Merge branches 'acpi-bus' and 'acpi-video'
[linux-block.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_pkvm.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48
49 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
50
51 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
53
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
55
56 static bool vgic_present, kvm_arm_initialised;
57
58 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
59 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
60
61 bool is_kvm_arm_initialised(void)
62 {
63         return kvm_arm_initialised;
64 }
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
71 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
72                             struct kvm_enable_cap *cap)
73 {
74         int r;
75         u64 new_cap;
76
77         if (cap->flags)
78                 return -EINVAL;
79
80         switch (cap->cap) {
81         case KVM_CAP_ARM_NISV_TO_USER:
82                 r = 0;
83                 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
84                         &kvm->arch.flags);
85                 break;
86         case KVM_CAP_ARM_MTE:
87                 mutex_lock(&kvm->lock);
88                 if (!system_supports_mte() || kvm->created_vcpus) {
89                         r = -EINVAL;
90                 } else {
91                         r = 0;
92                         set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
93                 }
94                 mutex_unlock(&kvm->lock);
95                 break;
96         case KVM_CAP_ARM_SYSTEM_SUSPEND:
97                 r = 0;
98                 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
99                 break;
100         case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
101                 new_cap = cap->args[0];
102
103                 mutex_lock(&kvm->slots_lock);
104                 /*
105                  * To keep things simple, allow changing the chunk
106                  * size only when no memory slots have been created.
107                  */
108                 if (!kvm_are_all_memslots_empty(kvm)) {
109                         r = -EINVAL;
110                 } else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
111                         r = -EINVAL;
112                 } else {
113                         r = 0;
114                         kvm->arch.mmu.split_page_chunk_size = new_cap;
115                 }
116                 mutex_unlock(&kvm->slots_lock);
117                 break;
118         default:
119                 r = -EINVAL;
120                 break;
121         }
122
123         return r;
124 }
125
126 static int kvm_arm_default_max_vcpus(void)
127 {
128         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
129 }
130
131 /**
132  * kvm_arch_init_vm - initializes a VM data structure
133  * @kvm:        pointer to the KVM struct
134  */
135 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
136 {
137         int ret;
138
139         mutex_init(&kvm->arch.config_lock);
140
141 #ifdef CONFIG_LOCKDEP
142         /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
143         mutex_lock(&kvm->lock);
144         mutex_lock(&kvm->arch.config_lock);
145         mutex_unlock(&kvm->arch.config_lock);
146         mutex_unlock(&kvm->lock);
147 #endif
148
149         ret = kvm_share_hyp(kvm, kvm + 1);
150         if (ret)
151                 return ret;
152
153         ret = pkvm_init_host_vm(kvm);
154         if (ret)
155                 goto err_unshare_kvm;
156
157         if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
158                 ret = -ENOMEM;
159                 goto err_unshare_kvm;
160         }
161         cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
162
163         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
164         if (ret)
165                 goto err_free_cpumask;
166
167         kvm_vgic_early_init(kvm);
168
169         kvm_timer_init_vm(kvm);
170
171         /* The maximum number of VCPUs is limited by the host's GIC model */
172         kvm->max_vcpus = kvm_arm_default_max_vcpus();
173
174         kvm_arm_init_hypercalls(kvm);
175
176         bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
177
178         return 0;
179
180 err_free_cpumask:
181         free_cpumask_var(kvm->arch.supported_cpus);
182 err_unshare_kvm:
183         kvm_unshare_hyp(kvm, kvm + 1);
184         return ret;
185 }
186
187 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
188 {
189         return VM_FAULT_SIGBUS;
190 }
191
192
193 /**
194  * kvm_arch_destroy_vm - destroy the VM data structure
195  * @kvm:        pointer to the KVM struct
196  */
197 void kvm_arch_destroy_vm(struct kvm *kvm)
198 {
199         bitmap_free(kvm->arch.pmu_filter);
200         free_cpumask_var(kvm->arch.supported_cpus);
201
202         kvm_vgic_destroy(kvm);
203
204         if (is_protected_kvm_enabled())
205                 pkvm_destroy_hyp_vm(kvm);
206
207         kvm_destroy_vcpus(kvm);
208
209         kvm_unshare_hyp(kvm, kvm + 1);
210
211         kvm_arm_teardown_hypercalls(kvm);
212 }
213
214 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
215 {
216         int r;
217         switch (ext) {
218         case KVM_CAP_IRQCHIP:
219                 r = vgic_present;
220                 break;
221         case KVM_CAP_IOEVENTFD:
222         case KVM_CAP_DEVICE_CTRL:
223         case KVM_CAP_USER_MEMORY:
224         case KVM_CAP_SYNC_MMU:
225         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
226         case KVM_CAP_ONE_REG:
227         case KVM_CAP_ARM_PSCI:
228         case KVM_CAP_ARM_PSCI_0_2:
229         case KVM_CAP_READONLY_MEM:
230         case KVM_CAP_MP_STATE:
231         case KVM_CAP_IMMEDIATE_EXIT:
232         case KVM_CAP_VCPU_EVENTS:
233         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
234         case KVM_CAP_ARM_NISV_TO_USER:
235         case KVM_CAP_ARM_INJECT_EXT_DABT:
236         case KVM_CAP_SET_GUEST_DEBUG:
237         case KVM_CAP_VCPU_ATTRIBUTES:
238         case KVM_CAP_PTP_KVM:
239         case KVM_CAP_ARM_SYSTEM_SUSPEND:
240         case KVM_CAP_IRQFD_RESAMPLE:
241         case KVM_CAP_COUNTER_OFFSET:
242                 r = 1;
243                 break;
244         case KVM_CAP_SET_GUEST_DEBUG2:
245                 return KVM_GUESTDBG_VALID_MASK;
246         case KVM_CAP_ARM_SET_DEVICE_ADDR:
247                 r = 1;
248                 break;
249         case KVM_CAP_NR_VCPUS:
250                 /*
251                  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
252                  * architectures, as it does not always bound it to
253                  * KVM_CAP_MAX_VCPUS. It should not matter much because
254                  * this is just an advisory value.
255                  */
256                 r = min_t(unsigned int, num_online_cpus(),
257                           kvm_arm_default_max_vcpus());
258                 break;
259         case KVM_CAP_MAX_VCPUS:
260         case KVM_CAP_MAX_VCPU_ID:
261                 if (kvm)
262                         r = kvm->max_vcpus;
263                 else
264                         r = kvm_arm_default_max_vcpus();
265                 break;
266         case KVM_CAP_MSI_DEVID:
267                 if (!kvm)
268                         r = -EINVAL;
269                 else
270                         r = kvm->arch.vgic.msis_require_devid;
271                 break;
272         case KVM_CAP_ARM_USER_IRQ:
273                 /*
274                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
275                  * (bump this number if adding more devices)
276                  */
277                 r = 1;
278                 break;
279         case KVM_CAP_ARM_MTE:
280                 r = system_supports_mte();
281                 break;
282         case KVM_CAP_STEAL_TIME:
283                 r = kvm_arm_pvtime_supported();
284                 break;
285         case KVM_CAP_ARM_EL1_32BIT:
286                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
287                 break;
288         case KVM_CAP_GUEST_DEBUG_HW_BPS:
289                 r = get_num_brps();
290                 break;
291         case KVM_CAP_GUEST_DEBUG_HW_WPS:
292                 r = get_num_wrps();
293                 break;
294         case KVM_CAP_ARM_PMU_V3:
295                 r = kvm_arm_support_pmu_v3();
296                 break;
297         case KVM_CAP_ARM_INJECT_SERROR_ESR:
298                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
299                 break;
300         case KVM_CAP_ARM_VM_IPA_SIZE:
301                 r = get_kvm_ipa_limit();
302                 break;
303         case KVM_CAP_ARM_SVE:
304                 r = system_supports_sve();
305                 break;
306         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
307         case KVM_CAP_ARM_PTRAUTH_GENERIC:
308                 r = system_has_full_ptr_auth();
309                 break;
310         case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
311                 if (kvm)
312                         r = kvm->arch.mmu.split_page_chunk_size;
313                 else
314                         r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
315                 break;
316         case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
317                 r = kvm_supported_block_sizes();
318                 break;
319         default:
320                 r = 0;
321         }
322
323         return r;
324 }
325
326 long kvm_arch_dev_ioctl(struct file *filp,
327                         unsigned int ioctl, unsigned long arg)
328 {
329         return -EINVAL;
330 }
331
332 struct kvm *kvm_arch_alloc_vm(void)
333 {
334         size_t sz = sizeof(struct kvm);
335
336         if (!has_vhe())
337                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
338
339         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
340 }
341
342 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
343 {
344         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
345                 return -EBUSY;
346
347         if (id >= kvm->max_vcpus)
348                 return -EINVAL;
349
350         return 0;
351 }
352
353 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
354 {
355         int err;
356
357         spin_lock_init(&vcpu->arch.mp_state_lock);
358
359 #ifdef CONFIG_LOCKDEP
360         /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
361         mutex_lock(&vcpu->mutex);
362         mutex_lock(&vcpu->kvm->arch.config_lock);
363         mutex_unlock(&vcpu->kvm->arch.config_lock);
364         mutex_unlock(&vcpu->mutex);
365 #endif
366
367         /* Force users to call KVM_ARM_VCPU_INIT */
368         vcpu->arch.target = -1;
369         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
370
371         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
372
373         /*
374          * Default value for the FP state, will be overloaded at load
375          * time if we support FP (pretty likely)
376          */
377         vcpu->arch.fp_state = FP_STATE_FREE;
378
379         /* Set up the timer */
380         kvm_timer_vcpu_init(vcpu);
381
382         kvm_pmu_vcpu_init(vcpu);
383
384         kvm_arm_reset_debug_ptr(vcpu);
385
386         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
387
388         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
389
390         err = kvm_vgic_vcpu_init(vcpu);
391         if (err)
392                 return err;
393
394         return kvm_share_hyp(vcpu, vcpu + 1);
395 }
396
397 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
398 {
399 }
400
401 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
402 {
403         if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
404                 static_branch_dec(&userspace_irqchip_in_use);
405
406         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
407         kvm_timer_vcpu_terminate(vcpu);
408         kvm_pmu_vcpu_destroy(vcpu);
409
410         kvm_arm_vcpu_destroy(vcpu);
411 }
412
413 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
414 {
415
416 }
417
418 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
419 {
420
421 }
422
423 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
424 {
425         struct kvm_s2_mmu *mmu;
426         int *last_ran;
427
428         mmu = vcpu->arch.hw_mmu;
429         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
430
431         /*
432          * We guarantee that both TLBs and I-cache are private to each
433          * vcpu. If detecting that a vcpu from the same VM has
434          * previously run on the same physical CPU, call into the
435          * hypervisor code to nuke the relevant contexts.
