ARM: 6674/1: LPAE: use long long format when printing physical addresses and ptes
[linux-2.6-block.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
30
31 #include "mm.h"
32
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
35 /*
36  * empty_zero_page is a special page that is used for
37  * zero-initialized data and COW.
38  */
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
41
42 /*
43  * The pmd table for the upper-most set of pages.
44  */
45 pmd_t *top_pmd;
46
47 #define CPOLICY_UNCACHED        0
48 #define CPOLICY_BUFFERED        1
49 #define CPOLICY_WRITETHROUGH    2
50 #define CPOLICY_WRITEBACK       3
51 #define CPOLICY_WRITEALLOC      4
52
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
57
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
60
61 struct cachepolicy {
62         const char      policy[16];
63         unsigned int    cr_mask;
64         unsigned int    pmd;
65         pteval_t        pte;
66 };
67
68 static struct cachepolicy cache_policies[] __initdata = {
69         {
70                 .policy         = "uncached",
71                 .cr_mask        = CR_W|CR_C,
72                 .pmd            = PMD_SECT_UNCACHED,
73                 .pte            = L_PTE_MT_UNCACHED,
74         }, {
75                 .policy         = "buffered",
76                 .cr_mask        = CR_C,
77                 .pmd            = PMD_SECT_BUFFERED,
78                 .pte            = L_PTE_MT_BUFFERABLE,
79         }, {
80                 .policy         = "writethrough",
81                 .cr_mask        = 0,
82                 .pmd            = PMD_SECT_WT,
83                 .pte            = L_PTE_MT_WRITETHROUGH,
84         }, {
85                 .policy         = "writeback",
86                 .cr_mask        = 0,
87                 .pmd            = PMD_SECT_WB,
88                 .pte            = L_PTE_MT_WRITEBACK,
89         }, {
90                 .policy         = "writealloc",
91                 .cr_mask        = 0,
92                 .pmd            = PMD_SECT_WBWA,
93                 .pte            = L_PTE_MT_WRITEALLOC,
94         }
95 };
96
97 /*
98  * These are useful for identifying cache coherency
99  * problems by allowing the cache or the cache and
100  * writebuffer to be turned off.  (Note: the write
101  * buffer should not be on and the cache off).
102  */
103 static int __init early_cachepolicy(char *p)
104 {
105         int i;
106
107         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108                 int len = strlen(cache_policies[i].policy);
109
110                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
111                         cachepolicy = i;
112                         cr_alignment &= ~cache_policies[i].cr_mask;
113                         cr_no_alignment &= ~cache_policies[i].cr_mask;
114                         break;
115                 }
116         }
117         if (i == ARRAY_SIZE(cache_policies))
118                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119         /*
120          * This restriction is partly to do with the way we boot; it is
121          * unpredictable to have memory mapped using two different sets of
122          * memory attributes (shared, type, and cache attribs).  We can not
123          * change these attributes once the initial assembly has setup the
124          * page tables.
125          */
126         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128                 cachepolicy = CPOLICY_WRITEBACK;
129         }
130         flush_cache_all();
131         set_cr(cr_alignment);
132         return 0;
133 }
134 early_param("cachepolicy", early_cachepolicy);
135
136 static int __init early_nocache(char *__unused)
137 {
138         char *p = "buffered";
139         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140         early_cachepolicy(p);
141         return 0;
142 }
143 early_param("nocache", early_nocache);
144
145 static int __init early_nowrite(char *__unused)
146 {
147         char *p = "uncached";
148         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149         early_cachepolicy(p);
150         return 0;
151 }
152 early_param("nowb", early_nowrite);
153
154 static int __init early_ecc(char *p)
155 {
156         if (memcmp(p, "on", 2) == 0)
157                 ecc_mask = PMD_PROTECTION;
158         else if (memcmp(p, "off", 3) == 0)
159                 ecc_mask = 0;
160         return 0;
161 }
162 early_param("ecc", early_ecc);
163
164 static int __init noalign_setup(char *__unused)
165 {
166         cr_alignment &= ~CR_A;
167         cr_no_alignment &= ~CR_A;
168         set_cr(cr_alignment);
169         return 1;
170 }
171 __setup("noalign", noalign_setup);
172
173 #ifndef CONFIG_SMP
174 void adjust_cr(unsigned long mask, unsigned long set)
175 {
176         unsigned long flags;
177
178         mask &= ~CR_A;
179
180         set &= mask;
181
182         local_irq_save(flags);
183
184         cr_no_alignment = (cr_no_alignment & ~mask) | set;
185         cr_alignment = (cr_alignment & ~mask) | set;
186
187         set_cr((get_cr() & ~mask) | set);
188
189         local_irq_restore(flags);
190 }
191 #endif
192
