMASK_ULL(63, 0)),
3085         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
3086         ID_FILTERED(CTR_EL0, ctr_el0,
3087                     CTR_EL0_DIC_MASK |
3088                     CTR_EL0_IDC_MASK |
3089                     CTR_EL0_DminLine_MASK |
3090                     CTR_EL0_L1Ip_MASK |
3091                     CTR_EL0_IminLine_MASK),
3092         { SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility  },
3093         { SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility },
3094
3095         { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
3096           .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
3097         { PMU_SYS_REG(PMCNTENSET_EL0),
3098           .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3099           .get_user = get_pmreg, .set_user = set_pmreg },
3100         { PMU_SYS_REG(PMCNTENCLR_EL0),
3101           .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3102           .get_user = get_pmreg, .set_user = set_pmreg },
3103         { PMU_SYS_REG(PMOVSCLR_EL0),
3104           .access = access_pmovs, .reg = PMOVSSET_EL0,
3105           .get_user = get_pmreg, .set_user = set_pmreg },
3106         /*
3107          * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
3108          * previously (and pointlessly) advertised in the past...
3109          */
3110         { PMU_SYS_REG(PMSWINC_EL0),
3111           .get_user = get_raz_reg, .set_user = set_wi_reg,
3112           .access = access_pmswinc, .reset = NULL },
3113         { PMU_SYS_REG(PMSELR_EL0),
3114           .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
3115         { PMU_SYS_REG(PMCEID0_EL0),
3116           .access = access_pmceid, .reset = NULL },
3117         { PMU_SYS_REG(PMCEID1_EL0),
3118           .access = access_pmceid, .reset = NULL },
3119         { PMU_SYS_REG(PMCCNTR_EL0),
3120           .access = access_pmu_evcntr, .reset = reset_unknown,
3121           .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr,
3122           .set_user = set_pmu_evcntr },
3123         { PMU_SYS_REG(PMXEVTYPER_EL0),
3124           .access = access_pmu_evtyper, .reset = NULL },
3125         { PMU_SYS_REG(PMXEVCNTR_EL0),
3126           .access = access_pmu_evcntr, .reset = NULL },
3127         /*
3128          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
3129          * in 32bit mode. Here we choose to reset it as zero for consistency.
3130          */
3131         { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
3132           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
3133         { PMU_SYS_REG(PMOVSSET_EL0),
3134           .access = access_pmovs, .reg = PMOVSSET_EL0,
3135           .get_user = get_pmreg, .set_user = set_pmreg },
3136
3137         { SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0,
3138           .visibility = s1poe_visibility },
3139         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
3140         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
3141         { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
3142
3143         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
3144
3145         { SYS_DESC(SYS_AMCR_EL0), undef_access },
3146         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
3147         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
3148         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
3149         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
3150         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
3151         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
3152         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
3153         AMU_AMEVCNTR0_EL0(0),
3154         AMU_AMEVCNTR0_EL0(1),
3155         AMU_AMEVCNTR0_EL0(2),
3156         AMU_AMEVCNTR0_EL0(3),
3157         AMU_AMEVCNTR0_EL0(4),
3158         AMU_AMEVCNTR0_EL0(5),
3159         AMU_AMEVCNTR0_EL0(6),
3160         AMU_AMEVCNTR0_EL0(7),
3161         AMU_AMEVCNTR0_EL0(8),
3162         AMU_AMEVCNTR0_EL0(9),
3163         AMU_AMEVCNTR0_EL0(10),
3164         AMU_AMEVCNTR0_EL0(11),
3165         AMU_AMEVCNTR0_EL0(12),
3166         AMU_AMEVCNTR0_EL0(13),
3167         AMU_AMEVCNTR0_EL0(14),
3168         AMU_AMEVCNTR0_EL0(15),
3169         AMU_AMEVTYPER0_EL0(0),
3170         AMU_AMEVTYPER0_EL0(1),
3171         AMU_AMEVTYPER0_EL0(2),
3172         AMU_AMEVTYPER0_EL0(3),
3173         AMU_AMEVTYPER0_EL0(4),
3174         AMU_AMEVTYPER0_EL0(5),
3175         AMU_AMEVTYPER0_EL0(6),
3176         AMU_AMEVTYPER0_EL0(7),
3177         AMU_AMEVTYPER0_EL0(8),
3178         AMU_AMEVTYPER0_EL0(9),
3179         AMU_AMEVTYPER0_EL0(10),
3180         AMU_AMEVTYPER0_EL0(11),
3181         AMU_AMEVTYPER0_EL0(12),
3182         AMU_AMEVTYPER0_EL0(13),
3183         AMU_AMEVTYPER0_EL0(14),
3184         AMU_AMEVTYPER0_EL0(15),
3185         AMU_AMEVCNTR1_EL0(0),
3186         AMU_AMEVCNTR1_EL0(1),
3187         AMU_AMEVCNTR1_EL0(2),
3188         AMU_AMEVCNTR1_EL0(3),
3189         AMU_AMEVCNTR1_EL0(4),
3190         AMU_AMEVCNTR1_EL0(5),
3191         AMU_AMEVCNTR1_EL0(6),
3192         AMU_AMEVCNTR1_EL0(7),
3193         AMU_AMEVCNTR1_EL0(8),
3194         AMU_AMEVCNTR1_EL0(9),
3195         AMU_AMEVCNTR1_EL0(10),
3196         AMU_AMEVCNTR1_EL0(11),
3197         AMU_AMEVCNTR1_EL0(12),
3198         AMU_AMEVCNTR1_EL0(13),
3199         AMU_AMEVCNTR1_EL0(14),
3200         AMU_AMEVCNTR1_EL0(15),
3201         AMU_AMEVTYPER1_EL0(0),
3202         AMU_AMEVTYPER1_EL0(1),
3203         AMU_AMEVTYPER1_EL0(2),
3204         AMU_AMEVTYPER1_EL0(3),
3205         AMU_AMEVTYPER1_EL0(4),
3206         AMU_AMEVTYPER1_EL0(5),
3207         AMU_AMEVTYPER1_EL0(6),
3208         AMU_AMEVTYPER1_EL0(7),
3209         AMU_AMEVTYPER1_EL0(8),
3210         AMU_AMEVTYPER1_EL0(9),
3211         AMU_AMEVTYPER1_EL0(10),
3212         AMU_AMEVTYPER1_EL0(11),
3213         AMU_AMEVTYPER1_EL0(12),
3214         AMU_AMEVTYPER1_EL0(13),
3215         AMU_AMEVTYPER1_EL0(14),
3216         AMU_AMEVTYPER1_EL0(15),
3217
3218         { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
3219         { SYS_DESC(SYS_CNTVCT_EL0), access_arch_timer },
3220         { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
3221         { SYS_DESC(SYS_CNTVCTSS_EL0), access_arch_timer },
3222         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
3223         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
3224         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
3225
3226         { SYS_DESC(SYS_CNTV_TVAL_EL0), access_arch_timer },
3227         { SYS_DESC(SYS_CNTV_CTL_EL0), access_arch_timer },
3228         { SYS_DESC(SYS_CNTV_CVAL_EL0), access_arch_timer },
3229
3230         /* PMEVCNTRn_EL0 */
3231         PMU_PMEVCNTR_EL0(0),
3232         PMU_PMEVCNTR_EL0(1),
3233         PMU_PMEVCNTR_EL0(2),
3234         PMU_PMEVCNTR_EL0(3),
3235         PMU_PMEVCNTR_EL0(4),
3236         PMU_PMEVCNTR_EL0(5),
3237         PMU_PMEVCNTR_EL0(6),
3238         PMU_PMEVCNTR_EL0(7),
3239         PMU_PMEVCNTR_EL0(8),
3240         PMU_PMEVCNTR_EL0(9),
3241         PMU_PMEVCNTR_EL0(10),
3242         PMU_PMEVCNTR_EL0(11),
3243         PMU_PMEVCNTR_EL0(12),
3244         PMU_PMEVCNTR_EL0(13),
3245         PMU_PMEVCNTR_EL0(14),
3246         PMU_PMEVCNTR_EL0(15),
3247         PMU_PMEVCNTR_EL0(16),
3248         PMU_PMEVCNTR_EL0(17),
3249         PMU_PMEVCNTR_EL0(18),
3250         PMU_PMEVCNTR_EL0(19),
3251         PMU_PMEVCNTR_EL0(20),
3252         PMU_PMEVCNTR_EL0(21),
3253         PMU_PMEVCNTR_EL0(22),
3254         PMU_PMEVCNTR_EL0(23),
3255         PMU_PMEVCNTR_EL0(24),
3256         PMU_PMEVCNTR_EL0(25),
3257         PMU_PMEVCNTR_EL0(26),
3258         PMU_PMEVCNTR_EL0(27),
3259         PMU_PMEVCNTR_EL0(28),
3260         PMU_PMEVCNTR_EL0(29),
3261         PMU_PMEVCNTR_EL0(30),
3262         /* PMEVTYPERn_EL0 */
3263         PMU_PMEVTYPER_EL0(0),
3264         PMU_PMEVTYPER_EL0(1),
3265         PMU_PMEVTYPER_EL0(2),
3266         PMU_PMEVTYPER_EL0(3),
3267         PMU_PMEVTYPER_EL0(4),
3268         PMU_PMEVTYPER_EL0(5),
3269         PMU_PMEVTYPER_EL0(6),
3270         PMU_PMEVTYPER_EL0(7),
3271         PMU_PMEVTYPER_EL0(8),
3272         PMU_PMEVTYPER_EL0(9),
3273         PMU_PMEVTYPER_EL0(10),
3274         PMU_PMEVTYPER_EL0(11),
3275         PMU_PMEVTYPER_EL0(12),
3276         PMU_PMEVTYPER_EL0(13),
3277         PMU_PMEVTYPER_EL0(14),
3278         PMU_PMEVTYPER_EL0(15),
3279         PMU_PMEVTYPER_EL0(16),
3280         PMU_PMEVTYPER_EL0(17),
3281         PMU_PMEVTYPER_EL0(18),
3282         PMU_PMEVTYPER_EL0(19),
3283         PMU_PMEVTYPER_EL0(20),
3284         PMU_PMEVTYPER_EL0(21),
3285         PMU_PMEVTYPER_EL0(22),
3286         PMU_PMEVTYPER_EL0(23),
3287         PMU_PMEVTYPER_EL0(24),
3288         PMU_PMEVTYPER_EL0(25),
3289         PMU_PMEVTYPER_EL0(26),
3290         PMU_PMEVTYPER_EL0(27),
3291         PMU_PMEVTYPER_EL0(28),
3292         PMU_PMEVTYPER_EL0(29),
3293         PMU_PMEVTYPER_EL0(30),
3294         /*
3295          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
3296          * in 32bit mode. Here we choose to reset it as zero for consistency.
