Merge branch kvm-arm64/spec-ptw into kvmarm-master/next
[linux-block.git] / arch / arm64 / include / asm / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30
31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40
41 #define KVM_VCPU_MAX_FEATURES 7
42
43 #define KVM_REQ_SLEEP \
44         KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
45 #define KVM_REQ_IRQ_PENDING     KVM_ARCH_REQ(1)
46 #define KVM_REQ_VCPU_RESET      KVM_ARCH_REQ(2)
47 #define KVM_REQ_RECORD_STEAL    KVM_ARCH_REQ(3)
48 #define KVM_REQ_RELOAD_GICv4    KVM_ARCH_REQ(4)
49 #define KVM_REQ_RELOAD_PMU      KVM_ARCH_REQ(5)
50 #define KVM_REQ_SUSPEND         KVM_ARCH_REQ(6)
51
52 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
53                                      KVM_DIRTY_LOG_INITIALLY_SET)
54
55 #define KVM_HAVE_MMU_RWLOCK
56
57 /*
58  * Mode of operation configurable with kvm-arm.mode early param.
59  * See Documentation/admin-guide/kernel-parameters.txt for more information.
60  */
61 enum kvm_mode {
62         KVM_MODE_DEFAULT,
63         KVM_MODE_PROTECTED,
64         KVM_MODE_NV,
65         KVM_MODE_NONE,
66 };
67 #ifdef CONFIG_KVM
68 enum kvm_mode kvm_get_mode(void);
69 #else
70 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
71 #endif
72
73 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
74
75 extern unsigned int __ro_after_init kvm_sve_max_vl;
76 int __init kvm_arm_init_sve(void);
77
78 u32 __attribute_const__ kvm_target_cpu(void);
79 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
80 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
81
82 struct kvm_hyp_memcache {
83         phys_addr_t head;
84         unsigned long nr_pages;
85 };
86
87 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
88                                      phys_addr_t *p,
89                                      phys_addr_t (*to_pa)(void *virt))
90 {
91         *p = mc->head;
92         mc->head = to_pa(p);
93         mc->nr_pages++;
94 }
95
96 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
97                                      void *(*to_va)(phys_addr_t phys))
98 {
99         phys_addr_t *p = to_va(mc->head);
100
101         if (!mc->nr_pages)
102                 return NULL;
103
104         mc->head = *p;
105         mc->nr_pages--;
106
107         return p;
108 }
109
110 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
111                                        unsigned long min_pages,
112                                        void *(*alloc_fn)(void *arg),
113                                        phys_addr_t (*to_pa)(void *virt),
114                                        void *arg)
115 {
116         while (mc->nr_pages < min_pages) {
117                 phys_addr_t *p = alloc_fn(arg);
118
119                 if (!p)
120                         return -ENOMEM;
121                 push_hyp_memcache(mc, p, to_pa);
122         }
123
124         return 0;
125 }
126
127 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
128                                        void (*free_fn)(void *virt, void *arg),
129                                        void *(*to_va)(phys_addr_t phys),
130                                        void *arg)
131 {
132         while (mc->nr_pages)
133                 free_fn(pop_hyp_memcache(mc, to_va), arg);
134 }
135
136 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
137 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
138
139 struct kvm_vmid {
140         atomic64_t id;
141 };
142
143 struct kvm_s2_mmu {
144         struct kvm_vmid vmid;
145
146         /*
147          * stage2 entry level table
148          *
149          * Two kvm_s2_mmu structures in the same VM can point to the same
150          * pgd here.  This happens when running a guest using a
151          * translation regime that isn't affected by its own stage-2
152          * translation, such as a non-VHE hypervisor running at vEL2, or
153          * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
154          * canonical stage-2 page tables.
155          */
156         phys_addr_t     pgd_phys;
157         struct kvm_pgtable *pgt;
158
159         /* The last vcpu id that ran on each physical CPU */
160         int __percpu *last_vcpu_ran;
161
162         struct kvm_arch *arch;
163 };
164
165 struct kvm_arch_memory_slot {
166 };
167
168 /**
169  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
170  *
171  * @std_bmap: Bitmap of standard secure service calls
172  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
173  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
174  */
175 struct kvm_smccc_features {
176         unsigned long std_bmap;
177         unsigned long std_hyp_bmap;
178         unsigned long vendor_hyp_bmap;
179 };
180
181 typedef unsigned int pkvm_handle_t;
182
183 struct kvm_protected_vm {
184         pkvm_handle_t handle;
185         struct kvm_hyp_memcache teardown_mc;
186 };
187
188 struct kvm_arch {
189         struct kvm_s2_mmu mmu;
190
191         /* VTCR_EL2 value for this VM */
192         u64    vtcr;
193
194         /* Interrupt controller */
195         struct vgic_dist        vgic;
196
197         /* Timers */
198         struct arch_timer_vm_data timer_data;
199
200         /* Mandated version of PSCI */
201         u32 psci_version;
202
203         /* Protects VM-scoped configuration data */
204         struct mutex config_lock;
205
206         /*
207          * If we encounter a data abort without valid instruction syndrome
208          * information, report this to user space.  User space can (and
209          * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
210          * supported.