436          *
437          * We might get preempted before the vCPU actually runs, but
438          * over-invalidation doesn't affect correctness.
439          */
440         if (*last_ran != vcpu->vcpu_id) {
441                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
442                 *last_ran = vcpu->vcpu_id;
443         }
444
445         vcpu->cpu = cpu;
446
447         kvm_vgic_load(vcpu);
448         kvm_timer_vcpu_load(vcpu);
449         if (has_vhe())
450                 kvm_vcpu_load_sysregs_vhe(vcpu);
451         kvm_arch_vcpu_load_fp(vcpu);
452         kvm_vcpu_pmu_restore_guest(vcpu);
453         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
454                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
455
456         if (single_task_running())
457                 vcpu_clear_wfx_traps(vcpu);
458         else
459                 vcpu_set_wfx_traps(vcpu);
460
461         if (vcpu_has_ptrauth(vcpu))
462                 vcpu_ptrauth_disable(vcpu);
463         kvm_arch_vcpu_load_debug_state_flags(vcpu);
464
465         if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
466                 vcpu_set_on_unsupported_cpu(vcpu);
467 }
468
469 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
470 {
471         kvm_arch_vcpu_put_debug_state_flags(vcpu);
472         kvm_arch_vcpu_put_fp(vcpu);
473         if (has_vhe())
474                 kvm_vcpu_put_sysregs_vhe(vcpu);
475         kvm_timer_vcpu_put(vcpu);
476         kvm_vgic_put(vcpu);
477         kvm_vcpu_pmu_restore_host(vcpu);
478         kvm_arm_vmid_clear_active();
479
480         vcpu_clear_on_unsupported_cpu(vcpu);
481         vcpu->cpu = -1;
482 }
483
484 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
485 {
486         WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
487         kvm_make_request(KVM_REQ_SLEEP, vcpu);
488         kvm_vcpu_kick(vcpu);
489 }
490
491 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
492 {
493         spin_lock(&vcpu->arch.mp_state_lock);
494         __kvm_arm_vcpu_power_off(vcpu);
495         spin_unlock(&vcpu->arch.mp_state_lock);
496 }
497
498 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
499 {
500         return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
501 }
502
503 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
504 {
505         WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
506         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
507         kvm_vcpu_kick(vcpu);
508 }
509
510 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
511 {
512         return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
513 }
514
515 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
516                                     struct kvm_mp_state *mp_state)
517 {
518         *mp_state = READ_ONCE(vcpu->arch.mp_state);
519
520         return 0;
521 }
522
523 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
524                                     struct kvm_mp_state *mp_state)
525 {
526         int ret = 0;
527
528         spin_lock(&vcpu->arch.mp_state_lock);
529
530         switch (mp_state->mp_state) {
531         case KVM_MP_STATE_RUNNABLE:
532                 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
533                 break;
534         case KVM_MP_STATE_STOPPED:
535                 __kvm_arm_vcpu_power_off(vcpu);
536                 break;
537         case KVM_MP_STATE_SUSPENDED:
538                 kvm_arm_vcpu_suspend(vcpu);
539                 break;
540         default:
541                 ret = -EINVAL;
542         }
543
544         spin_unlock(&vcpu->arch.mp_state_lock);
545
546         return ret;
547 }
548
549 /**
550  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
551  * @v:          The VCPU pointer
552  *
553  * If the guest CPU is not waiting for interrupts or an interrupt line is
554  * asserted, the CPU is by definition runnable.
555  */
556 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
557 {
558         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
559         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
560                 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
561 }
562
563 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
564 {
565         return vcpu_mode_priv(vcpu);
566 }
567
568 #ifdef CONFIG_GUEST_PERF_EVENTS
569 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
570 {
571         return *vcpu_pc(vcpu);
572 }
573 #endif
574
575 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
576 {
577         return vcpu->arch.target >= 0;
578 }
579
580 /*
581  * Handle both the initialisation that is being done when the vcpu is
582  * run for the first time, as well as the updates that must be
583  * performed each time we get a new thread dealing with this vcpu.
584  */
585 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
586 {
587         struct kvm *kvm = vcpu->kvm;
588         int ret;
589
590         if (!kvm_vcpu_initialized(vcpu))
591                 return -ENOEXEC;
592
593         if (!kvm_arm_vcpu_is_finalized(vcpu))
594                 return -EPERM;
595
596         ret = kvm_arch_vcpu_run_map_fp(vcpu);
597         if (ret)
598                 return ret;
599
600         if (likely(vcpu_has_run_once(vcpu)))
601                 return 0;
602
603         kvm_arm_vcpu_init_debug(vcpu);
604
605         if (likely(irqchip_in_kernel(kvm))) {
606                 /*
607                  * Map the VGIC hardware resources before running a vcpu the
608                  * first time on this VM.
609                  */
610                 ret = kvm_vgic_map_resources(kvm);
611                 if (ret)
612                         return ret;
613         }
614
615         ret = kvm_timer_enable(vcpu);
616         if (ret)
617                 return ret;
618
619         ret = kvm_arm_pmu_v3_enable(vcpu);
620         if (ret)
621                 return ret;
622
623         if (is_protected_kvm_enabled()) {
624                 ret = pkvm_create_hyp_vm(kvm);
625                 if (ret)
626                         return ret;
627         }
628
629         if (!irqchip_in_kernel(kvm)) {
630                 /*
631                  * Tell the rest of the code that there are userspace irqchip
632                  * VMs in the wild.
633                  */
634                 static_branch_inc(&userspace_irqchip_in_use);
635         }
636
637         /*
638          * Initialize traps for protected VMs.
639          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
640          * the code is in place for first run initialization at EL2.
641          */
642         if (kvm_vm_is_protected(kvm))
643                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
644
645         mutex_lock(&kvm->arch.config_lock);
646         set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
647         mutex_unlock(&kvm->arch.config_lock);
648
649         return ret;
650 }
651
652 bool kvm_arch_intc_initialized(struct kvm *kvm)
653 {
654         return vgic_initialized(kvm);
655 }
656
657 void kvm_arm_halt_guest(struct kvm *kvm)
658 {
659         unsigned long i;
660         struct kvm_vcpu *vcpu;
661
662         kvm_for_each_vcpu(i, vcpu, kvm)
663                 vcpu->arch.pause = true;
664         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
665 }
666
667 void kvm_arm_resume_guest(struct kvm *kvm)
668 {
669         unsigned long i;
670         struct kvm_vcpu *vcpu;
671
672         kvm_for_each_vcpu(i, vcpu, kvm) {
673                 vcpu->arch.pause = false;
674                 __kvm_vcpu_wake_up(vcpu);
675         }
676 }
677
678 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
679 {
680         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
681
682         rcuwait_wait_event(wait,
683                            (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
684                            TASK_INTERRUPTIBLE);
685
686         if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
687                 /* Awaken to handle a signal, request we sleep again later. */
688                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
689         }
690
691         /*
692          * Make sure we will observe a potential reset request if we've
693          * observed a change to the power state. Pairs with the smp_wmb() in
694          * kvm_psci_vcpu_on().