193 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
194 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195
196 static struct mem_type mem_types[] = {
197         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
198                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199                                   L_PTE_SHARED,
200                 .prot_l1        = PMD_TYPE_TABLE,
201                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
202                 .domain         = DOMAIN_IO,
203         },
204         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206                 .prot_l1        = PMD_TYPE_TABLE,
207                 .prot_sect      = PROT_SECT_DEVICE,
208                 .domain         = DOMAIN_IO,
209         },
210         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
211                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212                 .prot_l1        = PMD_TYPE_TABLE,
213                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
214                 .domain         = DOMAIN_IO,
215         },      
216         [MT_DEVICE_WC] = {      /* ioremap_wc */
217                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218                 .prot_l1        = PMD_TYPE_TABLE,
219                 .prot_sect      = PROT_SECT_DEVICE,
220                 .domain         = DOMAIN_IO,
221         },
222         [MT_UNCACHED] = {
223                 .prot_pte       = PROT_PTE_DEVICE,
224                 .prot_l1        = PMD_TYPE_TABLE,
225                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
226                 .domain         = DOMAIN_IO,
227         },
228         [MT_CACHECLEAN] = {
229                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230                 .domain    = DOMAIN_KERNEL,
231         },
232         [MT_MINICLEAN] = {
233                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234                 .domain    = DOMAIN_KERNEL,
235         },
236         [MT_LOW_VECTORS] = {
237                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238                                 L_PTE_RDONLY,
239                 .prot_l1   = PMD_TYPE_TABLE,
240                 .domain    = DOMAIN_USER,
241         },
242         [MT_HIGH_VECTORS] = {
243                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244                                 L_PTE_USER | L_PTE_RDONLY,
245                 .prot_l1   = PMD_TYPE_TABLE,
246                 .domain    = DOMAIN_USER,
247         },
248         [MT_MEMORY] = {
249                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
250                 .prot_l1   = PMD_TYPE_TABLE,
251                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
252                 .domain    = DOMAIN_KERNEL,
253         },
254         [MT_ROM] = {
255                 .prot_sect = PMD_TYPE_SECT,
256                 .domain    = DOMAIN_KERNEL,
257         },
258         [MT_MEMORY_NONCACHED] = {
259                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
260                                 L_PTE_MT_BUFFERABLE,
261                 .prot_l1   = PMD_TYPE_TABLE,
262                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
263                 .domain    = DOMAIN_KERNEL,
264         },
265         [MT_MEMORY_DTCM] = {
266                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
267                                 L_PTE_XN,
268                 .prot_l1   = PMD_TYPE_TABLE,
269                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
270                 .domain    = DOMAIN_KERNEL,
271         },
272         [MT_MEMORY_ITCM] = {
273                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
274                 .prot_l1   = PMD_TYPE_TABLE,
275                 .domain    = DOMAIN_KERNEL,
276         },
277 };
278
279 const struct mem_type *get_mem_type(unsigned int type)
280 {
281         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
282 }
283 EXPORT_SYMBOL(get_mem_type);
284
285 /*
286  * Adjust the PMD section entries according to the CPU in use.
287  */
288 static void __init build_mem_type_table(void)
289 {
290         struct cachepolicy *cp;
291         unsigned int cr = get_cr();
292         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
293         int cpu_arch = cpu_architecture();
294         int i;
295
296         if (cpu_arch < CPU_ARCH_ARMv6) {
297 #if defined(CONFIG_CPU_DCACHE_DISABLE)
298                 if (cachepolicy > CPOLICY_BUFFERED)
299                         cachepolicy = CPOLICY_BUFFERED;
300 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
301                 if (cachepolicy > CPOLICY_WRITETHROUGH)
302                         cachepolicy = CPOLICY_WRITETHROUGH;
303 #endif
304         }
305         if (cpu_arch < CPU_ARCH_ARMv5) {
306                 if (cachepolicy >= CPOLICY_WRITEALLOC)
307                         cachepolicy = CPOLICY_WRITEBACK;
308                 ecc_mask = 0;
309         }
310         if (is_smp())
311                 cachepolicy = CPOLICY_WRITEALLOC;
312
313         /*
314          * Strip out features not present on earlier architectures.