3297          */
3298         { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
3299           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
3300
3301         EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
3302         EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
3303         EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
3304         EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
3305         EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
3306         EL2_REG(MDCR_EL2, access_mdcr, reset_mdcr, 0),
3307         EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
3308         EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
3309         EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
3310         EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
3311         EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
3312         EL2_REG_VNCR(HACR_EL2, reset_val, 0),
3313
3314         EL2_REG_FILTERED(ZCR_EL2, access_zcr_el2, reset_val, 0,
3315                          sve_el2_visibility),
3316
3317         EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
3318
3319         EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
3320         EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
3321         EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
3322         EL2_REG_FILTERED(TCR2_EL2, access_rw, reset_val, TCR2_EL2_RES1,
3323                          tcr2_el2_visibility),
3324         EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
3325         EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
3326         EL2_REG_FILTERED(VNCR_EL2, bad_vncr_trap, reset_val, 0,
3327                          vncr_el2_visibility),
3328
3329         { SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 },
3330         EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
3331         EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
3332         EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
3333         EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
3334         EL2_REG_REDIR(ELR_EL2, reset_val, 0),
3335         { SYS_DESC(SYS_SP_EL1), access_sp_el1},
3336
3337         /* AArch32 SPSR_* are RES0 if trapped from a NV guest */
3338         { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi },
3339         { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi },
3340         { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi },
3341         { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi },
3342
3343         { SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 },
3344         EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
3345         EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
3346         EL2_REG_REDIR(ESR_EL2, reset_val, 0),
3347         { SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 },
3348
3349         EL2_REG_REDIR(FAR_EL2, reset_val, 0),
3350         EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
3351
3352         EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
3353         EL2_REG_FILTERED(PIRE0_EL2, access_rw, reset_val, 0,
3354                          s1pie_el2_visibility),
3355         EL2_REG_FILTERED(PIR_EL2, access_rw, reset_val, 0,
3356                          s1pie_el2_visibility),
3357         EL2_REG_FILTERED(POR_EL2, access_rw, reset_val, 0,
3358                          s1poe_el2_visibility),
3359         EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
3360         { SYS_DESC(SYS_MPAMHCR_EL2), undef_access },
3361         { SYS_DESC(SYS_MPAMVPMV_EL2), undef_access },
3362         { SYS_DESC(SYS_MPAM2_EL2), undef_access },
3363         { SYS_DESC(SYS_MPAMVPM0_EL2), undef_access },
3364         { SYS_DESC(SYS_MPAMVPM1_EL2), undef_access },
3365         { SYS_DESC(SYS_MPAMVPM2_EL2), undef_access },
3366         { SYS_DESC(SYS_MPAMVPM3_EL2), undef_access },
3367         { SYS_DESC(SYS_MPAMVPM4_EL2), undef_access },
3368         { SYS_DESC(SYS_MPAMVPM5_EL2), undef_access },
3369         { SYS_DESC(SYS_MPAMVPM6_EL2), undef_access },
3370         { SYS_DESC(SYS_MPAMVPM7_EL2), undef_access },
3371
3372         EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
3373         EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
3374         { SYS_DESC(SYS_RMR_EL2), undef_access },
3375
3376         EL2_REG_VNCR(ICH_AP0R0_EL2, reset_val, 0),
3377         EL2_REG_VNCR(ICH_AP0R1_EL2, reset_val, 0),
3378         EL2_REG_VNCR(ICH_AP0R2_EL2, reset_val, 0),
3379         EL2_REG_VNCR(ICH_AP0R3_EL2, reset_val, 0),
3380         EL2_REG_VNCR(ICH_AP1R0_EL2, reset_val, 0),
3381         EL2_REG_VNCR(ICH_AP1R1_EL2, reset_val, 0),
3382         EL2_REG_VNCR(ICH_AP1R2_EL2, reset_val, 0),
3383         EL2_REG_VNCR(ICH_AP1R3_EL2, reset_val, 0),
3384
3385         { SYS_DESC(SYS_ICC_SRE_EL2), access_gic_sre },
3386
3387         EL2_REG_VNCR(ICH_HCR_EL2, reset_val, 0),
3388         { SYS_DESC(SYS_ICH_VTR_EL2), access_gic_vtr },
3389         { SYS_DESC(SYS_ICH_MISR_EL2), access_gic_misr },
3390         { SYS_DESC(SYS_ICH_EISR_EL2), access_gic_eisr },
3391         { SYS_DESC(SYS_ICH_ELRSR_EL2), access_gic_elrsr },
3392         EL2_REG_VNCR(ICH_VMCR_EL2, reset_val, 0),
3393
3394         EL2_REG_VNCR(ICH_LR0_EL2, reset_val, 0),
3395         EL2_REG_VNCR(ICH_LR1_EL2, reset_val, 0),
3396         EL2_REG_VNCR(ICH_LR2_EL2, reset_val, 0),
3397         EL2_REG_VNCR(ICH_LR3_EL2, reset_val, 0),
3398         EL2_REG_VNCR(ICH_LR4_EL2, reset_val, 0),
3399         EL2_REG_VNCR(ICH_LR5_EL2, reset_val, 0),
3400         EL2_REG_VNCR(ICH_LR6_EL2, reset_val, 0),
3401         EL2_REG_VNCR(ICH_LR7_EL2, reset_val, 0),
3402         EL2_REG_VNCR(ICH_LR8_EL2, reset_val, 0),
3403         EL2_REG_VNCR(ICH_LR9_EL2, reset_val, 0),
3404         EL2_REG_VNCR(ICH_LR10_EL2, reset_val, 0),
3405         EL2_REG_VNCR(ICH_LR11_EL2, reset_val, 0),
3406         EL2_REG_VNCR(ICH_LR12_EL2, reset_val, 0),
3407         EL2_REG_VNCR(ICH_LR13_EL2, reset_val, 0),
3408         EL2_REG_VNCR(ICH_LR14_EL2, reset_val, 0),
3409         EL2_REG_VNCR(ICH_LR15_EL2, reset_val, 0),
3410
3411         EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
3412         EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
3413
3414         EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
3415         EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
3416         { SYS_DESC(SYS_CNTHP_TVAL_EL2), access_arch_timer },
3417         EL2_REG(CNTHP_CTL_EL2, access_arch_timer, reset_val, 0),
3418         EL2_REG(CNTHP_CVAL_EL2, access_arch_timer, reset_val, 0),
3419
3420         { SYS_DESC(SYS_CNTHV_TVAL_EL2), access_hv_timer },
3421         EL2_REG(CNTHV_CTL_EL2, access_hv_timer, reset_val, 0),
3422         EL2_REG(CNTHV_CVAL_EL2, access_hv_timer, reset_val, 0),
3423
3424         { SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 },
3425
3426         { SYS_DESC(SYS_CNTP_TVAL_EL02), access_arch_timer },
3427         { SYS_DESC(SYS_CNTP_CTL_EL02), access_arch_timer },
3428         { SYS_DESC(SYS_CNTP_CVAL_EL02), access_arch_timer },
3429
3430         { SYS_DESC(SYS_CNTV_TVAL_EL02), access_arch_timer },
3431         { SYS_DESC(SYS_CNTV_CTL_EL02), access_arch_timer },
3432         { SYS_DESC(SYS_CNTV_CVAL_EL02), access_arch_timer },
3433
3434         EL2_REG(SP_EL2, NULL, reset_unknown, 0),
3435 };
3436
3437 static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3438                             const struct sys_reg_desc *r)
3439 {
3440         u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3441
3442         __kvm_at_s1e01(vcpu, op, p->regval);
3443
3444         return true;
3445 }
3446
3447 static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3448                            const struct sys_reg_desc *r)
3449 {
3450         u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3451
3452         /* There is no FGT associated with AT S1E2A :-( */
3453         if (op == OP_AT_S1E2A &&
3454             !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) {
3455                 kvm_inject_undefined(vcpu);
3456                 return false;
3457         }
3458
3459         __kvm_at_s1e2(vcpu, op, p->regval);
3460
3461         return true;
3462 }
3463
3464 static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3465                           const struct sys_reg_desc *r)
3466 {
3467         u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3468
3469         __kvm_at_s12(vcpu, op, p->regval);
3470
3471         return true;
3472 }
3473
3474 static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
3475 {
3476         struct kvm *kvm = vpcu->kvm;
3477         u8 CRm = sys_reg_CRm(instr);
3478
3479         if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3480             !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3481                 return false;
3482
3483         if (CRm == TLBI_CRm_nROS &&
3484             !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3485                 return false;
3486
3487         return true;
3488 }
3489
3490 static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3491                            const struct sys_reg_desc *r)
3492 {
3493         u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3494
3495         if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3496                 return undef_access(vcpu, p, r);
3497
3498         write_lock(&vcpu->kvm->mmu_lock);
3499
3500         /*
3501          * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
3502          * corresponding VMIDs.