695          */
696         smp_rmb();
697 }
698
699 /**
700  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
701  * @vcpu:       The VCPU pointer
702  *
703  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
704  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
705  * on when a wake event arrives, e.g. there may already be a pending wake event.
706  */
707 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
708 {
709         /*
710          * Sync back the state of the GIC CPU interface so that we have
711          * the latest PMR and group enables. This ensures that
712          * kvm_arch_vcpu_runnable has up-to-date data to decide whether
713          * we have pending interrupts, e.g. when determining if the
714          * vCPU should block.
715          *
716          * For the same reason, we want to tell GICv4 that we need
717          * doorbells to be signalled, should an interrupt become pending.
718          */
719         preempt_disable();
720         kvm_vgic_vmcr_sync(vcpu);
721         vcpu_set_flag(vcpu, IN_WFI);
722         vgic_v4_put(vcpu);
723         preempt_enable();
724
725         kvm_vcpu_halt(vcpu);
726         vcpu_clear_flag(vcpu, IN_WFIT);
727
728         preempt_disable();
729         vcpu_clear_flag(vcpu, IN_WFI);
730         vgic_v4_load(vcpu);
731         preempt_enable();
732 }
733
734 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
735 {
736         if (!kvm_arm_vcpu_suspended(vcpu))
737                 return 1;
738
739         kvm_vcpu_wfi(vcpu);
740
741         /*
742          * The suspend state is sticky; we do not leave it until userspace
743          * explicitly marks the vCPU as runnable. Request that we suspend again
744          * later.
745          */
746         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
747
748         /*
749          * Check to make sure the vCPU is actually runnable. If so, exit to
750          * userspace informing it of the wakeup condition.
751          */
752         if (kvm_arch_vcpu_runnable(vcpu)) {
753                 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
754                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
755                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
756                 return 0;
757         }
758
759         /*
760          * Otherwise, we were unblocked to process a different event, such as a
761          * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
762          * process the event.
763          */
764         return 1;
765 }
766
767 /**
768  * check_vcpu_requests - check and handle pending vCPU requests
769  * @vcpu:       the VCPU pointer
770  *
771  * Return: 1 if we should enter the guest
772  *         0 if we should exit to userspace
773  *         < 0 if we should exit to userspace, where the return value indicates
774  *         an error
775  */
776 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
777 {
778         if (kvm_request_pending(vcpu)) {
779                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
780                         kvm_vcpu_sleep(vcpu);
781
782                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
783                         kvm_reset_vcpu(vcpu);
784
785                 /*
786                  * Clear IRQ_PENDING requests that were made to guarantee
787                  * that a VCPU sees new virtual interrupts.
788                  */
789                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
790
791                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
792                         kvm_update_stolen_time(vcpu);
793
794                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
795                         /* The distributor enable bits were changed */
796                         preempt_disable();
797                         vgic_v4_put(vcpu);
798                         vgic_v4_load(vcpu);
799                         preempt_enable();
800                 }
801
802                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
803                         kvm_pmu_handle_pmcr(vcpu,
804                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
805
806                 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
807                         return kvm_vcpu_suspend(vcpu);
808
809                 if (kvm_dirty_ring_check_request(vcpu))
810                         return 0;
811         }
812
813         return 1;
814 }
815
816 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
817 {
818         if (likely(!vcpu_mode_is_32bit(vcpu)))
819                 return false;
820
821         return !kvm_supports_32bit_el0();
822 }
823
824 /**
825  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
826  * @vcpu:       The VCPU pointer
827  * @ret:        Pointer to write optional return code
828  *
829  * Returns: true if the VCPU needs to return to a preemptible + interruptible
830  *          and skip guest entry.
831  *
832  * This function disambiguates between two different types of exits: exits to a
833  * preemptible + interruptible kernel context and exits to userspace. For an
834  * exit to userspace, this function will write the return code to ret and return
835  * true. For an exit to preemptible + interruptible kernel context (i.e. check
836  * for pending work and re-enter), return true without writing to ret.
837  */
838 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
839 {
840         struct kvm_run *run = vcpu->run;
841
842         /*
843          * If we're using a userspace irqchip, then check if we need
844          * to tell a userspace irqchip about timer or PMU level
845          * changes and if so, exit to userspace (the actual level
846          * state gets updated in kvm_timer_update_run and
847          * kvm_pmu_update_run below).
848          */
849         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
850                 if (kvm_timer_should_notify_user(vcpu) ||
851                     kvm_pmu_should_notify_user(vcpu)) {
852                         *ret = -EINTR;
853                         run->exit_reason = KVM_EXIT_INTR;
854                         return true;
855                 }
856         }
857
858         if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
859                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
860                 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
861                 run->fail_entry.cpu = smp_processor_id();
862                 *ret = 0;
863                 return true;
864         }
865
866         return kvm_request_pending(vcpu) ||
867                         xfer_to_guest_mode_work_pending();
868 }
869
870 /*
871  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
872  * the vCPU is running.
873  *
874  * This must be noinstr as instrumentation may make use of RCU, and this is not
875  * safe during the EQS.
876  */
877 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
878 {
879         int ret;
880
881         guest_state_enter_irqoff();
882         ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
883         guest_state_exit_irqoff();
884
885         return ret;
886 }
887
888 /**
889  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
890  * @vcpu:       The VCPU pointer
891  *
892  * This function is called through the VCPU_RUN ioctl called from user space. It
893  * will execute VM code in a loop until the time slice for the process is used
894  * or some emulation is needed from user space in which case the function will
895  * return with return value 0 and with the kvm_run structure filled in with the
896  * required data for the requested emulation.
897  */
898 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
899 {
900         struct kvm_run *run = vcpu->run;
901         int ret;
902
903         if (run->exit_reason == KVM_EXIT_MMIO) {
904                 ret = kvm_handle_mmio_return(vcpu);
905                 if (ret)
906                         return ret;
907         }
908
909         vcpu_load(vcpu);
910
911         if (run->immediate_exit) {
912                 ret = -EINTR;
913                 goto out;
914         }
915
916         kvm_sigset_activate(vcpu);
917
918         ret = 1;
919         run->exit_reason = KVM_EXIT_UNKNOWN;
920         run->flags = 0;
921         while (ret > 0) {
922                 /*
923                  * Check conditions before entering the guest
924                  */
925                 ret = xfer_to_guest_mode_handle_work(vcpu);
926                 if (!ret)
927                         ret = 1;
928
929                 if (ret > 0)
930                         ret = check_vcpu_requests(vcpu);
931
932                 /*
933                  * Preparing the interrupts to be injected also
934                  * involves poking the GIC, which must be done in a
935                  * non-preemptible context.
936                  */
937                 preempt_disable();
938
939                 /*
940                  * The VMID allocator only tracks active VMIDs per
941                  * physical CPU, and therefore the VMID allocated may not be
942                  * preserved on VMID roll-over if the task was preempted,
943                  * making a thread's VMID inactive. So we need to call
944                  * kvm_arm_vmid_update() in non-premptible context.
945                  */
946                 kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
947
948                 kvm_pmu_flush_hwstate(vcpu);
949
950                 local_irq_disable();
951
952                 kvm_vgic_flush_hwstate(vcpu);
953
954                 kvm_pmu_update_vcpu_events(vcpu);
955
956                 /*
957                  * Ensure we set mode to IN_GUEST_MODE after we disable
958                  * interrupts and before the final VCPU requests check.
959                  * See the comment in kvm_vcpu_exiting_guest_mode() and
960                  * Documentation/virt/kvm/vcpu-requests.rst
961                  */
962                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
963
964                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
965                         vcpu->mode = OUTSIDE_GUEST_MODE;
966                         isb(); /* Ensure work in x_flush_hwstate is committed */
967                         kvm_pmu_sync_hwstate(vcpu);
968                         if (static_branch_unlikely(&userspace_irqchip_in_use))
969                                 kvm_timer_sync_user(vcpu);
970                         kvm_vgic_sync_hwstate(vcpu);
971                         local_irq_enable();
972                         preempt_enable();
973                         continue;
974                 }
975
976                 kvm_arm_setup_debug(vcpu);
977                 kvm_arch_vcpu_ctxflush_fp(vcpu);
978
979                 /**************************************************************
980                  * Enter the guest
981                  */
982                 trace_kvm_entry(*vcpu_pc(vcpu));
983                 guest_timing_enter_irqoff();
984
985                 ret = kvm_arm_vcpu_enter_exit(vcpu);
986
987                 vcpu->mode = OUTSIDE_GUEST_MODE;
988                 vcpu->stat.exits++;
989                 /*
990                  * Back from guest
991                  *************************************************************/
992
993                 kvm_arm_clear_debug(vcpu);
994
995                 /*
996                  * We must sync the PMU state before the vgic state so
997                  * that the vgic can properly sample the updated state of the
998                  * interrupt line.
