KVM: SVM: Rename vmplX_ssp -> plX_ssp
[linux-2.6-block.git] / arch / arm64 / kvm / pmu-emul.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list.h>
11 #include <linux/perf_event.h>
12 #include <linux/perf/arm_pmu.h>
13 #include <linux/uaccess.h>
14 #include <asm/kvm_emulate.h>
15 #include <kvm/arm_pmu.h>
16 #include <kvm/arm_vgic.h>
17 #include <asm/arm_pmuv3.h>
18
19 #define PERF_ATTR_CFG1_COUNTER_64BIT    BIT(0)
20
21 DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
22
23 static LIST_HEAD(arm_pmus);
24 static DEFINE_MUTEX(arm_pmus_lock);
25
26 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
27 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
28
29 static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
30 {
31         return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
32 }
33
34 static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
35 {
36         return &vcpu->arch.pmu.pmc[cnt_idx];
37 }
38
39 static u32 __kvm_pmu_event_mask(unsigned int pmuver)
40 {
41         switch (pmuver) {
42         case ID_AA64DFR0_EL1_PMUVer_IMP:
43                 return GENMASK(9, 0);
44         case ID_AA64DFR0_EL1_PMUVer_V3P1:
45         case ID_AA64DFR0_EL1_PMUVer_V3P4:
46         case ID_AA64DFR0_EL1_PMUVer_V3P5:
47         case ID_AA64DFR0_EL1_PMUVer_V3P7:
48                 return GENMASK(15, 0);
49         default:                /* Shouldn't be here, just for sanity */
50                 WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
51                 return 0;
52         }
53 }
54
55 static u32 kvm_pmu_event_mask(struct kvm *kvm)
56 {
57         u64 dfr0 = IDREG(kvm, SYS_ID_AA64DFR0_EL1);
58         u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
59
60         return __kvm_pmu_event_mask(pmuver);
61 }
62
63 u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
64 {
65         u64 mask = ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMU_EXCLUDE_EL0 |
66                    kvm_pmu_event_mask(kvm);
67         u64 pfr0 = IDREG(kvm, SYS_ID_AA64PFR0_EL1);
68
69         if (SYS_FIELD_GET(ID_AA64PFR0_EL1, EL2, pfr0))
70                 mask |= ARMV8_PMU_INCLUDE_EL2;
71
72         if (SYS_FIELD_GET(ID_AA64PFR0_EL1, EL3, pfr0))
73                 mask |= ARMV8_PMU_EXCLUDE_NS_EL0 |
74                         ARMV8_PMU_EXCLUDE_NS_EL1 |
75                         ARMV8_PMU_EXCLUDE_EL3;
76
77         return mask;
78 }
79
80 /**
81  * kvm_pmc_is_64bit - determine if counter is 64bit
82  * @pmc: counter context
83  */
84 static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
85 {
86         return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
87                 kvm_pmu_is_3p5(kvm_pmc_to_vcpu(pmc)));
88 }
89
90 static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
91 {
92         u64 val = kvm_vcpu_read_pmcr(kvm_pmc_to_vcpu(pmc));
93
94         return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
95                (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
96 }
97
98 static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
99 {
100         return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
101                 !kvm_pmc_has_64bit_overflow(pmc));
102 }
103
104 static u32 counter_index_to_reg(u64 idx)
105 {
106         return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
107 }
108
109 static u32 counter_index_to_evtreg(u64 idx)
110 {
111         return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
112 }
113
114 static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
115 {
116         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
117         u64 counter, reg, enabled, running;
118
119         reg = counter_index_to_reg(pmc->idx);
120         counter = __vcpu_sys_reg(vcpu, reg);
121
122         /*
123          * The real counter value is equal to the value of counter register plus
124          * the value perf event counts.
