Merge branches 'pm-cpuidle', 'pm-sleep' and 'pm-powercap'
[linux-block.git] / arch / arc / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
4  */
5
6 #include <linux/types.h>
7 #include <linux/kprobes.h>
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 #include <linux/kdebug.h>
11 #include <linux/sched.h>
12 #include <linux/uaccess.h>
13 #include <asm/cacheflush.h>
14 #include <asm/current.h>
15 #include <asm/disasm.h>
16
17 #define MIN_STACK_SIZE(addr)    min((unsigned long)MAX_STACK_SIZE, \
18                 (unsigned long)current_thread_info() + THREAD_SIZE - (addr))
19
20 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
21 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
22
23 int __kprobes arch_prepare_kprobe(struct kprobe *p)
24 {
25         /* Attempt to probe at unaligned address */
26         if ((unsigned long)p->addr & 0x01)
27                 return -EINVAL;
28
29         /* Address should not be in exception handling code */
30
31         p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
32         p->opcode = *p->addr;
33
34         return 0;
35 }
36
37 void __kprobes arch_arm_kprobe(struct kprobe *p)
38 {
39         *p->addr = UNIMP_S_INSTRUCTION;
40
41         flush_icache_range((unsigned long)p->addr,
42                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
43 }
44
45 void __kprobes arch_disarm_kprobe(struct kprobe *p)
46 {
47         *p->addr = p->opcode;
48
49         flush_icache_range((unsigned long)p->addr,
50                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
51 }
52
53 void __kprobes arch_remove_kprobe(struct kprobe *p)
54 {
55         arch_disarm_kprobe(p);
56
57         /* Can we remove the kprobe in the middle of kprobe handling? */
58         if (p->ainsn.t1_addr) {
59                 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
60
61                 flush_icache_range((unsigned long)p->ainsn.t1_addr,
62                                    (unsigned long)p->ainsn.t1_addr +
63                                    sizeof(kprobe_opcode_t));
64
65                 p->ainsn.t1_addr = NULL;
66         }
67
68         if (p->ainsn.t2_addr) {
69                 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
70
71                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
72                                    (unsigned long)p->ainsn.t2_addr +
73                                    sizeof(kprobe_opcode_t));
74
75                 p->ainsn.t2_addr = NULL;
76         }
77 }
78
79 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
80 {
81         kcb->prev_kprobe.kp = kprobe_running();
82         kcb->prev_kprobe.status = kcb->kprobe_status;
83 }
84
85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
86 {
87         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88         kcb->kprobe_status = kcb->prev_kprobe.status;
89 }
90
91 static inline void __kprobes set_current_kprobe(struct kprobe *p)
92 {
93         __this_cpu_write(current_kprobe, p);
94 }
95
96 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
97                                        struct pt_regs *regs)
98 {
99         /* Remove the trap instructions inserted for single step and
100          * restore the original instructions
101          */
102         if (p->ainsn.t1_addr) {
103                 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
104
105                 flush_icache_range((unsigned long)p->ainsn.t1_addr,
106                                    (unsigned long)p->ainsn.t1_addr +
107                                    sizeof(kprobe_opcode_t));
108
109                 p->ainsn.t1_addr = NULL;
110         }
111
112         if (p->ainsn.t2_addr) {
113                 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
114
115                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
116                                    (unsigned long)p->ainsn.t2_addr +
117                                    sizeof(kprobe_opcode_t));
118
119                 p->ainsn.t2_addr = NULL;
120         }
121
122         return;
123 }
124
125 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
126 {
127         unsigned long next_pc;
128         unsigned long tgt_if_br = 0;
129         int is_branch;
130         unsigned long bta;
131
132         /* Copy the opcode back to the kprobe location and execute the
133          * instruction. Because of this we will not be able to get into the
134          * same kprobe until this kprobe is done
135          */
136         *(p->addr) = p->opcode;
137
138         flush_icache_range((unsigned long)p->addr,
139                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
140
141         /* Now we insert the trap at the next location after this instruction to
142          * single step. If it is a branch we insert the trap at possible branch
143          * targets
144          */
145
146         bta = regs->bta;
147
148         if (regs->status32 & 0x40) {
149                 /* We are in a delay slot with the branch taken */
150
151                 next_pc = bta & ~0x01;
152
153                 if (!p->ainsn.is_short) {
154                         if (bta & 0x01)
155                                 regs->blink += 2;
156                         else {
157                                 /* Branch not taken */
158                                 next_pc += 2;
159
160                                 /* next pc is taken from bta after executing the
161                                  * delay slot instruction
162                                  */
163                                 regs->bta += 2;
164                         }
165                 }
166
167                 is_branch = 0;
168         } else
169                 is_branch =
170                     disasm_next_pc((unsigned long)p->addr, regs,
171                         (struct callee_regs *) current->thread.callee_reg,
172                         &next_pc, &tgt_if_br);
173
174         p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
175         p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
176         *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
177
178         flush_icache_range((unsigned long)p->ainsn.t1_addr,
179                            (unsigned long)p->ainsn.t1_addr +
180                            sizeof(kprobe_opcode_t));
181
182         if (is_branch) {
183                 p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
184                 p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
185                 *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
186
187                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
188                                    (unsigned long)p->ainsn.t2_addr +
189                                    sizeof(kprobe_opcode_t));
190         }
191 }
192
193 static int
194 __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
195 {
196         struct kprobe *p;
197         struct kprobe_ctlblk *kcb;
198
199         preempt_disable();
200
201         kcb = get_kprobe_ctlblk();
202         p = get_kprobe((unsigned long *)addr);
203
204         if (p) {
205                 /*
206                  * We have reentered the kprobe_handler, since another kprobe
207                  * was hit while within the handler, we save the original
208                  * kprobes and single step on the instruction of the new probe
209                  * without calling any user handlers to avoid recursive
210                  * kprobes.
