Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / arm64 / kernel / process.c
1 /*
2  * Based on arch/arm/kernel/process.c
3  *
4  * Original Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20
21 #include <stdarg.h>
22
23 #include <linux/compat.h>
24 #include <linux/export.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/stddef.h>
29 #include <linux/unistd.h>
30 #include <linux/user.h>
31 #include <linux/delay.h>
32 #include <linux/reboot.h>
33 #include <linux/interrupt.h>
34 #include <linux/kallsyms.h>
35 #include <linux/init.h>
36 #include <linux/cpu.h>
37 #include <linux/elfcore.h>
38 #include <linux/pm.h>
39 #include <linux/tick.h>
40 #include <linux/utsname.h>
41 #include <linux/uaccess.h>
42 #include <linux/random.h>
43 #include <linux/hw_breakpoint.h>
44 #include <linux/personality.h>
45 #include <linux/notifier.h>
46
47 #include <asm/compat.h>
48 #include <asm/cacheflush.h>
49 #include <asm/fpsimd.h>
50 #include <asm/mmu_context.h>
51 #include <asm/processor.h>
52 #include <asm/stacktrace.h>
53
54 static void setup_restart(void)
55 {
56         /*
57          * Tell the mm system that we are going to reboot -
58          * we may need it to insert some 1:1 mappings so that
59          * soft boot works.
60          */
61         setup_mm_for_reboot();
62
63         /* Clean and invalidate caches */
64         flush_cache_all();
65
66         /* Turn D-cache off */
67         cpu_cache_off();
68
69         /* Push out any further dirty data, and ensure cache is empty */
70         flush_cache_all();
71 }
72
73 void soft_restart(unsigned long addr)
74 {
75         typedef void (*phys_reset_t)(unsigned long);
76         phys_reset_t phys_reset;
77
78         setup_restart();
79
80         /* Switch to the identity mapping */
81         phys_reset = (phys_reset_t)virt_to_phys(cpu_reset);
82         phys_reset(addr);
83
84         /* Should never get here */
85         BUG();
86 }
87
88 /*
89  * Function pointers to optional machine specific functions
90  */
91 void (*pm_power_off)(void);
92 EXPORT_SYMBOL_GPL(pm_power_off);
93
94 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
95 EXPORT_SYMBOL_GPL(arm_pm_restart);
96
97 /*
98  * This is our default idle handler.
99  */
100 void arch_cpu_idle(void)
101 {
102         /*
103          * This should do all the clock switching and wait for interrupt
104          * tricks
105          */
106         cpu_do_idle();
107         local_irq_enable();
108 }
109
110 #ifdef CONFIG_HOTPLUG_CPU
111 void arch_cpu_idle_dead(void)
112 {
113        cpu_die();
114 }
115 #endif
116
117 /*
118  * Called by kexec, immediately prior to machine_kexec().
119  *
120  * This must completely disable all secondary CPUs; simply causing those CPUs
121  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
122  * kexec'd kernel to use any and all RAM as it sees fit, without having to
123  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
124  * functionality embodied in disable_nonboot_cpus() to achieve this.
125  */
126 void machine_shutdown(void)
127 {
128         disable_nonboot_cpus();
129 }
130
131 /*
132  * Halting simply requires that the secondary CPUs stop performing any
133  * activity (executing tasks, handling interrupts). smp_send_stop()
134  * achieves this.
135  */
136 void machine_halt(void)
137 {
138         local_irq_disable();
139         smp_send_stop();
140         while (1);
141 }
142
143 /*
144  * Power-off simply requires that the secondary CPUs stop performing any
145  * activity (executing tasks, handling interrupts). smp_send_stop()
146  * achieves this. When the system power is turned off, it will take all CPUs
147  * with it.
148  */
149 void machine_power_off(void)
150 {
151         local_irq_disable();
152         smp_send_stop();
153         if (pm_power_off)
154                 pm_power_off();
155 }
156
157 /*
158  * Restart requires that the secondary CPUs stop performing any activity
159  * while the primary CPU resets the system. Systems with a single CPU can
160  * use soft_restart() as their machine descriptor's .restart hook, since that
161  * will cause the only available CPU to reset. Systems with multiple CPUs must
162  * provide a HW restart implementation, to ensure that all CPUs reset at once.
163  * This is required so that any code running after reset on the primary CPU
164  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
165  * executing pre-reset code, and using RAM that the primary CPU's code wishes
166  * to use. Implementing such co-ordination would be essentially impossible.
167  */
168 void machine_restart(char *cmd)
169 {
170         /* Disable interrupts first */
171         local_irq_disable();
172         smp_send_stop();
173
174         /* Now call the architecture specific reboot code. */
175         if (arm_pm_restart)
176                 arm_pm_restart(reboot_mode, cmd);
177
178         /*
179          * Whoops - the architecture was unable to reboot.
180          */
181         printk("Reboot failed -- System halted\n");
182         while (1);
183 }
184
185 void __show_regs(struct pt_regs *regs)
186 {
187         int i, top_reg;
188         u64 lr, sp;
189
190         if (compat_user_mode(regs)) {
191                 lr = regs->compat_lr;
192                 sp = regs->compat_sp;
193                 top_reg = 12;
194         } else {
195                 lr = regs->regs[30];
196                 sp = regs->sp;
197                 top_reg = 29;
198         }
199
200         show_regs_print_info(KERN_DEFAULT);
201         print_symbol("PC is at %s\n", instruction_pointer(regs));
202         print_symbol("LR is at %s\n", lr);
203         printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
204                regs->pc, lr, regs->pstate);
205         printk("sp : %016llx\n", sp);
206         for (i = top_reg; i >= 0; i--) {
207                 printk("x%-2d: %016llx ", i, regs->regs[i]);
208                 if (i % 2 == 0)
209                         printk("\n");
210         }
211         printk("\n");
212 }
213
214 void show_regs(struct pt_regs * regs)
215 {
216         printk("\n");
217         __show_regs(regs);
218 }
219
220 /*
221  * Free current thread data structures etc..