125          */
126         if (pmc->perf_event)
127                 counter += perf_event_read_value(pmc->perf_event, &enabled,
128                                                  &running);
129
130         if (!kvm_pmc_is_64bit(pmc))
131                 counter = lower_32_bits(counter);
132
133         return counter;
134 }
135
136 /**
137  * kvm_pmu_get_counter_value - get PMU counter value
138  * @vcpu: The vcpu pointer
139  * @select_idx: The counter index
140  */
141 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
142 {
143         if (!kvm_vcpu_has_pmu(vcpu))
144                 return 0;
145
146         return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
147 }
148
149 static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
150 {
151         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
152         u64 reg;
153
154         kvm_pmu_release_perf_event(pmc);
155
156         reg = counter_index_to_reg(pmc->idx);
157
158         if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
159             !force) {
160                 /*
161                  * Even with PMUv3p5, AArch32 cannot write to the top
162                  * 32bit of the counters. The only possible course of
163                  * action is to use PMCR.P, which will reset them to
164                  * 0 (the only use of the 'force' parameter).
165                  */
166                 val  = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
167                 val |= lower_32_bits(val);
168         }
169
170         __vcpu_sys_reg(vcpu, reg) = val;
171
172         /* Recreate the perf event to reflect the updated sample_period */
173         kvm_pmu_create_perf_event(pmc);
174 }
175
176 /**
177  * kvm_pmu_set_counter_value - set PMU counter value
178  * @vcpu: The vcpu pointer
179  * @select_idx: The counter index
180  * @val: The counter value
181  */
182 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
183 {
184         if (!kvm_vcpu_has_pmu(vcpu))
185                 return;
186
187         kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
188 }
189
190 /**
191  * kvm_pmu_release_perf_event - remove the perf event
192  * @pmc: The PMU counter pointer
193  */
194 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
195 {
196         if (pmc->perf_event) {
197                 perf_event_disable(pmc->perf_event);
198                 perf_event_release_kernel(pmc->perf_event);
199                 pmc->perf_event = NULL;
200         }
201 }
202
203 /**
204  * kvm_pmu_stop_counter - stop PMU counter
205  * @pmc: The PMU counter pointer
206  *
207  * If this counter has been configured to monitor some event, release it here.
208  */
209 static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
210 {
211         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
212         u64 reg, val;
213
214         if (!pmc->perf_event)
215                 return;
216
217         val = kvm_pmu_get_pmc_value(pmc);
218
219         reg = counter_index_to_reg(pmc->idx);
220
221         __vcpu_sys_reg(vcpu, reg) = val;
222
223         kvm_pmu_release_perf_event(pmc);
224 }
225
226 /**
227  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
228  * @vcpu: The vcpu pointer
229  *
230  */
231 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
232 {
233         int i;
234         struct kvm_pmu *pmu = &vcpu->arch.pmu;
235
236         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
237                 pmu->pmc[i].idx = i;
238 }
239
240 /**
241  * kvm_pmu_vcpu_reset - reset pmu state for cpu
242  * @vcpu: The vcpu pointer
243  *
244  */
245 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
246 {
247         unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
248         int i;
249
250         for_each_set_bit(i, &mask, 32)
251                 kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
252 }
253
254 /**
255  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
256  * @vcpu: The vcpu pointer
257  *
258  */
259 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
260 {
261         int i;
262
263         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
264                 kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
265         irq_work_sync(&vcpu->arch.pmu.overflow_work);
266 }
267
268 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
269 {
270         u64 val = FIELD_GET(ARMV8_PMU_PMCR_N, kvm_vcpu_read_pmcr(vcpu));
271
272         if (val == 0)
273                 return BIT(ARMV8_PMU_CYCLE_IDX);
274         else
275                 return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
276 }
277
278 /**
279  * kvm_pmu_enable_counter_mask - enable selected PMU counters
280  * @vcpu: The vcpu pointer
281  * @val: the value guest writes to PMCNTENSET register
282  *
283  * Call perf_event_enable to start counting the perf event
284  */
285 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
286 {