315          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
316          * without extended page tables don't have the 'Shared' bit.
317          */
318         if (cpu_arch < CPU_ARCH_ARMv5)
319                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
320                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
321         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
322                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
323                         mem_types[i].prot_sect &= ~PMD_SECT_S;
324
325         /*
326          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
327          * "update-able on write" bit on ARM610).  However, Xscale and
328          * Xscale3 require this bit to be cleared.
329          */
330         if (cpu_is_xscale() || cpu_is_xsc3()) {
331                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
332                         mem_types[i].prot_sect &= ~PMD_BIT4;
333                         mem_types[i].prot_l1 &= ~PMD_BIT4;
334                 }
335         } else if (cpu_arch < CPU_ARCH_ARMv6) {
336                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
337                         if (mem_types[i].prot_l1)
338                                 mem_types[i].prot_l1 |= PMD_BIT4;
339                         if (mem_types[i].prot_sect)
340                                 mem_types[i].prot_sect |= PMD_BIT4;
341                 }
342         }
343
344         /*
345          * Mark the device areas according to the CPU/architecture.
346          */
347         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
348                 if (!cpu_is_xsc3()) {
349                         /*
350                          * Mark device regions on ARMv6+ as execute-never
351                          * to prevent speculative instruction fetches.
352                          */
353                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
354                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
355                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
356                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
357                 }
358                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
359                         /*
360                          * For ARMv7 with TEX remapping,
361                          * - shared device is SXCB=1100
362                          * - nonshared device is SXCB=0100
363                          * - write combine device mem is SXCB=0001
364                          * (Uncached Normal memory)
365                          */
366                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
367                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
368                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
369                 } else if (cpu_is_xsc3()) {
370                         /*
371                          * For Xscale3,
372                          * - shared device is TEXCB=00101
373                          * - nonshared device is TEXCB=01000
374                          * - write combine device mem is TEXCB=00100
375                          * (Inner/Outer Uncacheable in xsc3 parlance)
376                          */
377                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
378                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
379                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
380                 } else {
381                         /*
382                          * For ARMv6 and ARMv7 without TEX remapping,
383                          * - shared device is TEXCB=00001
384                          * - nonshared device is TEXCB=01000
385                          * - write combine device mem is TEXCB=00100
386                          * (Uncached Normal in ARMv6 parlance).
387                          */
388                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
389                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
390                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
391                 }
392         } else {
393                 /*
394                  * On others, write combining is "Uncached/Buffered"
395                  */
396                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
397         }
398
399         /*
400          * Now deal with the memory-type mappings
401          */
402         cp = &cache_policies[cachepolicy];
403         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
404
405         /*
406          * Only use write-through for non-SMP systems
407          */
408         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
409                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
410
411         /*
412          * Enable CPU-specific coherency if supported.
413          * (Only available on XSC3 at the moment.)
414          */
415         if (arch_is_coherent() && cpu_is_xsc3()) {
416                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
417                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
418                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
419                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
420         }
421         /*
422          * ARMv6 and above have extended page tables.
423          */
424         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
425                 /*
426                  * Mark cache clean areas and XIP ROM read only
427                  * from SVC mode and no access from userspace.