211          */
212 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER      0
213         /* Memory Tagging Extension enabled for the guest */
214 #define KVM_ARCH_FLAG_MTE_ENABLED                       1
215         /* At least one vCPU has ran in the VM */
216 #define KVM_ARCH_FLAG_HAS_RAN_ONCE                      2
217         /*
218          * The following two bits are used to indicate the guest's EL1
219          * register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT
220          * bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set.
221          * Otherwise, the guest's EL1 register width has not yet been
222          * determined yet.
223          */
224 #define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED              3
225 #define KVM_ARCH_FLAG_EL1_32BIT                         4
226         /* PSCI SYSTEM_SUSPEND enabled for the guest */
227 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED            5
228         /* VM counter offset */
229 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET                 6
230         /* Timer PPIs made immutable */
231 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE              7
232         /* SMCCC filter initialized for the VM */
233 #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED           8
234         unsigned long flags;
235
236         /*
237          * VM-wide PMU filter, implemented as a bitmap and big enough for
238          * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
239          */
240         unsigned long *pmu_filter;
241         struct arm_pmu *arm_pmu;
242
243         cpumask_var_t supported_cpus;
244
245         u8 pfr0_csv2;
246         u8 pfr0_csv3;
247         struct {
248                 u8 imp:4;
249                 u8 unimp:4;
250         } dfr0_pmuver;
251
252         /* Hypercall features firmware registers' descriptor */
253         struct kvm_smccc_features smccc_feat;
254         struct maple_tree smccc_filter;
255
256         /*
257          * For an untrusted host VM, 'pkvm.handle' is used to lookup
258          * the associated pKVM instance in the hypervisor.
259          */
260         struct kvm_protected_vm pkvm;
261 };
262
263 struct kvm_vcpu_fault_info {
264         u64 esr_el2;            /* Hyp Syndrom Register */
265         u64 far_el2;            /* Hyp Fault Address Register */
266         u64 hpfar_el2;          /* Hyp IPA Fault Address Register */
267         u64 disr_el1;           /* Deferred [SError] Status Register */
268 };
269
270 enum vcpu_sysreg {
271         __INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
272         MPIDR_EL1,      /* MultiProcessor Affinity Register */
273         CLIDR_EL1,      /* Cache Level ID Register */
274         CSSELR_EL1,     /* Cache Size Selection Register */
275         SCTLR_EL1,      /* System Control Register */
276         ACTLR_EL1,      /* Auxiliary Control Register */
277         CPACR_EL1,      /* Coprocessor Access Control */
278         ZCR_EL1,        /* SVE Control */
279         TTBR0_EL1,      /* Translation Table Base Register 0 */
280         TTBR1_EL1,      /* Translation Table Base Register 1 */
281         TCR_EL1,        /* Translation Control Register */
282         ESR_EL1,        /* Exception Syndrome Register */
283         AFSR0_EL1,      /* Auxiliary Fault Status Register 0 */
284         AFSR1_EL1,      /* Auxiliary Fault Status Register 1 */
285         FAR_EL1,        /* Fault Address Register */
286         MAIR_EL1,       /* Memory Attribute Indirection Register */
287         VBAR_EL1,       /* Vector Base Address Register */
288         CONTEXTIDR_EL1, /* Context ID Register */
289         TPIDR_EL0,      /* Thread ID, User R/W */
290         TPIDRRO_EL0,    /* Thread ID, User R/O */
291         TPIDR_EL1,      /* Thread ID, Privileged */
292         AMAIR_EL1,      /* Aux Memory Attribute Indirection Register */
293         CNTKCTL_EL1,    /* Timer Control Register (EL1) */
294         PAR_EL1,        /* Physical Address Register */
295         MDSCR_EL1,      /* Monitor Debug System Control Register */
296         MDCCINT_EL1,    /* Monitor Debug Comms Channel Interrupt Enable Reg */
297         OSLSR_EL1,      /* OS Lock Status Register */