999                  */
1000                 kvm_pmu_sync_hwstate(vcpu);
1001
1002                 /*
1003                  * Sync the vgic state before syncing the timer state because
1004                  * the timer code needs to know if the virtual timer
1005                  * interrupts are active.
1006                  */
1007                 kvm_vgic_sync_hwstate(vcpu);
1008
1009                 /*
1010                  * Sync the timer hardware state before enabling interrupts as
1011                  * we don't want vtimer interrupts to race with syncing the
1012                  * timer virtual interrupt state.
1013                  */
1014                 if (static_branch_unlikely(&userspace_irqchip_in_use))
1015                         kvm_timer_sync_user(vcpu);
1016
1017                 kvm_arch_vcpu_ctxsync_fp(vcpu);
1018
1019                 /*
1020                  * We must ensure that any pending interrupts are taken before
1021                  * we exit guest timing so that timer ticks are accounted as
1022                  * guest time. Transiently unmask interrupts so that any
1023                  * pending interrupts are taken.
1024                  *
1025                  * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1026                  * context synchronization event) is necessary to ensure that
1027                  * pending interrupts are taken.
1028                  */
1029                 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1030                         local_irq_enable();
1031                         isb();
1032                         local_irq_disable();
1033                 }
1034
1035                 guest_timing_exit_irqoff();
1036
1037                 local_irq_enable();
1038
1039                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1040
1041                 /* Exit types that need handling before we can be preempted */
1042                 handle_exit_early(vcpu, ret);
1043
1044                 preempt_enable();
1045
1046                 /*
1047                  * The ARMv8 architecture doesn't give the hypervisor
1048                  * a mechanism to prevent a guest from dropping to AArch32 EL0
1049                  * if implemented by the CPU. If we spot the guest in such
1050                  * state and that we decided it wasn't supposed to do so (like
1051                  * with the asymmetric AArch32 case), return to userspace with
1052                  * a fatal error.
1053                  */
1054                 if (vcpu_mode_is_bad_32bit(vcpu)) {
1055                         /*
1056                          * As we have caught the guest red-handed, decide that
1057                          * it isn't fit for purpose anymore by making the vcpu
1058                          * invalid. The VMM can try and fix it by issuing  a
1059                          * KVM_ARM_VCPU_INIT if it really wants to.
1060                          */
1061                         vcpu->arch.target = -1;
1062                         ret = ARM_EXCEPTION_IL;
1063                 }
1064
1065                 ret = handle_exit(vcpu, ret);
1066         }
1067
1068         /* Tell userspace about in-kernel device output levels */
1069         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1070                 kvm_timer_update_run(vcpu);
1071                 kvm_pmu_update_run(vcpu);
1072         }
1073
1074         kvm_sigset_deactivate(vcpu);
1075
1076 out:
1077         /*
1078          * In the unlikely event that we are returning to userspace
1079          * with pending exceptions or PC adjustment, commit these
1080          * adjustments in order to give userspace a consistent view of
1081          * the vcpu state. Note that this relies on __kvm_adjust_pc()
1082          * being preempt-safe on VHE.
1083          */
1084         if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1085                      vcpu_get_flag(vcpu, INCREMENT_PC)))
1086                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1087
1088         vcpu_put(vcpu);
1089         return ret;
1090 }
1091
1092 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1093 {
1094         int bit_index;
1095         bool set;
1096         unsigned long *hcr;
1097
1098         if (number == KVM_ARM_IRQ_CPU_IRQ)
1099                 bit_index = __ffs(HCR_VI);
1100         else /* KVM_ARM_IRQ_CPU_FIQ */
1101                 bit_index = __ffs(HCR_VF);
1102
1103         hcr = vcpu_hcr(vcpu);
1104         if (level)
1105                 set = test_and_set_bit(bit_index, hcr);
1106         else
1107                 set = test_and_clear_bit(bit_index, hcr);
1108
1109         /*
1110          * If we didn't change anything, no need to wake up or kick other CPUs
1111          */
1112         if (set == level)
1113                 return 0;
1114
1115         /*
1116          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1117          * trigger a world-switch round on the running physical CPU to set the
1118          * virtual IRQ/FIQ fields in the HCR appropriately.
1119          */
1120         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1121         kvm_vcpu_kick(vcpu);
1122
1123         return 0;
1124 }
1125
1126 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1127                           bool line_status)
1128 {
1129         u32 irq = irq_level->irq;
1130         unsigned int irq_type, vcpu_idx, irq_num;
1131         int nrcpus = atomic_read(&kvm->online_vcpus);
1132         struct kvm_vcpu *vcpu = NULL;
1133         bool level = irq_level->level;
1134
1135         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1136         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1137         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1138         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1139
1140         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1141
1142         switch (irq_type) {
1143         case KVM_ARM_IRQ_TYPE_CPU:
1144                 if (irqchip_in_kernel(kvm))
1145                         return -ENXIO;
1146
1147                 if (vcpu_idx >= nrcpus)
1148                         return -EINVAL;
1149
1150                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1151                 if (!vcpu)
1152                         return -EINVAL;
1153
1154                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1155                         return -EINVAL;
1156
1157                 return vcpu_interrupt_line(vcpu, irq_num, level);
1158         case KVM_ARM_IRQ_TYPE_PPI:
1159                 if (!irqchip_in_kernel(kvm))
1160                         return -ENXIO;
1161
1162                 if (vcpu_idx >= nrcpus)
1163                         return -EINVAL;
1164
1165                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1166                 if (!vcpu)
1167                         return -EINVAL;
1168
1169                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1170                         return -EINVAL;
1171
1172                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1173         case KVM_ARM_IRQ_TYPE_SPI:
1174                 if (!irqchip_in_kernel(kvm))
1175                         return -ENXIO;
1176
1177                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1178                         return -EINVAL;
1179
1180                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1181         }
1182
1183         return -EINVAL;
1184 }
1185
1186 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1187                                         const struct kvm_vcpu_init *init)
1188 {
1189         unsigned long features = init->features[0];
1190         int i;
1191
1192         if (features & ~KVM_VCPU_VALID_FEATURES)
1193                 return -ENOENT;
1194
1195         for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1196                 if (init->features[i])
1197                         return -ENOENT;
1198         }
1199
1200         if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1201                 return 0;
1202
1203         if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
1204                 return -EINVAL;
1205
1206         /* MTE is incompatible with AArch32 */
1207         if (kvm_has_mte(vcpu->kvm))
1208                 return -EINVAL;
1209
1210         /* NV is incompatible with AArch32 */
1211         if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1212                 return -EINVAL;
1213
1214         return 0;
1215 }
1216
1217 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1218                                   const struct kvm_vcpu_init *init)
1219 {
1220         unsigned long features = init->features[0];
1221
1222         return !bitmap_equal(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES) ||
1223                         vcpu->arch.target != init->target;
1224 }
1225
1226 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1227                                  const struct kvm_vcpu_init *init)
1228 {
1229         unsigned long features = init->features[0];
1230         struct kvm *kvm = vcpu->kvm;
1231         int ret = -EINVAL;
1232
1233         mutex_lock(&kvm->arch.config_lock);
1234
1235         if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1236             !bitmap_equal(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES))
1237                 goto out_unlock;
1238
1239         vcpu->arch.target = init->target;
1240         bitmap_copy(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1241
1242         /* Now we know what it is, we can reset it. */
1243         ret = kvm_reset_vcpu(vcpu);
1244         if (ret) {
1245                 vcpu->arch.target = -1;
1246                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1247                 goto out_unlock;
1248         }
1249
1250         bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1251         set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1252
1253 out_unlock:
1254         mutex_unlock(&kvm->arch.config_lock);
1255         return ret;
1256 }
1257
1258 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1259                                const struct kvm_vcpu_init *init)
1260 {
1261         int ret;
1262
1263         if (init->target != kvm_target_cpu())
1264                 return -EINVAL;
1265
1266         ret = kvm_vcpu_init_check_features(vcpu, init);
1267         if (ret)
1268                 return ret;
1269
1270         if (vcpu->arch.target == -1)
1271                 return __kvm_vcpu_set_target(vcpu, init);
1272
1273         if (kvm_vcpu_init_changed(vcpu, init))
1274                 return -EINVAL;
1275
1276         return kvm_reset_vcpu(vcpu);
1277 }
1278
1279 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1280                                          struct kvm_vcpu_init *init)
1281 {
1282         bool power_off = false;
1283         int ret;
1284
1285         /*
1286          * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1287          * reflecting it in the finalized feature set, thus limiting its scope
1288          * to a single KVM_ARM_VCPU_INIT call.