428                  */
429                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
430                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
431                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
432
433                 if (is_smp()) {
434                         /*
435                          * Mark memory with the "shared" attribute
436                          * for SMP systems
437                          */
438                         user_pgprot |= L_PTE_SHARED;
439                         kern_pgprot |= L_PTE_SHARED;
440                         vecs_pgprot |= L_PTE_SHARED;
441                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
442                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
443                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
444                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
445                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
446                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
447                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
448                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
449                 }
450         }
451
452         /*
453          * Non-cacheable Normal - intended for memory areas that must
454          * not cause dirty cache line writebacks when used
455          */
456         if (cpu_arch >= CPU_ARCH_ARMv6) {
457                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
458                         /* Non-cacheable Normal is XCB = 001 */
459                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
460                                 PMD_SECT_BUFFERED;
461                 } else {
462                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
463                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
464                                 PMD_SECT_TEX(1);
465                 }
466         } else {
467                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
468         }
469
470         for (i = 0; i < 16; i++) {
471                 unsigned long v = pgprot_val(protection_map[i]);
472                 protection_map[i] = __pgprot(v | user_pgprot);
473         }
474
475         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
476         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
477
478         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
479         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
480                                  L_PTE_DIRTY | kern_pgprot);
481
482         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
483         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
484         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
485         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
486         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
487         mem_types[MT_ROM].prot_sect |= cp->pmd;
488
489         switch (cp->pmd) {
490         case PMD_SECT_WT:
491                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
492                 break;
493         case PMD_SECT_WB:
494         case PMD_SECT_WBWA:
495                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
496                 break;
497         }
498         printk("Memory policy: ECC %sabled, Data cache %s\n",
499                 ecc_mask ? "en" : "dis", cp->policy);
500
501         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
502                 struct mem_type *t = &mem_types[i];
503                 if (t->prot_l1)
504                         t->prot_l1 |= PMD_DOMAIN(t->domain);
505                 if (t->prot_sect)
506                         t->prot_sect |= PMD_DOMAIN(t->domain);
507         }
508 }
509
510 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
511 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
512                               unsigned long size, pgprot_t vma_prot)
513 {
514         if (!pfn_valid(pfn))
515                 return pgprot_noncached(vma_prot);
516         else if (file->f_flags & O_SYNC)
517                 return pgprot_writecombine(vma_prot);
518         return vma_prot;
519 }
520 EXPORT_SYMBOL(phys_mem_access_prot);
521 #endif
522
523 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
524
525 static void __init *early_alloc(unsigned long sz)
526 {
527         void *ptr = __va(memblock_alloc(sz, sz));
528         memset(ptr, 0, sz);
529         return ptr;
530 }
531
532 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
533 {
534         if (pmd_none(*pmd)) {
535                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
536                 __pmd_populate(pmd, __pa(pte), prot);
537         }
538         BUG_ON(pmd_bad(*pmd));
539         return pte_offset_kernel(pmd, addr);
540 }
541
542 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
543                                   unsigned long end, unsigned long pfn,
544                                   const struct mem_type *type)
545 {
546         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
547         do {
548                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
549                 pfn++;
550         } while (pte++, addr += PAGE_SIZE, addr != end);
551 }
552
553 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
554                                       unsigned long end, phys_addr_t phys,
555                                       const struct mem_type *type)
556 {
557         pmd_t *pmd = pmd_offset(pgd, addr);
558
559         /*
560          * Try a section mapping - end, addr and phys must all be aligned
561          * to a section boundary.  Note that PMDs refer to the individual
562          * L1 entries, whereas PGDs refer to a group of L1 entries making
563          * up one logical pointer to an L2 table.
564          */
565         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
566                 pmd_t *p = pmd;
567
568                 if (addr & SECTION_SIZE)
569                         pmd++;
570
571                 do {
572                         *pmd = __pmd(phys | type->prot_sect);
573                         phys += SECTION_SIZE;
574                 } while (pmd++, addr += SECTION_SIZE, addr != end);
575
576                 flush_pmd_entry(p);
577         } else {
578                 /*
579                  * No need to loop; pte's aren't interested in the
580                  * individual L1 entries.
581                  */
582                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
583         }
584 }
585
586 static void __init create_36bit_mapping(struct map_desc *md,
587                                         const struct mem_type *type)
588 {
589         unsigned long addr, length, end;
590         phys_addr_t phys;
591         pgd_t *pgd;
592
593         addr = md->virtual;
594         phys = (unsigned long)__pfn_to_phys(md->pfn);
595         length = PAGE_ALIGN(md->length);
596
597         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
598                 printk(KERN_ERR "MM: CPU does not support supersection "
599                        "mapping for 0x%08llx at 0x%08lx\n",
600                        (long long)__pfn_to_phys((u64)md->pfn), addr);
601                 return;
602         }
603
604         /* N.B. ARMv6 supersections are only defined to work with domain 0.
605          *      Since domain assignments can in fact be arbitrary, the
606          *      'domain == 0' check below is required to insure that ARMv6
607          *      supersections are only allocated for domain 0 regardless
608          *      of the actual domain assignments in use.
