arm64: perf: don't expose CHAIN event in sysfs
[linux-2.6-block.git] / arch / arm64 / include / asm / kvm_mmu.h
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24
25 /*
26  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27  * "negative" addresses. This makes it impossible to directly share
28  * mappings with the kernel.
29  *
30  * Instead, give the HYP mode its own VA region at a fixed offset from
31  * the kernel by just masking the top bits (which are all ones for a
32  * kernel address).
33  *
34  * ARMv8.1 (using VHE) does have a TTBR1_EL2, and doesn't use these
35  * macros (the entire kernel runs at EL2).
36  */
37 #define HYP_PAGE_OFFSET_SHIFT   VA_BITS
38 #define HYP_PAGE_OFFSET_MASK    ((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1)
39 #define HYP_PAGE_OFFSET         (PAGE_OFFSET & HYP_PAGE_OFFSET_MASK)
40
41 /*
42  * Our virtual mapping for the idmap-ed MMU-enable code. Must be
43  * shared across all the page-tables. Conveniently, we use the last
44  * possible page, where no kernel mapping will ever exist.
45  */
46 #define TRAMPOLINE_VA           (HYP_PAGE_OFFSET_MASK & PAGE_MASK)
47
48 /*
49  * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation
50  * levels in addition to the PGD and potentially the PUD which are
51  * pre-allocated (we pre-allocate the fake PGD and the PUD when the Stage-2
52  * tables use one level of tables less than the kernel.
53  */
54 #ifdef CONFIG_ARM64_64K_PAGES
55 #define KVM_MMU_CACHE_MIN_PAGES 1
56 #else
57 #define KVM_MMU_CACHE_MIN_PAGES 2
58 #endif
59
60 #ifdef __ASSEMBLY__
61
62 #include <asm/alternative.h>
63 #include <asm/cpufeature.h>
64
65 /*
66  * Convert a kernel VA into a HYP VA.
67  * reg: VA to be converted.
68  */
69 .macro kern_hyp_va      reg
70 alternative_if_not ARM64_HAS_VIRT_HOST_EXTN     
71         and     \reg, \reg, #HYP_PAGE_OFFSET_MASK
72 alternative_else
73         nop
74 alternative_endif
75 .endm
76
77 #else
78
79 #include <asm/pgalloc.h>
80 #include <asm/cachetype.h>
81 #include <asm/cacheflush.h>
82 #include <asm/mmu_context.h>
83 #include <asm/pgtable.h>
84
85 #define KERN_TO_HYP(kva)        ((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET)
86
87 /*
88  * We currently only support a 40bit IPA.
89  */
90 #define KVM_PHYS_SHIFT  (40)
91 #define KVM_PHYS_SIZE   (1UL << KVM_PHYS_SHIFT)
92 #define KVM_PHYS_MASK   (KVM_PHYS_SIZE - 1UL)
93
94 int create_hyp_mappings(void *from, void *to);
95 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
96 void free_boot_hyp_pgd(void);
97 void free_hyp_pgds(void);
98
99 void stage2_unmap_vm(struct kvm *kvm);
100 int kvm_alloc_stage2_pgd(struct kvm *kvm);
101 void kvm_free_stage2_pgd(struct kvm *kvm);
102 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
103                           phys_addr_t pa, unsigned long size, bool writable);
104
105 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
106
107 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
108
109 phys_addr_t kvm_mmu_get_httbr(void);
110 phys_addr_t kvm_mmu_get_boot_httbr(void);
111 phys_addr_t kvm_get_idmap_vector(void);
112 int kvm_mmu_init(void);
113 void kvm_clear_hyp_idmap(void);
114
115 #define kvm_set_pte(ptep, pte)          set_pte(ptep, pte)
116 #define kvm_set_pmd(pmdp, pmd)          set_pmd(pmdp, pmd)
117
118 static inline void kvm_clean_pgd(pgd_t *pgd) {}
119 static inline void kvm_clean_pmd(pmd_t *pmd) {}
120 static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
121 static inline void kvm_clean_pte(pte_t *pte) {}
122 static inline void kvm_clean_pte_entry(pte_t *pte) {}
123
124 static inline void kvm_set_s2pte_writable(pte_t *pte)
125 {
126         pte_val(*pte) |= PTE_S2_RDWR;
127 }
128
129 static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
130 {
131         pmd_val(*pmd) |= PMD_S2_RDWR;
132 }
133
134 static inline void kvm_set_s2pte_readonly(pte_t *pte)
135 {
136         pte_val(*pte) = (pte_val(*pte) & ~PTE_S2_RDWR) | PTE_S2_RDONLY;
137 }
138
139 static inline bool kvm_s2pte_readonly(pte_t *pte)
140 {
141         return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
142 }
143
144 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
145 {
146         pmd_val(*pmd) = (pmd_val(*pmd) & ~PMD_S2_RDWR) | PMD_S2_RDONLY;
147 }
148
149 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
150 {
151         return (pmd_val(*pmd) & PMD_S2_RDWR) == PMD_S2_RDONLY;
152 }
153
154
155 #define kvm_pgd_addr_end(addr, end)     pgd_addr_end(addr, end)
156 #define kvm_pud_addr_end(addr, end)     pud_addr_end(addr, end)
157 #define kvm_pmd_addr_end(addr, end)     pmd_addr_end(addr, end)
158
159 /*
160  * In the case where PGDIR_SHIFT is larger than KVM_PHYS_SHIFT, we can address
161  * the entire IPA input range with a single pgd entry, and we would only need
162  * one pgd entry.  Note that in this case, the pgd is actually not used by
163  * the MMU for Stage-2 translations, but is merely a fake pgd used as a data
164  * structure for the kernel pgtable macros to work.