287         int i;
288         if (!kvm_vcpu_has_pmu(vcpu))
289                 return;
290
291         if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) || !val)
292                 return;
293
294         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
295                 struct kvm_pmc *pmc;
296
297                 if (!(val & BIT(i)))
298                         continue;
299
300                 pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
301
302                 if (!pmc->perf_event) {
303                         kvm_pmu_create_perf_event(pmc);
304                 } else {
305                         perf_event_enable(pmc->perf_event);
306                         if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
307                                 kvm_debug("fail to enable perf event\n");
308                 }
309         }
310 }
311
312 /**
313  * kvm_pmu_disable_counter_mask - disable selected PMU counters
314  * @vcpu: The vcpu pointer
315  * @val: the value guest writes to PMCNTENCLR register
316  *
317  * Call perf_event_disable to stop counting the perf event
318  */
319 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
320 {
321         int i;
322
323         if (!kvm_vcpu_has_pmu(vcpu) || !val)
324                 return;
325
326         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
327                 struct kvm_pmc *pmc;
328
329                 if (!(val & BIT(i)))
330                         continue;
331
332                 pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
333
334                 if (pmc->perf_event)
335                         perf_event_disable(pmc->perf_event);
336         }
337 }
338
339 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
340 {
341         u64 reg = 0;
342
343         if ((kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E)) {
344                 reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
345                 reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
346                 reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
347         }
348
349         return reg;
350 }
351
352 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
353 {
354         struct kvm_pmu *pmu = &vcpu->arch.pmu;
355         bool overflow;
356
357         if (!kvm_vcpu_has_pmu(vcpu))
358                 return;
359
360         overflow = !!kvm_pmu_overflow_status(vcpu);
361         if (pmu->irq_level == overflow)
362                 return;
363
364         pmu->irq_level = overflow;
365
366         if (likely(irqchip_in_kernel(vcpu->kvm))) {
367                 int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
368                                               pmu->irq_num, overflow, pmu);
369                 WARN_ON(ret);
370         }
371 }
372
373 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
374 {
375         struct kvm_pmu *pmu = &vcpu->arch.pmu;
376         struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
377         bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
378
379         if (likely(irqchip_in_kernel(vcpu->kvm)))
380                 return false;
381
382         return pmu->irq_level != run_level;
383 }
384
385 /*
386  * Reflect the PMU overflow interrupt output level into the kvm_run structure
387  */
388 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
389 {
390         struct kvm_sync_regs *regs = &vcpu->run->s.regs;
391
392         /* Populate the timer bitmap for user space */
393         regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
394         if (vcpu->arch.pmu.irq_level)
395                 regs->device_irq_level |= KVM_ARM_DEV_PMU;
396 }
397
398 /**
399  * kvm_pmu_flush_hwstate - flush pmu state to cpu
400  * @vcpu: The vcpu pointer
401  *
402  * Check if the PMU has overflowed while we were running in the host, and inject
403  * an interrupt if that was the case.
404  */
405 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
406 {
407         kvm_pmu_update_state(vcpu);
408 }
409
410 /**
411  * kvm_pmu_sync_hwstate - sync pmu state from cpu
412  * @vcpu: The vcpu pointer
413  *
414  * Check if the PMU has overflowed while we were running in the guest, and
415  * inject an interrupt if that was the case.
416  */
417 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
418 {
419         kvm_pmu_update_state(vcpu);
420 }
421
422 /**
423  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
424  * to the event.
425  * This is why we need a callback to do it once outside of the NMI context.
426  */
427 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
428 {
429         struct kvm_vcpu *vcpu;
430
431         vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
432         kvm_vcpu_kick(vcpu);
433 }
434
435 /*
436  * Perform an increment on any of the counters described in @mask,
437  * generating the overflow if required, and propagate it as a chained
438  * event if possible.