298         DISR_EL1,       /* Deferred Interrupt Status Register */
299
300         /* Performance Monitors Registers */
301         PMCR_EL0,       /* Control Register */
302         PMSELR_EL0,     /* Event Counter Selection Register */
303         PMEVCNTR0_EL0,  /* Event Counter Register (0-30) */
304         PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
305         PMCCNTR_EL0,    /* Cycle Counter Register */
306         PMEVTYPER0_EL0, /* Event Type Register (0-30) */
307         PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
308         PMCCFILTR_EL0,  /* Cycle Count Filter Register */
309         PMCNTENSET_EL0, /* Count Enable Set Register */
310         PMINTENSET_EL1, /* Interrupt Enable Set Register */
311         PMOVSSET_EL0,   /* Overflow Flag Status Set Register */
312         PMUSERENR_EL0,  /* User Enable Register */
313
314         /* Pointer Authentication Registers in a strict increasing order. */
315         APIAKEYLO_EL1,
316         APIAKEYHI_EL1,
317         APIBKEYLO_EL1,
318         APIBKEYHI_EL1,
319         APDAKEYLO_EL1,
320         APDAKEYHI_EL1,
321         APDBKEYLO_EL1,
322         APDBKEYHI_EL1,
323         APGAKEYLO_EL1,
324         APGAKEYHI_EL1,
325
326         ELR_EL1,
327         SP_EL1,
328         SPSR_EL1,
329
330         CNTVOFF_EL2,
331         CNTV_CVAL_EL0,
332         CNTV_CTL_EL0,
333         CNTP_CVAL_EL0,
334         CNTP_CTL_EL0,
335
336         /* Memory Tagging Extension registers */
337         RGSR_EL1,       /* Random Allocation Tag Seed Register */
338         GCR_EL1,        /* Tag Control Register */
339         TFSR_EL1,       /* Tag Fault Status Register (EL1) */
340         TFSRE0_EL1,     /* Tag Fault Status Register (EL0) */
341
342         /* 32bit specific registers. */
343         DACR32_EL2,     /* Domain Access Control Register */
344         IFSR32_EL2,     /* Instruction Fault Status Register */
345         FPEXC32_EL2,    /* Floating-Point Exception Control Register */
346         DBGVCR32_EL2,   /* Debug Vector Catch Register */
347
348         /* EL2 registers */
349         VPIDR_EL2,      /* Virtualization Processor ID Register */
350         VMPIDR_EL2,     /* Virtualization Multiprocessor ID Register */
351         SCTLR_EL2,      /* System Control Register (EL2) */
352         ACTLR_EL2,      /* Auxiliary Control Register (EL2) */
353         HCR_EL2,        /* Hypervisor Configuration Register */
354         MDCR_EL2,       /* Monitor Debug Configuration Register (EL2) */
355         CPTR_EL2,       /* Architectural Feature Trap Register (EL2) */
356         HSTR_EL2,       /* Hypervisor System Trap Register */
357         HACR_EL2,       /* Hypervisor Auxiliary Control Register */
358         TTBR0_EL2,      /* Translation Table Base Register 0 (EL2) */
359         TTBR1_EL2,      /* Translation Table Base Register 1 (EL2) */
360         TCR_EL2,        /* Translation Control Register (EL2) */
361         VTTBR_EL2,      /* Virtualization Translation Table Base Register */
362         VTCR_EL2,       /* Virtualization Translation Control Register */
363         SPSR_EL2,       /* EL2 saved program status register */
364         ELR_EL2,        /* EL2 exception link register */
365         AFSR0_EL2,      /* Auxiliary Fault Status Register 0 (EL2) */
366         AFSR1_EL2,      /* Auxiliary Fault Status Register 1 (EL2) */
367         ESR_EL2,        /* Exception Syndrome Register (EL2) */
368         FAR_EL2,        /* Fault Address Register (EL2) */
369         HPFAR_EL2,      /* Hypervisor IPA Fault Address Register */
370         MAIR_EL2,       /* Memory Attribute Indirection Register (EL2) */
371         AMAIR_EL2,      /* Auxiliary Memory Attribute Indirection Register (EL2) */
372         VBAR_EL2,       /* Vector Base Address Register (EL2) */
373         RVBAR_EL2,      /* Reset Vector Base Address Register */
374         CONTEXTIDR_EL2, /* Context ID Register (EL2) */
375         TPIDR_EL2,      /* EL2 Software Thread ID Register */
376         CNTHCTL_EL2,    /* Counter-timer Hypervisor Control register */
377         SP_EL2,         /* EL2 Stack Pointer */
378         CNTHP_CTL_EL2,
379         CNTHP_CVAL_EL2,
380         CNTHV_CTL_EL2,
381         CNTHV_CVAL_EL2,
382