3503          */
3504         kvm_nested_s2_unmap(vcpu->kvm, true);
3505
3506         write_unlock(&vcpu->kvm->mmu_lock);
3507
3508         return true;
3509 }
3510
3511 static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
3512 {
3513         struct kvm *kvm = vpcu->kvm;
3514         u8 CRm = sys_reg_CRm(instr);
3515         u8 Op2 = sys_reg_Op2(instr);
3516
3517         if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3518             !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3519                 return false;
3520
3521         if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
3522             !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3523                 return false;
3524
3525         if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
3526             !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3527                 return false;
3528
3529         if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
3530             !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3531                 return false;
3532
3533         return true;
3534 }
3535
3536 /* Only defined here as this is an internal "abstraction" */
3537 union tlbi_info {
3538         struct {
3539                 u64     start;
3540                 u64     size;
3541         } range;
3542
3543         struct {
3544                 u64     addr;
3545         } ipa;
3546
3547         struct {
3548                 u64     addr;
3549                 u32     encoding;
3550         } va;
3551 };
3552
3553 static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
3554                                const union tlbi_info *info)
3555 {
3556         /*
3557          * The unmap operation is allowed to drop the MMU lock and block, which
3558          * means that @mmu could be used for a different context than the one
3559          * currently being invalidated.
3560          *
3561          * This behavior is still safe, as:
3562          *
3563          *  1) The vCPU(s) that recycled the MMU are responsible for invalidating
3564          *     the entire MMU before reusing it, which still honors the intent
3565          *     of a TLBI.
3566          *
3567          *  2) Until the guest TLBI instruction is 'retired' (i.e. increment PC
3568          *     and ERET to the guest), other vCPUs are allowed to use stale
3569          *     translations.
3570          *
3571          *  3) Accidentally unmapping an unrelated MMU context is nonfatal, and
3572          *     at worst may cause more aborts for shadow stage-2 fills.
3573          *
3574          * Dropping the MMU lock also implies that shadow stage-2 fills could
3575          * happen behind the back of the TLBI. This is still safe, though, as
3576          * the L1 needs to put its stage-2 in a consistent state before doing
3577          * the TLBI.
3578          */
3579         kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true);
3580 }
3581
3582 static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3583                                 const struct sys_reg_desc *r)
3584 {
3585         u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3586         u64 limit, vttbr;
3587
3588         if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3589                 return undef_access(vcpu, p, r);
3590
3591         vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3592         limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
3593
3594         kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3595                                    &(union tlbi_info) {
3596                                            .range = {
3597                                                    .start = 0,
3598                                                    .size = limit,
3599                                            },
3600                                    },
3601                                    s2_mmu_unmap_range);
3602
3603         return true;
3604 }
3605
3606 static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3607                               const struct sys_reg_desc *r)
3608 {
3609         u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3610         u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3611         u64 base, range;
3612
3613         if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3614                 return undef_access(vcpu, p, r);
3615
3616         /*
3617          * Because the shadow S2 structure doesn't necessarily reflect that
3618          * of the guest's S2 (different base granule size, for example), we
3619          * decide to ignore TTL and only use the described range.
3620          */
3621         base = decode_range_tlbi(p->regval, &range, NULL);
3622
3623         kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3624                                    &(union tlbi_info) {
3625                                            .range = {
3626                                                    .start = base,
3627                                                    .size = range,
3628                                            },
3629                                    },
3630                                    s2_mmu_unmap_range);
3631
3632         return true;
3633 }
3634
3635 static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
3636                              const union tlbi_info *info)
3637 {
3638         unsigned long max_size;
3639         u64 base_addr;
3640
3641         /*
3642          * We drop a number of things from the supplied value:
3643          *
3644          * - NS bit: we're non-secure only.
3645          *
3646          * - IPA[51:48]: We don't support 52bit IPA just yet...
3647          *
3648          * And of course, adjust the IPA to be on an actual address.
3649          */
3650         base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
3651         max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
3652         base_addr &= ~(max_size - 1);
3653
3654         /*
3655          * See comment in s2_mmu_unmap_range() for why this is allowed to
3656          * reschedule.
3657          */
3658         kvm_stage2_unmap_range(mmu, base_addr, max_size, true);
3659 }
3660
3661 static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3662                              const struct sys_reg_desc *r)
3663 {
3664         u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3665         u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3666
3667         if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3668                 return undef_access(vcpu, p, r);
3669
3670         kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3671                                    &(union tlbi_info) {
3672                                            .ipa = {
3673                                                    .addr = p->regval,
3674                                            },
3675                                    },
3676                                    s2_mmu_unmap_ipa);
3677
3678         return true;
3679 }
3680
3681 static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
3682                              const union tlbi_info *info)
3683 {
3684         WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
3685 }
3686
3687 static bool handle_tlbi_el2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3688                             const struct sys_reg_desc *r)
3689 {
3690         u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3691
3692         if (!kvm_supported_tlbi_s1e2_op(vcpu, sys_encoding))
3693                 return undef_access(vcpu, p, r);
3694
3695         kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval);
3696         return true;
3697 }
3698
3699 static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3700                             const struct sys_reg_desc *r)
3701 {
3702         u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3703
3704         /*
3705          * If we're here, this is because we've trapped on a EL1 TLBI
3706          * instruction that affects the EL1 translation regime while
3707          * we're running in a context that doesn't allow us to let the
3708          * HW do its thing (aka vEL2):
3709          *
3710          * - HCR_EL2.E2H == 0 : a non-VHE guest
3711          * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
3712          *
3713          * Another possibility is that we are invalidating the EL2 context
3714          * using EL1 instructions, but that we landed here because we need
3715          * additional invalidation for structures that are not held in the
3716          * CPU TLBs (such as the VNCR pseudo-TLB and its EL2 mapping). In
3717          * that case, we are guaranteed that HCR_EL2.{E2H,TGE} == { 1, 1 }
3718          * as we don't allow an NV-capable L1 in a nVHE configuration.
3719          *
3720          * We don't expect these helpers to ever be called when running
3721          * in a vEL1 context.
