d27079968341c00ef98ffc47fb35d4737feef3af
[linux-block.git] / arch / arm64 / include / asm / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/vncr_mapping.h>
31
32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
33
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
35
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
39
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41
42 #define KVM_VCPU_MAX_FEATURES 9
43 #define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1)
44
45 #define KVM_REQ_SLEEP \
46         KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47 #define KVM_REQ_IRQ_PENDING             KVM_ARCH_REQ(1)
48 #define KVM_REQ_VCPU_RESET              KVM_ARCH_REQ(2)
49 #define KVM_REQ_RECORD_STEAL            KVM_ARCH_REQ(3)
50 #define KVM_REQ_RELOAD_GICv4            KVM_ARCH_REQ(4)
51 #define KVM_REQ_RELOAD_PMU              KVM_ARCH_REQ(5)
52 #define KVM_REQ_SUSPEND                 KVM_ARCH_REQ(6)
53 #define KVM_REQ_RESYNC_PMU_EL0          KVM_ARCH_REQ(7)
54 #define KVM_REQ_NESTED_S2_UNMAP         KVM_ARCH_REQ(8)
55 #define KVM_REQ_GUEST_HYP_IRQ_PENDING   KVM_ARCH_REQ(9)
56 #define KVM_REQ_MAP_L1_VNCR_EL2         KVM_ARCH_REQ(10)
57
58 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
59                                      KVM_DIRTY_LOG_INITIALLY_SET)
60
61 #define KVM_HAVE_MMU_RWLOCK
62
63 /*
64  * Mode of operation configurable with kvm-arm.mode early param.
65  * See Documentation/admin-guide/kernel-parameters.txt for more information.
66  */
67 enum kvm_mode {
68         KVM_MODE_DEFAULT,
69         KVM_MODE_PROTECTED,
70         KVM_MODE_NV,
71         KVM_MODE_NONE,
72 };
73 #ifdef CONFIG_KVM
74 enum kvm_mode kvm_get_mode(void);
75 #else
76 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
77 #endif
78
79 extern unsigned int __ro_after_init kvm_sve_max_vl;
80 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
81 int __init kvm_arm_init_sve(void);
82
83 u32 __attribute_const__ kvm_target_cpu(void);
84 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
85 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
86
87 struct kvm_hyp_memcache {
88         phys_addr_t head;
89         unsigned long nr_pages;
90         struct pkvm_mapping *mapping; /* only used from EL1 */
91
92 #define HYP_MEMCACHE_ACCOUNT_STAGE2     BIT(1)
93         unsigned long flags;
94 };
95
96 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
97                                      phys_addr_t *p,
98                                      phys_addr_t (*to_pa)(void *virt))
99 {
100         *p = mc->head;
101         mc->head = to_pa(p);
102         mc->nr_pages++;
103 }
104
105 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
106                                      void *(*to_va)(phys_addr_t phys))
107 {
108         phys_addr_t *p = to_va(mc->head & PAGE_MASK);
109
110         if (!mc->nr_pages)
111                 return NULL;
112
113         mc->head = *p;
114         mc->nr_pages--;
115
116         return p;
117 }
118
119 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
120                                        unsigned long min_pages,
121                                        void *(*alloc_fn)(void *arg),
122                                        phys_addr_t (*to_pa)(void *virt),
123                                        void *arg)
124 {
125         while (mc->nr_pages < min_pages) {
126                 phys_addr_t *p = alloc_fn(arg);
127
128                 if (!p)
129                         return -ENOMEM;
130                 push_hyp_memcache(mc, p, to_pa);
131         }
132
133         return 0;
134 }
135
136 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
137                                        void (*free_fn)(void *virt, void *arg),
138                                        void *(*to_va)(phys_addr_t phys),
139                                        void *arg)
140 {
141         while (mc->nr_pages)
142                 free_fn(pop_hyp_memcache(mc, to_va), arg);
143 }
144
145 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
146 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
147
148 struct kvm_vmid {
149         atomic64_t id;
150 };
151
152 struct kvm_s2_mmu {
153         struct kvm_vmid vmid;
154
155         /*
156          * stage2 entry level table
157          *
158          * Two kvm_s2_mmu structures in the same VM can point to the same
159          * pgd here.  This happens when running a guest using a
160          * translation regime that isn't affected by its own stage-2
161          * translation, such as a non-VHE hypervisor running at vEL2, or
162          * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
163          * canonical stage-2 page tables.
164          */
165         phys_addr_t     pgd_phys;
166         struct kvm_pgtable *pgt;
167
168         /*
169          * VTCR value used on the host. For a non-NV guest (or a NV
170          * guest that runs in a context where its own S2 doesn't
171          * apply), its T0SZ value reflects that of the IPA size.
172          *
173          * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
174          * the guest.
175          */
176         u64     vtcr;
177
178         /* The last vcpu id that ran on each physical CPU */
179         int __percpu *last_vcpu_ran;
180
181 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
182         /*
183          * Memory cache used to split
184          * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
185          * is used to allocate stage2 page tables while splitting huge
186          * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
187          * influences both the capacity of the split page cache, and
188          * how often KVM reschedules. Be wary of raising CHUNK_SIZE
189          * too high.
190          *
191          * Protected by kvm->slots_lock.
192          */
193         struct kvm_mmu_memory_cache split_page_cache;
194         uint64_t split_page_chunk_size;
195
196         struct kvm_arch *arch;
197
198         /*
199          * For a shadow stage-2 MMU, the virtual vttbr used by the
200          * host to parse the guest S2.
201          * This either contains:
202          * - the virtual VTTBR programmed by the guest hypervisor with
203          *   CnP cleared
204          * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
205          *
206          * We also cache the full VTCR which gets used for TLB invalidation,
207          * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
208          * to be cached in a TLB" to the letter.
209          */
210         u64     tlb_vttbr;
211         u64     tlb_vtcr;
212
213         /*
214          * true when this represents a nested context where virtual
215          * HCR_EL2.VM == 1
216          */
217         bool    nested_stage2_enabled;
218
219         /*
220          * true when this MMU needs to be unmapped before being used for a new
221          * purpose.
222          */
223         bool    pending_unmap;
224
225         /*
226          *  0: Nobody is currently using this, check vttbr for validity
227          * >0: Somebody is actively using this.
228          */
229         atomic_t refcnt;
230 };
231
232 struct kvm_arch_memory_slot {
233 };
234
235 /**
236  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
237  *
238  * @std_bmap: Bitmap of standard secure service calls
239  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
240  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
241  */
242 struct kvm_smccc_features {
243         unsigned long std_bmap;
244         unsigned long std_hyp_bmap;
245         unsigned long vendor_hyp_bmap; /* Function numbers 0-63 */
246         unsigned long vendor_hyp_bmap_2; /* Function numbers 64-127 */
247 };
248
249 typedef unsigned int pkvm_handle_t;
250
251 struct kvm_protected_vm {
252         pkvm_handle_t handle;
253         struct kvm_hyp_memcache teardown_mc;
254         struct kvm_hyp_memcache stage2_teardown_mc;
255         bool enabled;
256 };
257
258 struct kvm_mpidr_data {
259         u64                     mpidr_mask;
260         DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
261 };
262
263 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
264 {
265         unsigned long index = 0, mask = data->mpidr_mask;
266         unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
267
268         bitmap_gather(&index, &aff, &mask, fls(mask));
269
270         return index;
271 }
272
273 struct kvm_sysreg_masks;
274
275 enum fgt_group_id {
276         __NO_FGT_GROUP__,
277         HFGRTR_GROUP,
278         HFGWTR_GROUP = HFGRTR_GROUP,
279         HDFGRTR_GROUP,
280         HDFGWTR_GROUP = HDFGRTR_GROUP,
281         HFGITR_GROUP,
282         HAFGRTR_GROUP,
283         HFGRTR2_GROUP,
284         HFGWTR2_GROUP = HFGRTR2_GROUP,
285         HDFGRTR2_GROUP,
286         HDFGWTR2_GROUP = HDFGRTR2_GROUP,
287         HFGITR2_GROUP,
288
289         /* Must be last */
290         __NR_FGT_GROUP_IDS__
291 };
292
293 struct kvm_arch {
294         struct kvm_s2_mmu mmu;
295
296         /*
297          * Fine-Grained UNDEF, mimicking the FGT layout defined by the
298          * architecture. We track them globally, as we present the
299          * same feature-set to all vcpus.