211                  */
212                 if (kprobe_running()) {
213                         save_previous_kprobe(kcb);
214                         set_current_kprobe(p);
215                         kprobes_inc_nmissed_count(p);
216                         setup_singlestep(p, regs);
217                         kcb->kprobe_status = KPROBE_REENTER;
218                         return 1;
219                 }
220
221                 set_current_kprobe(p);
222                 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
223
224                 /* If we have no pre-handler or it returned 0, we continue with
225                  * normal processing. If we have a pre-handler and it returned
226                  * non-zero - which means user handler setup registers to exit
227                  * to another instruction, we must skip the single stepping.
228                  */
229                 if (!p->pre_handler || !p->pre_handler(p, regs)) {
230                         setup_singlestep(p, regs);
231                         kcb->kprobe_status = KPROBE_HIT_SS;
232                 } else {
233                         reset_current_kprobe();
234                         preempt_enable_no_resched();
235                 }
236
237                 return 1;
238         }
239
240         /* no_kprobe: */
241         preempt_enable_no_resched();
242         return 0;
243 }
244
245 static int
246 __kprobes arc_post_kprobe_handler(unsigned long addr, struct pt_regs *regs)
247 {
248         struct kprobe *cur = kprobe_running();
249         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
250
251         if (!cur)
252                 return 0;
253
254         resume_execution(cur, addr, regs);
255
256         /* Rearm the kprobe */
257         arch_arm_kprobe(cur);
258
259         /*
260          * When we return from trap instruction we go to the next instruction
261          * We restored the actual instruction in resume_exectuiont and we to
262          * return to the same address and execute it
263          */
264         regs->ret = addr;
265
266         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
267                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
268                 cur->post_handler(cur, regs, 0);
269         }
270
271         if (kcb->kprobe_status == KPROBE_REENTER) {
272                 restore_previous_kprobe(kcb);
273                 goto out;
274         }
275
276         reset_current_kprobe();
277
278 out:
279         preempt_enable_no_resched();
280         return 1;
281 }
282
283 /*
284  * Fault can be for the instruction being single stepped or for the
285  * pre/post handlers in the module.
286  * This is applicable for applications like user probes, where we have the
287  * probe in user space and the handlers in the kernel
288  */
289
290 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
291 {
292         struct kprobe *cur = kprobe_running();
293         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
294
295         switch (kcb->kprobe_status) {
296         case KPROBE_HIT_SS:
297         case KPROBE_REENTER:
298                 /*
299                  * We are here because the instruction being single stepped
300                  * caused the fault. We reset the current kprobe and allow the
301                  * exception handler as if it is regular exception. In our
302                  * case it doesn't matter because the system will be halted
303                  */
304                 resume_execution(cur, (unsigned long)cur->addr, regs);
305
306                 if (kcb->kprobe_status == KPROBE_REENTER)
307                         restore_previous_kprobe(kcb);
308                 else
309                         reset_current_kprobe();
310
311                 preempt_enable_no_resched();
312                 break;
313
314         case KPROBE_HIT_ACTIVE:
315         case KPROBE_HIT_SSDONE:
316                 /*
317                  * We are here because the instructions in the pre/post handler
318                  * caused the fault.
319                  */
320
321                 /*
322                  * In case the user-specified fault handler returned zero,
323                  * try to fix up.
324                  */
325                 if (fixup_exception(regs))
326                         return 1;
327
328                 /*
329                  * fixup_exception() could not handle it,
330                  * Let do_page_fault() fix it.
331                  */
332                 break;
333
334         default:
335                 break;
336         }
337         return 0;
338 }
339
340 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
341                                        unsigned long val, void *data)
342 {
343         struct die_args *args = data;
344         unsigned long addr = args->err;
345         int ret = NOTIFY_DONE;
346
347         switch (val) {
348         case DIE_IERR:
349                 if (arc_kprobe_handler(addr, args->regs))
350                         return NOTIFY_STOP;
351                 break;
352
353         case DIE_TRAP:
354                 if (arc_post_kprobe_handler(addr, args->regs))
355                         return NOTIFY_STOP;
356                 break;
357
358         default:
359                 break;
360         }
361
362         return ret;
363 }
364
365 static void __used kretprobe_trampoline_holder(void)
366 {
367         __asm__ __volatile__(".global __kretprobe_trampoline\n"
368                              "__kretprobe_trampoline:\n"
369                              "nop\n");
370 }
371
372 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
373                                       struct pt_regs *regs)
374 {
375
376         ri->ret_addr = (kprobe_opcode_t *) regs->blink;
377         ri->fp = NULL;
378
379         /* Replace the return addr with trampoline addr */
380         regs->blink = (unsigned long)&__kretprobe_trampoline;
381 }
382
383 static int __kprobes trampoline_probe_handler(struct kprobe *p,
384                                               struct pt_regs *regs)
385 {
386         regs->ret = __kretprobe_trampoline_handler(regs, NULL);
387
388         /* By returning a non zero value, we are telling the kprobe handler
389          * that we don't want the post_handler to run
390          */
391         return 1;
392 }
393
394 static struct kprobe trampoline_p = {
395         .addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
396         .pre_handler = trampoline_probe_handler
397 };
398
399 int __init arch_init_kprobes(void)
400 {
401         /* Registering the trampoline code for the kret probe */
402         return register_kprobe(&trampoline_p);
403 }
404
405 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
406 {
407         if (p->addr == (kprobe_opcode_t *) &__kretprobe_trampoline)
408                 return 1;
409
410         return 0;
411 }
412
413 void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
414 {
415         notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
416 }