439  */
440 static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
441                                       unsigned long mask, u32 event)
442 {
443         int i;
444
445         if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
446                 return;
447
448         /* Weed out disabled counters */
449         mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
450
451         for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
452                 struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
453                 u64 type, reg;
454
455                 /* Filter on event type */
456                 type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
457                 type &= kvm_pmu_event_mask(vcpu->kvm);
458                 if (type != event)
459                         continue;
460
461                 /* Increment this counter */
462                 reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
463                 if (!kvm_pmc_is_64bit(pmc))
464                         reg = lower_32_bits(reg);
465                 __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
466
467                 /* No overflow? move on */
468                 if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
469                         continue;
470
471                 /* Mark overflow */
472                 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
473
474                 if (kvm_pmu_counter_can_chain(pmc))
475                         kvm_pmu_counter_increment(vcpu, BIT(i + 1),
476                                                   ARMV8_PMUV3_PERFCTR_CHAIN);
477         }
478 }
479
480 /* Compute the sample period for a given counter value */
481 static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
482 {
483         u64 val;
484
485         if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
486                 val = (-counter) & GENMASK(63, 0);
487         else
488                 val = (-counter) & GENMASK(31, 0);
489
490         return val;
491 }
492
493 /**
494  * When the perf event overflows, set the overflow status and inform the vcpu.
495  */
496 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
497                                   struct perf_sample_data *data,
498                                   struct pt_regs *regs)
499 {
500         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
501         struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
502         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
503         int idx = pmc->idx;
504         u64 period;
505
506         cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
507
508         /*
509          * Reset the sample period to the architectural limit,
510          * i.e. the point where the counter overflows.
511          */
512         period = compute_period(pmc, local64_read(&perf_event->count));
513
514         local64_set(&perf_event->hw.period_left, 0);
515         perf_event->attr.sample_period = period;
516         perf_event->hw.sample_period = period;
517
518         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
519
520         if (kvm_pmu_counter_can_chain(pmc))
521                 kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
522                                           ARMV8_PMUV3_PERFCTR_CHAIN);
523
524         if (kvm_pmu_overflow_status(vcpu)) {
525                 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
526
527                 if (!in_nmi())
528                         kvm_vcpu_kick(vcpu);
529                 else
530                         irq_work_queue(&vcpu->arch.pmu.overflow_work);
531         }
532
533         cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
534 }
535
536 /**
537  * kvm_pmu_software_increment - do software increment
538  * @vcpu: The vcpu pointer
539  * @val: the value guest writes to PMSWINC register
540  */
541 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
542 {
543         kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
544 }
545
546 /**
547  * kvm_pmu_handle_pmcr - handle PMCR register
548  * @vcpu: The vcpu pointer
549  * @val: the value guest writes to PMCR register
550  */
551 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
552 {
553         int i;
554
555         if (!kvm_vcpu_has_pmu(vcpu))
556                 return;
557
558         /* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
559         if (!kvm_pmu_is_3p5(vcpu))
560                 val &= ~ARMV8_PMU_PMCR_LP;
561
562         /* The reset bits don't indicate any state, and shouldn't be saved. */
563         __vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
564
565         if (val & ARMV8_PMU_PMCR_E) {
566                 kvm_pmu_enable_counter_mask(vcpu,
567                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
568         } else {
569                 kvm_pmu_disable_counter_mask(vcpu,
570                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
571         }
572
573         if (val & ARMV8_PMU_PMCR_C)
574                 kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
575
576         if (val & ARMV8_PMU_PMCR_P) {
577                 unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
578                 mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
579                 for_each_set_bit(i, &mask, 32)
580                         kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
581         }
582         kvm_vcpu_pmu_restore_guest(vcpu);
583 }
584
585 static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
586 {
587         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
588         return (kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) &&
589                (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
590 }
591
592 /**
593  * kvm_pmu_create_perf_event - create a perf event for a counter
594  * @pmc: Counter context
595  */
596 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
597 {
598         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
599         struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
600         struct perf_event *event;
601         struct perf_event_attr attr;
602         u64 eventsel, reg, data;
603         bool p, u, nsk, nsu;
604
605         reg = counter_index_to_evtreg(pmc->idx);
606         data = __vcpu_sys_reg(vcpu, reg);
607
608         kvm_pmu_stop_counter(pmc);
609         if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
610                 eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
611         else
612                 eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
613
614         /*
615          * Neither SW increment nor chained events need to be backed
616          * by a perf event.
617          */
618         if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
619             eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
620                 return;
621
622         /*
623          * If we have a filter in place and that the event isn't allowed, do
624          * not install a perf event either.