300          *
301          * Index 0 is currently spare.
302          */
303         u64 fgu[__NR_FGT_GROUP_IDS__];
304
305         /*
306          * Stage 2 paging state for VMs with nested S2 using a virtual
307          * VMID.
308          */
309         struct kvm_s2_mmu *nested_mmus;
310         size_t nested_mmus_size;
311         int nested_mmus_next;
312
313         /* Interrupt controller */
314         struct vgic_dist        vgic;
315
316         /* Timers */
317         struct arch_timer_vm_data timer_data;
318
319         /* Mandated version of PSCI */
320         u32 psci_version;
321
322         /* Protects VM-scoped configuration data */
323         struct mutex config_lock;
324
325         /*
326          * If we encounter a data abort without valid instruction syndrome
327          * information, report this to user space.  User space can (and
328          * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
329          * supported.
330          */
331 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER      0
332         /* Memory Tagging Extension enabled for the guest */
333 #define KVM_ARCH_FLAG_MTE_ENABLED                       1
334         /* At least one vCPU has ran in the VM */
335 #define KVM_ARCH_FLAG_HAS_RAN_ONCE                      2
336         /* The vCPU feature set for the VM is configured */
337 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED          3
338         /* PSCI SYSTEM_SUSPEND enabled for the guest */
339 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED            4
340         /* VM counter offset */
341 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET                 5
342         /* Timer PPIs made immutable */
343 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE              6
344         /* Initial ID reg values loaded */
345 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED               7
346         /* Fine-Grained UNDEF initialised */
347 #define KVM_ARCH_FLAG_FGU_INITIALIZED                   8
348         /* SVE exposed to guest */
349 #define KVM_ARCH_FLAG_GUEST_HAS_SVE                     9
350         /* MIDR_EL1, REVIDR_EL1, and AIDR_EL1 are writable from userspace */
351 #define KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS              10
352         unsigned long flags;
353
354         /* VM-wide vCPU feature set */
355         DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
356
357         /* MPIDR to vcpu index mapping, optional */
358         struct kvm_mpidr_data *mpidr_data;
359
360         /*
361          * VM-wide PMU filter, implemented as a bitmap and big enough for
362          * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
363          */
364         unsigned long *pmu_filter;
365         struct arm_pmu *arm_pmu;
366
367         cpumask_var_t supported_cpus;
368
369         /* Maximum number of counters for the guest */
370         u8 nr_pmu_counters;
371
372         /* Iterator for idreg debugfs */
373         u8      idreg_debugfs_iter;
374
375         /* Hypercall features firmware registers' descriptor */
376         struct kvm_smccc_features smccc_feat;
377         struct maple_tree smccc_filter;
378
379         /*
380          * Emulated CPU ID registers per VM
381          * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
382          * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
383          *
384          * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
385          * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
386          */
387 #define IDREG_IDX(id)           (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
388 #define KVM_ARM_ID_REG_NUM      (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
389         u64 id_regs[KVM_ARM_ID_REG_NUM];
390
391         u64 midr_el1;
392         u64 revidr_el1;
393         u64 aidr_el1;
394         u64 ctr_el0;
395
396         /* Masks for VNCR-backed and general EL2 sysregs */
397         struct kvm_sysreg_masks *sysreg_masks;
398
399         /* Count the number of VNCR_EL2 currently mapped */
400         atomic_t vncr_map_count;
401
402         /*
403          * For an untrusted host VM, 'pkvm.handle' is used to lookup
404          * the associated pKVM instance in the hypervisor.
405          */
406         struct kvm_protected_vm pkvm;
407 };
408
409 struct kvm_vcpu_fault_info {
410         u64 esr_el2;            /* Hyp Syndrom Register */
411         u64 far_el2;            /* Hyp Fault Address Register */
412         u64 hpfar_el2;          /* Hyp IPA Fault Address Register */
413         u64 disr_el1;           /* Deferred [SError] Status Register */
414 };
415
416 /*
417  * VNCR() just places the VNCR_capable registers in the enum after
418  * __VNCR_START__, and the value (after correction) to be an 8-byte offset
419  * from the VNCR base. As we don't require the enum to be otherwise ordered,
420  * we need the terrible hack below to ensure that we correctly size the
421  * sys_regs array, no matter what.
422  *
423  * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
424  * treasure trove of bit hacks:
425  * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
426  */
427 #define __MAX__(x,y)    ((x) ^ (((x) ^ (y)) & -((x) < (y))))
428 #define VNCR(r)                                         \
429         __before_##r,                                   \
430         r = __VNCR_START__ + ((VNCR_ ## r) / 8),        \
431         __after_##r = __MAX__(__before_##r - 1, r)
432
433 #define MARKER(m)                               \
434         m, __after_##m = m - 1
435
436 enum vcpu_sysreg {
437         __INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
438         MPIDR_EL1,      /* MultiProcessor Affinity Register */
439         CLIDR_EL1,      /* Cache Level ID Register */
440         CSSELR_EL1,     /* Cache Size Selection Register */
441         TPIDR_EL0,      /* Thread ID, User R/W */
442         TPIDRRO_EL0,    /* Thread ID, User R/O */
443         TPIDR_EL1,      /* Thread ID, Privileged */
444         CNTKCTL_EL1,    /* Timer Control Register (EL1) */
445         PAR_EL1,        /* Physical Address Register */
446         MDCCINT_EL1,    /* Monitor Debug Comms Channel Interrupt Enable Reg */
447         OSLSR_EL1,      /* OS Lock Status Register */
448         DISR_EL1,       /* Deferred Interrupt Status Register */
449
450         /* Performance Monitors Registers */
451         PMCR_EL0,       /* Control Register */
452         PMSELR_EL0,     /* Event Counter Selection Register */
453         PMEVCNTR0_EL0,  /* Event Counter Register (0-30) */
454         PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
455         PMCCNTR_EL0,    /* Cycle Counter Register */
456         PMEVTYPER0_EL0, /* Event Type Register (0-30) */
457         PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
458         PMCCFILTR_EL0,  /* Cycle Count Filter Register */
459         PMCNTENSET_EL0, /* Count Enable Set Register */
460         PMINTENSET_EL1, /* Interrupt Enable Set Register */
461         PMOVSSET_EL0,   /* Overflow Flag Status Set Register */
462         PMUSERENR_EL0,  /* User Enable Register */
463