3722          */
3723
3724         WARN_ON(!vcpu_is_el2(vcpu));
3725
3726         if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding))
3727                 return undef_access(vcpu, p, r);
3728
3729         if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) {
3730                 kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval);
3731                 return true;
3732         }
3733
3734         kvm_s2_mmu_iterate_by_vmid(vcpu->kvm,
3735                                    get_vmid(__vcpu_sys_reg(vcpu, VTTBR_EL2)),
3736                                    &(union tlbi_info) {
3737                                            .va = {
3738                                                    .addr = p->regval,
3739                                                    .encoding = sys_encoding,
3740                                            },
3741                                    },
3742                                    s2_mmu_tlbi_s1e1);
3743
3744         return true;
3745 }
3746
3747 #define SYS_INSN(insn, access_fn)                                       \
3748         {                                                               \
3749                 SYS_DESC(OP_##insn),                                    \
3750                 .access = (access_fn),                                  \
3751         }
3752
3753 static struct sys_reg_desc sys_insn_descs[] = {
3754         { SYS_DESC(SYS_DC_ISW), access_dcsw },
3755         { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
3756         { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
3757
3758         SYS_INSN(AT_S1E1R, handle_at_s1e01),
3759         SYS_INSN(AT_S1E1W, handle_at_s1e01),
3760         SYS_INSN(AT_S1E0R, handle_at_s1e01),
3761         SYS_INSN(AT_S1E0W, handle_at_s1e01),
3762         SYS_INSN(AT_S1E1RP, handle_at_s1e01),
3763         SYS_INSN(AT_S1E1WP, handle_at_s1e01),
3764
3765         { SYS_DESC(SYS_DC_CSW), access_dcsw },
3766         { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
3767         { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
3768         { SYS_DESC(SYS_DC_CISW), access_dcsw },
3769         { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
3770         { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
3771
3772         SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
3773         SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
3774         SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
3775         SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
3776         SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
3777         SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
3778
3779         SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
3780         SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
3781         SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
3782         SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
3783
3784         SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
3785         SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
3786         SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
3787         SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
3788         SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
3789         SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
3790
3791         SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
3792         SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
3793         SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
3794         SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
3795
3796         SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
3797         SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
3798         SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
3799         SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
3800
3801         SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
3802         SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
3803         SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
3804         SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
3805         SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
3806         SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
3807
3808         SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
3809         SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
3810         SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
3811         SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
3812         SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
3813         SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
3814
3815         SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
3816         SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
3817         SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
3818         SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
3819
3820         SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
3821         SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
3822         SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
3823         SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
3824         SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
3825         SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
3826
3827         SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
3828         SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
3829         SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
3830         SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
3831
3832         SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
3833         SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
3834         SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
3835         SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
3836
3837         SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
3838         SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
3839         SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
3840         SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
3841         SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
3842         SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
3843
3844         SYS_INSN(AT_S1E2R, handle_at_s1e2),
3845         SYS_INSN(AT_S1E2W, handle_at_s1e2),
3846         SYS_INSN(AT_S12E1R, handle_at_s12),
3847         SYS_INSN(AT_S12E1W, handle_at_s12),
3848         SYS_INSN(AT_S12E0R, handle_at_s12),
3849         SYS_INSN(AT_S12E0W, handle_at_s12),
3850         SYS_INSN(AT_S1E2A, handle_at_s1e2),
3851
3852         SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
3853         SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
3854         SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
3855         SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
3856
3857         SYS_INSN(TLBI_ALLE2OS, handle_tlbi_el2),
3858         SYS_INSN(TLBI_VAE2OS, handle_tlbi_el2),
3859         SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
3860         SYS_INSN(TLBI_VALE2OS, handle_tlbi_el2),
3861         SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
3862
3863         SYS_INSN(TLBI_RVAE2IS, handle_tlbi_el2),
3864         SYS_INSN(TLBI_RVALE2IS, handle_tlbi_el2),
3865         SYS_INSN(TLBI_ALLE2IS, handle_tlbi_el2),
3866         SYS_INSN(TLBI_VAE2IS, handle_tlbi_el2),
3867
3868         SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
3869
3870         SYS_INSN(TLBI_VALE2IS, handle_tlbi_el2),
3871
3872         SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
3873         SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
3874         SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
3875         SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
3876         SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
3877         SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
3878         SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
3879         SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
3880         SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
3881         SYS_INSN(TLBI_RVAE2OS, handle_tlbi_el2),
3882         SYS_INSN(TLBI_RVALE2OS, handle_tlbi_el2),
3883         SYS_INSN(TLBI_RVAE2, handle_tlbi_el2),
3884         SYS_INSN(TLBI_RVALE2, handle_tlbi_el2),
3885         SYS_INSN(TLBI_ALLE2, handle_tlbi_el2),
3886         SYS_INSN(TLBI_VAE2, handle_tlbi_el2),
3887
3888         SYS_INSN(TLBI_ALLE1, handle_alle1is),
3889
3890         SYS_INSN(TLBI_VALE2, handle_tlbi_el2),
3891
3892         SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
3893
3894         SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
3895         SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
3896         SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
3897         SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
3898
3899         SYS_INSN(TLBI_ALLE2OSNXS, handle_tlbi_el2),
3900         SYS_INSN(TLBI_VAE2OSNXS, handle_tlbi_el2),
3901         SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
3902         SYS_INSN(TLBI_VALE2OSNXS, handle_tlbi_el2),
3903         SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
3904
3905         SYS_INSN(TLBI_RVAE2ISNXS, handle_tlbi_el2),
3906         SYS_INSN(TLBI_RVALE2ISNXS, handle_tlbi_el2),
3907         SYS_INSN(TLBI_ALLE2ISNXS, handle_tlbi_el2),
3908         SYS_INSN(TLBI_VAE2ISNXS, handle_tlbi_el2),
3909
3910         SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
3911         SYS_INSN(TLBI_VALE2ISNXS, handle_tlbi_el2),
3912         SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
3913         SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
3914         SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
3915         SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
3916         SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
3917         SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
3918         SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
3919         SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
3920         SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
3921         SYS_INSN(TLBI_RVAE2OSNXS, handle_tlbi_el2),
3922         SYS_INSN(TLBI_RVALE2OSNXS, handle_tlbi_el2),
3923         SYS_INSN(TLBI_RVAE2NXS, handle_tlbi_el2),
3924         SYS_INSN(TLBI_RVALE2NXS, handle_tlbi_el2),
3925         SYS_INSN(TLBI_ALLE2NXS, handle_tlbi_el2),
3926         SYS_INSN(TLBI_VAE2NXS, handle_tlbi_el2),
3927         SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
3928         SYS_INSN(TLBI_VALE2NXS, handle_tlbi_el2),
3929         SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
3930 };
3931
3932 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
3933                         struct sys_reg_params *p,
3934                         const struct sys_reg_desc *r)
3935 {
3936         if (p->is_write) {
3937                 return ignore_write(vcpu, p);
3938         } else {
3939                 u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
3940                 u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
3941
3942                 p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
3943                              (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
3944                              (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
3945                              (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
3946                              (1 << 15) | (el3 << 14) | (el3 << 12));
3947                 return true;
3948         }
3949 }
3950
3951 /*
3952  * AArch32 debug register mappings
3953  *
3954  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
3955  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
3956  *
3957  * None of the other registers share their location, so treat them as
3958  * if they were 64bit.
3959  */
3960 #define DBG_BCR_BVR_WCR_WVR(n)                                                  \
3961         /* DBGBVRn */                                                           \
3962         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4),                        \
3963           trap_dbg_wb_reg, NULL, n },                                           \
3964         /* DBGBCRn */                                                           \
3965         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_dbg_wb_reg, NULL, n },      \
3966         /* DBGWVRn */                                                           \
3967         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_dbg_wb_reg, NULL, n },      \
3968         /* DBGWCRn */                                                           \
3969         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_dbg_wb_reg, NULL, n }
3970
3971 #define DBGBXVR(n)                                                              \
3972         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1),                        \
3973           trap_dbg_wb_reg, NULL, n }
3974
3975 /*
3976  * Trapped cp14 registers. We generally ignore most of the external
3977  * debug, on the principle that they don't really make sense to a
3978  * guest. Revisit this one day, would this principle change.
3979  */
3980 static const struct sys_reg_desc cp14_regs[] = {
3981         /* DBGDIDR */
3982         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
3983         /* DBGDTRRXext */
3984         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
3985
3986         DBG_BCR_BVR_WCR_WVR(0),
3987         /* DBGDSCRint */
3988         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
3989         DBG_BCR_BVR_WCR_WVR(1),
3990         /* DBGDCCINT */
3991         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
3992         /* DBGDSCRext */
3993         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
3994         DBG_BCR_BVR_WCR_WVR(2),
3995         /* DBGDTR[RT]Xint */
3996         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
3997         /* DBGDTR[RT]Xext */
3998         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
3999         DBG_BCR_BVR_WCR_WVR(3),
4000         DBG_BCR_BVR_WCR_WVR(4),
4001         DBG_BCR_BVR_WCR_WVR(5),
4002         /* DBGWFAR */
4003         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
4004         /* DBGOSECCR */
4005         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
4006         DBG_BCR_BVR_WCR_WVR(6),
4007         /* DBGVCR */
4008         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
4009         DBG_BCR_BVR_WCR_WVR(7),
4010         DBG_BCR_BVR_WCR_WVR(8),
4011         DBG_BCR_BVR_WCR_WVR(9),
4012         DBG_BCR_BVR_WCR_WVR(10),
4013         DBG_BCR_BVR_WCR_WVR(11),
4014         DBG_BCR_BVR_WCR_WVR(12),
4015         DBG_BCR_BVR_WCR_WVR(13),
4016         DBG_BCR_BVR_WCR_WVR(14),
4017         DBG_BCR_BVR_WCR_WVR(15),
4018
4019         /* DBGDRAR (32bit) */
4020         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
4021
4022         DBGBXVR(0),
4023         /* DBGOSLAR */
4024         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
4025         DBGBXVR(1),
4026         /* DBGOSLSR */
4027         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
4028         DBGBXVR(2),
4029         DBGBXVR(3),
4030         /* DBGOSDLR */
4031         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
4032         DBGBXVR(4),
4033         /* DBGPRCR */
4034         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
4035         DBGBXVR(5),
4036         DBGBXVR(6),
4037         DBGBXVR(7),
4038         DBGBXVR(8),
4039         DBGBXVR(9),
4040         DBGBXVR(10),
4041         DBGBXVR(11),
4042         DBGBXVR(12),
4043         DBGBXVR(13),
4044         DBGBXVR(14),
4045         DBGBXVR(15),
4046
4047         /* DBGDSAR (32bit) */
4048         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
4049
4050         /* DBGDEVID2 */
4051         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
4052         /* DBGDEVID1 */
4053         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
4054         /* DBGDEVID */
4055         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
4056         /* DBGCLAIMSET */
4057         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
4058         /* DBGCLAIMCLR */
4059         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
4060         /* DBGAUTHSTATUS */
4061         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
4062 };
4063
4064 /* Trapped cp14 64bit registers */
4065 static const struct sys_reg_desc cp14_64_regs[] = {
4066         /* DBGDRAR (64bit) */
4067         { Op1( 0), CRm( 1), .access = trap_raz_wi },
4068
4069         /* DBGDSAR (64bit) */
4070         { Op1( 0), CRm( 2), .access = trap_raz_wi },
4071 };
4072
4073 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)                  \
4074         AA32(_map),                                                     \
4075         Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),                     \
4076         .visibility = pmu_visibility
4077
4078 /* Macro to expand the PMEVCNTRn register */
4079 #define PMU_PMEVCNTR(n)                                                 \
4080         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
4081           (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
4082           .access = access_pmu_evcntr }
4083
4084 /* Macro to expand the PMEVTYPERn register */
4085 #define PMU_PMEVTYPER(n)                                                \
4086         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
4087           (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
4088           .access = access_pmu_evtyper }
4089 /*
4090  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
4091  * depending on the way they are accessed (as a 32bit or a 64bit
4092  * register).