625          */
626         if (vcpu->kvm->arch.pmu_filter &&
627             !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
628                 return;
629
630         p = data & ARMV8_PMU_EXCLUDE_EL1;
631         u = data & ARMV8_PMU_EXCLUDE_EL0;
632         nsk = data & ARMV8_PMU_EXCLUDE_NS_EL1;
633         nsu = data & ARMV8_PMU_EXCLUDE_NS_EL0;
634
635         memset(&attr, 0, sizeof(struct perf_event_attr));
636         attr.type = arm_pmu->pmu.type;
637         attr.size = sizeof(attr);
638         attr.pinned = 1;
639         attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
640         attr.exclude_user = (u != nsu);
641         attr.exclude_kernel = (p != nsk);
642         attr.exclude_hv = 1; /* Don't count EL2 events */
643         attr.exclude_host = 1; /* Don't count host events */
644         attr.config = eventsel;
645
646         /*
647          * If counting with a 64bit counter, advertise it to the perf
648          * code, carefully dealing with the initial sample period
649          * which also depends on the overflow.
650          */
651         if (kvm_pmc_is_64bit(pmc))
652                 attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
653
654         attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
655
656         event = perf_event_create_kernel_counter(&attr, -1, current,
657                                                  kvm_pmu_perf_overflow, pmc);
658
659         if (IS_ERR(event)) {
660                 pr_err_once("kvm: pmu event creation failed %ld\n",
661                             PTR_ERR(event));
662                 return;
663         }
664
665         pmc->perf_event = event;
666 }
667
668 /**
669  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
670  * @vcpu: The vcpu pointer
671  * @data: The data guest writes to PMXEVTYPER_EL0
672  * @select_idx: The number of selected counter
673  *
674  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
675  * event with given hardware event number. Here we call perf_event API to
676  * emulate this action and create a kernel perf event for it.
677  */
678 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
679                                     u64 select_idx)
680 {
681         struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
682         u64 reg;
683
684         if (!kvm_vcpu_has_pmu(vcpu))
685                 return;
686
687         reg = counter_index_to_evtreg(pmc->idx);
688         __vcpu_sys_reg(vcpu, reg) = data & kvm_pmu_evtyper_mask(vcpu->kvm);
689
690         kvm_pmu_create_perf_event(pmc);
691 }
692
693 void kvm_host_pmu_init(struct arm_pmu *pmu)
694 {
695         struct arm_pmu_entry *entry;
696
697         /*
698          * Check the sanitised PMU version for the system, as KVM does not
699          * support implementations where PMUv3 exists on a subset of CPUs.
700          */
701         if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
702                 return;
703
704         mutex_lock(&arm_pmus_lock);
705
706         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
707         if (!entry)
708                 goto out_unlock;
709
710         entry->arm_pmu = pmu;
711         list_add_tail(&entry->entry, &arm_pmus);
712
713         if (list_is_singular(&arm_pmus))
714                 static_branch_enable(&kvm_arm_pmu_available);
715
716 out_unlock:
717         mutex_unlock(&arm_pmus_lock);
718 }
719
720 static struct arm_pmu *kvm_pmu_probe_armpmu(void)
721 {
722         struct arm_pmu *tmp, *pmu = NULL;
723         struct arm_pmu_entry *entry;
724         int cpu;
725
726         mutex_lock(&arm_pmus_lock);
727
728         /*
729          * It is safe to use a stale cpu to iterate the list of PMUs so long as
730          * the same value is used for the entirety of the loop. Given this, and
731          * the fact that no percpu data is used for the lookup there is no need
732          * to disable preemption.
733          *
734          * It is still necessary to get a valid cpu, though, to probe for the
735          * default PMU instance as userspace is not required to specify a PMU
736          * type. In order to uphold the preexisting behavior KVM selects the
737          * PMU instance for the core during vcpu init. A dependent use
738          * case would be a user with disdain of all things big.LITTLE that
739          * affines the VMM to a particular cluster of cores.
740          *
741          * In any case, userspace should just do the sane thing and use the UAPI
742          * to select a PMU type directly. But, be wary of the baggage being
743          * carried here.