464         /* Pointer Authentication Registers in a strict increasing order. */
465         APIAKEYLO_EL1,
466         APIAKEYHI_EL1,
467         APIBKEYLO_EL1,
468         APIBKEYHI_EL1,
469         APDAKEYLO_EL1,
470         APDAKEYHI_EL1,
471         APDBKEYLO_EL1,
472         APDBKEYHI_EL1,
473         APGAKEYLO_EL1,
474         APGAKEYHI_EL1,
475
476         /* Memory Tagging Extension registers */
477         RGSR_EL1,       /* Random Allocation Tag Seed Register */
478         GCR_EL1,        /* Tag Control Register */
479         TFSRE0_EL1,     /* Tag Fault Status Register (EL0) */
480
481         POR_EL0,        /* Permission Overlay Register 0 (EL0) */
482
483         /* FP/SIMD/SVE */
484         SVCR,
485         FPMR,
486
487         /* 32bit specific registers. */
488         DACR32_EL2,     /* Domain Access Control Register */
489         IFSR32_EL2,     /* Instruction Fault Status Register */
490         FPEXC32_EL2,    /* Floating-Point Exception Control Register */
491         DBGVCR32_EL2,   /* Debug Vector Catch Register */
492
493         /* EL2 registers */
494         SCTLR_EL2,      /* System Control Register (EL2) */
495         ACTLR_EL2,      /* Auxiliary Control Register (EL2) */
496         CPTR_EL2,       /* Architectural Feature Trap Register (EL2) */
497         HACR_EL2,       /* Hypervisor Auxiliary Control Register */
498         ZCR_EL2,        /* SVE Control Register (EL2) */
499         TTBR0_EL2,      /* Translation Table Base Register 0 (EL2) */
500         TTBR1_EL2,      /* Translation Table Base Register 1 (EL2) */
501         TCR_EL2,        /* Translation Control Register (EL2) */
502         PIRE0_EL2,      /* Permission Indirection Register 0 (EL2) */
503         PIR_EL2,        /* Permission Indirection Register 1 (EL2) */
504         POR_EL2,        /* Permission Overlay Register 2 (EL2) */
505         SPSR_EL2,       /* EL2 saved program status register */
506         ELR_EL2,        /* EL2 exception link register */
507         AFSR0_EL2,      /* Auxiliary Fault Status Register 0 (EL2) */
508         AFSR1_EL2,      /* Auxiliary Fault Status Register 1 (EL2) */
509         ESR_EL2,        /* Exception Syndrome Register (EL2) */
510         FAR_EL2,        /* Fault Address Register (EL2) */
511         HPFAR_EL2,      /* Hypervisor IPA Fault Address Register */
512         MAIR_EL2,       /* Memory Attribute Indirection Register (EL2) */
513         AMAIR_EL2,      /* Auxiliary Memory Attribute Indirection Register (EL2) */
514         VBAR_EL2,       /* Vector Base Address Register (EL2) */
515         RVBAR_EL2,      /* Reset Vector Base Address Register */
516         CONTEXTIDR_EL2, /* Context ID Register (EL2) */
517         SP_EL2,         /* EL2 Stack Pointer */
518         CNTHP_CTL_EL2,
519         CNTHP_CVAL_EL2,
520         CNTHV_CTL_EL2,
521         CNTHV_CVAL_EL2,
522
523         /* Anything from this can be RES0/RES1 sanitised */
524         MARKER(__SANITISED_REG_START__),
525         TCR2_EL2,       /* Extended Translation Control Register (EL2) */
526         MDCR_EL2,       /* Monitor Debug Configuration Register (EL2) */
527         CNTHCTL_EL2,    /* Counter-timer Hypervisor Control register */
528
529         /* Any VNCR-capable reg goes after this point */
530         MARKER(__VNCR_START__),
531
532         VNCR(SCTLR_EL1),/* System Control Register */
533         VNCR(ACTLR_EL1),/* Auxiliary Control Register */
534         VNCR(CPACR_EL1),/* Coprocessor Access Control */
535         VNCR(ZCR_EL1),  /* SVE Control */
536         VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
537         VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
538         VNCR(TCR_EL1),  /* Translation Control Register */
539         VNCR(TCR2_EL1), /* Extended Translation Control Register */
540         VNCR(ESR_EL1),  /* Exception Syndrome Register */
541         VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
542         VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
543         VNCR(FAR_EL1),  /* Fault Address Register */
544         VNCR(MAIR_EL1), /* Memory Attribute Indirection Register */
545         VNCR(VBAR_EL1), /* Vector Base Address Register */
546         VNCR(CONTEXTIDR_EL1),   /* Context ID Register */
547         VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
548         VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
549         VNCR(ELR_EL1),
550         VNCR(SP_EL1),
551         VNCR(SPSR_EL1),
552         VNCR(TFSR_EL1), /* Tag Fault Status Register (EL1) */
553         VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
554         VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
555         VNCR(HCR_EL2),  /* Hypervisor Configuration Register */
556         VNCR(HSTR_EL2), /* Hypervisor System Trap Register */
557         VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
558         VNCR(VTCR_EL2), /* Virtualization Translation Control Register */
559         VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
560         VNCR(HCRX_EL2), /* Extended Hypervisor Configuration Register */
561
562         /* Permission Indirection Extension registers */
563         VNCR(PIR_EL1),   /* Permission Indirection Register 1 (EL1) */
564         VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
565
566         VNCR(POR_EL1),  /* Permission Overlay Register 1 (EL1) */
567
568         VNCR(HFGRTR_EL2),
569         VNCR(HFGWTR_EL2),
570         VNCR(HFGITR_EL2),
571         VNCR(HDFGRTR_EL2),
572         VNCR(HDFGWTR_EL2),
573         VNCR(HAFGRTR_EL2),
574         VNCR(HFGRTR2_EL2),
575         VNCR(HFGWTR2_EL2),
576         VNCR(HFGITR2_EL2),
577         VNCR(HDFGRTR2_EL2),
578         VNCR(HDFGWTR2_EL2),
579
580         VNCR(VNCR_EL2),
581
582         VNCR(CNTVOFF_EL2),
583         VNCR(CNTV_CVAL_EL0),
584         VNCR(CNTV_CTL_EL0),
585         VNCR(CNTP_CVAL_EL0),
586         VNCR(CNTP_CTL_EL0),
587
588         VNCR(ICH_LR0_EL2),
589         VNCR(ICH_LR1_EL2),
590         VNCR(ICH_LR2_EL2),
591         VNCR(ICH_LR3_EL2),
592         VNCR(ICH_LR4_EL2),
593         VNCR(ICH_LR5_EL2),
594         VNCR(ICH_LR6_EL2),
595         VNCR(ICH_LR7_EL2),
596         VNCR(ICH_LR8_EL2),
597         VNCR(ICH_LR9_EL2),
598         VNCR(ICH_LR10_EL2),
599         VNCR(ICH_LR11_EL2),
600         VNCR(ICH_LR12_EL2),
601         VNCR(ICH_LR13_EL2),
602         VNCR(ICH_LR14_EL2),
603         VNCR(ICH_LR15_EL2),
604
605         VNCR(ICH_AP0R0_EL2),
606         VNCR(ICH_AP0R1_EL2),
607         VNCR(ICH_AP0R2_EL2),
608         VNCR(ICH_AP0R3_EL2),
609         VNCR(ICH_AP1R0_EL2),
610         VNCR(ICH_AP1R1_EL2),
611         VNCR(ICH_AP1R2_EL2),
612         VNCR(ICH_AP1R3_EL2),
613         VNCR(ICH_HCR_EL2),
614         VNCR(ICH_VMCR_EL2),
615
616         NR_SYS_REGS     /* Nothing after this line! */
617 };
618
619 struct kvm_sysreg_masks {
620         struct {
621                 u64     res0;
622                 u64     res1;
623         } mask[NR_SYS_REGS - __SANITISED_REG_START__];
624 };
625
626 struct fgt_masks {
627         const char      *str;
628         u64             mask;
629         u64             nmask;
630         u64             res0;
631 };
632
633 extern struct fgt_masks hfgrtr_masks;