383         NR_SYS_REGS     /* Nothing after this line! */
384 };
385
386 struct kvm_cpu_context {
387         struct user_pt_regs regs;       /* sp = sp_el0 */
388
389         u64     spsr_abt;
390         u64     spsr_und;
391         u64     spsr_irq;
392         u64     spsr_fiq;
393
394         struct user_fpsimd_state fp_regs;
395
396         u64 sys_regs[NR_SYS_REGS];
397
398         struct kvm_vcpu *__hyp_running_vcpu;
399 };
400
401 struct kvm_host_data {
402         struct kvm_cpu_context host_ctxt;
403 };
404
405 struct kvm_host_psci_config {
406         /* PSCI version used by host. */
407         u32 version;
408
409         /* Function IDs used by host if version is v0.1. */
410         struct psci_0_1_function_ids function_ids_0_1;
411
412         bool psci_0_1_cpu_suspend_implemented;
413         bool psci_0_1_cpu_on_implemented;
414         bool psci_0_1_cpu_off_implemented;
415         bool psci_0_1_migrate_implemented;
416 };
417
418 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
419 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
420
421 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
422 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
423
424 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
425 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
426
427 struct vcpu_reset_state {
428         unsigned long   pc;
429         unsigned long   r0;
430         bool            be;
431         bool            reset;
432 };
433
434 struct kvm_vcpu_arch {
435         struct kvm_cpu_context ctxt;
436
437         /*
438          * Guest floating point state
439          *
440          * The architecture has two main floating point extensions,
441          * the original FPSIMD and SVE.  These have overlapping
442          * register views, with the FPSIMD V registers occupying the
443          * low 128 bits of the SVE Z registers.  When the core
444          * floating point code saves the register state of a task it
445          * records which view it saved in fp_type.
446          */
447         void *sve_state;
448         enum fp_type fp_type;
449         unsigned int sve_max_vl;
450         u64 svcr;
451
452         /* Stage 2 paging state used by the hardware on next switch */
453         struct kvm_s2_mmu *hw_mmu;
454
455         /* Values of trap registers for the guest. */
456         u64 hcr_el2;
457         u64 mdcr_el2;
458         u64 cptr_el2;
459
460         /* Values of trap registers for the host before guest entry. */
461         u64 mdcr_el2_host;
462
463         /* Exception Information */
464         struct kvm_vcpu_fault_info fault;
465
466         /* Ownership of the FP regs */
467         enum {
468                 FP_STATE_FREE,
469                 FP_STATE_HOST_OWNED,
470                 FP_STATE_GUEST_OWNED,
471         } fp_state;
472
473         /* Configuration flags, set once and for all before the vcpu can run */
474         u8 cflags;
475
476         /* Input flags to the hypervisor code, potentially cleared after use */
477         u8 iflags;
478
479         /* State flags for kernel bookkeeping, unused by the hypervisor code */
480         u8 sflags;
481
482         /*
483          * Don't run the guest (internal implementation need).
484          *
485          * Contrary to the flags above, this is set/cleared outside of
486          * a vcpu context, and thus cannot be mixed with the flags
487          * themselves (or the flag accesses need to be made atomic).
488          */
489         bool pause;
490
491         /*
492          * We maintain more than a single set of debug registers to support
493          * debugging the guest from the host and to maintain separate host and
494          * guest state during world switches. vcpu_debug_state are the debug
495          * registers of the vcpu as the guest sees them.  host_debug_state are
496          * the host registers which are saved and restored during
497          * world switches. external_debug_state contains the debug
498          * values we want to debug the guest. This is set via the
499          * KVM_SET_GUEST_DEBUG ioctl.
500          *
501          * debug_ptr points to the set of debug registers that should be loaded
502          * onto the hardware when running the guest.
