f54408355d1dc76540f812fc72b392e30b8bd59f
[linux-2.6-block.git] / arch / arm64 / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long __ro_after_init hyp_idmap_start;
29 static unsigned long __ro_after_init hyp_idmap_end;
30 static phys_addr_t __ro_after_init hyp_idmap_vector;
31
32 static unsigned long __ro_after_init io_map_base;
33
34 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
35 {
36         phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
37         phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38
39         return (boundary - 1 < end - 1) ? boundary : end;
40 }
41
42 /*
43  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
44  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
45  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
46  * long will also starve other vCPUs. We have to also make sure that the page
47  * tables are not freed while we released the lock.
48  */
49 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
50                               phys_addr_t end,
51                               int (*fn)(struct kvm_pgtable *, u64, u64),
52                               bool resched)
53 {
54         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
55         int ret;
56         u64 next;
57
58         do {
59                 struct kvm_pgtable *pgt = mmu->pgt;
60                 if (!pgt)
61                         return -EINVAL;
62
63                 next = stage2_range_addr_end(addr, end);
64                 ret = fn(pgt, addr, next - addr);
65                 if (ret)
66                         break;
67
68                 if (resched && next != end)
69                         cond_resched_rwlock_write(&kvm->mmu_lock);
70         } while (addr = next, addr != end);
71
72         return ret;
73 }
74
75 #define stage2_apply_range_resched(mmu, addr, end, fn)                  \
76         stage2_apply_range(mmu, addr, end, fn, true)
77
78 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
79 {
80         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
81 }
82
83 /**
84  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
85  * @kvm:        pointer to kvm structure.
86  *
87  * Interface to HYP function to flush all VM TLB entries
88  */
89 void kvm_flush_remote_tlbs(struct kvm *kvm)
90 {
91         ++kvm->stat.generic.remote_tlb_flush_requests;
92         kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
93 }
94
95 static bool kvm_is_device_pfn(unsigned long pfn)
96 {
97         return !pfn_is_map_memory(pfn);
98 }
99
100 static void *stage2_memcache_zalloc_page(void *arg)
101 {
102         struct kvm_mmu_memory_cache *mc = arg;
103         void *virt;
104
105         /* Allocated with __GFP_ZERO, so no need to zero */
106         virt = kvm_mmu_memory_cache_alloc(mc);
107         if (virt)
108                 kvm_account_pgtable_pages(virt, 1);
109         return virt;
110 }
111
112 static void *kvm_host_zalloc_pages_exact(size_t size)
113 {
114         return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
115 }
116
117 static void *kvm_s2_zalloc_pages_exact(size_t size)
118 {
119         void *virt = kvm_host_zalloc_pages_exact(size);
120
121         if (virt)
122                 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
123         return virt;
124 }
125
126 static void kvm_s2_free_pages_exact(void *virt, size_t size)
127 {
128         kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
129         free_pages_exact(virt, size);
130 }
131
132 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
133
134 static void stage2_free_removed_table_rcu_cb(struct rcu_head *head)
135 {
136         struct page *page = container_of(head, struct page, rcu_head);
137         void *pgtable = page_to_virt(page);
138         u32 level = page_private(page);
139
140         kvm_pgtable_stage2_free_removed(&kvm_s2_mm_ops, pgtable, level);
141 }
142
143 static void stage2_free_removed_table(void *addr, u32 level)
144 {
145         struct page *page = virt_to_page(addr);
146
147         set_page_private(page, (unsigned long)level);
148         call_rcu(&page->rcu_head, stage2_free_removed_table_rcu_cb);
149 }
150
151 static void kvm_host_get_page(void *addr)
152 {
153         get_page(virt_to_page(addr));
154 }
155
156 static void kvm_host_put_page(void *addr)
157 {
158         put_page(virt_to_page(addr));
159 }
160
161 static void kvm_s2_put_page(void *addr)
162 {
163         struct page *p = virt_to_page(addr);
164         /* Dropping last refcount, the page will be freed */
165         if (page_count(p) == 1)
166                 kvm_account_pgtable_pages(addr, -1);
167         put_page(p);
168 }
169
170 static int kvm_host_page_count(void *addr)
171 {
172         return page_count(virt_to_page(addr));
173 }
174
175 static phys_addr_t kvm_host_pa(void *addr)
176 {
177         return __pa(addr);
178 }
179
180 static void *kvm_host_va(phys_addr_t phys)
181 {
182         return __va(phys);
183 }
184
185 static void clean_dcache_guest_page(void *va, size_t size)
186 {
187         __clean_dcache_guest_page(va, size);
188 }
189
190 static void invalidate_icache_guest_page(void *va, size_t size)
191 {
192         __invalidate_icache_guest_page(va, size);
193 }
194
195 /*
196  * Unmapping vs dcache management:
197  *
198  * If a guest maps certain memory pages as uncached, all writes will
199  * bypass the data cache and go directly to RAM.  However, the CPUs
200  * can still speculate reads (not writes) and fill cache lines with
201  * data.
202  *
203  * Those cache lines will be *clean* cache lines though, so a
204  * clean+invalidate operation is equivalent to an invalidate
205  * operation, because no cache lines are marked dirty.
206  *
207  * Those clean cache lines could be filled prior to an uncached write
208  * by the guest, and the cache coherent IO subsystem would therefore
209  * end up writing old data to disk.
210  *
211  * This is why right after unmapping a page/section and invalidating
212  * the corresponding TLBs, we flush to make sure the IO subsystem will
213  * never hit in the cache.
214  *
215  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
216  * we then fully enforce cacheability of RAM, no matter what the guest
217  * does.
218  */
219 /**
220  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
221  * @mmu:   The KVM stage-2 MMU pointer
222  * @start: The intermediate physical base address of the range to unmap
223  * @size:  The size of the area to unmap
224  * @may_block: Whether or not we are permitted to block
225  *
226  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
227  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
228  * destroying the VM), otherwise another faulting VCPU may come in and mess
229  * with things behind our backs.
230  */
231 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
232                                  bool may_block)
233 {
234         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
235         phys_addr_t end = start + size;
236
237         lockdep_assert_held_write(&kvm->mmu_lock);
238         WARN_ON(size & ~PAGE_MASK);
239         WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
240                                    may_block));
241 }
242
243 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
244 {
245         __unmap_stage2_range(mmu, start, size, true);
246 }
247
248 static void stage2_flush_memslot(struct kvm *kvm,
249                                  struct kvm_memory_slot *memslot)
250 {
251         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
252         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
253
254         stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
255 }
256
257 /**
258  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
259  * @kvm: The struct kvm pointer
260  *
261  * Go through the stage 2 page tables and invalidate any cache lines
262  * backing memory already mapped to the VM.