744          */
745         cpu = raw_smp_processor_id();
746         list_for_each_entry(entry, &arm_pmus, entry) {
747                 tmp = entry->arm_pmu;
748
749                 if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
750                         pmu = tmp;
751                         break;
752                 }
753         }
754
755         mutex_unlock(&arm_pmus_lock);
756
757         return pmu;
758 }
759
760 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
761 {
762         unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
763         u64 val, mask = 0;
764         int base, i, nr_events;
765
766         if (!kvm_vcpu_has_pmu(vcpu))
767                 return 0;
768
769         if (!pmceid1) {
770                 val = read_sysreg(pmceid0_el0);
771                 /* always support CHAIN */
772                 val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
773                 base = 0;
774         } else {
775                 val = read_sysreg(pmceid1_el0);
776                 /*
777                  * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
778                  * as RAZ
779                  */
780                 val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
781                          BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
782                          BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
783                 base = 32;
784         }
785
786         if (!bmap)
787                 return val;
788
789         nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
790
791         for (i = 0; i < 32; i += 8) {
792                 u64 byte;
793
794                 byte = bitmap_get_value8(bmap, base + i);
795                 mask |= byte << i;
796                 if (nr_events >= (0x4000 + base + 32)) {
797                         byte = bitmap_get_value8(bmap, 0x4000 + base + i);
798                         mask |= byte << (32 + i);
799                 }
800         }
801
802         return val & mask;
803 }
804
805 void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
806 {
807         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
808
809         kvm_pmu_handle_pmcr(vcpu, kvm_vcpu_read_pmcr(vcpu));
810
811         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= mask;
812         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= mask;
813         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= mask;
814 }
815
816 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
817 {
818         if (!kvm_vcpu_has_pmu(vcpu))
819                 return 0;
820
821         if (!vcpu->arch.pmu.created)
822                 return -EINVAL;
823
824         /*
825          * A valid interrupt configuration for the PMU is either to have a
826          * properly configured interrupt number and using an in-kernel
827          * irqchip, or to not have an in-kernel GIC and not set an IRQ.
828          */
829         if (irqchip_in_kernel(vcpu->kvm)) {
830                 int irq = vcpu->arch.pmu.irq_num;
831                 /*
832                  * If we are using an in-kernel vgic, at this point we know
833                  * the vgic will be initialized, so we can check the PMU irq
834                  * number against the dimensions of the vgic and make sure
835                  * it's valid.
836                  */
837                 if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
838                         return -EINVAL;
839         } else if (kvm_arm_pmu_irq_initialized(vcpu)) {
840                    return -EINVAL;
841         }
842
843         /* One-off reload of the PMU on first run */
844         kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
845
846         return 0;
847 }
848
849 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
850 {
851         if (irqchip_in_kernel(vcpu->kvm)) {
852                 int ret;
853
854                 /*
855                  * If using the PMU with an in-kernel virtual GIC
856                  * implementation, we require the GIC to be already
857                  * initialized when initializing the PMU.
858                  */
859                 if (!vgic_initialized(vcpu->kvm))
860                         return -ENODEV;
861
862                 if (!kvm_arm_pmu_irq_initialized(vcpu))
863                         return -ENXIO;
864
865                 ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
866                                          &vcpu->arch.pmu);
867                 if (ret)
868                         return ret;
869         }
870
871         init_irq_work(&vcpu->arch.pmu.overflow_work,
872                       kvm_pmu_perf_overflow_notify_vcpu);
873
874         vcpu->arch.pmu.created = true;
875         return 0;
876 }
877
878 /*
879  * For one VM the interrupt type must be same for each vcpu.
880  * As a PPI, the interrupt number is the same for all vcpus,
881  * while as an SPI it must be a separate number per vcpu.
882  */
883 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
884 {
885         unsigned long i;
886         struct kvm_vcpu *vcpu;
887
888         kvm_for_each_vcpu(i, vcpu, kvm) {
889                 if (!kvm_arm_pmu_irq_initialized(vcpu))
890                         continue;
891
892                 if (irq_is_ppi(irq)) {
893                         if (vcpu->arch.pmu.irq_num != irq)
894                                 return false;
895                 } else {
896                         if (vcpu->arch.pmu.irq_num == irq)
897                                 return false;
898                 }
899         }
900
901         return true;
902 }
903
904 /**
905  * kvm_arm_pmu_get_max_counters - Return the max number of PMU counters.