4093  */
4094 static const struct sys_reg_desc cp15_regs[] = {
4095         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
4096         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
4097         /* ACTLR */
4098         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
4099         /* ACTLR2 */
4100         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
4101         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4102         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
4103         /* TTBCR */
4104         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
4105         /* TTBCR2 */
4106         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
4107         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
4108         { CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
4109         /* DFSR */
4110         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
4111         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
4112         /* ADFSR */
4113         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
4114         /* AIFSR */
4115         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
4116         /* DFAR */
4117         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
4118         /* IFAR */
4119         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
4120
4121         /*
4122          * DC{C,I,CI}SW operations:
4123          */
4124         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
4125         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
4126         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4127
4128         /* PMU */
4129         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
4130         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
4131         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
4132         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
4133         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
4134         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
4135         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
4136         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
4137         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
4138         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
4139         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
4140         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
4141         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
4142         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
4143         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
4144         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
4145         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
4146         /* PMMIR */
4147         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
4148
4149         /* PRRR/MAIR0 */
4150         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
4151         /* NMRR/MAIR1 */
4152         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
4153         /* AMAIR0 */
4154         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
4155         /* AMAIR1 */
4156         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
4157
4158         { CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
4159         { CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
4160         { CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
4161         { CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
4162         { CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
4163         { CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
4164         { CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
4165         { CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
4166         { CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
4167         { CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
4168         { CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
4169         { CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
4170         { CP15_SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
4171         { CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
4172         { CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
4173         { CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
4174         { CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
4175         { CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
4176         { CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
4177         { CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
4178         { CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
4179         { CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
4180
4181         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
4182
4183         /* Arch Tmers */
4184         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
4185         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
4186
4187         /* PMEVCNTRn */
4188         PMU_PMEVCNTR(0),
4189         PMU_PMEVCNTR(1),
4190         PMU_PMEVCNTR(2),
4191         PMU_PMEVCNTR(3),
4192         PMU_PMEVCNTR(4),
4193         PMU_PMEVCNTR(5),
4194         PMU_PMEVCNTR(6),
4195         PMU_PMEVCNTR(7),
4196         PMU_PMEVCNTR(8),
4197         PMU_PMEVCNTR(9),
4198         PMU_PMEVCNTR(10),
4199         PMU_PMEVCNTR(11),
4200         PMU_PMEVCNTR(12),
4201         PMU_PMEVCNTR(13),
4202         PMU_PMEVCNTR(14),
4203         PMU_PMEVCNTR(15),
4204         PMU_PMEVCNTR(16),
4205         PMU_PMEVCNTR(17),
4206         PMU_PMEVCNTR(18),
4207         PMU_PMEVCNTR(19),
4208         PMU_PMEVCNTR(20),
4209         PMU_PMEVCNTR(21),
4210         PMU_PMEVCNTR(22),
4211         PMU_PMEVCNTR(23),
4212         PMU_PMEVCNTR(24),
4213         PMU_PMEVCNTR(25),
4214         PMU_PMEVCNTR(26),
4215         PMU_PMEVCNTR(27),
4216         PMU_PMEVCNTR(28),
4217         PMU_PMEVCNTR(29),
4218         PMU_PMEVCNTR(30),
4219         /* PMEVTYPERn */
4220         PMU_PMEVTYPER(0),
4221         PMU_PMEVTYPER(1),
4222         PMU_PMEVTYPER(2),
4223         PMU_PMEVTYPER(3),
4224         PMU_PMEVTYPER(4),
4225         PMU_PMEVTYPER(5),
4226         PMU_PMEVTYPER(6),
4227         PMU_PMEVTYPER(7),
4228         PMU_PMEVTYPER(8),
4229         PMU_PMEVTYPER(9),
4230         PMU_PMEVTYPER(10),
4231         PMU_PMEVTYPER(11),
4232         PMU_PMEVTYPER(12),
4233         PMU_PMEVTYPER(13),
4234         PMU_PMEVTYPER(14),
4235         PMU_PMEVTYPER(15),
4236         PMU_PMEVTYPER(16),
4237         PMU_PMEVTYPER(17),
4238         PMU_PMEVTYPER(18),
4239         PMU_PMEVTYPER(19),
4240         PMU_PMEVTYPER(20),
4241         PMU_PMEVTYPER(21),
4242         PMU_PMEVTYPER(22),
4243         PMU_PMEVTYPER(23),
4244         PMU_PMEVTYPER(24),
4245         PMU_PMEVTYPER(25),
4246         PMU_PMEVTYPER(26),
4247         PMU_PMEVTYPER(27),
4248         PMU_PMEVTYPER(28),
4249         PMU_PMEVTYPER(29),
4250         PMU_PMEVTYPER(30),
4251         /* PMCCFILTR */
4252         { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
4253
4254         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
4255         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
4256
4257         /* CCSIDR2 */
4258         { Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
4259
4260         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
4261 };
4262
4263 static const struct sys_reg_desc cp15_64_regs[] = {
4264         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4265         { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
4266         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
4267         { SYS_DESC(SYS_AARCH32_CNTPCT),       access_arch_timer },
4268         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
4269         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
4270         { SYS_DESC(SYS_AARCH32_CNTVCT),       access_arch_timer },
4271         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
4272         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
4273         { SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
4274         { SYS_DESC(SYS_AARCH32_CNTVCTSS),     access_arch_timer },
4275 };
4276
4277 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
4278                                bool is_32)
4279 {
4280         unsigned int i;
4281
4282         for (i = 0; i < n; i++) {
4283                 if (!is_32 && table[i].reg && !table[i].reset) {
4284                         kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
4285                                 &table[i], i, table[i].name);
4286                         return false;
4287                 }
4288
4289                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
4290                         kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
4291                                 &table[i], i, table[i - 1].name, table[i].name);
4292                         return false;
4293                 }
4294         }
4295
4296         return true;
4297 }
4298
4299 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
4300 {
4301         kvm_inject_undefined(vcpu);
4302         return 1;
4303 }
4304
4305 static void perform_access(struct kvm_vcpu *vcpu,
4306                            struct sys_reg_params *params,
4307                            const struct sys_reg_desc *r)
4308 {
4309         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
4310
4311         /* Check for regs disabled by runtime config */
4312         if (sysreg_hidden(vcpu, r)) {
4313                 kvm_inject_undefined(vcpu);
4314                 return;
4315         }
4316
4317         /*
4318          * Not having an accessor means that we have configured a trap
4319          * that we don't know how to handle. This certainly qualifies
4320          * as a gross bug that should be fixed right away.
4321          */
4322         BUG_ON(!r->access);
4323
4324         /* Skip instruction if instructed so */
4325         if (likely(r->access(vcpu, params, r)))
4326                 kvm_incr_pc(vcpu);
4327 }
4328
4329 /*
4330  * emulate_cp --  tries to match a sys_reg access in a handling table, and
4331  *                call the corresponding trap handler.
4332  *
4333  * @params: pointer to the descriptor of the access
4334  * @table: array of trap descriptors
4335  * @num: size of the trap descriptor array
4336  *
4337  * Return true if the access has been handled, false if not.