263  */
264 static void stage2_flush_vm(struct kvm *kvm)
265 {
266         struct kvm_memslots *slots;
267         struct kvm_memory_slot *memslot;
268         int idx, bkt;
269
270         idx = srcu_read_lock(&kvm->srcu);
271         write_lock(&kvm->mmu_lock);
272
273         slots = kvm_memslots(kvm);
274         kvm_for_each_memslot(memslot, bkt, slots)
275                 stage2_flush_memslot(kvm, memslot);
276
277         write_unlock(&kvm->mmu_lock);
278         srcu_read_unlock(&kvm->srcu, idx);
279 }
280
281 /**
282  * free_hyp_pgds - free Hyp-mode page tables
283  */
284 void __init free_hyp_pgds(void)
285 {
286         mutex_lock(&kvm_hyp_pgd_mutex);
287         if (hyp_pgtable) {
288                 kvm_pgtable_hyp_destroy(hyp_pgtable);
289                 kfree(hyp_pgtable);
290                 hyp_pgtable = NULL;
291         }
292         mutex_unlock(&kvm_hyp_pgd_mutex);
293 }
294
295 static bool kvm_host_owns_hyp_mappings(void)
296 {
297         if (is_kernel_in_hyp_mode())
298                 return false;
299
300         if (static_branch_likely(&kvm_protected_mode_initialized))
301                 return false;
302
303         /*
304          * This can happen at boot time when __create_hyp_mappings() is called
305          * after the hyp protection has been enabled, but the static key has
306          * not been flipped yet.
307          */
308         if (!hyp_pgtable && is_protected_kvm_enabled())
309                 return false;
310
311         WARN_ON(!hyp_pgtable);
312
313         return true;
314 }
315
316 int __create_hyp_mappings(unsigned long start, unsigned long size,
317                           unsigned long phys, enum kvm_pgtable_prot prot)
318 {
319         int err;
320
321         if (WARN_ON(!kvm_host_owns_hyp_mappings()))
322                 return -EINVAL;
323
324         mutex_lock(&kvm_hyp_pgd_mutex);
325         err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
326         mutex_unlock(&kvm_hyp_pgd_mutex);
327
328         return err;
329 }
330
331 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
332 {
333         if (!is_vmalloc_addr(kaddr)) {
334                 BUG_ON(!virt_addr_valid(kaddr));
335                 return __pa(kaddr);
336         } else {
337                 return page_to_phys(vmalloc_to_page(kaddr)) +
338                        offset_in_page(kaddr);
339         }
340 }
341
342 struct hyp_shared_pfn {
343         u64 pfn;
344         int count;
345         struct rb_node node;
346 };
347
348 static DEFINE_MUTEX(hyp_shared_pfns_lock);
349 static struct rb_root hyp_shared_pfns = RB_ROOT;
350
351 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
352                                               struct rb_node **parent)
353 {
354         struct hyp_shared_pfn *this;
355
356         *node = &hyp_shared_pfns.rb_node;
357         *parent = NULL;
358         while (**node) {
359                 this = container_of(**node, struct hyp_shared_pfn, node);
360                 *parent = **node;
361                 if (this->pfn < pfn)
362                         *node = &((**node)->rb_left);
363                 else if (this->pfn > pfn)
364                         *node = &((**node)->rb_right);
365                 else
366                         return this;
367         }
368
369         return NULL;
370 }
371
372 static int share_pfn_hyp(u64 pfn)
373 {
374         struct rb_node **node, *parent;
375         struct hyp_shared_pfn *this;
376         int ret = 0;
377
378         mutex_lock(&hyp_shared_pfns_lock);
379         this = find_shared_pfn(pfn, &node, &parent);
380         if (this) {
381                 this->count++;
382                 goto unlock;
383         }
384
385         this = kzalloc(sizeof(*this), GFP_KERNEL);
386         if (!this) {
387                 ret = -ENOMEM;
388                 goto unlock;
389         }
390
391         this->pfn = pfn;
392         this->count = 1;
393         rb_link_node(&this->node, parent, node);
394         rb_insert_color(&this->node, &hyp_shared_pfns);
395         ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
396 unlock:
397         mutex_unlock(&hyp_shared_pfns_lock);
398
399         return ret;
400 }
401
402 static int unshare_pfn_hyp(u64 pfn)
403 {
404         struct rb_node **node, *parent;
405         struct hyp_shared_pfn *this;
406         int ret = 0;
407
408         mutex_lock(&hyp_shared_pfns_lock);
409         this = find_shared_pfn(pfn, &node, &parent);
410         if (WARN_ON(!this)) {
411                 ret = -ENOENT;
412                 goto unlock;
413         }
414
415         this->count--;
416         if (this->count)
417                 goto unlock;
418
419         rb_erase(&this->node, &hyp_shared_pfns);
420         kfree(this);
421         ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
422 unlock:
423         mutex_unlock(&hyp_shared_pfns_lock);
424
425         return ret;
426 }
427
428 int kvm_share_hyp(void *from, void *to)
429 {
430         phys_addr_t start, end, cur;
431         u64 pfn;
432         int ret;
433
434         if (is_kernel_in_hyp_mode())
435                 return 0;
436
437         /*
438          * The share hcall maps things in the 'fixed-offset' region of the hyp
439          * VA space, so we can only share physically contiguous data-structures
440          * for now.
441          */
442         if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
443                 return -EINVAL;
444
445         if (kvm_host_owns_hyp_mappings())
446                 return create_hyp_mappings(from, to, PAGE_HYP);
447
448         start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
449         end = PAGE_ALIGN(__pa(to));
450         for (cur = start; cur < end; cur += PAGE_SIZE) {
451                 pfn = __phys_to_pfn(cur);
452                 ret = share_pfn_hyp(pfn);
453                 if (ret)
454                         return ret;
455         }
456
457         return 0;
458 }
459
460 void kvm_unshare_hyp(void *from, void *to)
461 {
462         phys_addr_t start, end, cur;
463         u64 pfn;
464
465         if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
466                 return;
467
468         start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
469         end = PAGE_ALIGN(__pa(to));
470         for (cur = start; cur < end; cur += PAGE_SIZE) {
471                 pfn = __phys_to_pfn(cur);
472                 WARN_ON(unshare_pfn_hyp(pfn));
473         }
474 }
475
476 /**
477  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
478  * @from:       The virtual kernel start address of the range
479  * @to:         The virtual kernel end address of the range (exclusive)
480  * @prot:       The protection to be applied to this range
481  *
482  * The same virtual address as the kernel virtual address is also used
483  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
484  * physical pages.
485  */
486 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
487 {
488         phys_addr_t phys_addr;
489         unsigned long virt_addr;
490         unsigned long start = kern_hyp_va((unsigned long)from);
491         unsigned long end = kern_hyp_va((unsigned long)to);
492
493         if (is_kernel_in_hyp_mode())
494                 return 0;
495
496         if (!kvm_host_owns_hyp_mappings())
497                 return -EPERM;
498
499         start = start & PAGE_MASK;
500         end = PAGE_ALIGN(end);
501
502         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
503                 int err;
504
505                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
506                 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
507                                             prot);
508                 if (err)
509                         return err;
510         }
511
512         return 0;
513 }
514
515
516 /**
517  * hyp_alloc_private_va_range - Allocates a private VA range.
518  * @size:       The size of the VA range to reserve.
519  * @haddr:      The hypervisor virtual start address of the allocation.
520  *
521  * The private virtual address (VA) range is allocated below io_map_base
522  * and aligned based on the order of @size.
523  *
524  * Return: 0 on success or negative error code on failure.