634 extern struct fgt_masks hfgwtr_masks;
635 extern struct fgt_masks hfgitr_masks;
636 extern struct fgt_masks hdfgrtr_masks;
637 extern struct fgt_masks hdfgwtr_masks;
638 extern struct fgt_masks hafgrtr_masks;
639 extern struct fgt_masks hfgrtr2_masks;
640 extern struct fgt_masks hfgwtr2_masks;
641 extern struct fgt_masks hfgitr2_masks;
642 extern struct fgt_masks hdfgrtr2_masks;
643 extern struct fgt_masks hdfgwtr2_masks;
644
645 extern struct fgt_masks kvm_nvhe_sym(hfgrtr_masks);
646 extern struct fgt_masks kvm_nvhe_sym(hfgwtr_masks);
647 extern struct fgt_masks kvm_nvhe_sym(hfgitr_masks);
648 extern struct fgt_masks kvm_nvhe_sym(hdfgrtr_masks);
649 extern struct fgt_masks kvm_nvhe_sym(hdfgwtr_masks);
650 extern struct fgt_masks kvm_nvhe_sym(hafgrtr_masks);
651 extern struct fgt_masks kvm_nvhe_sym(hfgrtr2_masks);
652 extern struct fgt_masks kvm_nvhe_sym(hfgwtr2_masks);
653 extern struct fgt_masks kvm_nvhe_sym(hfgitr2_masks);
654 extern struct fgt_masks kvm_nvhe_sym(hdfgrtr2_masks);
655 extern struct fgt_masks kvm_nvhe_sym(hdfgwtr2_masks);
656
657 struct kvm_cpu_context {
658         struct user_pt_regs regs;       /* sp = sp_el0 */
659
660         u64     spsr_abt;
661         u64     spsr_und;
662         u64     spsr_irq;
663         u64     spsr_fiq;
664
665         struct user_fpsimd_state fp_regs;
666
667         u64 sys_regs[NR_SYS_REGS];
668
669         struct kvm_vcpu *__hyp_running_vcpu;
670
671         /* This pointer has to be 4kB aligned. */
672         u64 *vncr_array;
673 };
674
675 struct cpu_sve_state {
676         __u64 zcr_el1;
677
678         /*
679          * Ordering is important since __sve_save_state/__sve_restore_state
680          * relies on it.
681          */
682         __u32 fpsr;
683         __u32 fpcr;
684
685         /* Must be SVE_VQ_BYTES (128 bit) aligned. */
686         __u8 sve_regs[];
687 };
688
689 /*
690  * This structure is instantiated on a per-CPU basis, and contains
691  * data that is:
692  *
693  * - tied to a single physical CPU, and
694  * - either have a lifetime that does not extend past vcpu_put()
695  * - or is an invariant for the lifetime of the system
696  *
697  * Use host_data_ptr(field) as a way to access a pointer to such a
698  * field.
699  */
700 struct kvm_host_data {
701 #define KVM_HOST_DATA_FLAG_HAS_SPE                      0
702 #define KVM_HOST_DATA_FLAG_HAS_TRBE                     1
703 #define KVM_HOST_DATA_FLAG_TRBE_ENABLED                 4
704 #define KVM_HOST_DATA_FLAG_EL1_TRACING_CONFIGURED       5
705 #define KVM_HOST_DATA_FLAG_VCPU_IN_HYP_CONTEXT          6
706 #define KVM_HOST_DATA_FLAG_L1_VNCR_MAPPED               7
707         unsigned long flags;
708
709         struct kvm_cpu_context host_ctxt;
710
711         /*
712          * Hyp VA.
713          * sve_state is only used in pKVM and if system_supports_sve().
714          */
715         struct cpu_sve_state *sve_state;
716
717         /* Used by pKVM only. */
718         u64     fpmr;
719
720         /* Ownership of the FP regs */
721         enum {
722                 FP_STATE_FREE,
723                 FP_STATE_HOST_OWNED,
724                 FP_STATE_GUEST_OWNED,
725         } fp_owner;
726
727         /*
728          * host_debug_state contains the host registers which are
729          * saved and restored during world switches.
730          */
731         struct {
732                 /* {Break,watch}point registers */
733                 struct kvm_guest_debug_arch regs;
734                 /* Statistical profiling extension */
735                 u64 pmscr_el1;
736                 /* Self-hosted trace */
737                 u64 trfcr_el1;
738                 /* Values of trap registers for the host before guest entry. */
739                 u64 mdcr_el2;
740         } host_debug_state;
741
742         /* Guest trace filter value */
743         u64 trfcr_while_in_guest;
744
745         /* Number of programmable event counters (PMCR_EL0.N) for this CPU */
746         unsigned int nr_event_counters;
747
748         /* Number of debug breakpoints/watchpoints for this CPU (minus 1) */
749         unsigned int debug_brps;
750         unsigned int debug_wrps;
751 };
752
753 struct kvm_host_psci_config {
754         /* PSCI version used by host. */
755         u32 version;
756         u32 smccc_version;
757
758         /* Function IDs used by host if version is v0.1. */
759         struct psci_0_1_function_ids function_ids_0_1;
760
761         bool psci_0_1_cpu_suspend_implemented;
762         bool psci_0_1_cpu_on_implemented;
763         bool psci_0_1_cpu_off_implemented;
764         bool psci_0_1_migrate_implemented;
765 };
766
767 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
768 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
769
770 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
771 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
772
773 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
774 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
775
776 struct vcpu_reset_state {
777         unsigned long   pc;
778         unsigned long   r0;
779         bool            be;
780         bool            reset;
781 };
782
783 struct vncr_tlb;
784
785 struct kvm_vcpu_arch {
786         struct kvm_cpu_context ctxt;
787
788         /*
789          * Guest floating point state
790          *
791          * The architecture has two main floating point extensions,
792          * the original FPSIMD and SVE.  These have overlapping
793          * register views, with the FPSIMD V registers occupying the
794          * low 128 bits of the SVE Z registers.  When the core
795          * floating point code saves the register state of a task it
796          * records which view it saved in fp_type.
797          */
798         void *sve_state;
799         enum fp_type fp_type;
800         unsigned int sve_max_vl;
801
802         /* Stage 2 paging state used by the hardware on next switch */
803         struct kvm_s2_mmu *hw_mmu;
804
805         /* Values of trap registers for the guest. */
806         u64 hcr_el2;
807         u64 hcrx_el2;
808         u64 mdcr_el2;
809
810         /* Exception Information */
811         struct kvm_vcpu_fault_info fault;
812
813         /* Configuration flags, set once and for all before the vcpu can run */
814         u8 cflags;
815
816         /* Input flags to the hypervisor code, potentially cleared after use */
817         u8 iflags;
818
819         /* State flags for kernel bookkeeping, unused by the hypervisor code */
820         u8 sflags;
821
822         /*
823          * Don't run the guest (internal implementation need).
824          *
825          * Contrary to the flags above, this is set/cleared outside of
826          * a vcpu context, and thus cannot be mixed with the flags
827          * themselves (or the flag accesses need to be made atomic).
828          */
829         bool pause;
830
831         /*
832          * We maintain more than a single set of debug registers to support
833          * debugging the guest from the host and to maintain separate host and
834          * guest state during world switches. vcpu_debug_state are the debug
835          * registers of the vcpu as the guest sees them.