1289          */
1290         if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1291                 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1292                 power_off = true;
1293         }
1294
1295         ret = kvm_vcpu_set_target(vcpu, init);
1296         if (ret)
1297                 return ret;
1298
1299         /*
1300          * Ensure a rebooted VM will fault in RAM pages and detect if the
1301          * guest MMU is turned off and flush the caches as needed.
1302          *
1303          * S2FWB enforces all memory accesses to RAM being cacheable,
1304          * ensuring that the data side is always coherent. We still
1305          * need to invalidate the I-cache though, as FWB does *not*
1306          * imply CTR_EL0.DIC.
1307          */
1308         if (vcpu_has_run_once(vcpu)) {
1309                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1310                         stage2_unmap_vm(vcpu->kvm);
1311                 else
1312                         icache_inval_all_pou();
1313         }
1314
1315         vcpu_reset_hcr(vcpu);
1316         vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1317
1318         /*
1319          * Handle the "start in power-off" case.
1320          */
1321         spin_lock(&vcpu->arch.mp_state_lock);
1322
1323         if (power_off)
1324                 __kvm_arm_vcpu_power_off(vcpu);
1325         else
1326                 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1327
1328         spin_unlock(&vcpu->arch.mp_state_lock);
1329
1330         return 0;
1331 }
1332
1333 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1334                                  struct kvm_device_attr *attr)
1335 {
1336         int ret = -ENXIO;
1337
1338         switch (attr->group) {
1339         default:
1340                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1341                 break;
1342         }
1343
1344         return ret;
1345 }
1346
1347 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1348                                  struct kvm_device_attr *attr)
1349 {
1350         int ret = -ENXIO;
1351
1352         switch (attr->group) {
1353         default:
1354                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1355                 break;
1356         }
1357
1358         return ret;
1359 }
1360
1361 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1362                                  struct kvm_device_attr *attr)
1363 {
1364         int ret = -ENXIO;
1365
1366         switch (attr->group) {
1367         default:
1368                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1369                 break;
1370         }
1371
1372         return ret;
1373 }
1374
1375 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1376                                    struct kvm_vcpu_events *events)
1377 {
1378         memset(events, 0, sizeof(*events));
1379
1380         return __kvm_arm_vcpu_get_events(vcpu, events);
1381 }
1382
1383 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1384                                    struct kvm_vcpu_events *events)
1385 {
1386         int i;
1387
1388         /* check whether the reserved field is zero */
1389         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1390                 if (events->reserved[i])
1391                         return -EINVAL;
1392
1393         /* check whether the pad field is zero */
1394         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1395                 if (events->exception.pad[i])
1396                         return -EINVAL;
1397
1398         return __kvm_arm_vcpu_set_events(vcpu, events);
1399 }
1400
1401 long kvm_arch_vcpu_ioctl(struct file *filp,
1402                          unsigned int ioctl, unsigned long arg)
1403 {
1404         struct kvm_vcpu *vcpu = filp->private_data;
1405         void __user *argp = (void __user *)arg;
1406         struct kvm_device_attr attr;
1407         long r;
1408
1409         switch (ioctl) {
1410         case KVM_ARM_VCPU_INIT: {
1411                 struct kvm_vcpu_init init;
1412
1413                 r = -EFAULT;
1414                 if (copy_from_user(&init, argp, sizeof(init)))
1415                         break;
1416
1417                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1418                 break;
1419         }
1420         case KVM_SET_ONE_REG:
1421         case KVM_GET_ONE_REG: {
1422                 struct kvm_one_reg reg;
1423
1424                 r = -ENOEXEC;
1425                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1426                         break;
1427
1428                 r = -EFAULT;
1429                 if (copy_from_user(&reg, argp, sizeof(reg)))
1430                         break;
1431
1432                 /*
1433                  * We could owe a reset due to PSCI. Handle the pending reset
1434                  * here to ensure userspace register accesses are ordered after
1435                  * the reset.
1436                  */
1437                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1438                         kvm_reset_vcpu(vcpu);
1439
1440                 if (ioctl == KVM_SET_ONE_REG)
1441                         r = kvm_arm_set_reg(vcpu, &reg);
1442                 else
1443                         r = kvm_arm_get_reg(vcpu, &reg);
1444                 break;
1445         }
1446         case KVM_GET_REG_LIST: {
1447                 struct kvm_reg_list __user *user_list = argp;
1448                 struct kvm_reg_list reg_list;
1449                 unsigned n;
1450
1451                 r = -ENOEXEC;
1452                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1453                         break;
1454
1455                 r = -EPERM;
1456                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1457                         break;
1458
1459                 r = -EFAULT;
1460                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1461                         break;
1462                 n = reg_list.n;
1463                 reg_list.n = kvm_arm_num_regs(vcpu);
1464                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1465                         break;
1466                 r = -E2BIG;
1467                 if (n < reg_list.n)
1468                         break;
1469                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1470                 break;
1471         }
1472         case KVM_SET_DEVICE_ATTR: {
1473                 r = -EFAULT;
1474                 if (copy_from_user(&attr, argp, sizeof(attr)))
1475                         break;
1476                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1477                 break;
1478         }
1479         case KVM_GET_DEVICE_ATTR: {
1480                 r = -EFAULT;
1481                 if (copy_from_user(&attr, argp, sizeof(attr)))
1482                         break;
1483                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1484                 break;
1485         }
1486         case KVM_HAS_DEVICE_ATTR: {
1487                 r = -EFAULT;
1488                 if (copy_from_user(&attr, argp, sizeof(attr)))
1489                         break;
1490                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1491                 break;
1492         }
1493         case KVM_GET_VCPU_EVENTS: {
1494                 struct kvm_vcpu_events events;
1495
1496                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1497                         return -EINVAL;
1498
1499                 if (copy_to_user(argp, &events, sizeof(events)))
1500                         return -EFAULT;
1501
1502                 return 0;
1503         }
1504         case KVM_SET_VCPU_EVENTS: {
1505                 struct kvm_vcpu_events events;
1506
1507                 if (copy_from_user(&events, argp, sizeof(events)))
1508                         return -EFAULT;
1509
1510                 return kvm_arm_vcpu_set_events(vcpu, &events);
1511         }
1512         case KVM_ARM_VCPU_FINALIZE: {
1513                 int what;
1514
1515                 if (!kvm_vcpu_initialized(vcpu))
1516                         return -ENOEXEC;
1517
1518                 if (get_user(what, (const int __user *)argp))
1519                         return -EFAULT;
1520
1521                 return kvm_arm_vcpu_finalize(vcpu, what);
1522         }
1523         default:
1524                 r = -EINVAL;
1525         }
1526
1527         return r;
1528 }
1529
1530 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1531 {
1532
1533 }
1534
1535 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1536                                         const struct kvm_memory_slot *memslot)
1537 {
1538         kvm_flush_remote_tlbs(kvm);
1539 }
1540
1541 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1542                                         struct kvm_arm_device_addr *dev_addr)
1543 {
1544         switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1545         case KVM_ARM_DEVICE_VGIC_V2:
1546                 if (!vgic_present)
1547                         return -ENXIO;
1548                 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1549         default:
1550                 return -ENODEV;
1551         }
1552 }
1553
1554 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1555 {
1556         switch (attr->group) {
1557         case KVM_ARM_VM_SMCCC_CTRL:
1558                 return kvm_vm_smccc_has_attr(kvm, attr);
1559         default:
1560                 return -ENXIO;
1561         }
1562 }
1563
1564 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1565 {
1566         switch (attr->group) {
1567         case KVM_ARM_VM_SMCCC_CTRL:
1568                 return kvm_vm_smccc_set_attr(kvm, attr);
1569         default:
1570                 return -ENXIO;
1571         }
1572 }
1573
1574 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1575 {
1576         struct kvm *kvm = filp->private_data;
1577         void __user *argp = (void __user *)arg;
1578         struct kvm_device_attr attr;
1579
1580         switch (ioctl) {
1581         case KVM_CREATE_IRQCHIP: {
1582                 int ret;
1583                 if (!vgic_present)
1584                         return -ENXIO;
1585                 mutex_lock(&kvm->lock);
1586                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1587                 mutex_unlock(&kvm->lock);
1588                 return ret;
1589         }
1590         case KVM_ARM_SET_DEVICE_ADDR: {
1591                 struct kvm_arm_device_addr dev_addr;
1592
1593                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1594                         return -EFAULT;
1595                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1596         }
1597         case KVM_ARM_PREFERRED_TARGET: {
1598                 struct kvm_vcpu_init init;
1599
1600                 kvm_vcpu_preferred_target(&init);
1601
1602                 if (copy_to_user(argp, &init, sizeof(init)))
1603                         return -EFAULT;
1604
1605                 return 0;
1606         }
1607         case KVM_ARM_MTE_COPY_TAGS: {
1608                 struct kvm_arm_copy_mte_tags copy_tags;
1609
1610                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1611                         return -EFAULT;
1612                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1613         }
1614         case KVM_ARM_SET_COUNTER_OFFSET: {
1615                 struct kvm_arm_counter_offset offset;
1616
1617                 if (copy_from_user(&offset, argp, sizeof(offset)))
1618                         return -EFAULT;
1619                 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1620         }
1621         case KVM_HAS_DEVICE_ATTR: {
1622                 if (copy_from_user(&attr, argp, sizeof(attr)))
1623                         return -EFAULT;
1624
1625                 return kvm_vm_has_attr(kvm, &attr);
1626         }
1627         case KVM_SET_DEVICE_ATTR: {
1628                 if (copy_from_user(&attr, argp, sizeof(attr)))
1629                         return -EFAULT;
1630
1631                 return kvm_vm_set_attr(kvm, &attr);
1632         }
1633         default:
1634                 return -EINVAL;
1635         }
1636 }
1637
1638 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1639 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1640 {
1641         struct kvm_vcpu *tmp_vcpu;
1642
1643         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1644                 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1645                 mutex_unlock(&tmp_vcpu->mutex);
1646         }
1647 }
1648
1649 void unlock_all_vcpus(struct kvm *kvm)
1650 {
1651         lockdep_assert_held(&kvm->lock);
1652
1653         unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1654 }
1655
1656 /* Returns true if all vcpus were locked, false otherwise */
1657 bool lock_all_vcpus(struct kvm *kvm)
1658 {
1659         struct kvm_vcpu *tmp_vcpu;
1660         unsigned long c;
1661
1662         lockdep_assert_held(&kvm->lock);
1663
1664         /*
1665          * Any time a vcpu is in an ioctl (including running), the
1666          * core KVM code tries to grab the vcpu->mutex.