525  */
526 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
527 {
528         unsigned long base;
529         int ret = 0;
530
531         mutex_lock(&kvm_hyp_pgd_mutex);
532
533         /*
534          * This assumes that we have enough space below the idmap
535          * page to allocate our VAs. If not, the check below will
536          * kick. A potential alternative would be to detect that
537          * overflow and switch to an allocation above the idmap.
538          *
539          * The allocated size is always a multiple of PAGE_SIZE.
540          */
541         base = io_map_base - PAGE_ALIGN(size);
542
543         /* Align the allocation based on the order of its size */
544         base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size));
545
546         /*
547          * Verify that BIT(VA_BITS - 1) hasn't been flipped by
548          * allocating the new area, as it would indicate we've
549          * overflowed the idmap/IO address range.
550          */
551         if ((base ^ io_map_base) & BIT(VA_BITS - 1))
552                 ret = -ENOMEM;
553         else
554                 *haddr = io_map_base = base;
555
556         mutex_unlock(&kvm_hyp_pgd_mutex);
557
558         return ret;
559 }
560
561 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
562                                         unsigned long *haddr,
563                                         enum kvm_pgtable_prot prot)
564 {
565         unsigned long addr;
566         int ret = 0;
567
568         if (!kvm_host_owns_hyp_mappings()) {
569                 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
570                                          phys_addr, size, prot);
571                 if (IS_ERR_VALUE(addr))
572                         return addr;
573                 *haddr = addr;
574
575                 return 0;
576         }
577
578         size = PAGE_ALIGN(size + offset_in_page(phys_addr));
579         ret = hyp_alloc_private_va_range(size, &addr);
580         if (ret)
581                 return ret;
582
583         ret = __create_hyp_mappings(addr, size, phys_addr, prot);
584         if (ret)
585                 return ret;
586
587         *haddr = addr + offset_in_page(phys_addr);
588         return ret;
589 }
590
591 /**
592  * create_hyp_io_mappings - Map IO into both kernel and HYP
593  * @phys_addr:  The physical start address which gets mapped
594  * @size:       Size of the region being mapped
595  * @kaddr:      Kernel VA for this mapping
596  * @haddr:      HYP VA for this mapping
597  */
598 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
599                            void __iomem **kaddr,
600                            void __iomem **haddr)
601 {
602         unsigned long addr;
603         int ret;
604
605         if (is_protected_kvm_enabled())
606                 return -EPERM;
607
608         *kaddr = ioremap(phys_addr, size);
609         if (!*kaddr)
610                 return -ENOMEM;
611
612         if (is_kernel_in_hyp_mode()) {
613                 *haddr = *kaddr;
614                 return 0;
615         }
616
617         ret = __create_hyp_private_mapping(phys_addr, size,
618                                            &addr, PAGE_HYP_DEVICE);
619         if (ret) {
620                 iounmap(*kaddr);
621                 *kaddr = NULL;
622                 *haddr = NULL;
623                 return ret;
624         }
625
626         *haddr = (void __iomem *)addr;
627         return 0;
628 }
629
630 /**
631  * create_hyp_exec_mappings - Map an executable range into HYP
632  * @phys_addr:  The physical start address which gets mapped
633  * @size:       Size of the region being mapped
634  * @haddr:      HYP VA for this mapping
635  */
636 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
637                              void **haddr)
638 {
639         unsigned long addr;
640         int ret;
641
642         BUG_ON(is_kernel_in_hyp_mode());
643
644         ret = __create_hyp_private_mapping(phys_addr, size,
645                                            &addr, PAGE_HYP_EXEC);
646         if (ret) {
647                 *haddr = NULL;
648                 return ret;
649         }
650
651         *haddr = (void *)addr;
652         return 0;
653 }
654
655 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
656         /* We shouldn't need any other callback to walk the PT */
657         .phys_to_virt           = kvm_host_va,
658 };
659
660 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
661 {
662         struct kvm_pgtable pgt = {
663                 .pgd            = (kvm_pteref_t)kvm->mm->pgd,
664                 .ia_bits        = vabits_actual,
665                 .start_level    = (KVM_PGTABLE_MAX_LEVELS -
666                                    CONFIG_PGTABLE_LEVELS),
667                 .mm_ops         = &kvm_user_mm_ops,
668         };
669         kvm_pte_t pte = 0;      /* Keep GCC quiet... */
670         u32 level = ~0;
671         int ret;
672
673         ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
674         VM_BUG_ON(ret);
675         VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
676         VM_BUG_ON(!(pte & PTE_VALID));
677
678         return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
679 }
680
681 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
682         .zalloc_page            = stage2_memcache_zalloc_page,
683         .zalloc_pages_exact     = kvm_s2_zalloc_pages_exact,
684         .free_pages_exact       = kvm_s2_free_pages_exact,
685         .free_removed_table     = stage2_free_removed_table,
686         .get_page               = kvm_host_get_page,
687         .put_page               = kvm_s2_put_page,
688         .page_count             = kvm_host_page_count,
689         .phys_to_virt           = kvm_host_va,
690         .virt_to_phys           = kvm_host_pa,
691         .dcache_clean_inval_poc = clean_dcache_guest_page,
692         .icache_inval_pou       = invalidate_icache_guest_page,
693 };
694
695 /**
696  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
697  * @kvm:        The pointer to the KVM structure
698  * @mmu:        The pointer to the s2 MMU structure
699  * @type:       The machine type of the virtual machine
700  *
701  * Allocates only the stage-2 HW PGD level table(s).
702  * Note we don't need locking here as this is only called when the VM is
703  * created, which can only be done once.
704  */
705 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
706 {
707         u32 kvm_ipa_limit = get_kvm_ipa_limit();
708         int cpu, err;
709         struct kvm_pgtable *pgt;
710         u64 mmfr0, mmfr1;
711         u32 phys_shift;
712
713         if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
714                 return -EINVAL;
715
716         phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
717         if (is_protected_kvm_enabled()) {
718                 phys_shift = kvm_ipa_limit;
719         } else if (phys_shift) {
720                 if (phys_shift > kvm_ipa_limit ||
721                     phys_shift < ARM64_MIN_PARANGE_BITS)
722                         return -EINVAL;
723         } else {
724                 phys_shift = KVM_PHYS_SHIFT;
725                 if (phys_shift > kvm_ipa_limit) {
726                         pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
727                                      current->comm);
728                         return -EINVAL;
729                 }
730         }
731
732         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
733         mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
734         kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
735
736         if (mmu->pgt != NULL) {
737                 kvm_err("kvm_arch already initialized?\n");
738                 return -EINVAL;
739         }
740
741         pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
742         if (!pgt)
743                 return -ENOMEM;
744
745         mmu->arch = &kvm->arch;
746         err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
747         if (err)
748                 goto out_free_pgtable;
749
750         mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
751         if (!mmu->last_vcpu_ran) {
752                 err = -ENOMEM;
753                 goto out_destroy_pgtable;
754         }
755
756         for_each_possible_cpu(cpu)
757                 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
758
759         mmu->pgt = pgt;
760         mmu->pgd_phys = __pa(pgt->pgd);
761         return 0;
762
763 out_destroy_pgtable:
764         kvm_pgtable_stage2_destroy(pgt);
765 out_free_pgtable:
766         kfree(pgt);
767         return err;
768 }
769
770 static void stage2_unmap_memslot(struct kvm *kvm,
771                                  struct kvm_memory_slot *memslot)
772 {
773         hva_t hva = memslot->userspace_addr;
774         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
775         phys_addr_t size = PAGE_SIZE * memslot->npages;
776         hva_t reg_end = hva + size;
777
778         /*
779          * A memory region could potentially cover multiple VMAs, and any holes
780          * between them, so iterate over all of them to find out if we should
781          * unmap any of them.
