blktrace: remove unnessary stop block trace in 'blk_trace_shutdown'
[linux-block.git] / arch / arm64 / kvm / hyp / nvhe / switch.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15
16 #include <kvm/arm_psci.h>
17
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28
29 #include <nvhe/fixed_config.h>
30 #include <nvhe/mem_protect.h>
31
32 /* Non-VHE specific context */
33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
36
37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
38
39 static void __activate_traps(struct kvm_vcpu *vcpu)
40 {
41         u64 val;
42
43         ___activate_traps(vcpu);
44         __activate_traps_common(vcpu);
45
46         val = vcpu->arch.cptr_el2;
47         val |= CPTR_EL2_TTA | CPTR_EL2_TAM;
48         if (!guest_owns_fp_regs(vcpu)) {
49                 val |= CPTR_EL2_TFP | CPTR_EL2_TZ;
50                 __activate_traps_fpsimd32(vcpu);
51         }
52         if (cpus_have_final_cap(ARM64_SME))
53                 val |= CPTR_EL2_TSM;
54
55         write_sysreg(val, cptr_el2);
56         write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
57
58         if (cpus_have_final_cap(ARM64_SME)) {
59                 val = read_sysreg_s(SYS_HFGRTR_EL2);
60                 val &= ~(HFGxTR_EL2_nTPIDR2_EL0_MASK |
61                          HFGxTR_EL2_nSMPRI_EL1_MASK);
62                 write_sysreg_s(val, SYS_HFGRTR_EL2);
63
64                 val = read_sysreg_s(SYS_HFGWTR_EL2);
65                 val &= ~(HFGxTR_EL2_nTPIDR2_EL0_MASK |
66                          HFGxTR_EL2_nSMPRI_EL1_MASK);
67                 write_sysreg_s(val, SYS_HFGWTR_EL2);
68         }
69
70         if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
71                 struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
72
73                 isb();
74                 /*
75                  * At this stage, and thanks to the above isb(), S2 is
76                  * configured and enabled. We can now restore the guest's S1
77                  * configuration: SCTLR, and only then TCR.
78                  */
79                 write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
80                 isb();
81                 write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),   SYS_TCR);
82         }
83 }
84
85 static void __deactivate_traps(struct kvm_vcpu *vcpu)
86 {
87         extern char __kvm_hyp_host_vector[];
88         u64 cptr;
89
90         ___deactivate_traps(vcpu);
91
92         if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
93                 u64 val;
94
95                 /*
96                  * Set the TCR and SCTLR registers in the exact opposite
97                  * sequence as __activate_traps (first prevent walks,
98                  * then force the MMU on). A generous sprinkling of isb()
99                  * ensure that things happen in this exact order.
100                  */
101                 val = read_sysreg_el1(SYS_TCR);
102                 write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
103                 isb();
104                 val = read_sysreg_el1(SYS_SCTLR);
105                 write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
106                 isb();
107         }
108
109         __deactivate_traps_common(vcpu);
110
111         write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
112
113         if (cpus_have_final_cap(ARM64_SME)) {
114                 u64 val;
115
116                 val = read_sysreg_s(SYS_HFGRTR_EL2);
117                 val |= HFGxTR_EL2_nTPIDR2_EL0_MASK |
118                         HFGxTR_EL2_nSMPRI_EL1_MASK;
119                 write_sysreg_s(val, SYS_HFGRTR_EL2);
120
121                 val = read_sysreg_s(SYS_HFGWTR_EL2);
122                 val |= HFGxTR_EL2_nTPIDR2_EL0_MASK |
123                         HFGxTR_EL2_nSMPRI_EL1_MASK;
124                 write_sysreg_s(val, SYS_HFGWTR_EL2);
125         }
126
127         cptr = CPTR_EL2_DEFAULT;
128         if (vcpu_has_sve(vcpu) && (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED))
129                 cptr |= CPTR_EL2_TZ;
130         if (cpus_have_final_cap(ARM64_SME))
131                 cptr &= ~CPTR_EL2_TSM;
132
133         write_sysreg(cptr, cptr_el2);
134         write_sysreg(__kvm_hyp_host_vector, vbar_el2);
135 }
136
137 /* Save VGICv3 state on non-VHE systems */
138 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
139 {
140         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
141                 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
142                 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
143         }
144 }
145
146 /* Restore VGICv3 state on non_VEH systems */
147 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
148 {
149         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
150                 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
151                 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
152         }
153 }
154
155 /*
156  * Disable host events, enable guest events
157  */
158 #ifdef CONFIG_HW_PERF_EVENTS
159 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
160 {
161         struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
162
163         if (pmu->events_host)
164                 write_sysreg(pmu->events_host, pmcntenclr_el0);
165
166         if (pmu->events_guest)
167                 write_sysreg(pmu->events_guest, pmcntenset_el0);
168
169         return (pmu->events_host || pmu->events_guest);
170 }
171
172 /*
173  * Disable guest events, enable host events
174  */
175 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
176 {
177         struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
178
179         if (pmu->events_guest)
180                 write_sysreg(pmu->events_guest, pmcntenclr_el0);
181
182         if (pmu->events_host)
183                 write_sysreg(pmu->events_host, pmcntenset_el0);
184 }
185 #else
186 #define __pmu_switch_to_guest(v)        ({ false; })
187 #define __pmu_switch_to_host(v)         do {} while (0)
188 #endif
189
190 /*
191  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
192  *
193  * Returns true if the hypervisor has handled the exit, and control should go
194  * back to the guest, or false if it hasn't.