1667          *
1668          * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1669          * other VCPUs can fiddle with the state while we access it.
1670          */
1671         kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1672                 if (!mutex_trylock(&tmp_vcpu->mutex)) {
1673                         unlock_vcpus(kvm, c - 1);
1674                         return false;
1675                 }
1676         }
1677
1678         return true;
1679 }
1680
1681 static unsigned long nvhe_percpu_size(void)
1682 {
1683         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1684                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1685 }
1686
1687 static unsigned long nvhe_percpu_order(void)
1688 {
1689         unsigned long size = nvhe_percpu_size();
1690
1691         return size ? get_order(size) : 0;
1692 }
1693
1694 /* A lookup table holding the hypervisor VA for each vector slot */
1695 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1696
1697 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1698 {
1699         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1700 }
1701
1702 static int kvm_init_vector_slots(void)
1703 {
1704         int err;
1705         void *base;
1706
1707         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1708         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1709
1710         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1711         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1712
1713         if (kvm_system_needs_idmapped_vectors() &&
1714             !is_protected_kvm_enabled()) {
1715                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1716                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1717                 if (err)
1718                         return err;
1719         }
1720
1721         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1722         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1723         return 0;
1724 }
1725
1726 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1727 {
1728         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1729         unsigned long tcr;
1730
1731         /*
1732          * Calculate the raw per-cpu offset without a translation from the
1733          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1734          * so that we can use adr_l to access per-cpu variables in EL2.
1735          * Also drop the KASAN tag which gets in the way...
1736          */
1737         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1738                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1739
1740         params->mair_el2 = read_sysreg(mair_el1);
1741
1742         tcr = read_sysreg(tcr_el1);
1743         if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1744                 tcr |= TCR_EPD1_MASK;
1745         } else {
1746                 tcr &= TCR_EL2_MASK;
1747                 tcr |= TCR_EL2_RES1;
1748         }
1749         tcr &= ~TCR_T0SZ_MASK;
1750         tcr |= TCR_T0SZ(hyp_va_bits);
1751         params->tcr_el2 = tcr;
1752
1753         params->pgd_pa = kvm_mmu_get_httbr();
1754         if (is_protected_kvm_enabled())
1755                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1756         else
1757                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1758         if (cpus_have_final_cap(ARM64_KVM_HVHE))
1759                 params->hcr_el2 |= HCR_E2H;
1760         params->vttbr = params->vtcr = 0;
1761
1762         /*
1763          * Flush the init params from the data cache because the struct will
1764          * be read while the MMU is off.
1765          */
1766         kvm_flush_dcache_to_poc(params, sizeof(*params));
1767 }
1768
1769 static void hyp_install_host_vector(void)
1770 {
1771         struct kvm_nvhe_init_params *params;
1772         struct arm_smccc_res res;
1773
1774         /* Switch from the HYP stub to our own HYP init vector */
1775         __hyp_set_vectors(kvm_get_idmap_vector());
1776
1777         /*
1778          * Call initialization code, and switch to the full blown HYP code.
1779          * If the cpucaps haven't been finalized yet, something has gone very
1780          * wrong, and hyp will crash and burn when it uses any
1781          * cpus_have_const_cap() wrapper.
1782          */
1783         BUG_ON(!system_capabilities_finalized());
1784         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1785         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1786         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1787 }
1788
1789 static void cpu_init_hyp_mode(void)
1790 {
1791         hyp_install_host_vector();
1792
1793         /*
1794          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1795          * at EL2.
1796          */
1797         if (this_cpu_has_cap(ARM64_SSBS) &&
1798             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1799                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1800         }
1801 }
1802
1803 static void cpu_hyp_reset(void)
1804 {
1805         if (!is_kernel_in_hyp_mode())
1806                 __hyp_reset_vectors();
1807 }
1808
1809 /*
1810  * EL2 vectors can be mapped and rerouted in a number of ways,
1811  * depending on the kernel configuration and CPU present:
1812  *
1813  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1814  *   placed in one of the vector slots, which is executed before jumping
1815  *   to the real vectors.
1816  *
1817  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1818  *   containing the hardening sequence is mapped next to the idmap page,
1819  *   and executed before jumping to the real vectors.
1820  *
1821  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1822  *   empty slot is selected, mapped next to the idmap page, and
1823  *   executed before jumping to the real vectors.
1824  *
1825  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1826  * VHE, as we don't have hypervisor-specific mappings. If the system
1827  * is VHE and yet selects this capability, it will be ignored.
1828  */
1829 static void cpu_set_hyp_vector(void)
1830 {
1831         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1832         void *vector = hyp_spectre_vector_selector[data->slot];
1833
1834         if (!is_protected_kvm_enabled())
1835                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1836         else
1837                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1838 }
1839
1840 static void cpu_hyp_init_context(void)
1841 {
1842         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1843
1844         if (!is_kernel_in_hyp_mode())
1845                 cpu_init_hyp_mode();
1846 }
1847
1848 static void cpu_hyp_init_features(void)
1849 {
1850         cpu_set_hyp_vector();
1851         kvm_arm_init_debug();
1852
1853         if (is_kernel_in_hyp_mode())
1854                 kvm_timer_init_vhe();
1855
1856         if (vgic_present)
1857                 kvm_vgic_init_cpu_hardware();
1858 }
1859
1860 static void cpu_hyp_reinit(void)
1861 {
1862         cpu_hyp_reset();
1863         cpu_hyp_init_context();
1864         cpu_hyp_init_features();
1865 }
1866
1867 static void cpu_hyp_init(void *discard)
1868 {
1869         if (!__this_cpu_read(kvm_hyp_initialized)) {
1870                 cpu_hyp_reinit();
1871                 __this_cpu_write(kvm_hyp_initialized, 1);
1872         }
1873 }
1874
1875 static void cpu_hyp_uninit(void *discard)
1876 {
1877         if (__this_cpu_read(kvm_hyp_initialized)) {
1878                 cpu_hyp_reset();
1879                 __this_cpu_write(kvm_hyp_initialized, 0);
1880         }
1881 }
1882
1883 int kvm_arch_hardware_enable(void)
1884 {
1885         /*
1886          * Most calls to this function are made with migration
1887          * disabled, but not with preemption disabled. The former is
1888          * enough to ensure correctness, but most of the helpers
1889          * expect the later and will throw a tantrum otherwise.