609          */
610         if (type->domain) {
611                 printk(KERN_ERR "MM: invalid domain in supersection "
612                        "mapping for 0x%08llx at 0x%08lx\n",
613                        (long long)__pfn_to_phys((u64)md->pfn), addr);
614                 return;
615         }
616
617         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
618                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
619                        " at 0x%08lx invalid alignment\n",
620                        (long long)__pfn_to_phys((u64)md->pfn), addr);
621                 return;
622         }
623
624         /*
625          * Shift bits [35:32] of address into bits [23:20] of PMD
626          * (See ARMv6 spec).
627          */
628         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
629
630         pgd = pgd_offset_k(addr);
631         end = addr + length;
632         do {
633                 pmd_t *pmd = pmd_offset(pgd, addr);
634                 int i;
635
636                 for (i = 0; i < 16; i++)
637                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
638
639                 addr += SUPERSECTION_SIZE;
640                 phys += SUPERSECTION_SIZE;
641                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
642         } while (addr != end);
643 }
644
645 /*
646  * Create the page directory entries and any necessary
647  * page tables for the mapping specified by `md'.  We
648  * are able to cope here with varying sizes and address
649  * offsets, and we take full advantage of sections and
650  * supersections.
651  */
652 static void __init create_mapping(struct map_desc *md)
653 {
654         unsigned long phys, addr, length, end;
655         const struct mem_type *type;
656         pgd_t *pgd;
657
658         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
659                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
660                        " at 0x%08lx in user region\n",
661                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
662                 return;
663         }
664
665         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
666             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
667                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
668                        " at 0x%08lx overlaps vmalloc space\n",
669                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
670         }
671
672         type = &mem_types[md->type];
673
674         /*
675          * Catch 36-bit addresses
676          */
677         if (md->pfn >= 0x100000) {
678                 create_36bit_mapping(md, type);
679                 return;
680         }
681
682         addr = md->virtual & PAGE_MASK;
683         phys = (unsigned long)__pfn_to_phys(md->pfn);
684         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
685
686         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
687                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
688                        "be mapped using pages, ignoring.\n",
689                        (long long)__pfn_to_phys(md->pfn), addr);
690                 return;
691         }
692
693         pgd = pgd_offset_k(addr);
694         end = addr + length;
695         do {
696                 unsigned long next = pgd_addr_end(addr, end);
697
698                 alloc_init_section(pgd, addr, next, phys, type);
699
700                 phys += next - addr;
701                 addr = next;
702         } while (pgd++, addr != end);
703 }
704
705 /*
706  * Create the architecture specific mappings
707  */
708 void __init iotable_init(struct map_desc *io_desc, int nr)
709 {
710         int i;
711
712         for (i = 0; i < nr; i++)
713                 create_mapping(io_desc + i);
714 }
715
716 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
717
718 /*
719  * vmalloc=size forces the vmalloc area to be exactly 'size'
720  * bytes. This can be used to increase (or decrease) the vmalloc
721  * area - the default is 128m.
722  */
723 static int __init early_vmalloc(char *arg)
724 {
725         unsigned long vmalloc_reserve = memparse(arg, NULL);
726
727         if (vmalloc_reserve < SZ_16M) {
728                 vmalloc_reserve = SZ_16M;
729                 printk(KERN_WARNING
730                         "vmalloc area too small, limiting to %luMB\n",
731                         vmalloc_reserve >> 20);
732         }
733
734         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
735                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
736                 printk(KERN_WARNING
737                         "vmalloc area is too big, limiting to %luMB\n",
738                         vmalloc_reserve >> 20);
739         }
740
741         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
742         return 0;
743 }
744 early_param("vmalloc", early_vmalloc);
745
746 static phys_addr_t lowmem_limit __initdata = 0;
747
748 static void __init sanity_check_meminfo(void)
749 {
750         int i, j, highmem = 0;
751
752         lowmem_limit = __pa(vmalloc_min - 1) + 1;
753         memblock_set_current_limit(lowmem_limit);
754
755         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
756                 struct membank *bank = &meminfo.bank[j];
757                 *bank = meminfo.bank[i];
758
759 #ifdef CONFIG_HIGHMEM
760                 if (__va(bank->start) > vmalloc_min ||
761                     __va(bank->start) < (void *)PAGE_OFFSET)
762                         highmem = 1;
763
764                 bank->highmem = highmem;
765
766                 /*
767                  * Split those memory banks which are partially overlapping
768                  * the vmalloc area greatly simplifying things later.