4338  */
4339 static bool emulate_cp(struct kvm_vcpu *vcpu,
4340                        struct sys_reg_params *params,
4341                        const struct sys_reg_desc *table,
4342                        size_t num)
4343 {
4344         const struct sys_reg_desc *r;
4345
4346         if (!table)
4347                 return false;   /* Not handled */
4348
4349         r = find_reg(params, table, num);
4350
4351         if (r) {
4352                 perform_access(vcpu, params, r);
4353                 return true;
4354         }
4355
4356         /* Not handled */
4357         return false;
4358 }
4359
4360 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
4361                                 struct sys_reg_params *params)
4362 {
4363         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
4364         int cp = -1;
4365
4366         switch (esr_ec) {
4367         case ESR_ELx_EC_CP15_32:
4368         case ESR_ELx_EC_CP15_64:
4369                 cp = 15;
4370                 break;
4371         case ESR_ELx_EC_CP14_MR:
4372         case ESR_ELx_EC_CP14_64:
4373                 cp = 14;
4374                 break;
4375         default:
4376                 WARN_ON(1);
4377         }
4378
4379         print_sys_reg_msg(params,
4380                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
4381                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4382         kvm_inject_undefined(vcpu);
4383 }
4384
4385 /**
4386  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
4387  * @vcpu: The VCPU pointer
4388  * @global: &struct sys_reg_desc
4389  * @nr_global: size of the @global array
4390  */
4391 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
4392                             const struct sys_reg_desc *global,
4393                             size_t nr_global)
4394 {
4395         struct sys_reg_params params;
4396         u64 esr = kvm_vcpu_get_esr(vcpu);
4397         int Rt = kvm_vcpu_sys_get_rt(vcpu);
4398         int Rt2 = (esr >> 10) & 0x1f;
4399
4400         params.CRm = (esr >> 1) & 0xf;
4401         params.is_write = ((esr & 1) == 0);
4402
4403         params.Op0 = 0;
4404         params.Op1 = (esr >> 16) & 0xf;
4405         params.Op2 = 0;
4406         params.CRn = 0;
4407
4408         /*
4409          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
4410          * backends between AArch32 and AArch64, we get away with it.
4411          */
4412         if (params.is_write) {
4413                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
4414                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
4415         }
4416
4417         /*
4418          * If the table contains a handler, handle the
4419          * potential register operation in the case of a read and return
4420          * with success.
4421          */
4422         if (emulate_cp(vcpu, &params, global, nr_global)) {
4423                 /* Split up the value between registers for the read side */
4424                 if (!params.is_write) {
4425                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
4426                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
4427                 }
4428
4429                 return 1;
4430         }
4431
4432         unhandled_cp_access(vcpu, &params);
4433         return 1;
4434 }
4435
4436 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
4437
4438 /*
4439  * The CP10 ID registers are architecturally mapped to AArch64 feature
4440  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
4441  * from AArch32.
4442  */
4443 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
4444 {
4445         u8 reg_id = (esr >> 10) & 0xf;
4446         bool valid;
4447
4448         params->is_write = ((esr & 1) == 0);
4449         params->Op0 = 3;
4450         params->Op1 = 0;
4451         params->CRn = 0;
4452         params->CRm = 3;
4453
4454         /* CP10 ID registers are read-only */
4455         valid = !params->is_write;
4456
4457         switch (reg_id) {
4458         /* MVFR0 */
4459         case 0b0111:
4460                 params->Op2 = 0;
4461                 break;
4462         /* MVFR1 */
4463         case 0b0110:
4464                 params->Op2 = 1;
4465                 break;
4466         /* MVFR2 */
4467         case 0b0101:
4468                 params->Op2 = 2;
4469                 break;
4470         default:
4471                 valid = false;
4472         }
4473
4474         if (valid)
4475                 return true;
4476
4477         kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
4478                       params->is_write ? "write" : "read", reg_id);
4479         return false;
4480 }
4481
4482 /**
4483  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
4484  *                        VFP Register' from AArch32.
4485  * @vcpu: The vCPU pointer
4486  *
4487  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
4488  * Work out the correct AArch64 system register encoding and reroute to the
4489  * AArch64 system register emulation.
4490  */
4491 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
4492 {
4493         int Rt = kvm_vcpu_sys_get_rt(vcpu);
4494         u64 esr = kvm_vcpu_get_esr(vcpu);
4495         struct sys_reg_params params;
4496
4497         /* UNDEF on any unhandled register access */
4498         if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
4499                 kvm_inject_undefined(vcpu);
4500                 return 1;
4501         }
4502
4503         if (emulate_sys_reg(vcpu, &params))
4504                 vcpu_set_reg(vcpu, Rt, params.regval);
4505
4506         return 1;
4507 }
4508
4509 /**
4510  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
4511  *                             CRn=0, which corresponds to the AArch32 feature
4512  *                             registers.
4513  * @vcpu: the vCPU pointer
4514  * @params: the system register access parameters.
4515  *
4516  * Our cp15 system register tables do not enumerate the AArch32 feature
4517  * registers. Conveniently, our AArch64 table does, and the AArch32 system
4518  * register encoding can be trivially remapped into the AArch64 for the feature
4519  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
4520  *
4521  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
4522  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
4523  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
4524  * treat undefined registers in this range as RAZ.
4525  */
4526 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
4527                                    struct sys_reg_params *params)
4528 {
4529         int Rt = kvm_vcpu_sys_get_rt(vcpu);
4530
4531         /* Treat impossible writes to RO registers as UNDEFINED */
4532         if (params->is_write) {
4533                 unhandled_cp_access(vcpu, params);
4534                 return 1;
4535         }
4536
4537         params->Op0 = 3;
4538
4539         /*
4540          * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
4541          * Avoid conflicting with future expansion of AArch64 feature registers
4542          * and simply treat them as RAZ here.
4543          */
4544         if (params->CRm > 3)
4545                 params->regval = 0;
4546         else if (!emulate_sys_reg(vcpu, params))
4547                 return 1;
4548
4549         vcpu_set_reg(vcpu, Rt, params->regval);
4550         return 1;
4551 }
4552
4553 /**
4554  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
4555  * @vcpu: The VCPU pointer
4556  * @params: &struct sys_reg_params
4557  * @global: &struct sys_reg_desc
4558  * @nr_global: size of the @global array
4559  */
4560 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
4561                             struct sys_reg_params *params,
4562                             const struct sys_reg_desc *global,
4563                             size_t nr_global)
4564 {
4565         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
4566
4567         params->regval = vcpu_get_reg(vcpu, Rt);
4568
4569         if (emulate_cp(vcpu, params, global, nr_global)) {
4570                 if (!params->is_write)
4571                         vcpu_set_reg(vcpu, Rt, params->regval);
4572                 return 1;
4573         }
4574
4575         unhandled_cp_access(vcpu, params);
4576         return 1;
4577 }
4578
4579 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
4580 {
4581         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
4582 }
4583
4584 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
4585 {
4586         struct sys_reg_params params;
4587
4588         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4589
4590         /*
4591          * Certain AArch32 ID registers are handled by rerouting to the AArch64
4592          * system register table. Registers in the ID range where CRm=0 are
4593          * excluded from this scheme as they do not trivially map into AArch64
4594          * system register encodings, except for AIDR/REVIDR.
4595          */
4596         if (params.Op1 == 0 && params.CRn == 0 &&
4597             (params.CRm || params.Op2 == 6 /* REVIDR */))
4598                 return kvm_emulate_cp15_id_reg(vcpu, &params);
4599         if (params.Op1 == 1 && params.CRn == 0 &&
4600             params.CRm == 0 && params.Op2 == 7 /* AIDR */)
4601                 return kvm_emulate_cp15_id_reg(vcpu, &params);
4602
4603         return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
4604 }
4605
4606 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
4607 {
4608         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
4609 }
4610
4611 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
4612 {
4613         struct sys_reg_params params;
4614
4615         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4616
4617         return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
4618 }
4619
4620 /**
4621  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
4622  * @vcpu: The VCPU pointer
4623  * @params: Decoded system register parameters
4624  *
4625  * Return: true if the system register access was successful, false otherwise.