195  */
196 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
197 {
198         /*
199          * Make sure we handle the exit for workarounds and ptrauth
200          * before the pKVM handling, as the latter could decide to
201          * UNDEF.
202          */
203         return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
204                 kvm_handle_pvm_sysreg(vcpu, exit_code));
205 }
206
207 static const exit_handler_fn hyp_exit_handlers[] = {
208         [0 ... ESR_ELx_EC_MAX]          = NULL,
209         [ESR_ELx_EC_CP15_32]            = kvm_hyp_handle_cp15_32,
210         [ESR_ELx_EC_SYS64]              = kvm_hyp_handle_sysreg,
211         [ESR_ELx_EC_SVE]                = kvm_hyp_handle_fpsimd,
212         [ESR_ELx_EC_FP_ASIMD]           = kvm_hyp_handle_fpsimd,
213         [ESR_ELx_EC_IABT_LOW]           = kvm_hyp_handle_iabt_low,
214         [ESR_ELx_EC_DABT_LOW]           = kvm_hyp_handle_dabt_low,
215         [ESR_ELx_EC_PAC]                = kvm_hyp_handle_ptrauth,
216 };
217
218 static const exit_handler_fn pvm_exit_handlers[] = {
219         [0 ... ESR_ELx_EC_MAX]          = NULL,
220         [ESR_ELx_EC_SYS64]              = kvm_handle_pvm_sys64,
221         [ESR_ELx_EC_SVE]                = kvm_handle_pvm_restricted,
222         [ESR_ELx_EC_FP_ASIMD]           = kvm_hyp_handle_fpsimd,
223         [ESR_ELx_EC_IABT_LOW]           = kvm_hyp_handle_iabt_low,
224         [ESR_ELx_EC_DABT_LOW]           = kvm_hyp_handle_dabt_low,
225         [ESR_ELx_EC_PAC]                = kvm_hyp_handle_ptrauth,
226 };
227
228 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
229 {
230         if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm))))
231                 return pvm_exit_handlers;
232
233         return hyp_exit_handlers;
234 }
235
236 /*
237  * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
238  * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
239  * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
240  * hypervisor spots a guest in such a state ensure it is handled, and don't
241  * trust the host to spot or fix it.  The check below is based on the one in
242  * kvm_arch_vcpu_ioctl_run().
243  *
244  * Returns false if the guest ran in AArch32 when it shouldn't have, and
245  * thus should exit to the host, or true if a the guest run loop can continue.
246  */
247 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
248 {
249         struct kvm *kvm = kern_hyp_va(vcpu->kvm);
250
251         if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) {
252                 /*
253                  * As we have caught the guest red-handed, decide that it isn't
254                  * fit for purpose anymore by making the vcpu invalid. The VMM
255                  * can try and fix it by re-initializing the vcpu with
256                  * KVM_ARM_VCPU_INIT, however, this is likely not possible for
257                  * protected VMs.
258                  */
259                 vcpu->arch.target = -1;
260                 *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
261                 *exit_code |= ARM_EXCEPTION_IL;
262         }
263 }
264
265 /* Switch to the guest for legacy non-VHE systems */
266 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
267 {
268         struct kvm_cpu_context *host_ctxt;
269         struct kvm_cpu_context *guest_ctxt;
270         struct kvm_s2_mmu *mmu;
271         bool pmu_switch_needed;
272         u64 exit_code;
273
274         /*
275          * Having IRQs masked via PMR when entering the guest means the GIC
276          * will not signal the CPU of interrupts of lower priority, and the
277          * only way to get out will be via guest exceptions.