769                  */
770                 if (__va(bank->start) < vmalloc_min &&
771                     bank->size > vmalloc_min - __va(bank->start)) {
772                         if (meminfo.nr_banks >= NR_BANKS) {
773                                 printk(KERN_CRIT "NR_BANKS too low, "
774                                                  "ignoring high memory\n");
775                         } else {
776                                 memmove(bank + 1, bank,
777                                         (meminfo.nr_banks - i) * sizeof(*bank));
778                                 meminfo.nr_banks++;
779                                 i++;
780                                 bank[1].size -= vmalloc_min - __va(bank->start);
781                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
782                                 bank[1].highmem = highmem = 1;
783                                 j++;
784                         }
785                         bank->size = vmalloc_min - __va(bank->start);
786                 }
787 #else
788                 bank->highmem = highmem;
789
790                 /*
791                  * Check whether this memory bank would entirely overlap
792                  * the vmalloc area.
793                  */
794                 if (__va(bank->start) >= vmalloc_min ||
795                     __va(bank->start) < (void *)PAGE_OFFSET) {
796                         printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
797                                "(vmalloc region overlap).\n",
798                                bank->start, bank->start + bank->size - 1);
799                         continue;
800                 }
801
802                 /*
803                  * Check whether this memory bank would partially overlap
804                  * the vmalloc area.
805                  */
806                 if (__va(bank->start + bank->size) > vmalloc_min ||
807                     __va(bank->start + bank->size) < __va(bank->start)) {
808                         unsigned long newsize = vmalloc_min - __va(bank->start);
809                         printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
810                                "to -%.8lx (vmalloc region overlap).\n",
811                                bank->start, bank->start + bank->size - 1,
812                                bank->start + newsize - 1);
813                         bank->size = newsize;
814                 }
815 #endif
816                 j++;
817         }
818 #ifdef CONFIG_HIGHMEM
819         if (highmem) {
820                 const char *reason = NULL;
821
822                 if (cache_is_vipt_aliasing()) {
823                         /*
824                          * Interactions between kmap and other mappings
825                          * make highmem support with aliasing VIPT caches
826                          * rather difficult.
827                          */
828                         reason = "with VIPT aliasing cache";
829                 } else if (is_smp() && tlb_ops_need_broadcast()) {
830                         /*
831                          * kmap_high needs to occasionally flush TLB entries,
832                          * however, if the TLB entries need to be broadcast
833                          * we may deadlock:
834                          *  kmap_high(irqs off)->flush_all_zero_pkmaps->
835                          *  flush_tlb_kernel_range->smp_call_function_many
836                          *   (must not be called with irqs off)
837                          */
838                         reason = "without hardware TLB ops broadcasting";
839                 }
840                 if (reason) {
841                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
842                                 reason);
843                         while (j > 0 && meminfo.bank[j - 1].highmem)
844                                 j--;
845                 }
846         }
847 #endif
848         meminfo.nr_banks = j;
849 }
850
851 static inline void prepare_page_table(void)
852 {
853         unsigned long addr;
854         phys_addr_t end;
855
856         /*
857          * Clear out all the mappings below the kernel image.
858          */
859         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
860                 pmd_clear(pmd_off_k(addr));
861
862 #ifdef CONFIG_XIP_KERNEL
863         /* The XIP kernel is mapped in the module area -- skip over it */
864         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
865 #endif
866         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
867                 pmd_clear(pmd_off_k(addr));
868
869         /*
870          * Find the end of the first block of lowmem.
871          */
872         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
873         if (end >= lowmem_limit)
874                 end = lowmem_limit;
875
876         /*
877          * Clear out all the kernel space mappings, except for the first
878          * memory bank, up to the end of the vmalloc region.
879          */
880         for (addr = __phys_to_virt(end);
881              addr < VMALLOC_END; addr += PGDIR_SIZE)
882                 pmd_clear(pmd_off_k(addr));
883 }
884
885 /*
886  * Reserve the special regions of memory
887  */
888 void __init arm_mm_memblock_reserve(void)
889 {
890         /*
891          * Reserve the page tables.  These are already in use,
892          * and can only be in node 0.
893          */
894         memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
895
896 #ifdef CONFIG_SA1111
897         /*
898          * Because of the SA1111 DMA bug, we want to preserve our
899          * precious DMA-able memory...