836          *
837          * external_debug_state contains the debug values we want to debug the
838          * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
839          */
840         struct kvm_guest_debug_arch vcpu_debug_state;
841         struct kvm_guest_debug_arch external_debug_state;
842         u64 external_mdscr_el1;
843
844         enum {
845                 VCPU_DEBUG_FREE,
846                 VCPU_DEBUG_HOST_OWNED,
847                 VCPU_DEBUG_GUEST_OWNED,
848         } debug_owner;
849
850         /* VGIC state */
851         struct vgic_cpu vgic_cpu;
852         struct arch_timer_cpu timer_cpu;
853         struct kvm_pmu pmu;
854
855         /* vcpu power state */
856         struct kvm_mp_state mp_state;
857         spinlock_t mp_state_lock;
858
859         /* Cache some mmu pages needed inside spinlock regions */
860         struct kvm_mmu_memory_cache mmu_page_cache;
861
862         /* Pages to top-up the pKVM/EL2 guest pool */
863         struct kvm_hyp_memcache pkvm_memcache;
864
865         /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
866         u64 vsesr_el2;
867
868         /* Additional reset state */
869         struct vcpu_reset_state reset_state;
870
871         /* Guest PV state */
872         struct {
873                 u64 last_steal;
874                 gpa_t base;
875         } steal;
876
877         /* Per-vcpu CCSIDR override or NULL */
878         u32 *ccsidr;
879
880         /* Per-vcpu TLB for VNCR_EL2 -- NULL when !NV */
881         struct vncr_tlb *vncr_tlb;
882 };
883
884 /*
885  * Each 'flag' is composed of a comma-separated triplet:
886  *
887  * - the flag-set it belongs to in the vcpu->arch structure
888  * - the value for that flag
889  * - the mask for that flag
890  *
891  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
892  * unpack_vcpu_flag() extract the flag value from the triplet for
893  * direct use outside of the flag accessors.
894  */
895 #define __vcpu_single_flag(_set, _f)    _set, (_f), (_f)
896
897 #define __unpack_flag(_set, _f, _m)     _f
898 #define unpack_vcpu_flag(...)           __unpack_flag(__VA_ARGS__)
899
900 #define __build_check_flag(v, flagset, f, m)                    \
901         do {                                                    \
902                 typeof(v->arch.flagset) *_fset;                 \
903                                                                 \
904                 /* Check that the flags fit in the mask */      \
905                 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
906                 /* Check that the flags fit in the type */      \
907                 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
908         } while (0)
909
910 #define __vcpu_get_flag(v, flagset, f, m)                       \
911         ({                                                      \
912                 __build_check_flag(v, flagset, f, m);           \
913                                                                 \
914                 READ_ONCE(v->arch.flagset) & (m);               \
915         })
916
917 /*
918  * Note that the set/clear accessors must be preempt-safe in order to
919  * avoid nesting them with load/put which also manipulate flags...
920  */
921 #ifdef __KVM_NVHE_HYPERVISOR__
922 /* the nVHE hypervisor is always non-preemptible */
923 #define __vcpu_flags_preempt_disable()
924 #define __vcpu_flags_preempt_enable()
925 #else
926 #define __vcpu_flags_preempt_disable()  preempt_disable()
927 #define __vcpu_flags_preempt_enable()   preempt_enable()
928 #endif
929
930 #define __vcpu_set_flag(v, flagset, f, m)                       \
931         do {                                                    \
932                 typeof(v->arch.flagset) *fset;                  \
933                                                                 \
934                 __build_check_flag(v, flagset, f, m);           \
935                                                                 \
936                 fset = &v->arch.flagset;                        \
937                 __vcpu_flags_preempt_disable();                 \
938                 if (HWEIGHT(m) > 1)                             \
939                         *fset &= ~(m);                          \
940                 *fset |= (f);                                   \
941                 __vcpu_flags_preempt_enable();                  \
942         } while (0)
943
944 #define __vcpu_clear_flag(v, flagset, f, m)                     \
945         do {                                                    \
946                 typeof(v->arch.flagset) *fset;                  \
947                                                                 \
948                 __build_check_flag(v, flagset, f, m);           \
949                                                                 \
950                 fset = &v->arch.flagset;                        \
951                 __vcpu_flags_preempt_disable();                 \
952                 *fset &= ~(m);                                  \
953                 __vcpu_flags_preempt_enable();                  \
954         } while (0)
955
956 #define vcpu_get_flag(v, ...)   __vcpu_get_flag((v), __VA_ARGS__)
957 #define vcpu_set_flag(v, ...)   __vcpu_set_flag((v), __VA_ARGS__)
958 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
959
960 /* KVM_ARM_VCPU_INIT completed */
961 #define VCPU_INITIALIZED        __vcpu_single_flag(cflags, BIT(0))
962 /* SVE config completed */
963 #define VCPU_SVE_FINALIZED      __vcpu_single_flag(cflags, BIT(1))
964 /* pKVM VCPU setup completed */
965 #define VCPU_PKVM_FINALIZED     __vcpu_single_flag(cflags, BIT(2))
966
967 /* Exception pending */
968 #define PENDING_EXCEPTION       __vcpu_single_flag(iflags, BIT(0))
969 /*
970  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
971  * be set together with an exception...
972  */
973 #define INCREMENT_PC            __vcpu_single_flag(iflags, BIT(1))
974 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
975 #define EXCEPT_MASK             __vcpu_single_flag(iflags, GENMASK(3, 1))
976
977 /* Helpers to encode exceptions with minimum fuss */
978 #define __EXCEPT_MASK_VAL       unpack_vcpu_flag(EXCEPT_MASK)
979 #define __EXCEPT_SHIFT          __builtin_ctzl(__EXCEPT_MASK_VAL)
980 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
981
982 /*
983  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
984  * values:
985  *
986  * For AArch32 EL1:
987  */
988 #define EXCEPT_AA32_UND         __vcpu_except_flags(0)
989 #define EXCEPT_AA32_IABT        __vcpu_except_flags(1)
990 #define EXCEPT_AA32_DABT        __vcpu_except_flags(2)
991 /* For AArch64: */
992 #define EXCEPT_AA64_EL1_SYNC    __vcpu_except_flags(0)
993 #define EXCEPT_AA64_EL1_IRQ     __vcpu_except_flags(1)
994 #define EXCEPT_AA64_EL1_FIQ     __vcpu_except_flags(2)
995 #define EXCEPT_AA64_EL1_SERR    __vcpu_except_flags(3)
996 /* For AArch64 with NV: */
997 #define EXCEPT_AA64_EL2_SYNC    __vcpu_except_flags(4)
998 #define EXCEPT_AA64_EL2_IRQ     __vcpu_except_flags(5)
999 #define EXCEPT_AA64_EL2_FIQ     __vcpu_except_flags(6)
1000 #define EXCEPT_AA64_EL2_SERR    __vcpu_except_flags(7)
1001
1002 /* Physical CPU not in supported_cpus */
1003 #define ON_UNSUPPORTED_CPU      __vcpu_single_flag(sflags, BIT(0))
1004 /* WFIT instruction trapped */
1005 #define IN_WFIT                 __vcpu_single_flag(sflags, BIT(1))
1006 /* vcpu system registers loaded on physical CPU */
1007 #define SYSREGS_ON_CPU          __vcpu_single_flag(sflags, BIT(2))
1008 /* Software step state is Active-pending for external debug */
1009 #define HOST_SS_ACTIVE_PENDING  __vcpu_single_flag(sflags, BIT(3))
1010 /* Software step state is Active pending for guest debug */
1011 #define GUEST_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(4))
1012 /* PMUSERENR for the guest EL0 is on physical CPU */
1013 #define PMUSERENR_ON_CPU        __vcpu_single_flag(sflags, BIT(5))
1014 /* WFI instruction trapped */
1015 #define IN_WFI                  __vcpu_single_flag(sflags, BIT(6))
1016 /* KVM is currently emulating a nested ERET */
1017 #define IN_NESTED_ERET          __vcpu_single_flag(sflags, BIT(7))
1018
1019
1020 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
1021 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +      \
1022                              sve_ffr_offset((vcpu)->arch.sve_max_vl))
1023
1024 #define vcpu_sve_max_vq(vcpu)   sve_vq_from_vl((vcpu)->arch.sve_max_vl)
1025
1026 #define vcpu_sve_zcr_elx(vcpu)                                          \
1027         (unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
1028
1029 #define sve_state_size_from_vl(sve_max_vl) ({                           \
1030         size_t __size_ret;                                              \
1031         unsigned int __vq;                                              \
1032                                                                         \
1033         if (WARN_ON(!sve_vl_valid(sve_max_vl))) {                       \
1034                 __size_ret = 0;                                         \