503          */
504         struct kvm_guest_debug_arch *debug_ptr;
505         struct kvm_guest_debug_arch vcpu_debug_state;
506         struct kvm_guest_debug_arch external_debug_state;
507
508         struct user_fpsimd_state *host_fpsimd_state;    /* hyp VA */
509         struct task_struct *parent_task;
510
511         struct {
512                 /* {Break,watch}point registers */
513                 struct kvm_guest_debug_arch regs;
514                 /* Statistical profiling extension */
515                 u64 pmscr_el1;
516                 /* Self-hosted trace */
517                 u64 trfcr_el1;
518         } host_debug_state;
519
520         /* VGIC state */
521         struct vgic_cpu vgic_cpu;
522         struct arch_timer_cpu timer_cpu;
523         struct kvm_pmu pmu;
524
525         /*
526          * Guest registers we preserve during guest debugging.
527          *
528          * These shadow registers are updated by the kvm_handle_sys_reg
529          * trap handler if the guest accesses or updates them while we
530          * are using guest debug.
531          */
532         struct {
533                 u32     mdscr_el1;
534                 bool    pstate_ss;
535         } guest_debug_preserved;
536
537         /* vcpu power state */
538         struct kvm_mp_state mp_state;
539         spinlock_t mp_state_lock;
540
541         /* Cache some mmu pages needed inside spinlock regions */
542         struct kvm_mmu_memory_cache mmu_page_cache;
543
544         /* Target CPU and feature flags */
545         int target;
546         DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
547
548         /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
549         u64 vsesr_el2;
550
551         /* Additional reset state */
552         struct vcpu_reset_state reset_state;
553
554         /* Guest PV state */
555         struct {
556                 u64 last_steal;
557                 gpa_t base;
558         } steal;
559
560         /* Per-vcpu CCSIDR override or NULL */
561         u32 *ccsidr;
562 };
563
564 /*
565  * Each 'flag' is composed of a comma-separated triplet:
566  *
567  * - the flag-set it belongs to in the vcpu->arch structure
568  * - the value for that flag
569  * - the mask for that flag
570  *
571  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
572  * unpack_vcpu_flag() extract the flag value from the triplet for
573  * direct use outside of the flag accessors.
574  */
575 #define __vcpu_single_flag(_set, _f)    _set, (_f), (_f)
576
577 #define __unpack_flag(_set, _f, _m)     _f
578 #define unpack_vcpu_flag(...)           __unpack_flag(__VA_ARGS__)
579
580 #define __build_check_flag(v, flagset, f, m)                    \
581         do {                                                    \
582                 typeof(v->arch.flagset) *_fset;                 \
583                                                                 \
584                 /* Check that the flags fit in the mask */      \
585                 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
586                 /* Check that the flags fit in the type */      \
587                 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
588         } while (0)
589
590 #define __vcpu_get_flag(v, flagset, f, m)                       \
591         ({                                                      \
592                 __build_check_flag(v, flagset, f, m);           \
593                                                                 \
594                 v->arch.flagset & (m);                          \
595         })
596
597 #define __vcpu_set_flag(v, flagset, f, m)                       \
598         do {                                                    \
599                 typeof(v->arch.flagset) *fset;                  \
600                                                                 \
601                 __build_check_flag(v, flagset, f, m);           \
602                                                                 \
603                 fset = &v->arch.flagset;                        \
604                 if (HWEIGHT(m) > 1)                             \
605                         *fset &= ~(m);                          \
606                 *fset |= (f);                                   \
607         } while (0)
608
609 #define __vcpu_clear_flag(v, flagset, f, m)                     \
610         do {                                                    \
611                 typeof(v->arch.flagset) *fset;                  \
612                                                                 \
613                 __build_check_flag(v, flagset, f, m);           \
614                                                                 \
615                 fset = &v->arch.flagset;                        \
616                 *fset &= ~(m);                                  \
617         } while (0)
618
619 #define vcpu_get_flag(v, ...)   __vcpu_get_flag((v), __VA_ARGS__)
620 #define vcpu_set_flag(v, ...)   __vcpu_set_flag((v), __VA_ARGS__)
621 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
622
623 /* SVE exposed to guest */
624 #define GUEST_HAS_SVE           __vcpu_single_flag(cflags, BIT(0))
625 /* SVE config completed */
626 #define VCPU_SVE_FINALIZED      __vcpu_single_flag(cflags, BIT(1))
627 /* PTRAUTH exposed to guest */
628 #define GUEST_HAS_PTRAUTH       __vcpu_single_flag(cflags, BIT(2))
629
630 /* Exception pending */
631 #define PENDING_EXCEPTION       __vcpu_single_flag(iflags, BIT(0))
632 /*
633  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
634  * be set together with an exception...