782          *
783          *     +--------------------------------------------+
784          * +---------------+----------------+   +----------------+
785          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
786          * +---------------+----------------+   +----------------+
787          *     |               memory region                |
788          *     +--------------------------------------------+
789          */
790         do {
791                 struct vm_area_struct *vma;
792                 hva_t vm_start, vm_end;
793
794                 vma = find_vma_intersection(current->mm, hva, reg_end);
795                 if (!vma)
796                         break;
797
798                 /*
799                  * Take the intersection of this VMA with the memory region
800                  */
801                 vm_start = max(hva, vma->vm_start);
802                 vm_end = min(reg_end, vma->vm_end);
803
804                 if (!(vma->vm_flags & VM_PFNMAP)) {
805                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
806                         unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
807                 }
808                 hva = vm_end;
809         } while (hva < reg_end);
810 }
811
812 /**
813  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
814  * @kvm: The struct kvm pointer
815  *
816  * Go through the memregions and unmap any regular RAM
817  * backing memory already mapped to the VM.
818  */
819 void stage2_unmap_vm(struct kvm *kvm)
820 {
821         struct kvm_memslots *slots;
822         struct kvm_memory_slot *memslot;
823         int idx, bkt;
824
825         idx = srcu_read_lock(&kvm->srcu);
826         mmap_read_lock(current->mm);
827         write_lock(&kvm->mmu_lock);
828
829         slots = kvm_memslots(kvm);
830         kvm_for_each_memslot(memslot, bkt, slots)
831                 stage2_unmap_memslot(kvm, memslot);
832
833         write_unlock(&kvm->mmu_lock);
834         mmap_read_unlock(current->mm);
835         srcu_read_unlock(&kvm->srcu, idx);
836 }
837
838 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
839 {
840         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
841         struct kvm_pgtable *pgt = NULL;
842
843         write_lock(&kvm->mmu_lock);
844         pgt = mmu->pgt;
845         if (pgt) {
846                 mmu->pgd_phys = 0;
847                 mmu->pgt = NULL;
848                 free_percpu(mmu->last_vcpu_ran);
849         }
850         write_unlock(&kvm->mmu_lock);
851
852         if (pgt) {
853                 kvm_pgtable_stage2_destroy(pgt);
854                 kfree(pgt);
855         }
856 }
857
858 static void hyp_mc_free_fn(void *addr, void *unused)
859 {
860         free_page((unsigned long)addr);
861 }
862
863 static void *hyp_mc_alloc_fn(void *unused)
864 {
865         return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
866 }
867
868 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
869 {
870         if (is_protected_kvm_enabled())
871                 __free_hyp_memcache(mc, hyp_mc_free_fn,
872                                     kvm_host_va, NULL);
873 }
874
875 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
876 {
877         if (!is_protected_kvm_enabled())
878                 return 0;
879
880         return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
881                                     kvm_host_pa, NULL);
882 }
883
884 /**
885  * kvm_phys_addr_ioremap - map a device range to guest IPA
886  *
887  * @kvm:        The KVM pointer
888  * @guest_ipa:  The IPA at which to insert the mapping
889  * @pa:         The physical address of the device
890  * @size:       The size of the mapping
891  * @writable:   Whether or not to create a writable mapping
892  */
893 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
894                           phys_addr_t pa, unsigned long size, bool writable)
895 {
896         phys_addr_t addr;
897         int ret = 0;
898         struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
899         struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
900         enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
901                                      KVM_PGTABLE_PROT_R |
902                                      (writable ? KVM_PGTABLE_PROT_W : 0);
903
904         if (is_protected_kvm_enabled())
905                 return -EPERM;
906
907         size += offset_in_page(guest_ipa);
908         guest_ipa &= PAGE_MASK;
909
910         for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
911                 ret = kvm_mmu_topup_memory_cache(&cache,
912                                                  kvm_mmu_cache_min_pages(kvm));
913                 if (ret)
914                         break;
915
916                 write_lock(&kvm->mmu_lock);
917                 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
918                                              &cache, 0);
919                 write_unlock(&kvm->mmu_lock);
920                 if (ret)
921                         break;
922
923                 pa += PAGE_SIZE;
924         }
925
926         kvm_mmu_free_memory_cache(&cache);
927         return ret;
928 }
929
930 /**
931  * stage2_wp_range() - write protect stage2 memory region range
932  * @mmu:        The KVM stage-2 MMU pointer
933  * @addr:       Start address of range
934  * @end:        End address of range
935  */
936 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
937 {
938         stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
939 }
940
941 /**
942  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
943  * @kvm:        The KVM pointer
944  * @slot:       The memory slot to write protect
945  *
946  * Called to start logging dirty pages after memory region
947  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
948  * all present PUD, PMD and PTEs are write protected in the memory region.
949  * Afterwards read of dirty page log can be called.
950  *
951  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
952  * serializing operations for VM memory regions.
953  */
954 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
955 {
956         struct kvm_memslots *slots = kvm_memslots(kvm);
957         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
958         phys_addr_t start, end;
959
960         if (WARN_ON_ONCE(!memslot))
961                 return;
962
963         start = memslot->base_gfn << PAGE_SHIFT;
964         end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
965
966         write_lock(&kvm->mmu_lock);
967         stage2_wp_range(&kvm->arch.mmu, start, end);
968         write_unlock(&kvm->mmu_lock);
969         kvm_flush_remote_tlbs(kvm);
970 }
971
972 /**
973  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
974  * @kvm:        The KVM pointer
975  * @slot:       The memory slot associated with mask
976  * @gfn_offset: The gfn offset in memory slot
977  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
978  *              slot to be write protected
979  *
980  * Walks bits set in mask write protects the associated pte's. Caller must
981  * acquire kvm_mmu_lock.
982  */
983 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
984                 struct kvm_memory_slot *slot,
985                 gfn_t gfn_offset, unsigned long mask)
986 {
987         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
988         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
989         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
990
991         stage2_wp_range(&kvm->arch.mmu, start, end);
992 }
993
994 /*
995  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
996  * dirty pages.
997  *
998  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
999  * enable dirty logging for them.
1000  */
1001 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1002                 struct kvm_memory_slot *slot,
1003                 gfn_t gfn_offset, unsigned long mask)
1004 {
1005         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1006 }
1007
1008 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1009 {
1010         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1011 }
1012
1013 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1014                                                unsigned long hva,
1015                                                unsigned long map_size)
1016 {
1017         gpa_t gpa_start;
1018         hva_t uaddr_start, uaddr_end;
1019         size_t size;
1020
1021         /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1022         if (map_size == PAGE_SIZE)
1023                 return true;
1024
1025         size = memslot->npages * PAGE_SIZE;
1026
1027         gpa_start = memslot->base_gfn << PAGE_SHIFT;
1028
1029         uaddr_start = memslot->userspace_addr;
1030         uaddr_end = uaddr_start + size;
1031
1032         /*
1033          * Pages belonging to memslots that don't have the same alignment
1034          * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1035          * PMD/PUD entries, because we'll end up mapping the wrong pages.