1035         } else {                                                        \
1036                 __vq = sve_vq_from_vl(sve_max_vl);                      \
1037                 __size_ret = SVE_SIG_REGS_SIZE(__vq);                   \
1038         }                                                               \
1039                                                                         \
1040         __size_ret;                                                     \
1041 })
1042
1043 #define vcpu_sve_state_size(vcpu) sve_state_size_from_vl((vcpu)->arch.sve_max_vl)
1044
1045 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
1046                                  KVM_GUESTDBG_USE_SW_BP | \
1047                                  KVM_GUESTDBG_USE_HW | \
1048                                  KVM_GUESTDBG_SINGLESTEP)
1049
1050 #define kvm_has_sve(kvm)        (system_supports_sve() &&               \
1051                                  test_bit(KVM_ARCH_FLAG_GUEST_HAS_SVE, &(kvm)->arch.flags))
1052
1053 #ifdef __KVM_NVHE_HYPERVISOR__
1054 #define vcpu_has_sve(vcpu)      kvm_has_sve(kern_hyp_va((vcpu)->kvm))
1055 #else
1056 #define vcpu_has_sve(vcpu)      kvm_has_sve((vcpu)->kvm)
1057 #endif
1058
1059 #ifdef CONFIG_ARM64_PTR_AUTH
1060 #define vcpu_has_ptrauth(vcpu)                                          \
1061         ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||                \
1062           cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&               \
1063          (vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) ||       \
1064           vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1065 #else
1066 #define vcpu_has_ptrauth(vcpu)          false
1067 #endif
1068
1069 #define vcpu_on_unsupported_cpu(vcpu)                                   \
1070         vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
1071
1072 #define vcpu_set_on_unsupported_cpu(vcpu)                               \
1073         vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
1074
1075 #define vcpu_clear_on_unsupported_cpu(vcpu)                             \
1076         vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
1077
1078 #define vcpu_gp_regs(v)         (&(v)->arch.ctxt.regs)
1079
1080 /*
1081  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
1082  * memory backed version of a register, and not the one most recently
1083  * accessed by a running VCPU.  For example, for userspace access or
1084  * for system registers that are never context switched, but only
1085  * emulated.
1086  *
1087  * Don't bother with VNCR-based accesses in the nVHE code, it has no
1088  * business dealing with NV.
1089  */
1090 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
1091 {
1092 #if !defined (__KVM_NVHE_HYPERVISOR__)
1093         if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
1094                      r >= __VNCR_START__ && ctxt->vncr_array))
1095                 return &ctxt->vncr_array[r - __VNCR_START__];
1096 #endif
1097         return (u64 *)&ctxt->sys_regs[r];
1098 }
1099
1100 #define __ctxt_sys_reg(c,r)                                             \
1101         ({                                                              \
1102                 BUILD_BUG_ON(__builtin_constant_p(r) &&                 \
1103                              (r) >= NR_SYS_REGS);                       \
1104                 ___ctxt_sys_reg(c, r);                                  \
1105         })
1106
1107 #define ctxt_sys_reg(c,r)       (*__ctxt_sys_reg(c,r))
1108
1109 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *, enum vcpu_sysreg, u64);
1110
1111 #define __vcpu_assign_sys_reg(v, r, val)                                \
1112         do {                                                            \
1113                 const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;   \
1114                 u64 __v = (val);                                        \
1115                 if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__) \
1116                         __v = kvm_vcpu_apply_reg_masks((v), (r), __v);  \
1117                                                                         \
1118                 ctxt_sys_reg(ctxt, (r)) = __v;                          \
1119         } while (0)
1120
1121 #define __vcpu_rmw_sys_reg(v, r, op, val)                               \
1122         do {                                                            \
1123                 const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;   \
1124                 u64 __v = ctxt_sys_reg(ctxt, (r));                      \
1125                 __v op (val);                                           \
1126                 if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__) \
1127                         __v = kvm_vcpu_apply_reg_masks((v), (r), __v);  \
1128                                                                         \
1129                 ctxt_sys_reg(ctxt, (r)) = __v;                          \
1130         } while (0)
1131
1132 #define __vcpu_sys_reg(v,r)                                             \
1133         ({                                                              \
1134                 const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;   \
1135                 u64 __v = ctxt_sys_reg(ctxt, (r));                      \
1136                 if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__) \
1137                         __v = kvm_vcpu_apply_reg_masks((v), (r), __v);  \
1138                 __v;                                                    \
1139         })
1140
1141 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
1142 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
1143
1144 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
1145 {
1146         /*
1147          * *** VHE ONLY ***
1148          *
1149          * System registers listed in the switch are not saved on every
1150          * exit from the guest but are only saved on vcpu_put.
1151          *
1152          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1153          * should never be listed below, because the guest cannot modify its
1154          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
1155          * thread when emulating cross-VCPU communication.
1156          */
1157         if (!has_vhe())
1158                 return false;
1159
1160         switch (reg) {
1161         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
1162         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
1163         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
1164         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
1165         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
1166         case TCR2_EL1:          *val = read_sysreg_s(SYS_TCR2_EL12);    break;
1167         case PIR_EL1:           *val = read_sysreg_s(SYS_PIR_EL12);     break;
1168         case PIRE0_EL1:         *val = read_sysreg_s(SYS_PIRE0_EL12);   break;
1169         case POR_EL1:           *val = read_sysreg_s(SYS_POR_EL12);     break;
1170         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
1171         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
1172         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
1173         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
1174         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
1175         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
1176         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
1177         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
1178         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
1179         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
1180         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
1181         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
1182         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
1183         case SPSR_EL1:          *val = read_sysreg_s(SYS_SPSR_EL12);    break;
1184         case PAR_EL1:           *val = read_sysreg_par();               break;
1185         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
1186         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
1187         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
1188         case ZCR_EL1:           *val = read_sysreg_s(SYS_ZCR_EL12);     break;
1189         default:                return false;
1190         }
1191
1192         return true;
1193 }
1194
1195 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
1196 {
1197         /*
1198          * *** VHE ONLY ***
1199          *
1200          * System registers listed in the switch are not restored on every
1201          * entry to the guest but are only restored on vcpu_load.
1202          *
1203          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1204          * should never be listed below, because the MPIDR should only be set
1205          * once, before running the VCPU, and never changed later.