1890          */
1891         preempt_disable();
1892
1893         cpu_hyp_init(NULL);
1894
1895         kvm_vgic_cpu_up();
1896         kvm_timer_cpu_up();
1897
1898         preempt_enable();
1899
1900         return 0;
1901 }
1902
1903 void kvm_arch_hardware_disable(void)
1904 {
1905         kvm_timer_cpu_down();
1906         kvm_vgic_cpu_down();
1907
1908         if (!is_protected_kvm_enabled())
1909                 cpu_hyp_uninit(NULL);
1910 }
1911
1912 #ifdef CONFIG_CPU_PM
1913 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1914                                     unsigned long cmd,
1915                                     void *v)
1916 {
1917         /*
1918          * kvm_hyp_initialized is left with its old value over
1919          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1920          * re-enable hyp.
1921          */
1922         switch (cmd) {
1923         case CPU_PM_ENTER:
1924                 if (__this_cpu_read(kvm_hyp_initialized))
1925                         /*
1926                          * don't update kvm_hyp_initialized here
1927                          * so that the hyp will be re-enabled
1928                          * when we resume. See below.
1929                          */
1930                         cpu_hyp_reset();
1931
1932                 return NOTIFY_OK;
1933         case CPU_PM_ENTER_FAILED:
1934         case CPU_PM_EXIT:
1935                 if (__this_cpu_read(kvm_hyp_initialized))
1936                         /* The hyp was enabled before suspend. */
1937                         cpu_hyp_reinit();
1938
1939                 return NOTIFY_OK;
1940
1941         default:
1942                 return NOTIFY_DONE;
1943         }
1944 }
1945
1946 static struct notifier_block hyp_init_cpu_pm_nb = {
1947         .notifier_call = hyp_init_cpu_pm_notifier,
1948 };
1949
1950 static void __init hyp_cpu_pm_init(void)
1951 {
1952         if (!is_protected_kvm_enabled())
1953                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1954 }
1955 static void __init hyp_cpu_pm_exit(void)
1956 {
1957         if (!is_protected_kvm_enabled())
1958                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1959 }
1960 #else
1961 static inline void __init hyp_cpu_pm_init(void)
1962 {
1963 }
1964 static inline void __init hyp_cpu_pm_exit(void)
1965 {
1966 }
1967 #endif
1968
1969 static void __init init_cpu_logical_map(void)
1970 {
1971         unsigned int cpu;
1972
1973         /*
1974          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1975          * Only copy the set of online CPUs whose features have been checked
1976          * against the finalized system capabilities. The hypervisor will not
1977          * allow any other CPUs from the `possible` set to boot.
1978          */
1979         for_each_online_cpu(cpu)
1980                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1981 }
1982
1983 #define init_psci_0_1_impl_state(config, what)  \
1984         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1985
1986 static bool __init init_psci_relay(void)
1987 {
1988         /*
1989          * If PSCI has not been initialized, protected KVM cannot install
1990          * itself on newly booted CPUs.
1991          */
1992         if (!psci_ops.get_version) {
1993                 kvm_err("Cannot initialize protected mode without PSCI\n");
1994                 return false;
1995         }
1996
1997         kvm_host_psci_config.version = psci_ops.get_version();
1998         kvm_host_psci_config.smccc_version = arm_smccc_get_version();
1999
2000         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2001                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2002                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2003                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2004                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2005                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2006         }
2007         return true;
2008 }
2009
2010 static int __init init_subsystems(void)
2011 {
2012         int err = 0;
2013
2014         /*
2015          * Enable hardware so that subsystem initialisation can access EL2.
2016          */
2017         on_each_cpu(cpu_hyp_init, NULL, 1);
2018
2019         /*
2020          * Register CPU lower-power notifier
2021          */
2022         hyp_cpu_pm_init();
2023
2024         /*
2025          * Init HYP view of VGIC
2026          */
2027         err = kvm_vgic_hyp_init();
2028         switch (err) {
2029         case 0:
2030                 vgic_present = true;
2031                 break;
2032         case -ENODEV:
2033         case -ENXIO:
2034                 vgic_present = false;
2035                 err = 0;
2036                 break;
2037         default:
2038                 goto out;
2039         }
2040
2041         /*
2042          * Init HYP architected timer support
2043          */
2044         err = kvm_timer_hyp_init(vgic_present);
2045         if (err)
2046                 goto out;
2047
2048         kvm_register_perf_callbacks(NULL);
2049
2050 out:
2051         if (err)
2052                 hyp_cpu_pm_exit();
2053
2054         if (err || !is_protected_kvm_enabled())
2055                 on_each_cpu(cpu_hyp_uninit, NULL, 1);
2056
2057         return err;
2058 }
2059
2060 static void __init teardown_subsystems(void)
2061 {
2062         kvm_unregister_perf_callbacks();
2063         hyp_cpu_pm_exit();
2064 }
2065
2066 static void __init teardown_hyp_mode(void)
2067 {
2068         int cpu;
2069
2070         free_hyp_pgds();
2071         for_each_possible_cpu(cpu) {
2072                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2073                 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2074         }
2075 }
2076
2077 static int __init do_pkvm_init(u32 hyp_va_bits)
2078 {
2079         void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2080         int ret;
2081
2082         preempt_disable();
2083         cpu_hyp_init_context();
2084         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2085                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2086                                 hyp_va_bits);
2087         cpu_hyp_init_features();
2088
2089         /*
2090          * The stub hypercalls are now disabled, so set our local flag to
2091          * prevent a later re-init attempt in kvm_arch_hardware_enable().
2092          */
2093         __this_cpu_write(kvm_hyp_initialized, 1);
2094         preempt_enable();
2095
2096         return ret;
2097 }
2098
2099 static u64 get_hyp_id_aa64pfr0_el1(void)
2100 {
2101         /*
2102          * Track whether the system isn't affected by spectre/meltdown in the
2103          * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2104          * Although this is per-CPU, we make it global for simplicity, e.g., not
2105          * to have to worry about vcpu migration.
2106          *
2107          * Unlike for non-protected VMs, userspace cannot override this for
2108          * protected VMs.
2109          */
2110         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2111
2112         val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2113                  ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2114
2115         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2116                           arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2117         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2118                           arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2119
2120         return val;
2121 }
2122
2123 static void kvm_hyp_init_symbols(void)
2124 {
2125         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2126         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2127         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2128         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2129         kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2130         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2131         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2132         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2133         kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2134         kvm_nvhe_sym(__icache_flags) = __icache_flags;
2135         kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2136 }
2137
2138 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2139 {
2140         void *addr = phys_to_virt(hyp_mem_base);
2141         int ret;
2142
2143         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2144         if (ret)
2145                 return ret;
2146
2147         ret = do_pkvm_init(hyp_va_bits);
2148         if (ret)
2149                 return ret;
2150
2151         free_hyp_pgds();
2152
2153         return 0;
2154 }
2155
2156 static void pkvm_hyp_init_ptrauth(void)
2157 {
2158         struct kvm_cpu_context *hyp_ctxt;
2159         int cpu;
2160
2161         for_each_possible_cpu(cpu) {
2162                 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2163                 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2164                 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2165                 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2166                 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2167                 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2168                 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2169                 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2170                 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2171                 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2172                 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2173         }
2174 }
2175
2176 /* Inits Hyp-mode on all online CPUs */
2177 static int __init init_hyp_mode(void)
2178 {
2179         u32 hyp_va_bits;
2180         int cpu;
2181         int err = -ENOMEM;
2182
2183         /*
2184          * The protected Hyp-mode cannot be initialized if the memory pool
2185          * allocation has failed.
2186          */
2187         if (is_protected_kvm_enabled() && !hyp_mem_base)
2188                 goto out_err;
2189
2190         /*
2191          * Allocate Hyp PGD and setup Hyp identity mapping
2192          */
2193         err = kvm_mmu_init(&hyp_va_bits);
2194         if (err)
2195                 goto out_err;
2196
2197         /*
2198          * Allocate stack pages for Hypervisor-mode
2199          */
2200         for_each_possible_cpu(cpu) {
2201                 unsigned long stack_page;
2202
2203                 stack_page = __get_free_page(GFP_KERNEL);
2204                 if (!stack_page) {
2205                         err = -ENOMEM;
2206                         goto out_err;
2207                 }
2208
2209                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2210         }
2211
2212         /*
2213          * Allocate and initialize pages for Hypervisor-mode percpu regions.