1036          *
1037          * Consider a layout like the following:
1038          *
1039          *    memslot->userspace_addr:
1040          *    +-----+--------------------+--------------------+---+
1041          *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1042          *    +-----+--------------------+--------------------+---+
1043          *
1044          *    memslot->base_gfn << PAGE_SHIFT:
1045          *      +---+--------------------+--------------------+-----+
1046          *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1047          *      +---+--------------------+--------------------+-----+
1048          *
1049          * If we create those stage-2 blocks, we'll end up with this incorrect
1050          * mapping:
1051          *   d -> f
1052          *   e -> g
1053          *   f -> h
1054          */
1055         if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1056                 return false;
1057
1058         /*
1059          * Next, let's make sure we're not trying to map anything not covered
1060          * by the memslot. This means we have to prohibit block size mappings
1061          * for the beginning and end of a non-block aligned and non-block sized
1062          * memory slot (illustrated by the head and tail parts of the
1063          * userspace view above containing pages 'abcde' and 'xyz',
1064          * respectively).
1065          *
1066          * Note that it doesn't matter if we do the check using the
1067          * userspace_addr or the base_gfn, as both are equally aligned (per
1068          * the check above) and equally sized.
1069          */
1070         return (hva & ~(map_size - 1)) >= uaddr_start &&
1071                (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1072 }
1073
1074 /*
1075  * Check if the given hva is backed by a transparent huge page (THP) and
1076  * whether it can be mapped using block mapping in stage2. If so, adjust
1077  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1078  * supported. This will need to be updated to support other THP sizes.
1079  *
1080  * Returns the size of the mapping.
1081  */
1082 static unsigned long
1083 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1084                             unsigned long hva, kvm_pfn_t *pfnp,
1085                             phys_addr_t *ipap)
1086 {
1087         kvm_pfn_t pfn = *pfnp;
1088
1089         /*
1090          * Make sure the adjustment is done only for THP pages. Also make
1091          * sure that the HVA and IPA are sufficiently aligned and that the
1092          * block map is contained within the memslot.
1093          */
1094         if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1095             get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
1096                 /*
1097                  * The address we faulted on is backed by a transparent huge
1098                  * page.  However, because we map the compound huge page and
1099                  * not the individual tail page, we need to transfer the
1100                  * refcount to the head page.  We have to be careful that the
1101                  * THP doesn't start to split while we are adjusting the
1102                  * refcounts.
1103                  *
1104                  * We are sure this doesn't happen, because mmu_invalidate_retry
1105                  * was successful and we are holding the mmu_lock, so if this
1106                  * THP is trying to split, it will be blocked in the mmu
1107                  * notifier before touching any of the pages, specifically
1108                  * before being able to call __split_huge_page_refcount().
1109                  *
1110                  * We can therefore safely transfer the refcount from PG_tail
1111                  * to PG_head and switch the pfn from a tail page to the head
1112                  * page accordingly.
1113                  */
1114                 *ipap &= PMD_MASK;
1115                 kvm_release_pfn_clean(pfn);
1116                 pfn &= ~(PTRS_PER_PMD - 1);
1117                 get_page(pfn_to_page(pfn));
1118                 *pfnp = pfn;
1119
1120                 return PMD_SIZE;
1121         }
1122
1123         /* Use page mapping if we cannot use block mapping. */
1124         return PAGE_SIZE;
1125 }
1126
1127 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1128 {
1129         unsigned long pa;
1130
1131         if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1132                 return huge_page_shift(hstate_vma(vma));
1133
1134         if (!(vma->vm_flags & VM_PFNMAP))
1135                 return PAGE_SHIFT;
1136
1137         VM_BUG_ON(is_vm_hugetlb_page(vma));
1138
1139         pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1140
1141 #ifndef __PAGETABLE_PMD_FOLDED
1142         if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1143             ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1144             ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1145                 return PUD_SHIFT;
1146 #endif
1147
1148         if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1149             ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1150             ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1151                 return PMD_SHIFT;
1152
1153         return PAGE_SHIFT;
1154 }
1155
1156 /*
1157  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1158  * able to see the page's tags and therefore they must be initialised first. If
1159  * PG_mte_tagged is set, tags have already been initialised.
1160  *
1161  * The race in the test/set of the PG_mte_tagged flag is handled by:
1162  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1163  *   racing to santise the same page
1164  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1165  *   an mprotect() to add VM_MTE
1166  */
1167 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1168                               unsigned long size)
1169 {
1170         unsigned long i, nr_pages = size >> PAGE_SHIFT;
1171         struct page *page = pfn_to_page(pfn);
1172
1173         if (!kvm_has_mte(kvm))
1174                 return;
1175
1176         for (i = 0; i < nr_pages; i++, page++) {
1177                 if (try_page_mte_tagging(page)) {
1178                         mte_clear_page_tags(page_address(page));
1179                         set_page_mte_tagged(page);
1180                 }
1181         }
1182 }
1183
1184 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1185 {
1186         return vma->vm_flags & VM_MTE_ALLOWED;
1187 }
1188
1189 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1190                           struct kvm_memory_slot *memslot, unsigned long hva,
1191                           unsigned long fault_status)
1192 {
1193         int ret = 0;
1194         bool write_fault, writable, force_pte = false;
1195         bool exec_fault;
1196         bool device = false;
1197         unsigned long mmu_seq;
1198         struct kvm *kvm = vcpu->kvm;
1199         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1200         struct vm_area_struct *vma;
1201         short vma_shift;
1202         gfn_t gfn;
1203         kvm_pfn_t pfn;
1204         bool logging_active = memslot_is_logging(memslot);
1205         unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1206         unsigned long vma_pagesize, fault_granule;
1207         enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1208         struct kvm_pgtable *pgt;
1209
1210         fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1211         write_fault = kvm_is_write_fault(vcpu);
1212         exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1213         VM_BUG_ON(write_fault && exec_fault);
1214
1215         if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) {
1216                 kvm_err("Unexpected L2 read permission error\n");
1217                 return -EFAULT;
1218         }
1219
1220         /*
1221          * Permission faults just need to update the existing leaf entry,
1222          * and so normally don't require allocations from the memcache. The
1223          * only exception to this is when dirty logging is enabled at runtime
1224          * and a write fault needs to collapse a block entry into a table.
1225          */
1226         if (fault_status != ESR_ELx_FSC_PERM ||
1227             (logging_active && write_fault)) {
1228                 ret = kvm_mmu_topup_memory_cache(memcache,
1229                                                  kvm_mmu_cache_min_pages(kvm));
1230                 if (ret)
1231                         return ret;
1232         }
1233
1234         /*
1235          * Let's check if we will get back a huge page backed by hugetlbfs, or
1236          * get block mapping for device MMIO region.