635  */
636 #define INCREMENT_PC            __vcpu_single_flag(iflags, BIT(1))
637 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
638 #define EXCEPT_MASK             __vcpu_single_flag(iflags, GENMASK(3, 1))
639
640 /* Helpers to encode exceptions with minimum fuss */
641 #define __EXCEPT_MASK_VAL       unpack_vcpu_flag(EXCEPT_MASK)
642 #define __EXCEPT_SHIFT          __builtin_ctzl(__EXCEPT_MASK_VAL)
643 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
644
645 /*
646  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
647  * values:
648  *
649  * For AArch32 EL1:
650  */
651 #define EXCEPT_AA32_UND         __vcpu_except_flags(0)
652 #define EXCEPT_AA32_IABT        __vcpu_except_flags(1)
653 #define EXCEPT_AA32_DABT        __vcpu_except_flags(2)
654 /* For AArch64: */
655 #define EXCEPT_AA64_EL1_SYNC    __vcpu_except_flags(0)
656 #define EXCEPT_AA64_EL1_IRQ     __vcpu_except_flags(1)
657 #define EXCEPT_AA64_EL1_FIQ     __vcpu_except_flags(2)
658 #define EXCEPT_AA64_EL1_SERR    __vcpu_except_flags(3)
659 /* For AArch64 with NV: */
660 #define EXCEPT_AA64_EL2_SYNC    __vcpu_except_flags(4)
661 #define EXCEPT_AA64_EL2_IRQ     __vcpu_except_flags(5)
662 #define EXCEPT_AA64_EL2_FIQ     __vcpu_except_flags(6)
663 #define EXCEPT_AA64_EL2_SERR    __vcpu_except_flags(7)
664 /* Guest debug is live */
665 #define DEBUG_DIRTY             __vcpu_single_flag(iflags, BIT(4))
666 /* Save SPE context if active  */
667 #define DEBUG_STATE_SAVE_SPE    __vcpu_single_flag(iflags, BIT(5))
668 /* Save TRBE context if active  */
669 #define DEBUG_STATE_SAVE_TRBE   __vcpu_single_flag(iflags, BIT(6))
670 /* vcpu running in HYP context */
671 #define VCPU_HYP_CONTEXT        __vcpu_single_flag(iflags, BIT(7))
672
673 /* SVE enabled for host EL0 */
674 #define HOST_SVE_ENABLED        __vcpu_single_flag(sflags, BIT(0))
675 /* SME enabled for EL0 */
676 #define HOST_SME_ENABLED        __vcpu_single_flag(sflags, BIT(1))
677 /* Physical CPU not in supported_cpus */
678 #define ON_UNSUPPORTED_CPU      __vcpu_single_flag(sflags, BIT(2))
679 /* WFIT instruction trapped */
680 #define IN_WFIT                 __vcpu_single_flag(sflags, BIT(3))
681 /* vcpu system registers loaded on physical CPU */
682 #define SYSREGS_ON_CPU          __vcpu_single_flag(sflags, BIT(4))
683 /* Software step state is Active-pending */
684 #define DBG_SS_ACTIVE_PENDING   __vcpu_single_flag(sflags, BIT(5))
685
686
687 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
688 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +      \
689                              sve_ffr_offset((vcpu)->arch.sve_max_vl))
690
691 #define vcpu_sve_max_vq(vcpu)   sve_vq_from_vl((vcpu)->arch.sve_max_vl)
692
693 #define vcpu_sve_state_size(vcpu) ({                                    \
694         size_t __size_ret;                                              \
695         unsigned int __vcpu_vq;                                         \
696                                                                         \
697         if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {          \
698                 __size_ret = 0;                                         \
699         } else {                                                        \
700                 __vcpu_vq = vcpu_sve_max_vq(vcpu);                      \
701                 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);              \
702         }                                                               \
703                                                                         \
704         __size_ret;                                                     \
705 })
706
707 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
708                                  KVM_GUESTDBG_USE_SW_BP | \
709                                  KVM_GUESTDBG_USE_HW | \
710                                  KVM_GUESTDBG_SINGLESTEP)
711
712 #define vcpu_has_sve(vcpu) (system_supports_sve() &&                    \
713                             vcpu_get_flag(vcpu, GUEST_HAS_SVE))
714
715 #ifdef CONFIG_ARM64_PTR_AUTH
716 #define vcpu_has_ptrauth(vcpu)                                          \
717         ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||                \
718           cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&               \
719           vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
720 #else
721 #define vcpu_has_ptrauth(vcpu)          false
722 #endif
723
724 #define vcpu_on_unsupported_cpu(vcpu)                                   \
725         vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
726
727 #define vcpu_set_on_unsupported_cpu(vcpu)                               \
728         vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
729
730 #define vcpu_clear_on_unsupported_cpu(vcpu)                             \
731         vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
732
733 #define vcpu_gp_regs(v)         (&(v)->arch.ctxt.regs)
734
735 /*
736  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
737  * memory backed version of a register, and not the one most recently
738  * accessed by a running VCPU.  For example, for userspace access or
739  * for system registers that are never context switched, but only
740  * emulated.