906  * @kvm: The kvm pointer
907  */
908 u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
909 {
910         struct arm_pmu *arm_pmu = kvm->arch.arm_pmu;
911
912         /*
913          * The arm_pmu->num_events considers the cycle counter as well.
914          * Ignore that and return only the general-purpose counters.
915          */
916         return arm_pmu->num_events - 1;
917 }
918
919 static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu)
920 {
921         lockdep_assert_held(&kvm->arch.config_lock);
922
923         kvm->arch.arm_pmu = arm_pmu;
924         kvm->arch.pmcr_n = kvm_arm_pmu_get_max_counters(kvm);
925 }
926
927 /**
928  * kvm_arm_set_default_pmu - No PMU set, get the default one.
929  * @kvm: The kvm pointer
930  *
931  * The observant among you will notice that the supported_cpus
932  * mask does not get updated for the default PMU even though it
933  * is quite possible the selected instance supports only a
934  * subset of cores in the system. This is intentional, and
935  * upholds the preexisting behavior on heterogeneous systems
936  * where vCPUs can be scheduled on any core but the guest
937  * counters could stop working.
938  */
939 int kvm_arm_set_default_pmu(struct kvm *kvm)
940 {
941         struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu();
942
943         if (!arm_pmu)
944                 return -ENODEV;
945
946         kvm_arm_set_pmu(kvm, arm_pmu);
947         return 0;
948 }
949
950 static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
951 {
952         struct kvm *kvm = vcpu->kvm;
953         struct arm_pmu_entry *entry;
954         struct arm_pmu *arm_pmu;
955         int ret = -ENXIO;
956
957         lockdep_assert_held(&kvm->arch.config_lock);
958         mutex_lock(&arm_pmus_lock);
959
960         list_for_each_entry(entry, &arm_pmus, entry) {
961                 arm_pmu = entry->arm_pmu;
962                 if (arm_pmu->pmu.type == pmu_id) {
963                         if (kvm_vm_has_ran_once(kvm) ||
964                             (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
965                                 ret = -EBUSY;
966                                 break;
967                         }
968
969                         kvm_arm_set_pmu(kvm, arm_pmu);
970                         cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
971                         ret = 0;
972                         break;
973                 }
974         }
975
976         mutex_unlock(&arm_pmus_lock);
977         return ret;
978 }
979
980 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
981 {
982         struct kvm *kvm = vcpu->kvm;
983
984         lockdep_assert_held(&kvm->arch.config_lock);
985
986         if (!kvm_vcpu_has_pmu(vcpu))
987                 return -ENODEV;
988
989         if (vcpu->arch.pmu.created)
990                 return -EBUSY;
991
992         switch (attr->attr) {
993         case KVM_ARM_VCPU_PMU_V3_IRQ: {
994                 int __user *uaddr = (int __user *)(long)attr->addr;
995                 int irq;
996
997                 if (!irqchip_in_kernel(kvm))
998                         return -EINVAL;
999
1000                 if (get_user(irq, uaddr))
1001                         return -EFAULT;
1002
1003                 /* The PMU overflow interrupt can be a PPI or a valid SPI. */
1004                 if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
1005                         return -EINVAL;
1006
1007                 if (!pmu_irq_is_valid(kvm, irq))
1008                         return -EINVAL;
1009
1010                 if (kvm_arm_pmu_irq_initialized(vcpu))
1011                         return -EBUSY;
1012
1013                 kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
1014                 vcpu->arch.pmu.irq_num = irq;
1015                 return 0;
1016         }
1017         case KVM_ARM_VCPU_PMU_V3_FILTER: {
1018                 u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
1019                 struct kvm_pmu_event_filter __user *uaddr;
1020                 struct kvm_pmu_event_filter filter;
1021                 int nr_events;
1022
1023                 /*
1024                  * Allow userspace to specify an event filter for the entire
1025                  * event range supported by PMUVer of the hardware, rather
1026                  * than the guest's PMUVer for KVM backward compatibility.