1206          */
1207         if (!has_vhe())
1208                 return false;
1209
1210         switch (reg) {
1211         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
1212         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
1213         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
1214         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
1215         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
1216         case TCR2_EL1:          write_sysreg_s(val, SYS_TCR2_EL12);     break;
1217         case PIR_EL1:           write_sysreg_s(val, SYS_PIR_EL12);      break;
1218         case PIRE0_EL1:         write_sysreg_s(val, SYS_PIRE0_EL12);    break;
1219         case POR_EL1:           write_sysreg_s(val, SYS_POR_EL12);      break;
1220         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
1221         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
1222         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
1223         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
1224         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
1225         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
1226         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
1227         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
1228         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
1229         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
1230         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
1231         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
1232         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
1233         case SPSR_EL1:          write_sysreg_s(val, SYS_SPSR_EL12);     break;
1234         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
1235         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
1236         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
1237         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
1238         case ZCR_EL1:           write_sysreg_s(val, SYS_ZCR_EL12);      break;
1239         default:                return false;
1240         }
1241
1242         return true;
1243 }
1244
1245 struct kvm_vm_stat {
1246         struct kvm_vm_stat_generic generic;
1247 };
1248
1249 struct kvm_vcpu_stat {
1250         struct kvm_vcpu_stat_generic generic;
1251         u64 hvc_exit_stat;
1252         u64 wfe_exit_stat;
1253         u64 wfi_exit_stat;
1254         u64 mmio_exit_user;
1255         u64 mmio_exit_kernel;
1256         u64 signal_exits;
1257         u64 exits;
1258 };
1259
1260 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1261 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1262 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1263 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1264
1265 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1266 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1267
1268 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1269                               struct kvm_vcpu_events *events);
1270
1271 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1272                               struct kvm_vcpu_events *events);
1273
1274 void kvm_arm_halt_guest(struct kvm *kvm);
1275 void kvm_arm_resume_guest(struct kvm *kvm);
1276
1277 #define vcpu_has_run_once(vcpu) (!!READ_ONCE((vcpu)->pid))
1278
1279 #ifndef __KVM_NVHE_HYPERVISOR__
1280 #define kvm_call_hyp_nvhe(f, ...)                                               \
1281         ({                                                              \
1282                 struct arm_smccc_res res;                               \
1283                                                                         \
1284                 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),               \
1285                                   ##__VA_ARGS__, &res);                 \
1286                 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);                   \
1287                                                                         \
1288                 res.a1;                                                 \
1289         })
1290
1291 /*
1292  * The isb() below is there to guarantee the same behaviour on VHE as on !VHE,
1293  * where the eret to EL1 acts as a context synchronization event.
1294  */
1295 #define kvm_call_hyp(f, ...)                                            \
1296         do {                                                            \
1297                 if (has_vhe()) {                                        \
1298                         f(__VA_ARGS__);                                 \
1299                         isb();                                          \
1300                 } else {                                                \
1301                         kvm_call_hyp_nvhe(f, ##__VA_ARGS__);            \
1302                 }                                                       \
1303         } while(0)
1304
1305 #define kvm_call_hyp_ret(f, ...)                                        \
1306         ({                                                              \
1307                 typeof(f(__VA_ARGS__)) ret;                             \
1308                                                                         \
1309                 if (has_vhe()) {                                        \
1310                         ret = f(__VA_ARGS__);                           \
1311                 } else {                                                \
1312                         ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);      \
1313                 }                                                       \
1314                                                                         \
1315                 ret;                                                    \
1316         })
1317 #else /* __KVM_NVHE_HYPERVISOR__ */
1318 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1319 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1320 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1321 #endif /* __KVM_NVHE_HYPERVISOR__ */
1322
1323 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1324 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1325
1326 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1327 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1328 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1329 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1330 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1331 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1332 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1333
1334 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1335 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1336
1337 int __init kvm_sys_reg_table_init(void);
1338 struct sys_reg_desc;
1339 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1340                                   unsigned int idx);
1341 int __init populate_nv_trap_config(void);
1342
1343 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1344
1345 /* MMIO helpers */
1346 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1347 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1348
1349 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1350 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1351
1352 /*
1353  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1354  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1355  * loaded is considered to be "in guest".
1356  */
1357 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1358 {
1359         return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1360 }
1361
1362 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1363 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1364 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1365
1366 bool kvm_arm_pvtime_supported(void);
1367 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1368                             struct kvm_device_attr *attr);
1369 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1370                             struct kvm_device_attr *attr);
1371 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1372                             struct kvm_device_attr *attr);
1373
1374 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1375 int __init kvm_arm_vmid_alloc_init(void);
1376 void __init kvm_arm_vmid_alloc_free(void);
1377 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1378 void kvm_arm_vmid_clear_active(void);
1379
1380 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1381 {
1382         vcpu_arch->steal.base = INVALID_GPA;
1383 }
1384
1385 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1386 {
1387         return (vcpu_arch->steal.base != INVALID_GPA);
1388 }
1389
1390 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1391
1392 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1393
1394 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1395
1396 /*
1397  * How we access per-CPU host data depends on the where we access it from,
1398  * and the mode we're in:
1399  *
1400  * - VHE and nVHE hypervisor bits use their locally defined instance
1401  *
1402  * - the rest of the kernel use either the VHE or nVHE one, depending on
1403  *   the mode we're running in.
1404  *
1405  *   Unless we're in protected mode, fully deprivileged, and the nVHE
1406  *   per-CPU stuff is exclusively accessible to the protected EL2 code.
1407  *   In this case, the EL1 code uses the *VHE* data as its private state
1408  *   (which makes sense in a way as there shouldn't be any shared state
1409  *   between the host and the hypervisor).
1410  *
1411  * Yes, this is all totally trivial. Shoot me now.