4626  */
4627 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
4628                             struct sys_reg_params *params)
4629 {
4630         const struct sys_reg_desc *r;
4631
4632         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4633         if (likely(r)) {
4634                 perform_access(vcpu, params, r);
4635                 return true;
4636         }
4637
4638         print_sys_reg_msg(params,
4639                           "Unsupported guest sys_reg access at: %lx [%08lx]\n",
4640                           *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4641         kvm_inject_undefined(vcpu);
4642
4643         return false;
4644 }
4645
4646 static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos)
4647 {
4648         unsigned long i, idreg_idx = 0;
4649
4650         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4651                 const struct sys_reg_desc *r = &sys_reg_descs[i];
4652
4653                 if (!is_vm_ftr_id_reg(reg_to_encoding(r)))
4654                         continue;
4655
4656                 if (idreg_idx == pos)
4657                         return r;
4658
4659                 idreg_idx++;
4660         }
4661
4662         return NULL;
4663 }
4664
4665 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
4666 {
4667         struct kvm *kvm = s->private;
4668         u8 *iter;
4669
4670         mutex_lock(&kvm->arch.config_lock);
4671
4672         iter = &kvm->arch.idreg_debugfs_iter;
4673         if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
4674             *iter == (u8)~0) {
4675                 *iter = *pos;
4676                 if (!idregs_debug_find(kvm, *iter))
4677                         iter = NULL;
4678         } else {
4679                 iter = ERR_PTR(-EBUSY);
4680         }
4681
4682         mutex_unlock(&kvm->arch.config_lock);
4683
4684         return iter;
4685 }
4686
4687 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
4688 {
4689         struct kvm *kvm = s->private;
4690
4691         (*pos)++;
4692
4693         if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) {
4694                 kvm->arch.idreg_debugfs_iter++;
4695
4696                 return &kvm->arch.idreg_debugfs_iter;
4697         }
4698
4699         return NULL;
4700 }
4701
4702 static void idregs_debug_stop(struct seq_file *s, void *v)
4703 {
4704         struct kvm *kvm = s->private;
4705
4706         if (IS_ERR(v))
4707                 return;
4708
4709         mutex_lock(&kvm->arch.config_lock);
4710
4711         kvm->arch.idreg_debugfs_iter = ~0;
4712
4713         mutex_unlock(&kvm->arch.config_lock);
4714 }
4715
4716 static int idregs_debug_show(struct seq_file *s, void *v)
4717 {
4718         const struct sys_reg_desc *desc;
4719         struct kvm *kvm = s->private;
4720
4721         desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter);
4722
4723         if (!desc->name)
4724                 return 0;
4725
4726         seq_printf(s, "%20s:\t%016llx\n",
4727                    desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc)));
4728
4729         return 0;
4730 }
4731
4732 static const struct seq_operations idregs_debug_sops = {
4733         .start  = idregs_debug_start,
4734         .next   = idregs_debug_next,
4735         .stop   = idregs_debug_stop,
4736         .show   = idregs_debug_show,
4737 };
4738
4739 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
4740
4741 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
4742 {
4743         kvm->arch.idreg_debugfs_iter = ~0;
4744
4745         debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
4746                             &idregs_debug_fops);
4747 }
4748
4749 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
4750 {
4751         u32 id = reg_to_encoding(reg);
4752         struct kvm *kvm = vcpu->kvm;
4753
4754         if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
4755                 return;
4756
4757         kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg));
4758 }
4759
4760 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
4761                                   const struct sys_reg_desc *reg)
4762 {
4763         if (kvm_vcpu_initialized(vcpu))
4764                 return;
4765
4766         reg->reset(vcpu, reg);
4767 }
4768
4769 /**
4770  * kvm_reset_sys_regs - sets system registers to reset value
4771  * @vcpu: The VCPU pointer
4772  *
4773  * This function finds the right table above and sets the registers on the
4774  * virtual CPU struct to their architecturally defined reset values.
4775  */
4776 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
4777 {
4778         struct kvm *kvm = vcpu->kvm;
4779         unsigned long i;
4780
4781         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4782                 const struct sys_reg_desc *r = &sys_reg_descs[i];
4783
4784                 if (!r->reset)
4785                         continue;
4786
4787                 if (is_vm_ftr_id_reg(reg_to_encoding(r)))
4788                         reset_vm_ftr_id_reg(vcpu, r);
4789                 else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
4790                         reset_vcpu_ftr_id_reg(vcpu, r);
4791                 else
4792                         r->reset(vcpu, r);
4793
4794                 if (r->reg >= __SANITISED_REG_START__ && r->reg < NR_SYS_REGS)
4795                         __vcpu_rmw_sys_reg(vcpu, r->reg, |=, 0);
4796         }
4797
4798         set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
4799
4800         if (kvm_vcpu_has_pmu(vcpu))
4801                 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
4802 }
4803
4804 /**
4805  * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
4806  *                       trap on a guest execution
4807  * @vcpu: The VCPU pointer
4808  */
4809 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
4810 {
4811         const struct sys_reg_desc *desc = NULL;
4812         struct sys_reg_params params;
4813         unsigned long esr = kvm_vcpu_get_esr(vcpu);
4814         int Rt = kvm_vcpu_sys_get_rt(vcpu);
4815         int sr_idx;
4816
4817         trace_kvm_handle_sys_reg(esr);
4818
4819         if (triage_sysreg_trap(vcpu, &sr_idx))
4820                 return 1;
4821
4822         params = esr_sys64_to_params(esr);
4823         params.regval = vcpu_get_reg(vcpu, Rt);
4824
4825         /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
4826         if (params.Op0 == 2 || params.Op0 == 3)
4827                 desc = &sys_reg_descs[sr_idx];
4828         else
4829                 desc = &sys_insn_descs[sr_idx];
4830
4831         perform_access(vcpu, &params, desc);
4832
4833         /* Read from system register? */
4834         if (!params.is_write &&
4835             (params.Op0 == 2 || params.Op0 == 3))
4836                 vcpu_set_reg(vcpu, Rt, params.regval);
4837
4838         return 1;
4839 }
4840
4841 /******************************************************************************
4842  * Userspace API
4843  *****************************************************************************/
4844
4845 static bool index_to_params(u64 id, struct sys_reg_params *params)
4846 {
4847         switch (id & KVM_REG_SIZE_MASK) {
4848         case KVM_REG_SIZE_U64:
4849                 /* Any unused index bits means it's not valid. */
4850                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
4851                               | KVM_REG_ARM_COPROC_MASK
4852                               | KVM_REG_ARM64_SYSREG_OP0_MASK
4853                               | KVM_REG_ARM64_SYSREG_OP1_MASK
4854                               | KVM_REG_ARM64_SYSREG_CRN_MASK
4855                               | KVM_REG_ARM64_SYSREG_CRM_MASK
4856                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
4857                         return false;
4858                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
4859                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
4860                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
4861                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
4862                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
4863                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
4864                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
4865                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
4866                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
4867                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
4868                 return true;
4869         default:
4870                 return false;
4871         }
4872 }
4873
4874 const struct sys_reg_desc *get_reg_by_id(u64 id,
4875                                          const struct sys_reg_desc table[],
4876                                          unsigned int num)
4877 {
4878         struct sys_reg_params params;
4879
4880         if (!index_to_params(id, &params))
4881                 return NULL;
4882
4883         return find_reg(&params, table, num);
4884 }
4885
4886 /* Decode an index value, and find the sys_reg_desc entry. */
4887 static const struct sys_reg_desc *
4888 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
4889                    const struct sys_reg_desc table[], unsigned int num)
4890
4891 {
4892         const struct sys_reg_desc *r;
4893
4894         /* We only do sys_reg for now. */
4895         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
4896                 return NULL;
4897
4898         r = get_reg_by_id(id, table, num);
4899
4900         /* Not saved in the sys_reg array and not otherwise accessible? */
4901         if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
4902                 r = NULL;
4903
4904         return r;
4905 }
4906
4907 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4908 {
4909         u32 val;
4910         u32 __user *uval = uaddr;
4911
4912         /* Fail if we have unknown bits set. */
4913         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4914                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4915                 return -ENOENT;
4916
4917         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4918         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4919                 if (KVM_REG_SIZE(id) != 4)
4920                         return -ENOENT;
4921                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4922                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4923                 if (val >= CSSELR_MAX)
4924                         return -ENOENT;
4925
4926                 return put_user(get_ccsidr(vcpu, val), uval);
4927         default:
4928                 return -ENOENT;
4929         }
4930 }
4931
4932 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4933 {
4934         u32 val, newval;
4935         u32 __user *uval = uaddr;
4936
4937         /* Fail if we have unknown bits set. */
4938         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4939                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4940                 return -ENOENT;
4941
4942         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4943         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4944                 if (KVM_REG_SIZE(id) != 4)
4945                         return -ENOENT;
4946                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4947                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4948                 if (val >= CSSELR_MAX)
4949                         return -ENOENT;
4950
4951                 if (get_user(newval, uval))
4952                         return -EFAULT;
4953
4954                 return set_ccsidr(vcpu, val, newval);
4955         default:
4956                 return -ENOENT;
4957         }
4958 }
4959
4960 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4961                          const struct sys_reg_desc table[], unsigned int num)
4962 {
4963         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4964         const struct sys_reg_desc *r;
4965         u64 val;
4966         int ret;
4967
4968         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4969         if (!r || sysreg_hidden(vcpu, r))
4970                 return -ENOENT;
4971
4972         if (r->get_user) {
4973                 ret = (r->get_user)(vcpu, r, &val);
4974         } else {
4975                 val = __vcpu_sys_reg(vcpu, r->reg);
4976                 ret = 0;
4977         }
4978
4979         if (!ret)
4980                 ret = put_user(val, uaddr);
4981
4982         return ret;
4983 }
4984
4985 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4986 {
4987         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4988
4989         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4990                 return demux_c15_get(vcpu, reg->id, uaddr);
4991
4992         return kvm_sys_reg_get_user(vcpu, reg,
4993                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4994 }
4995
4996 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4997                          const struct sys_reg_desc table[], unsigned int num)
4998 {
4999         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
5000         const struct sys_reg_desc *r;
5001         u64 val;
5002         int ret;
5003
5004         if (get_user(val, uaddr))
5005                 return -EFAULT;
5006
5007         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
5008         if (!r || sysreg_hidden(vcpu, r))
5009                 return -ENOENT;
5010
5011         if (sysreg_user_write_ignore(vcpu, r))
5012                 return 0;
5013
5014         if (r->set_user) {
5015                 ret = (r->set_user)(vcpu, r, val);
5016         } else {
5017                 __vcpu_assign_sys_reg(vcpu, r->reg, val);
5018                 ret = 0;
5019         }
5020
5021         return ret;
5022 }
5023
5024 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
5025 {
5026         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
5027
5028         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
5029                 return demux_c15_set(vcpu, reg->id, uaddr);
5030
5031         return kvm_sys_reg_set_user(vcpu, reg,
5032                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
5033 }
5034
5035 static unsigned int num_demux_regs(void)
5036 {
5037         return CSSELR_MAX;
5038 }
5039
5040 static int write_demux_regids(u64 __user *uindices)
5041 {
5042         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
5043         unsigned int i;
5044
5045         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
5046         for (i = 0; i < CSSELR_MAX; i++) {
5047                 if (put_user(val | i, uindices))
5048                         return -EFAULT;
5049                 uindices++;
5050         }
5051         return 0;
5052 }
5053
5054 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
5055 {
5056         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
5057                 KVM_REG_ARM64_SYSREG |
5058                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
5059                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
5060                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
5061                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
5062                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
5063 }
5064
5065 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
5066 {
5067         if (!*uind)
5068                 return true;
5069
5070         if (put_user(sys_reg_to_index(reg), *uind))
5071                 return false;
5072
5073         (*uind)++;
5074         return true;
5075 }
5076
5077 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
5078                             const struct sys_reg_desc *rd,
5079                             u64 __user **uind,
5080                             unsigned int *total)
5081 {
5082         /*
5083          * Ignore registers we trap but don't save,
5084          * and for which no custom user accessor is provided.