1237          */
1238         mmap_read_lock(current->mm);
1239         vma = vma_lookup(current->mm, hva);
1240         if (unlikely(!vma)) {
1241                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1242                 mmap_read_unlock(current->mm);
1243                 return -EFAULT;
1244         }
1245
1246         /*
1247          * logging_active is guaranteed to never be true for VM_PFNMAP
1248          * memslots.
1249          */
1250         if (logging_active) {
1251                 force_pte = true;
1252                 vma_shift = PAGE_SHIFT;
1253         } else {
1254                 vma_shift = get_vma_page_shift(vma, hva);
1255         }
1256
1257         switch (vma_shift) {
1258 #ifndef __PAGETABLE_PMD_FOLDED
1259         case PUD_SHIFT:
1260                 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1261                         break;
1262                 fallthrough;
1263 #endif
1264         case CONT_PMD_SHIFT:
1265                 vma_shift = PMD_SHIFT;
1266                 fallthrough;
1267         case PMD_SHIFT:
1268                 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1269                         break;
1270                 fallthrough;
1271         case CONT_PTE_SHIFT:
1272                 vma_shift = PAGE_SHIFT;
1273                 force_pte = true;
1274                 fallthrough;
1275         case PAGE_SHIFT:
1276                 break;
1277         default:
1278                 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1279         }
1280
1281         vma_pagesize = 1UL << vma_shift;
1282         if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1283                 fault_ipa &= ~(vma_pagesize - 1);
1284
1285         gfn = fault_ipa >> PAGE_SHIFT;
1286
1287         /*
1288          * Read mmu_invalidate_seq so that KVM can detect if the results of
1289          * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1290          * acquiring kvm->mmu_lock.
1291          *
1292          * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1293          * with the smp_wmb() in kvm_mmu_invalidate_end().
1294          */
1295         mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1296         mmap_read_unlock(current->mm);
1297
1298         pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1299                                    write_fault, &writable, NULL);
1300         if (pfn == KVM_PFN_ERR_HWPOISON) {
1301                 kvm_send_hwpoison_signal(hva, vma_shift);
1302                 return 0;
1303         }
1304         if (is_error_noslot_pfn(pfn))
1305                 return -EFAULT;
1306
1307         if (kvm_is_device_pfn(pfn)) {
1308                 /*
1309                  * If the page was identified as device early by looking at
1310                  * the VMA flags, vma_pagesize is already representing the
1311                  * largest quantity we can map.  If instead it was mapped
1312                  * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1313                  * and must not be upgraded.
1314                  *
1315                  * In both cases, we don't let transparent_hugepage_adjust()
1316                  * change things at the last minute.
1317                  */
1318                 device = true;
1319         } else if (logging_active && !write_fault) {
1320                 /*
1321                  * Only actually map the page as writable if this was a write
1322                  * fault.
1323                  */
1324                 writable = false;
1325         }
1326
1327         if (exec_fault && device)
1328                 return -ENOEXEC;
1329
1330         read_lock(&kvm->mmu_lock);
1331         pgt = vcpu->arch.hw_mmu->pgt;
1332         if (mmu_invalidate_retry(kvm, mmu_seq))
1333                 goto out_unlock;
1334
1335         /*
1336          * If we are not forced to use page mapping, check if we are
1337          * backed by a THP and thus use block mapping if possible.
1338          */
1339         if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1340                 if (fault_status ==  ESR_ELx_FSC_PERM &&
1341                     fault_granule > PAGE_SIZE)
1342                         vma_pagesize = fault_granule;
1343                 else
1344                         vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1345                                                                    hva, &pfn,
1346                                                                    &fault_ipa);
1347         }
1348
1349         if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) {
1350                 /* Check the VMM hasn't introduced a new disallowed VMA */
1351                 if (kvm_vma_mte_allowed(vma)) {
1352                         sanitise_mte_tags(kvm, pfn, vma_pagesize);
1353                 } else {
1354                         ret = -EFAULT;
1355                         goto out_unlock;
1356                 }
1357         }
1358
1359         if (writable)
1360                 prot |= KVM_PGTABLE_PROT_W;
1361
1362         if (exec_fault)
1363                 prot |= KVM_PGTABLE_PROT_X;
1364
1365         if (device)
1366                 prot |= KVM_PGTABLE_PROT_DEVICE;
1367         else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1368                 prot |= KVM_PGTABLE_PROT_X;
1369
1370         /*
1371          * Under the premise of getting a FSC_PERM fault, we just need to relax
1372          * permissions only if vma_pagesize equals fault_granule. Otherwise,
1373          * kvm_pgtable_stage2_map() should be called to change block size.
1374          */
1375         if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule)
1376                 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1377         else
1378                 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1379                                              __pfn_to_phys(pfn), prot,
1380                                              memcache,
1381                                              KVM_PGTABLE_WALK_HANDLE_FAULT |
1382                                              KVM_PGTABLE_WALK_SHARED);
1383
1384         /* Mark the page dirty only if the fault is handled successfully */
1385         if (writable && !ret) {
1386                 kvm_set_pfn_dirty(pfn);
1387                 mark_page_dirty_in_slot(kvm, memslot, gfn);
1388         }
1389
1390 out_unlock:
1391         read_unlock(&kvm->mmu_lock);
1392         kvm_set_pfn_accessed(pfn);
1393         kvm_release_pfn_clean(pfn);
1394         return ret != -EAGAIN ? ret : 0;
1395 }
1396
1397 /* Resolve the access fault by making the page young again. */
1398 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1399 {
1400         kvm_pte_t pte;
1401         struct kvm_s2_mmu *mmu;
1402
1403         trace_kvm_access_fault(fault_ipa);
1404
1405         read_lock(&vcpu->kvm->mmu_lock);
1406         mmu = vcpu->arch.hw_mmu;
1407         pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1408         read_unlock(&vcpu->kvm->mmu_lock);
1409
1410         if (kvm_pte_valid(pte))
1411                 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1412 }
1413
1414 /**
1415  * kvm_handle_guest_abort - handles all 2nd stage aborts
1416  * @vcpu:       the VCPU pointer
1417  *
1418  * Any abort that gets to the host is almost guaranteed to be caused by a
1419  * missing second stage translation table entry, which can mean that either the
1420  * guest simply needs more memory and we must allocate an appropriate page or it
1421  * can mean that the guest tried to access I/O memory, which is emulated by user
1422  * space. The distinction is based on the IPA causing the fault and whether this
1423  * memory region has been registered as standard RAM by user space.
1424  */
1425 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1426 {
1427         unsigned long fault_status;
1428         phys_addr_t fault_ipa;
1429         struct kvm_memory_slot *memslot;
1430         unsigned long hva;
1431         bool is_iabt, write_fault, writable;
1432         gfn_t gfn;
1433         int ret, idx;
1434
1435         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1436
1437         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1438         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1439
1440         if (fault_status == ESR_ELx_FSC_FAULT) {
1441                 /* Beyond sanitised PARange (which is the IPA limit) */
1442                 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1443                         kvm_inject_size_fault(vcpu);
1444                         return 1;
1445                 }
1446
1447                 /* Falls between the IPA range and the PARange? */
1448                 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1449                         fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1450
1451                         if (is_iabt)
1452                                 kvm_inject_pabt(vcpu, fault_ipa);
1453                         else
1454                                 kvm_inject_dabt(vcpu, fault_ipa);
1455                         return 1;
1456                 }
1457         }
1458
1459         /* Synchronous External Abort? */
1460         if (kvm_vcpu_abt_issea(vcpu)) {
1461                 /*
1462                  * For RAS the host kernel may handle this abort.