900          */
901         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
902 #endif
903 }
904
905 /*
906  * Set up device the mappings.  Since we clear out the page tables for all
907  * mappings above VMALLOC_END, we will remove any debug device mappings.
908  * This means you have to be careful how you debug this function, or any
909  * called function.  This means you can't use any function or debugging
910  * method which may touch any device, otherwise the kernel _will_ crash.
911  */
912 static void __init devicemaps_init(struct machine_desc *mdesc)
913 {
914         struct map_desc map;
915         unsigned long addr;
916         void *vectors;
917
918         /*
919          * Allocate the vector page early.
920          */
921         vectors = early_alloc(PAGE_SIZE);
922
923         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
924                 pmd_clear(pmd_off_k(addr));
925
926         /*
927          * Map the kernel if it is XIP.
928          * It is always first in the modulearea.
929          */
930 #ifdef CONFIG_XIP_KERNEL
931         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
932         map.virtual = MODULES_VADDR;
933         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
934         map.type = MT_ROM;
935         create_mapping(&map);
936 #endif
937
938         /*
939          * Map the cache flushing regions.
940          */
941 #ifdef FLUSH_BASE
942         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
943         map.virtual = FLUSH_BASE;
944         map.length = SZ_1M;
945         map.type = MT_CACHECLEAN;
946         create_mapping(&map);
947 #endif
948 #ifdef FLUSH_BASE_MINICACHE
949         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
950         map.virtual = FLUSH_BASE_MINICACHE;
951         map.length = SZ_1M;
952         map.type = MT_MINICLEAN;
953         create_mapping(&map);
954 #endif
955
956         /*
957          * Create a mapping for the machine vectors at the high-vectors
958          * location (0xffff0000).  If we aren't using high-vectors, also
959          * create a mapping at the low-vectors virtual address.
960          */
961         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
962         map.virtual = 0xffff0000;
963         map.length = PAGE_SIZE;
964         map.type = MT_HIGH_VECTORS;
965         create_mapping(&map);
966
967         if (!vectors_high()) {
968                 map.virtual = 0;
969                 map.type = MT_LOW_VECTORS;
970                 create_mapping(&map);
971         }
972
973         /*
974          * Ask the machine support to map in the statically mapped devices.
975          */
976         if (mdesc->map_io)
977                 mdesc->map_io();
978
979         /*
980          * Finally flush the caches and tlb to ensure that we're in a
981          * consistent state wrt the writebuffer.  This also ensures that
982          * any write-allocated cache lines in the vector page are written
983          * back.  After this point, we can start to touch devices again.
984          */
985         local_flush_tlb_all();
986         flush_cache_all();
987 }
988
989 static void __init kmap_init(void)
990 {
991 #ifdef CONFIG_HIGHMEM
992         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
993                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
994 #endif
995 }
996
997 static void __init map_lowmem(void)
998 {
999         struct memblock_region *reg;
1000
1001         /* Map all the lowmem memory banks. */
1002         for_each_memblock(memory, reg) {
1003                 phys_addr_t start = reg->base;
1004                 phys_addr_t end = start + reg->size;
1005                 struct map_desc map;
1006
1007                 if (end > lowmem_limit)
1008                         end = lowmem_limit;
1009                 if (start >= end)
1010                         break;
1011
1012                 map.pfn = __phys_to_pfn(start);
1013                 map.virtual = __phys_to_virt(start);
1014                 map.length = end - start;
1015                 map.type = MT_MEMORY;
1016
1017                 create_mapping(&map);
1018         }
1019 }
1020
1021 /*
1022  * paging_init() sets up the page tables, initialises the zone memory
1023  * maps, and sets up the zero page, bad page and bad page tables.
1024  */
1025 void __init paging_init(struct machine_desc *mdesc)
1026 {
1027         void *zero_page;
1028
1029         build_mem_type_table();
1030         sanity_check_meminfo();
1031         prepare_page_table();
1032         map_lowmem();
1033         devicemaps_init(mdesc);
1034         kmap_init();
1035
1036         top_pmd = pmd_off_k(0xffff0000);
1037
1038         /* allocate the zero page. */
1039         zero_page = early_alloc(PAGE_SIZE);
1040
1041         bootmem_init();
1042
1043         empty_zero_page = virt_to_page(zero_page);
1044         __flush_dcache_page(NULL, empty_zero_page);
1045 }