278          * Naturally, we want to avoid this.
279          */
280         if (system_uses_irq_prio_masking()) {
281                 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
282                 pmr_sync();
283         }
284
285         host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
286         host_ctxt->__hyp_running_vcpu = vcpu;
287         guest_ctxt = &vcpu->arch.ctxt;
288
289         pmu_switch_needed = __pmu_switch_to_guest(vcpu);
290
291         __sysreg_save_state_nvhe(host_ctxt);
292         /*
293          * We must flush and disable the SPE buffer for nVHE, as
294          * the translation regime(EL1&0) is going to be loaded with
295          * that of the guest. And we must do this before we change the
296          * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
297          * before we load guest Stage1.
298          */
299         __debug_save_host_buffers_nvhe(vcpu);
300
301         __kvm_adjust_pc(vcpu);
302
303         /*
304          * We must restore the 32-bit state before the sysregs, thanks
305          * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
306          *
307          * Also, and in order to be able to deal with erratum #1319537 (A57)
308          * and #1319367 (A72), we must ensure that all VM-related sysreg are
309          * restored before we enable S2 translation.
310          */
311         __sysreg32_restore_state(vcpu);
312         __sysreg_restore_state_nvhe(guest_ctxt);
313
314         mmu = kern_hyp_va(vcpu->arch.hw_mmu);
315         __load_stage2(mmu, kern_hyp_va(mmu->arch));
316         __activate_traps(vcpu);
317
318         __hyp_vgic_restore_state(vcpu);
319         __timer_enable_traps(vcpu);
320
321         __debug_switch_to_guest(vcpu);
322
323         do {
324                 /* Jump in the fire! */
325                 exit_code = __guest_enter(vcpu);
326
327                 /* And we're baaack! */
328         } while (fixup_guest_exit(vcpu, &exit_code));
329
330         __sysreg_save_state_nvhe(guest_ctxt);
331         __sysreg32_save_state(vcpu);
332         __timer_disable_traps(vcpu);
333         __hyp_vgic_save_state(vcpu);
334
335         __deactivate_traps(vcpu);
336         __load_host_stage2();
337
338         __sysreg_restore_state_nvhe(host_ctxt);
339
340         if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)
341                 __fpsimd_save_fpexc32(vcpu);
342
343         __debug_switch_to_host(vcpu);
344         /*
345          * This must come after restoring the host sysregs, since a non-VHE
346          * system may enable SPE here and make use of the TTBRs.
347          */
348         __debug_restore_host_buffers_nvhe(vcpu);
349
350         if (pmu_switch_needed)
351                 __pmu_switch_to_host(vcpu);
352
353         /* Returning to host will clear PSR.I, remask PMR if needed */
354         if (system_uses_irq_prio_masking())
355                 gic_write_pmr(GIC_PRIO_IRQOFF);
356
357         host_ctxt->__hyp_running_vcpu = NULL;
358
359         return exit_code;
360 }
361
362 asmlinkage void __noreturn hyp_panic(void)
363 {
364         u64 spsr = read_sysreg_el2(SYS_SPSR);
365         u64 elr = read_sysreg_el2(SYS_ELR);
366         u64 par = read_sysreg_par();
367         struct kvm_cpu_context *host_ctxt;
368         struct kvm_vcpu *vcpu;
369
370         host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
371         vcpu = host_ctxt->__hyp_running_vcpu;
372
373         if (vcpu) {
374                 __timer_disable_traps(vcpu);
375                 __deactivate_traps(vcpu);
376                 __load_host_stage2();
377                 __sysreg_restore_state_nvhe(host_ctxt);
378         }
379
380         /* Prepare to dump kvm nvhe hyp stacktrace */
381         kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
382                                    _THIS_IP_);
383
384         __hyp_do_panic(host_ctxt, spsr, elr, par);
385         unreachable();
386 }
387
388 asmlinkage void __noreturn hyp_panic_bad_stack(void)
389 {
390         hyp_panic();
391 }
392
393 asmlinkage void kvm_unexpected_el2_exception(void)
394 {
395         __kvm_unexpected_el2_exception();
396 }