1463                  * There is no need to pass the error into the guest.
1464                  */
1465                 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1466                         kvm_inject_vabt(vcpu);
1467
1468                 return 1;
1469         }
1470
1471         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1472                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1473
1474         /* Check the stage-2 fault is trans. fault or write fault */
1475         if (fault_status != ESR_ELx_FSC_FAULT &&
1476             fault_status != ESR_ELx_FSC_PERM &&
1477             fault_status != ESR_ELx_FSC_ACCESS) {
1478                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1479                         kvm_vcpu_trap_get_class(vcpu),
1480                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1481                         (unsigned long)kvm_vcpu_get_esr(vcpu));
1482                 return -EFAULT;
1483         }
1484
1485         idx = srcu_read_lock(&vcpu->kvm->srcu);
1486
1487         gfn = fault_ipa >> PAGE_SHIFT;
1488         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1489         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1490         write_fault = kvm_is_write_fault(vcpu);
1491         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1492                 /*
1493                  * The guest has put either its instructions or its page-tables
1494                  * somewhere it shouldn't have. Userspace won't be able to do
1495                  * anything about this (there's no syndrome for a start), so
1496                  * re-inject the abort back into the guest.
1497                  */
1498                 if (is_iabt) {
1499                         ret = -ENOEXEC;
1500                         goto out;
1501                 }
1502
1503                 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1504                         kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1505                         ret = 1;
1506                         goto out_unlock;
1507                 }
1508
1509                 /*
1510                  * Check for a cache maintenance operation. Since we
1511                  * ended-up here, we know it is outside of any memory
1512                  * slot. But we can't find out if that is for a device,
1513                  * or if the guest is just being stupid. The only thing
1514                  * we know for sure is that this range cannot be cached.
1515                  *
1516                  * So let's assume that the guest is just being
1517                  * cautious, and skip the instruction.
1518                  */
1519                 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1520                         kvm_incr_pc(vcpu);
1521                         ret = 1;
1522                         goto out_unlock;
1523                 }
1524
1525                 /*
1526                  * The IPA is reported as [MAX:12], so we need to
1527                  * complement it with the bottom 12 bits from the
1528                  * faulting VA. This is always 12 bits, irrespective
1529                  * of the page size.
1530                  */
1531                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1532                 ret = io_mem_abort(vcpu, fault_ipa);
1533                 goto out_unlock;
1534         }
1535
1536         /* Userspace should not be able to register out-of-bounds IPAs */
1537         VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1538
1539         if (fault_status == ESR_ELx_FSC_ACCESS) {
1540                 handle_access_fault(vcpu, fault_ipa);
1541                 ret = 1;
1542                 goto out_unlock;
1543         }
1544
1545         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1546         if (ret == 0)
1547                 ret = 1;
1548 out:
1549         if (ret == -ENOEXEC) {
1550                 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1551                 ret = 1;
1552         }
1553 out_unlock:
1554         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1555         return ret;
1556 }
1557
1558 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1559 {
1560         if (!kvm->arch.mmu.pgt)
1561                 return false;
1562
1563         __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1564                              (range->end - range->start) << PAGE_SHIFT,
1565                              range->may_block);
1566
1567         return false;
1568 }
1569
1570 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1571 {
1572         kvm_pfn_t pfn = pte_pfn(range->pte);
1573
1574         if (!kvm->arch.mmu.pgt)
1575                 return false;
1576
1577         WARN_ON(range->end - range->start != 1);
1578
1579         /*
1580          * If the page isn't tagged, defer to user_mem_abort() for sanitising
1581          * the MTE tags. The S2 pte should have been unmapped by
1582          * mmu_notifier_invalidate_range_end().
1583          */
1584         if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
1585                 return false;
1586
1587         /*
1588          * We've moved a page around, probably through CoW, so let's treat
1589          * it just like a translation fault and the map handler will clean
1590          * the cache to the PoC.
1591          *
1592          * The MMU notifiers will have unmapped a huge PMD before calling
1593          * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1594          * therefore we never need to clear out a huge PMD through this
1595          * calling path and a memcache is not required.
1596          */
1597         kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1598                                PAGE_SIZE, __pfn_to_phys(pfn),
1599                                KVM_PGTABLE_PROT_R, NULL, 0);
1600
1601         return false;
1602 }
1603
1604 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1605 {
1606         u64 size = (range->end - range->start) << PAGE_SHIFT;
1607         kvm_pte_t kpte;
1608         pte_t pte;
1609
1610         if (!kvm->arch.mmu.pgt)
1611                 return false;
1612
1613         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1614
1615         kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1616                                         range->start << PAGE_SHIFT);
1617         pte = __pte(kpte);
1618         return pte_valid(pte) && pte_young(pte);
1619 }
1620
1621 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1622 {
1623         if (!kvm->arch.mmu.pgt)
1624                 return false;
1625
1626         return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1627                                            range->start << PAGE_SHIFT);
1628 }
1629
1630 phys_addr_t kvm_mmu_get_httbr(void)
1631 {
1632         return __pa(hyp_pgtable->pgd);
1633 }
1634
1635 phys_addr_t kvm_get_idmap_vector(void)
1636 {
1637         return hyp_idmap_vector;
1638 }
1639
1640 static int kvm_map_idmap_text(void)
1641 {
1642         unsigned long size = hyp_idmap_end - hyp_idmap_start;
1643         int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1644                                         PAGE_HYP_EXEC);
1645         if (err)
1646                 kvm_err("Failed to idmap %lx-%lx\n",
1647                         hyp_idmap_start, hyp_idmap_end);
1648
1649         return err;
1650 }
1651
1652 static void *kvm_hyp_zalloc_page(void *arg)
1653 {
1654         return (void *)get_zeroed_page(GFP_KERNEL);
1655 }
1656
1657 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1658         .zalloc_page            = kvm_hyp_zalloc_page,
1659         .get_page               = kvm_host_get_page,
1660         .put_page               = kvm_host_put_page,
1661         .phys_to_virt           = kvm_host_va,
1662         .virt_to_phys           = kvm_host_pa,
1663 };
1664
1665 int __init kvm_mmu_init(u32 *hyp_va_bits)
1666 {
1667         int err;
1668         u32 idmap_bits;
1669         u32 kernel_bits;
1670
1671         hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1672         hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1673         hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1674         hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1675         hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1676
1677         /*
1678          * We rely on the linker script to ensure at build time that the HYP
1679          * init code does not cross a page boundary.
1680          */
1681         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1682
1683         /*
1684          * The ID map may be configured to use an extended virtual address
1685          * range. This is only the case if system RAM is out of range for the
1686          * currently configured page size and VA_BITS_MIN, in which case we will
1687          * also need the extended virtual range for the HYP ID map, or we won't
1688          * be able to enable the EL2 MMU.
1689          *
1690          * However, in some cases the ID map may be configured for fewer than
1691          * the number of VA bits used by the regular kernel stage 1. This
1692          * happens when VA_BITS=52 and the kernel image is placed in PA space
1693          * below 48 bits.