165  */
166 #if PGDIR_SHIFT > KVM_PHYS_SHIFT
167 #define PTRS_PER_S2_PGD_SHIFT   0
168 #else
169 #define PTRS_PER_S2_PGD_SHIFT   (KVM_PHYS_SHIFT - PGDIR_SHIFT)
170 #endif
171 #define PTRS_PER_S2_PGD         (1 << PTRS_PER_S2_PGD_SHIFT)
172
173 #define kvm_pgd_index(addr)     (((addr) >> PGDIR_SHIFT) & (PTRS_PER_S2_PGD - 1))
174
175 /*
176  * If we are concatenating first level stage-2 page tables, we would have less
177  * than or equal to 16 pointers in the fake PGD, because that's what the
178  * architecture allows.  In this case, (4 - CONFIG_PGTABLE_LEVELS)
179  * represents the first level for the host, and we add 1 to go to the next
180  * level (which uses contatenation) for the stage-2 tables.
181  */
182 #if PTRS_PER_S2_PGD <= 16
183 #define KVM_PREALLOC_LEVEL      (4 - CONFIG_PGTABLE_LEVELS + 1)
184 #else
185 #define KVM_PREALLOC_LEVEL      (0)
186 #endif
187
188 static inline void *kvm_get_hwpgd(struct kvm *kvm)
189 {
190         pgd_t *pgd = kvm->arch.pgd;
191         pud_t *pud;
192
193         if (KVM_PREALLOC_LEVEL == 0)
194                 return pgd;
195
196         pud = pud_offset(pgd, 0);
197         if (KVM_PREALLOC_LEVEL == 1)
198                 return pud;
199
200         BUG_ON(KVM_PREALLOC_LEVEL != 2);
201         return pmd_offset(pud, 0);
202 }
203
204 static inline unsigned int kvm_get_hwpgd_size(void)
205 {
206         if (KVM_PREALLOC_LEVEL > 0)
207                 return PTRS_PER_S2_PGD * PAGE_SIZE;
208         return PTRS_PER_S2_PGD * sizeof(pgd_t);
209 }
210
211 static inline bool kvm_page_empty(void *ptr)
212 {
213         struct page *ptr_page = virt_to_page(ptr);
214         return page_count(ptr_page) == 1;
215 }
216
217 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
218
219 #ifdef __PAGETABLE_PMD_FOLDED
220 #define kvm_pmd_table_empty(kvm, pmdp) (0)
221 #else
222 #define kvm_pmd_table_empty(kvm, pmdp) \
223         (kvm_page_empty(pmdp) && (!(kvm) || KVM_PREALLOC_LEVEL < 2))
224 #endif
225
226 #ifdef __PAGETABLE_PUD_FOLDED
227 #define kvm_pud_table_empty(kvm, pudp) (0)
228 #else
229 #define kvm_pud_table_empty(kvm, pudp) \
230         (kvm_page_empty(pudp) && (!(kvm) || KVM_PREALLOC_LEVEL < 1))
231 #endif
232
233
234 struct kvm;
235
236 #define kvm_flush_dcache_to_poc(a,l)    __flush_dcache_area((a), (l))
237
238 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
239 {
240         return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
241 }
242
243 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
244                                                kvm_pfn_t pfn,
245                                                unsigned long size,
246                                                bool ipa_uncached)
247 {
248         void *va = page_address(pfn_to_page(pfn));
249
250         if (!vcpu_has_cache_enabled(vcpu) || ipa_uncached)
251                 kvm_flush_dcache_to_poc(va, size);
252
253         if (!icache_is_aliasing()) {            /* PIPT */
254                 flush_icache_range((unsigned long)va,
255                                    (unsigned long)va + size);
256         } else if (!icache_is_aivivt()) {       /* non ASID-tagged VIVT */
257                 /* any kind of VIPT cache */
258                 __flush_icache_all();
259         }
260 }
261
262 static inline void __kvm_flush_dcache_pte(pte_t pte)
263 {
264         struct page *page = pte_page(pte);
265         kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
266 }
267
268 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
269 {
270         struct page *page = pmd_page(pmd);
271         kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
272 }
273
274 static inline void __kvm_flush_dcache_pud(pud_t pud)
275 {
276         struct page *page = pud_page(pud);
277         kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
278 }
279
280 #define kvm_virt_to_phys(x)             __virt_to_phys((unsigned long)(x))
281
282 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
283 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
284
285 static inline bool __kvm_cpu_uses_extended_idmap(void)
286 {
287         return __cpu_uses_extended_idmap();
288 }
289
290 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
291                                        pgd_t *hyp_pgd,
292                                        pgd_t *merged_hyp_pgd,
293                                        unsigned long hyp_idmap_start)
294 {
295         int idmap_idx;
296
297         /*
298          * Use the first entry to access the HYP mappings. It is
299          * guaranteed to be free, otherwise we wouldn't use an
300          * extended idmap.
301          */
302         VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
303         merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE);
304
305         /*
306          * Create another extended level entry that points to the boot HYP map,
307          * which contains an ID mapping of the HYP init code. We essentially
308          * merge the boot and runtime HYP maps by doing so, but they don't
309          * overlap anyway, so this is fine.
310          */
311         idmap_idx = hyp_idmap_start >> VA_BITS;
312         VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
313         merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE);
314 }
315
316 static inline unsigned int kvm_get_vmid_bits(void)
317 {
318         int reg = read_system_reg(SYS_ID_AA64MMFR1_EL1);
319
320         return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
321 }
322
323 #endif /* __ASSEMBLY__ */
324 #endif /* __ARM64_KVM_MMU_H__ */