2214          */
2215         for_each_possible_cpu(cpu) {
2216                 struct page *page;
2217                 void *page_addr;
2218
2219                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2220                 if (!page) {
2221                         err = -ENOMEM;
2222                         goto out_err;
2223                 }
2224
2225                 page_addr = page_address(page);
2226                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2227                 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2228         }
2229
2230         /*
2231          * Map the Hyp-code called directly from the host
2232          */
2233         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2234                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2235         if (err) {
2236                 kvm_err("Cannot map world-switch code\n");
2237                 goto out_err;
2238         }
2239
2240         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2241                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2242         if (err) {
2243                 kvm_err("Cannot map .hyp.rodata section\n");
2244                 goto out_err;
2245         }
2246
2247         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2248                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2249         if (err) {
2250                 kvm_err("Cannot map rodata section\n");
2251                 goto out_err;
2252         }
2253
2254         /*
2255          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2256          * section thanks to an assertion in the linker script. Map it RW and
2257          * the rest of .bss RO.
2258          */
2259         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2260                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2261         if (err) {
2262                 kvm_err("Cannot map hyp bss section: %d\n", err);
2263                 goto out_err;
2264         }
2265
2266         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2267                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2268         if (err) {
2269                 kvm_err("Cannot map bss section\n");
2270                 goto out_err;
2271         }
2272
2273         /*
2274          * Map the Hyp stack pages
2275          */
2276         for_each_possible_cpu(cpu) {
2277                 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2278                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2279                 unsigned long hyp_addr;
2280
2281                 /*
2282                  * Allocate a contiguous HYP private VA range for the stack
2283                  * and guard page. The allocation is also aligned based on
2284                  * the order of its size.
2285                  */
2286                 err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
2287                 if (err) {
2288                         kvm_err("Cannot allocate hyp stack guard page\n");
2289                         goto out_err;
2290                 }
2291
2292                 /*
2293                  * Since the stack grows downwards, map the stack to the page
2294                  * at the higher address and leave the lower guard page
2295                  * unbacked.
2296                  *
2297                  * Any valid stack address now has the PAGE_SHIFT bit as 1
2298                  * and addresses corresponding to the guard page have the
2299                  * PAGE_SHIFT bit as 0 - this is used for overflow detection.
2300                  */
2301                 err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
2302                                             __pa(stack_page), PAGE_HYP);
2303                 if (err) {
2304                         kvm_err("Cannot map hyp stack\n");
2305                         goto out_err;
2306                 }
2307
2308                 /*
2309                  * Save the stack PA in nvhe_init_params. This will be needed
2310                  * to recreate the stack mapping in protected nVHE mode.
2311                  * __hyp_pa() won't do the right thing there, since the stack
2312                  * has been mapped in the flexible private VA space.
2313                  */
2314                 params->stack_pa = __pa(stack_page);
2315
2316                 params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
2317         }
2318
2319         for_each_possible_cpu(cpu) {
2320                 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2321                 char *percpu_end = percpu_begin + nvhe_percpu_size();
2322
2323                 /* Map Hyp percpu pages */
2324                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2325                 if (err) {
2326                         kvm_err("Cannot map hyp percpu region\n");
2327                         goto out_err;
2328                 }
2329
2330                 /* Prepare the CPU initialization parameters */
2331                 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2332         }
2333
2334         kvm_hyp_init_symbols();
2335
2336         if (is_protected_kvm_enabled()) {
2337                 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2338                     cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH))
2339                         pkvm_hyp_init_ptrauth();
2340
2341                 init_cpu_logical_map();
2342
2343                 if (!init_psci_relay()) {
2344                         err = -ENODEV;
2345                         goto out_err;
2346                 }
2347
2348                 err = kvm_hyp_init_protection(hyp_va_bits);
2349                 if (err) {
2350                         kvm_err("Failed to init hyp memory protection\n");
2351                         goto out_err;
2352                 }
2353         }
2354
2355         return 0;
2356
2357 out_err:
2358         teardown_hyp_mode();
2359         kvm_err("error initializing Hyp mode: %d\n", err);
2360         return err;
2361 }
2362
2363 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2364 {
2365         struct kvm_vcpu *vcpu;
2366         unsigned long i;
2367
2368         mpidr &= MPIDR_HWID_BITMASK;
2369         kvm_for_each_vcpu(i, vcpu, kvm) {
2370                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2371                         return vcpu;
2372         }
2373         return NULL;
2374 }
2375
2376 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2377 {
2378         return irqchip_in_kernel(kvm);
2379 }
2380
2381 bool kvm_arch_has_irq_bypass(void)
2382 {
2383         return true;
2384 }
2385
2386 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2387                                       struct irq_bypass_producer *prod)
2388 {
2389         struct kvm_kernel_irqfd *irqfd =
2390                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2391
2392         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2393                                           &irqfd->irq_entry);
2394 }
2395 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2396                                       struct irq_bypass_producer *prod)
2397 {
2398         struct kvm_kernel_irqfd *irqfd =
2399                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2400
2401         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2402                                      &irqfd->irq_entry);
2403 }
2404
2405 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2406 {
2407         struct kvm_kernel_irqfd *irqfd =
2408                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2409
2410         kvm_arm_halt_guest(irqfd->kvm);
2411 }
2412
2413 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2414 {
2415         struct kvm_kernel_irqfd *irqfd =
2416                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2417
2418         kvm_arm_resume_guest(irqfd->kvm);
2419 }
2420
2421 /* Initialize Hyp-mode and memory mappings on all CPUs */
2422 static __init int kvm_arm_init(void)
2423 {
2424         int err;
2425         bool in_hyp_mode;
2426
2427         if (!is_hyp_mode_available()) {
2428                 kvm_info("HYP mode not available\n");
2429                 return -ENODEV;
2430         }
2431
2432         if (kvm_get_mode() == KVM_MODE_NONE) {
2433                 kvm_info("KVM disabled from command line\n");
2434                 return -ENODEV;
2435         }
2436
2437         err = kvm_sys_reg_table_init();
2438         if (err) {
2439                 kvm_info("Error initializing system register tables");
2440                 return err;
2441         }
2442
2443         in_hyp_mode = is_kernel_in_hyp_mode();
2444
2445         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2446             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2447                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2448                          "Only trusted guests should be used on this system.\n");
2449
2450         err = kvm_set_ipa_limit();
2451         if (err)
2452                 return err;
2453
2454         err = kvm_arm_init_sve();
2455         if (err)
2456                 return err;
2457
2458         err = kvm_arm_vmid_alloc_init();
2459         if (err) {
2460                 kvm_err("Failed to initialize VMID allocator.\n");
2461                 return err;
2462         }
2463
2464         if (!in_hyp_mode) {
2465                 err = init_hyp_mode();
2466                 if (err)
2467                         goto out_err;
2468         }
2469
2470         err = kvm_init_vector_slots();
2471         if (err) {
2472                 kvm_err("Cannot initialise vector slots\n");
2473                 goto out_hyp;
2474         }
2475
2476         err = init_subsystems();
2477         if (err)
2478                 goto out_hyp;
2479
2480         if (is_protected_kvm_enabled()) {
2481                 kvm_info("Protected nVHE mode initialized successfully\n");
2482         } else if (in_hyp_mode) {
2483                 kvm_info("VHE mode initialized successfully\n");
2484         } else {
2485                 kvm_info("Hyp mode initialized successfully\n");
2486         }
2487
2488         /*
2489          * FIXME: Do something reasonable if kvm_init() fails after pKVM
2490          * hypervisor protection is finalized.
2491          */
2492         err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2493         if (err)
2494                 goto out_subs;
2495
2496         kvm_arm_initialised = true;
2497
2498         return 0;
2499
2500 out_subs:
2501         teardown_subsystems();
2502 out_hyp:
2503         if (!in_hyp_mode)
2504                 teardown_hyp_mode();
2505 out_err:
2506         kvm_arm_vmid_alloc_free();
2507         return err;
2508 }
2509
2510 static int __init early_kvm_mode_cfg(char *arg)
2511 {
2512         if (!arg)
2513                 return -EINVAL;
2514
2515         if (strcmp(arg, "none") == 0) {
2516                 kvm_mode = KVM_MODE_NONE;
2517                 return 0;
2518         }
2519
2520         if (!is_hyp_mode_available()) {
2521                 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2522                 return 0;
2523         }
2524
2525         if (strcmp(arg, "protected") == 0) {
2526                 if (!is_kernel_in_hyp_mode())
2527                         kvm_mode = KVM_MODE_PROTECTED;
2528                 else
2529                         pr_warn_once("Protected KVM not available with VHE\n");
2530
2531                 return 0;
2532         }
2533
2534         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2535                 kvm_mode = KVM_MODE_DEFAULT;
2536                 return 0;
2537         }
2538
2539         if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2540                 kvm_mode = KVM_MODE_NV;
2541                 return 0;
2542         }
2543
2544         return -EINVAL;
2545 }
2546 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2547
2548 enum kvm_mode kvm_get_mode(void)
2549 {
2550         return kvm_mode;
2551 }
2552
2553 module_init(kvm_arm_init);