1027                  */
1028                 nr_events = __kvm_pmu_event_mask(pmuver) + 1;
1029
1030                 uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
1031
1032                 if (copy_from_user(&filter, uaddr, sizeof(filter)))
1033                         return -EFAULT;
1034
1035                 if (((u32)filter.base_event + filter.nevents) > nr_events ||
1036                     (filter.action != KVM_PMU_EVENT_ALLOW &&
1037                      filter.action != KVM_PMU_EVENT_DENY))
1038                         return -EINVAL;
1039
1040                 if (kvm_vm_has_ran_once(kvm))
1041                         return -EBUSY;
1042
1043                 if (!kvm->arch.pmu_filter) {
1044                         kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
1045                         if (!kvm->arch.pmu_filter)
1046                                 return -ENOMEM;
1047
1048                         /*
1049                          * The default depends on the first applied filter.
1050                          * If it allows events, the default is to deny.
1051                          * Conversely, if the first filter denies a set of
1052                          * events, the default is to allow.
1053                          */
1054                         if (filter.action == KVM_PMU_EVENT_ALLOW)
1055                                 bitmap_zero(kvm->arch.pmu_filter, nr_events);
1056                         else
1057                                 bitmap_fill(kvm->arch.pmu_filter, nr_events);
1058                 }
1059
1060                 if (filter.action == KVM_PMU_EVENT_ALLOW)
1061                         bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1062                 else
1063                         bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1064
1065                 return 0;
1066         }
1067         case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1068                 int __user *uaddr = (int __user *)(long)attr->addr;
1069                 int pmu_id;
1070
1071                 if (get_user(pmu_id, uaddr))
1072                         return -EFAULT;
1073
1074                 return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1075         }
1076         case KVM_ARM_VCPU_PMU_V3_INIT:
1077                 return kvm_arm_pmu_v3_init(vcpu);
1078         }
1079
1080         return -ENXIO;
1081 }
1082
1083 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1084 {
1085         switch (attr->attr) {
1086         case KVM_ARM_VCPU_PMU_V3_IRQ: {
1087                 int __user *uaddr = (int __user *)(long)attr->addr;
1088                 int irq;
1089
1090                 if (!irqchip_in_kernel(vcpu->kvm))
1091                         return -EINVAL;
1092
1093                 if (!kvm_vcpu_has_pmu(vcpu))
1094                         return -ENODEV;
1095
1096                 if (!kvm_arm_pmu_irq_initialized(vcpu))
1097                         return -ENXIO;
1098
1099                 irq = vcpu->arch.pmu.irq_num;
1100                 return put_user(irq, uaddr);
1101         }
1102         }
1103
1104         return -ENXIO;
1105 }
1106
1107 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1108 {
1109         switch (attr->attr) {
1110         case KVM_ARM_VCPU_PMU_V3_IRQ:
1111         case KVM_ARM_VCPU_PMU_V3_INIT:
1112         case KVM_ARM_VCPU_PMU_V3_FILTER:
1113         case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1114                 if (kvm_vcpu_has_pmu(vcpu))
1115                         return 0;
1116         }
1117
1118         return -ENXIO;
1119 }
1120
1121 u8 kvm_arm_pmu_get_pmuver_limit(void)
1122 {
1123         u64 tmp;
1124
1125         tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1126         tmp = cpuid_feature_cap_perfmon_field(tmp,
1127                                               ID_AA64DFR0_EL1_PMUVer_SHIFT,
1128                                               ID_AA64DFR0_EL1_PMUVer_V3P5);
1129         return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
1130 }
1131
1132 /**
1133  * kvm_vcpu_read_pmcr - Read PMCR_EL0 register for the vCPU
1134  * @vcpu: The vcpu pointer
1135  */
1136 u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
1137 {
1138         u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
1139
1140         return u64_replace_bits(pmcr, vcpu->kvm->arch.pmcr_n, ARMV8_PMU_PMCR_N);
1141 }