5085          */
5086         if (!(rd->reg || rd->get_user))
5087                 return 0;
5088
5089         if (sysreg_hidden(vcpu, rd))
5090                 return 0;
5091
5092         if (!copy_reg_to_user(rd, uind))
5093                 return -EFAULT;
5094
5095         (*total)++;
5096         return 0;
5097 }
5098
5099 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
5100 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
5101 {
5102         const struct sys_reg_desc *i2, *end2;
5103         unsigned int total = 0;
5104         int err;
5105
5106         i2 = sys_reg_descs;
5107         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
5108
5109         while (i2 != end2) {
5110                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
5111                 if (err)
5112                         return err;
5113         }
5114         return total;
5115 }
5116
5117 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
5118 {
5119         return num_demux_regs()
5120                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
5121 }
5122
5123 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
5124 {
5125         int err;
5126
5127         err = walk_sys_regs(vcpu, uindices);
5128         if (err < 0)
5129                 return err;
5130         uindices += err;
5131
5132         return write_demux_regids(uindices);
5133 }
5134
5135 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)                       \
5136         KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),            \
5137                 sys_reg_Op1(r),                                 \
5138                 sys_reg_CRn(r),                                 \
5139                 sys_reg_CRm(r),                                 \
5140                 sys_reg_Op2(r))
5141
5142 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
5143 {
5144         const void *zero_page = page_to_virt(ZERO_PAGE(0));
5145         u64 __user *masks = (u64 __user *)range->addr;
5146
5147         /* Only feature id range is supported, reserved[13] must be zero. */
5148         if (range->range ||
5149             memcmp(range->reserved, zero_page, sizeof(range->reserved)))
5150                 return -EINVAL;
5151
5152         /* Wipe the whole thing first */
5153         if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
5154                 return -EFAULT;
5155
5156         for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
5157                 const struct sys_reg_desc *reg = &sys_reg_descs[i];
5158                 u32 encoding = reg_to_encoding(reg);
5159                 u64 val;
5160
5161                 if (!is_feature_id_reg(encoding) || !reg->set_user)
5162                         continue;
5163
5164                 if (!reg->val ||
5165                     (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) {
5166                         continue;
5167                 }
5168                 val = reg->val;
5169
5170                 if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
5171                         return -EFAULT;
5172         }
5173
5174         return 0;
5175 }
5176
5177 static void vcpu_set_hcr(struct kvm_vcpu *vcpu)
5178 {
5179         struct kvm *kvm = vcpu->kvm;
5180
5181         if (has_vhe() || has_hvhe())
5182                 vcpu->arch.hcr_el2 |= HCR_E2H;
5183         if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
5184                 /* route synchronous external abort exceptions to EL2 */
5185                 vcpu->arch.hcr_el2 |= HCR_TEA;
5186                 /* trap error record accesses */
5187                 vcpu->arch.hcr_el2 |= HCR_TERR;
5188         }
5189
5190         if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
5191                 vcpu->arch.hcr_el2 |= HCR_FWB;
5192
5193         if (cpus_have_final_cap(ARM64_HAS_EVT) &&
5194             !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
5195             kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0))
5196                 vcpu->arch.hcr_el2 |= HCR_TID4;
5197         else
5198                 vcpu->arch.hcr_el2 |= HCR_TID2;
5199
5200         if (vcpu_el1_is_32bit(vcpu))
5201                 vcpu->arch.hcr_el2 &= ~HCR_RW;
5202
5203         if (kvm_has_mte(vcpu->kvm))
5204                 vcpu->arch.hcr_el2 |= HCR_ATA;
5205
5206         /*
5207          * In the absence of FGT, we cannot independently trap TLBI
5208          * Range instructions. This isn't great, but trapping all
5209          * TLBIs would be far worse. Live with it...
5210          */
5211         if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5212                 vcpu->arch.hcr_el2 |= HCR_TTLBOS;
5213 }
5214
5215 void kvm_calculate_traps(struct kvm_vcpu *vcpu)
5216 {
5217         struct kvm *kvm = vcpu->kvm;
5218
5219         mutex_lock(&kvm->arch.config_lock);
5220         vcpu_set_hcr(vcpu);
5221         vcpu_set_ich_hcr(vcpu);
5222         vcpu_set_hcrx(vcpu);
5223
5224         if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
5225                 goto out;
5226
5227         compute_fgu(kvm, HFGRTR_GROUP);
5228         compute_fgu(kvm, HFGITR_GROUP);
5229         compute_fgu(kvm, HDFGRTR_GROUP);
5230         compute_fgu(kvm, HAFGRTR_GROUP);
5231         compute_fgu(kvm, HFGRTR2_GROUP);
5232         compute_fgu(kvm, HFGITR2_GROUP);
5233         compute_fgu(kvm, HDFGRTR2_GROUP);
5234
5235         set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
5236 out:
5237         mutex_unlock(&kvm->arch.config_lock);
5238 }
5239
5240 /*
5241  * Perform last adjustments to the ID registers that are implied by the
5242  * configuration outside of the ID regs themselves, as well as any
5243  * initialisation that directly depend on these ID registers (such as
5244  * RES0/RES1 behaviours). This is not the place to configure traps though.
5245  *
5246  * Because this can be called once per CPU, changes must be idempotent.
5247  */
5248 int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu)
5249 {
5250         struct kvm *kvm = vcpu->kvm;
5251
5252         guard(mutex)(&kvm->arch.config_lock);
5253
5254         if (!(static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) &&
5255               irqchip_in_kernel(kvm) &&
5256               kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)) {
5257                 kvm->arch.id_regs[IDREG_IDX(SYS_ID_AA64PFR0_EL1)] &= ~ID_AA64PFR0_EL1_GIC_MASK;
5258                 kvm->arch.id_regs[IDREG_IDX(SYS_ID_PFR1_EL1)] &= ~ID_PFR1_EL1_GIC_MASK;
5259         }
5260
5261         if (vcpu_has_nv(vcpu)) {
5262                 int ret = kvm_init_nv_sysregs(vcpu);
5263                 if (ret)
5264                         return ret;
5265         }
5266
5267         return 0;
5268 }
5269
5270 int __init kvm_sys_reg_table_init(void)
5271 {
5272         bool valid = true;
5273         unsigned int i;
5274         int ret = 0;
5275
5276         /* Make sure tables are unique and in order. */
5277         valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
5278         valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
5279         valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
5280         valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
5281         valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
5282         valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
5283
5284         if (!valid)
5285                 return -EINVAL;
5286
5287         init_imp_id_regs();
5288
5289         ret = populate_nv_trap_config();
5290
5291         check_feature_map();
5292
5293         for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
5294                 ret = populate_sysreg_config(sys_reg_descs + i, i);
5295
5296         for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
5297                 ret = populate_sysreg_config(sys_insn_descs + i, i);
5298
5299         return ret;
5300 }