741  */
742 #define __ctxt_sys_reg(c,r)     (&(c)->sys_regs[(r)])
743
744 #define ctxt_sys_reg(c,r)       (*__ctxt_sys_reg(c,r))
745
746 #define __vcpu_sys_reg(v,r)     (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
747
748 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
749 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
750
751 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
752 {
753         /*
754          * *** VHE ONLY ***
755          *
756          * System registers listed in the switch are not saved on every
757          * exit from the guest but are only saved on vcpu_put.
758          *
759          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
760          * should never be listed below, because the guest cannot modify its
761          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
762          * thread when emulating cross-VCPU communication.
763          */
764         if (!has_vhe())
765                 return false;
766
767         switch (reg) {
768         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
769         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
770         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
771         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
772         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
773         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
774         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
775         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
776         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
777         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
778         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
779         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
780         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
781         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
782         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
783         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
784         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
785         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
786         case PAR_EL1:           *val = read_sysreg_par();               break;
787         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
788         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
789         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
790         default:                return false;
791         }
792
793         return true;
794 }
795
796 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
797 {
798         /*
799          * *** VHE ONLY ***
800          *
801          * System registers listed in the switch are not restored on every
802          * entry to the guest but are only restored on vcpu_load.
803          *
804          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
805          * should never be listed below, because the MPIDR should only be set
806          * once, before running the VCPU, and never changed later.
807          */
808         if (!has_vhe())
809                 return false;
810
811         switch (reg) {
812         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
813         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
814         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
815         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
816         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
817         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
818         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
819         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
820         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
821         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
822         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
823         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
824         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
825         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
826         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
827         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
828         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
829         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
830         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
831         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
832         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
833         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
834         default:                return false;
835         }
836
837         return true;
838 }
839
840 struct kvm_vm_stat {
841         struct kvm_vm_stat_generic generic;
842 };
843
844 struct kvm_vcpu_stat {
845         struct kvm_vcpu_stat_generic generic;
846         u64 hvc_exit_stat;
847         u64 wfe_exit_stat;
848         u64 wfi_exit_stat;
849         u64 mmio_exit_user;
850         u64 mmio_exit_kernel;
851         u64 signal_exits;
852         u64 exits;
853 };
854
855 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
856 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
857 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
858 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
859 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
860
861 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
862 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
863
864 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
865                               struct kvm_vcpu_events *events);
866
867 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
868                               struct kvm_vcpu_events *events);
869
870 #define KVM_ARCH_WANT_MMU_NOTIFIER
871
872 void kvm_arm_halt_guest(struct kvm *kvm);
873 void kvm_arm_resume_guest(struct kvm *kvm);
874
875 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
876
877 #ifndef __KVM_NVHE_HYPERVISOR__
878 #define kvm_call_hyp_nvhe(f, ...)                                               \
879         ({                                                              \
880                 struct arm_smccc_res res;                               \
881                                                                         \
882                 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),               \
883                                   ##__VA_ARGS__, &res);                 \
884                 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);                   \
885                                                                         \
886                 res.a1;                                                 \
887         })
888
889 /*
890  * The couple of isb() below are there to guarantee the same behaviour
891  * on VHE as on !VHE, where the eret to EL1 acts as a context
892  * synchronization event.