1412  */
1413 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1414 #define host_data_ptr(f)        (&this_cpu_ptr(&kvm_host_data)->f)
1415 #else
1416 #define host_data_ptr(f)                                                \
1417         (static_branch_unlikely(&kvm_protected_mode_initialized) ?      \
1418          &this_cpu_ptr(&kvm_host_data)->f :                             \
1419          &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1420 #endif
1421
1422 #define host_data_test_flag(flag)                                       \
1423         (test_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags)))
1424 #define host_data_set_flag(flag)                                        \
1425         set_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags))
1426 #define host_data_clear_flag(flag)                                      \
1427         clear_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags))
1428
1429 /* Check whether the FP regs are owned by the guest */
1430 static inline bool guest_owns_fp_regs(void)
1431 {
1432         return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1433 }
1434
1435 /* Check whether the FP regs are owned by the host */
1436 static inline bool host_owns_fp_regs(void)
1437 {
1438         return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1439 }
1440
1441 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1442 {
1443         /* The host's MPIDR is immutable, so let's set it up at boot time */
1444         ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1445 }
1446
1447 static inline bool kvm_system_needs_idmapped_vectors(void)
1448 {
1449         return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1450 }
1451
1452 void kvm_init_host_debug_data(void);
1453 void kvm_vcpu_load_debug(struct kvm_vcpu *vcpu);
1454 void kvm_vcpu_put_debug(struct kvm_vcpu *vcpu);
1455 void kvm_debug_set_guest_ownership(struct kvm_vcpu *vcpu);
1456 void kvm_debug_handle_oslar(struct kvm_vcpu *vcpu, u64 val);
1457
1458 #define kvm_vcpu_os_lock_enabled(vcpu)          \
1459         (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1460
1461 #define kvm_debug_regs_in_use(vcpu)             \
1462         ((vcpu)->arch.debug_owner != VCPU_DEBUG_FREE)
1463 #define kvm_host_owns_debug_regs(vcpu)          \
1464         ((vcpu)->arch.debug_owner == VCPU_DEBUG_HOST_OWNED)
1465 #define kvm_guest_owns_debug_regs(vcpu)         \
1466         ((vcpu)->arch.debug_owner == VCPU_DEBUG_GUEST_OWNED)
1467
1468 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1469                                struct kvm_device_attr *attr);
1470 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1471                                struct kvm_device_attr *attr);
1472 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1473                                struct kvm_device_attr *attr);
1474
1475 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1476                                struct kvm_arm_copy_mte_tags *copy_tags);
1477 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1478                                     struct kvm_arm_counter_offset *offset);
1479 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1480                                         struct reg_mask_range *range);
1481
1482 /* Guest/host FPSIMD coordination helpers */
1483 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1484 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1485 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1486 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1487 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1488
1489 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1490 {
1491         return (!has_vhe() && attr->exclude_host);
1492 }
1493
1494 #ifdef CONFIG_KVM
1495 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1496 void kvm_clr_pmu_events(u64 clr);
1497 bool kvm_set_pmuserenr(u64 val);
1498 void kvm_enable_trbe(void);
1499 void kvm_disable_trbe(void);
1500 void kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest);
1501 #else
1502 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
1503 static inline void kvm_clr_pmu_events(u64 clr) {}
1504 static inline bool kvm_set_pmuserenr(u64 val)
1505 {
1506         return false;
1507 }
1508 static inline void kvm_enable_trbe(void) {}
1509 static inline void kvm_disable_trbe(void) {}
1510 static inline void kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest) {}
1511 #endif
1512
1513 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1514 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1515
1516 int __init kvm_set_ipa_limit(void);
1517 u32 kvm_get_pa_bits(struct kvm *kvm);
1518
1519 #define __KVM_HAVE_ARCH_VM_ALLOC
1520 struct kvm *kvm_arch_alloc_vm(void);
1521
1522 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1523
1524 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1525
1526 #define kvm_vm_is_protected(kvm)        (is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
1527
1528 #define vcpu_is_protected(vcpu)         kvm_vm_is_protected((vcpu)->kvm)
1529
1530 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1531 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1532
1533 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1534
1535 #define kvm_has_mte(kvm)                                        \
1536         (system_supports_mte() &&                               \
1537          test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1538
1539 #define kvm_supports_32bit_el0()                                \
1540         (system_supports_32bit_el0() &&                         \
1541          !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1542
1543 #define kvm_vm_has_ran_once(kvm)                                        \
1544         (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1545
1546 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1547 {
1548         return test_bit(feature, ka->vcpu_features);
1549 }
1550
1551 #define kvm_vcpu_has_feature(k, f)      __vcpu_has_feature(&(k)->arch, (f))
1552 #define vcpu_has_feature(v, f)  __vcpu_has_feature(&(v)->kvm->arch, (f))
1553
1554 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1555
1556 int kvm_trng_call(struct kvm_vcpu *vcpu);
1557 #ifdef CONFIG_KVM
1558 extern phys_addr_t hyp_mem_base;
1559 extern phys_addr_t hyp_mem_size;
1560 void __init kvm_hyp_reserve(void);
1561 #else
1562 static inline void kvm_hyp_reserve(void) { }
1563 #endif
1564
1565 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1566 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1567
1568 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1569 {
1570         switch (reg) {
1571         case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1572                 return &ka->id_regs[IDREG_IDX(reg)];
1573         case SYS_CTR_EL0:
1574                 return &ka->ctr_el0;
1575         case SYS_MIDR_EL1:
1576                 return &ka->midr_el1;
1577         case SYS_REVIDR_EL1:
1578                 return &ka->revidr_el1;
1579         case SYS_AIDR_EL1:
1580                 return &ka->aidr_el1;
1581         default:
1582                 WARN_ON_ONCE(1);
1583                 return NULL;
1584         }
1585 }
1586
1587 #define kvm_read_vm_id_reg(kvm, reg)                                    \
1588         ({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1589
1590 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1591
1592 #define __expand_field_sign_unsigned(id, fld, val)                      \
1593         ((u64)SYS_FIELD_VALUE(id, fld, val))
1594
1595 #define __expand_field_sign_signed(id, fld, val)                        \
1596         ({                                                              \
1597                 u64 __val = SYS_FIELD_VALUE(id, fld, val);              \
1598                 sign_extend64(__val, id##_##fld##_WIDTH - 1);           \
1599         })
1600
1601 #define get_idreg_field_unsigned(kvm, id, fld)                          \
1602         ({                                                              \
1603                 u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id);        \
1604                 FIELD_GET(id##_##fld##_MASK, __val);                    \
1605         })
1606
1607 #define get_idreg_field_signed(kvm, id, fld)                            \
1608         ({                                                              \
1609                 u64 __val = get_idreg_field_unsigned(kvm, id, fld);     \
1610                 sign_extend64(__val, id##_##fld##_WIDTH - 1);           \
1611         })
1612
1613 #define get_idreg_field_enum(kvm, id, fld)                              \
1614         get_idreg_field_unsigned(kvm, id, fld)
1615
1616 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit)                    \
1617         (get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1618
1619 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)                  \
1620         (get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1621
1622 #define kvm_cmp_feat(kvm, id, fld, op, limit)                           \
1623         (id##_##fld##_SIGNED ?                                          \
1624          kvm_cmp_feat_signed(kvm, id, fld, op, limit) :                 \
1625          kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1626
1627 #define __kvm_has_feat(kvm, id, fld, limit)                             \
1628         kvm_cmp_feat(kvm, id, fld, >=, limit)
1629
1630 #define kvm_has_feat(kvm, ...) __kvm_has_feat(kvm, __VA_ARGS__)
1631
1632 #define __kvm_has_feat_enum(kvm, id, fld, val)                          \
1633         kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1634
1635 #define kvm_has_feat_enum(kvm, ...) __kvm_has_feat_enum(kvm, __VA_ARGS__)
1636
1637 #define kvm_has_feat_range(kvm, id, fld, min, max)                      \
1638         (kvm_cmp_feat(kvm, id, fld, >=, min) &&                         \
1639         kvm_cmp_feat(kvm, id, fld, <=, max))
1640
1641 /* Check for a given level of PAuth support */
1642 #define kvm_has_pauth(k, l)                                             \
1643         ({                                                              \
1644                 bool pa, pi, pa3;                                       \
1645                                                                         \
1646                 pa  = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l);      \
1647                 pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP);    \
1648                 pi  = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l);      \
1649                 pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP);    \
1650                 pa3  = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l);    \
1651                 pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP);  \
1652                                                                         \
1653                 (pa + pi + pa3) == 1;                                   \
1654         })
1655
1656 #define kvm_has_fpmr(k)                                 \
1657         (system_supports_fpmr() &&                      \
1658          kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1659
1660 #define kvm_has_tcr2(k)                         \
1661         (kvm_has_feat((k), ID_AA64MMFR3_EL1, TCRX, IMP))
1662
1663 #define kvm_has_s1pie(k)                                \
1664         (kvm_has_feat((k), ID_AA64MMFR3_EL1, S1PIE, IMP))
1665
1666 #define kvm_has_s1poe(k)                                \
1667         (kvm_has_feat((k), ID_AA64MMFR3_EL1, S1POE, IMP))
1668
1669 static inline bool kvm_arch_has_irq_bypass(void)
1670 {
1671         return true;
1672 }
1673
1674 void compute_fgu(struct kvm *kvm, enum fgt_group_id fgt);
1675 void get_reg_fixed_bits(struct kvm *kvm, enum vcpu_sysreg reg, u64 *res0, u64 *res1);
1676 void check_feature_map(void);
1677
1678
1679 #endif /* __ARM64_KVM_HOST_H__ */