1694          *
1695          * At EL2, there is only one TTBR register, and we can't switch between
1696          * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
1697          * line: we need to use the extended range with *both* our translation
1698          * tables.
1699          *
1700          * So use the maximum of the idmap VA bits and the regular kernel stage
1701          * 1 VA bits to assure that the hypervisor can both ID map its code page
1702          * and map any kernel memory.
1703          */
1704         idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1705         kernel_bits = vabits_actual;
1706         *hyp_va_bits = max(idmap_bits, kernel_bits);
1707
1708         kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1709         kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1710         kvm_debug("HYP VA range: %lx:%lx\n",
1711                   kern_hyp_va(PAGE_OFFSET),
1712                   kern_hyp_va((unsigned long)high_memory - 1));
1713
1714         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1715             hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1716             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1717                 /*
1718                  * The idmap page is intersecting with the VA space,
1719                  * it is not safe to continue further.
1720                  */
1721                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1722                 err = -EINVAL;
1723                 goto out;
1724         }
1725
1726         hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1727         if (!hyp_pgtable) {
1728                 kvm_err("Hyp mode page-table not allocated\n");
1729                 err = -ENOMEM;
1730                 goto out;
1731         }
1732
1733         err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1734         if (err)
1735                 goto out_free_pgtable;
1736
1737         err = kvm_map_idmap_text();
1738         if (err)
1739                 goto out_destroy_pgtable;
1740
1741         io_map_base = hyp_idmap_start;
1742         return 0;
1743
1744 out_destroy_pgtable:
1745         kvm_pgtable_hyp_destroy(hyp_pgtable);
1746 out_free_pgtable:
1747         kfree(hyp_pgtable);
1748         hyp_pgtable = NULL;
1749 out:
1750         return err;
1751 }
1752
1753 void kvm_arch_commit_memory_region(struct kvm *kvm,
1754                                    struct kvm_memory_slot *old,
1755                                    const struct kvm_memory_slot *new,
1756                                    enum kvm_mr_change change)
1757 {
1758         /*
1759          * At this point memslot has been committed and there is an
1760          * allocated dirty_bitmap[], dirty pages will be tracked while the
1761          * memory slot is write protected.
1762          */
1763         if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1764                 /*
1765                  * If we're with initial-all-set, we don't need to write
1766                  * protect any pages because they're all reported as dirty.
1767                  * Huge pages and normal pages will be write protect gradually.
1768                  */
1769                 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1770                         kvm_mmu_wp_memory_region(kvm, new->id);
1771                 }
1772         }
1773 }
1774
1775 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1776                                    const struct kvm_memory_slot *old,
1777                                    struct kvm_memory_slot *new,
1778                                    enum kvm_mr_change change)
1779 {
1780         hva_t hva, reg_end;
1781         int ret = 0;
1782
1783         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1784                         change != KVM_MR_FLAGS_ONLY)
1785                 return 0;
1786
1787         /*
1788          * Prevent userspace from creating a memory region outside of the IPA
1789          * space addressable by the KVM guest IPA space.
1790          */
1791         if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1792                 return -EFAULT;
1793
1794         hva = new->userspace_addr;
1795         reg_end = hva + (new->npages << PAGE_SHIFT);
1796
1797         mmap_read_lock(current->mm);
1798         /*
1799          * A memory region could potentially cover multiple VMAs, and any holes
1800          * between them, so iterate over all of them.
1801          *
1802          *     +--------------------------------------------+
1803          * +---------------+----------------+   +----------------+
1804          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1805          * +---------------+----------------+   +----------------+
1806          *     |               memory region                |
1807          *     +--------------------------------------------+
1808          */
1809         do {
1810                 struct vm_area_struct *vma;
1811
1812                 vma = find_vma_intersection(current->mm, hva, reg_end);
1813                 if (!vma)
1814                         break;
1815
1816                 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
1817                         ret = -EINVAL;
1818                         break;
1819                 }
1820
1821                 if (vma->vm_flags & VM_PFNMAP) {
1822                         /* IO region dirty page logging not allowed */
1823                         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1824                                 ret = -EINVAL;
1825                                 break;
1826                         }
1827                 }
1828                 hva = min(reg_end, vma->vm_end);
1829         } while (hva < reg_end);
1830
1831         mmap_read_unlock(current->mm);
1832         return ret;
1833 }
1834
1835 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1836 {
1837 }
1838
1839 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1840 {
1841 }
1842
1843 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1844 {
1845         kvm_free_stage2_pgd(&kvm->arch.mmu);
1846 }
1847
1848 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1849                                    struct kvm_memory_slot *slot)
1850 {
1851         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1852         phys_addr_t size = slot->npages << PAGE_SHIFT;
1853
1854         write_lock(&kvm->mmu_lock);
1855         unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1856         write_unlock(&kvm->mmu_lock);
1857 }
1858
1859 /*
1860  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1861  *
1862  * Main problems:
1863  * - S/W ops are local to a CPU (not broadcast)
1864  * - We have line migration behind our back (speculation)
1865  * - System caches don't support S/W at all (damn!)
1866  *
1867  * In the face of the above, the best we can do is to try and convert
1868  * S/W ops to VA ops. Because the guest is not allowed to infer the
1869  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1870  * which is a rather good thing for us.
1871  *
1872  * Also, it is only used when turning caches on/off ("The expected
1873  * usage of the cache maintenance instructions that operate by set/way
1874  * is associated with the cache maintenance instructions associated
1875  * with the powerdown and powerup of caches, if this is required by
1876  * the implementation.").
1877  *
1878  * We use the following policy:
1879  *
1880  * - If we trap a S/W operation, we enable VM trapping to detect
1881  *   caches being turned on/off, and do a full clean.
1882  *
1883  * - We flush the caches on both caches being turned on and off.
1884  *
1885  * - Once the caches are enabled, we stop trapping VM ops.
1886  */
1887 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1888 {
1889         unsigned long hcr = *vcpu_hcr(vcpu);
1890
1891         /*
1892          * If this is the first time we do a S/W operation
1893          * (i.e. HCR_TVM not set) flush the whole memory, and set the
1894          * VM trapping.
1895          *
1896          * Otherwise, rely on the VM trapping to wait for the MMU +
1897          * Caches to be turned off. At that point, we'll be able to
1898          * clean the caches again.
1899          */
1900         if (!(hcr & HCR_TVM)) {
1901                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1902                                         vcpu_has_cache_enabled(vcpu));
1903                 stage2_flush_vm(vcpu->kvm);
1904                 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
1905         }
1906 }
1907
1908 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1909 {
1910         bool now_enabled = vcpu_has_cache_enabled(vcpu);
1911
1912         /*
1913          * If switching the MMU+caches on, need to invalidate the caches.
1914          * If switching it off, need to clean the caches.
1915          * Clean + invalidate does the trick always.
1916          */
1917         if (now_enabled != was_enabled)
1918                 stage2_flush_vm(vcpu->kvm);
1919
1920         /* Caches are now on, stop trapping VM ops (until a S/W op) */
1921         if (now_enabled)
1922                 *vcpu_hcr(vcpu) &= ~HCR_TVM;
1923
1924         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1925 }