893  */
894 #define kvm_call_hyp(f, ...)                                            \
895         do {                                                            \
896                 if (has_vhe()) {                                        \
897                         f(__VA_ARGS__);                                 \
898                         isb();                                          \
899                 } else {                                                \
900                         kvm_call_hyp_nvhe(f, ##__VA_ARGS__);            \
901                 }                                                       \
902         } while(0)
903
904 #define kvm_call_hyp_ret(f, ...)                                        \
905         ({                                                              \
906                 typeof(f(__VA_ARGS__)) ret;                             \
907                                                                         \
908                 if (has_vhe()) {                                        \
909                         ret = f(__VA_ARGS__);                           \
910                         isb();                                          \
911                 } else {                                                \
912                         ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);      \
913                 }                                                       \
914                                                                         \
915                 ret;                                                    \
916         })
917 #else /* __KVM_NVHE_HYPERVISOR__ */
918 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
919 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
920 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
921 #endif /* __KVM_NVHE_HYPERVISOR__ */
922
923 void force_vm_exit(const cpumask_t *mask);
924
925 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
926 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
927
928 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
929 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
930 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
931 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
932 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
933 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
934 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
935
936 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
937
938 int __init kvm_sys_reg_table_init(void);
939
940 bool lock_all_vcpus(struct kvm *kvm);
941 void unlock_all_vcpus(struct kvm *kvm);
942
943 /* MMIO helpers */
944 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
945 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
946
947 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
948 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
949
950 /*
951  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
952  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
953  * loaded is considered to be "in guest".
954  */
955 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
956 {
957         return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
958 }
959
960 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
961 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
962 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
963
964 bool kvm_arm_pvtime_supported(void);
965 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
966                             struct kvm_device_attr *attr);
967 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
968                             struct kvm_device_attr *attr);
969 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
970                             struct kvm_device_attr *attr);
971
972 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
973 int __init kvm_arm_vmid_alloc_init(void);
974 void __init kvm_arm_vmid_alloc_free(void);
975 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
976 void kvm_arm_vmid_clear_active(void);
977
978 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
979 {
980         vcpu_arch->steal.base = INVALID_GPA;
981 }
982
983 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
984 {
985         return (vcpu_arch->steal.base != INVALID_GPA);
986 }
987
988 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
989
990 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
991
992 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
993
994 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
995 {
996         /* The host's MPIDR is immutable, so let's set it up at boot time */
997         ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
998 }
999
1000 static inline bool kvm_system_needs_idmapped_vectors(void)
1001 {
1002         return cpus_have_const_cap(ARM64_SPECTRE_V3A);
1003 }
1004
1005 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
1006
1007 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1008 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1009
1010 void kvm_arm_init_debug(void);
1011 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1012 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1013 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1014 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1015
1016 #define kvm_vcpu_os_lock_enabled(vcpu)          \
1017         (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & SYS_OSLSR_OSLK))
1018
1019 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1020                                struct kvm_device_attr *attr);
1021 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1022                                struct kvm_device_attr *attr);
1023 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1024                                struct kvm_device_attr *attr);
1025
1026 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1027                                 struct kvm_arm_copy_mte_tags *copy_tags);
1028 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1029                                     struct kvm_arm_counter_offset *offset);
1030
1031 /* Guest/host FPSIMD coordination helpers */
1032 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1033 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1034 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1035 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1036 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1037 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1038
1039 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1040 {
1041         return (!has_vhe() && attr->exclude_host);
1042 }
1043
1044 /* Flags for host debug state */
1045 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1046 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1047
1048 #ifdef CONFIG_KVM
1049 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1050 void kvm_clr_pmu_events(u32 clr);
1051 #else
1052 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
1053 static inline void kvm_clr_pmu_events(u32 clr) {}
1054 #endif
1055
1056 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
1057 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
1058
1059 int __init kvm_set_ipa_limit(void);
1060
1061 #define __KVM_HAVE_ARCH_VM_ALLOC
1062 struct kvm *kvm_arch_alloc_vm(void);
1063
1064 static inline bool kvm_vm_is_protected(struct kvm *kvm)
1065 {
1066         return false;
1067 }
1068
1069 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
1070
1071 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1072 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1073
1074 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1075
1076 #define kvm_has_mte(kvm)                                        \
1077         (system_supports_mte() &&                               \
1078          test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1079
1080 #define kvm_supports_32bit_el0()                                \
1081         (system_supports_32bit_el0() &&                         \
1082          !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1083
1084 #define kvm_vm_has_ran_once(kvm)                                        \
1085         (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1086
1087 int kvm_trng_call(struct kvm_vcpu *vcpu);
1088 #ifdef CONFIG_KVM
1089 extern phys_addr_t hyp_mem_base;
1090 extern phys_addr_t hyp_mem_size;
1091 void __init kvm_hyp_reserve(void);
1092 #else
1093 static inline void kvm_hyp_reserve(void) { }
1094 #endif
1095
1096 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1097 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1098
1099 #endif /* __ARM64_KVM_HOST_H__ */