222  */
223 void exit_thread(void)
224 {
225 }
226
227 void flush_thread(void)
228 {
229         fpsimd_flush_thread();
230         flush_ptrace_hw_breakpoint(current);
231 }
232
233 void release_thread(struct task_struct *dead_task)
234 {
235 }
236
237 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
238 {
239         fpsimd_preserve_current_state();
240         *dst = *src;
241         return 0;
242 }
243
244 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
245
246 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
247                 unsigned long stk_sz, struct task_struct *p)
248 {
249         struct pt_regs *childregs = task_pt_regs(p);
250         unsigned long tls = p->thread.tp_value;
251
252         memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
253
254         if (likely(!(p->flags & PF_KTHREAD))) {
255                 *childregs = *current_pt_regs();
256                 childregs->regs[0] = 0;
257                 if (is_compat_thread(task_thread_info(p))) {
258                         if (stack_start)
259                                 childregs->compat_sp = stack_start;
260                 } else {
261                         /*
262                          * Read the current TLS pointer from tpidr_el0 as it may be
263                          * out-of-sync with the saved value.
264                          */
265                         asm("mrs %0, tpidr_el0" : "=r" (tls));
266                         if (stack_start) {
267                                 /* 16-byte aligned stack mandatory on AArch64 */
268                                 if (stack_start & 15)
269                                         return -EINVAL;
270                                 childregs->sp = stack_start;
271                         }
272                 }
273                 /*
274                  * If a TLS pointer was passed to clone (4th argument), use it
275                  * for the new thread.
276                  */
277                 if (clone_flags & CLONE_SETTLS)
278                         tls = childregs->regs[3];
279         } else {
280                 memset(childregs, 0, sizeof(struct pt_regs));
281                 childregs->pstate = PSR_MODE_EL1h;
282                 p->thread.cpu_context.x19 = stack_start;
283                 p->thread.cpu_context.x20 = stk_sz;
284         }
285         p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
286         p->thread.cpu_context.sp = (unsigned long)childregs;
287         p->thread.tp_value = tls;
288
289         ptrace_hw_copy_thread(p);
290
291         return 0;
292 }
293
294 static void tls_thread_switch(struct task_struct *next)
295 {
296         unsigned long tpidr, tpidrro;
297
298         if (!is_compat_task()) {
299                 asm("mrs %0, tpidr_el0" : "=r" (tpidr));
300                 current->thread.tp_value = tpidr;
301         }
302
303         if (is_compat_thread(task_thread_info(next))) {
304                 tpidr = 0;
305                 tpidrro = next->thread.tp_value;
306         } else {
307                 tpidr = next->thread.tp_value;
308                 tpidrro = 0;
309         }
310
311         asm(
312         "       msr     tpidr_el0, %0\n"
313         "       msr     tpidrro_el0, %1"
314         : : "r" (tpidr), "r" (tpidrro));
315 }
316
317 /*
318  * Thread switching.
319  */
320 struct task_struct *__switch_to(struct task_struct *prev,
321                                 struct task_struct *next)
322 {
323         struct task_struct *last;
324
325         fpsimd_thread_switch(next);
326         tls_thread_switch(next);
327         hw_breakpoint_thread_switch(next);
328         contextidr_thread_switch(next);
329
330         /*
331          * Complete any pending TLB or cache maintenance on this CPU in case
332          * the thread migrates to a different CPU.
333          */
334         dsb(ish);
335
336         /* the actual thread switch */
337         last = cpu_switch_to(prev, next);
338
339         return last;
340 }
341
342 unsigned long get_wchan(struct task_struct *p)
343 {
344         struct stackframe frame;
345         unsigned long stack_page;
346         int count = 0;
347         if (!p || p == current || p->state == TASK_RUNNING)
348                 return 0;
349
350         frame.fp = thread_saved_fp(p);
351         frame.sp = thread_saved_sp(p);
352         frame.pc = thread_saved_pc(p);
353         stack_page = (unsigned long)task_stack_page(p);
354         do {
355                 if (frame.sp < stack_page ||
356                     frame.sp >= stack_page + THREAD_SIZE ||
357                     unwind_frame(&frame))
358                         return 0;
359                 if (!in_sched_functions(frame.pc))
360                         return frame.pc;
361         } while (count ++ < 16);
362         return 0;
363 }
364
365 unsigned long arch_align_stack(unsigned long sp)
366 {
367         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
368                 sp -= get_random_int() & ~PAGE_MASK;
369         return sp & ~0xf;
370 }
371
372 static unsigned long randomize_base(unsigned long base)
373 {
374         unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
375         return randomize_range(base, range_end, 0) ? : base;
376 }
377
378 unsigned long arch_randomize_brk(struct mm_struct *mm)
379 {
380         return randomize_base(mm->brk);
381 }
382
383 unsigned long randomize_et_dyn(unsigned long base)
384 {
385         return randomize_base(base);
386 }