Merge tag 'linux-watchdog-6.3-rc1' of git://www.linux-watchdog.org/linux-watchdog
[linux-block.git] / Documentation / scheduler / sched-util-clamp.rst
1 .. SPDX-License-Identifier: GPL-2.0
2
3 ====================
4 Utilization Clamping
5 ====================
6
7 1. Introduction
8 ===============
9
10 Utilization clamping, also known as util clamp or uclamp, is a scheduler
11 feature that allows user space to help in managing the performance requirement
12 of tasks. It was introduced in v5.3 release. The CGroup support was merged in
13 v5.4.
14
15 Uclamp is a hinting mechanism that allows the scheduler to understand the
16 performance requirements and restrictions of the tasks, thus it helps the
17 scheduler to make a better decision. And when schedutil cpufreq governor is
18 used, util clamp will influence the CPU frequency selection as well.
19
20 Since the scheduler and schedutil are both driven by PELT (util_avg) signals,
21 util clamp acts on that to achieve its goal by clamping the signal to a certain
22 point; hence the name. That is, by clamping utilization we are making the
23 system run at a certain performance point.
24
25 The right way to view util clamp is as a mechanism to make request or hint on
26 performance constraints. It consists of two tunables:
27
28         * UCLAMP_MIN, which sets the lower bound.
29         * UCLAMP_MAX, which sets the upper bound.
30
31 These two bounds will ensure a task will operate within this performance range
32 of the system. UCLAMP_MIN implies boosting a task, while UCLAMP_MAX implies
33 capping a task.
34
35 One can tell the system (scheduler) that some tasks require a minimum
36 performance point to operate at to deliver the desired user experience. Or one
37 can tell the system that some tasks should be restricted from consuming too
38 much resources and should not go above a specific performance point. Viewing
39 the uclamp values as performance points rather than utilization is a better
40 abstraction from user space point of view.
41
42 As an example, a game can use util clamp to form a feedback loop with its
43 perceived Frames Per Second (FPS). It can dynamically increase the minimum
44 performance point required by its display pipeline to ensure no frame is
45 dropped. It can also dynamically 'prime' up these tasks if it knows in the
46 coming few hundred milliseconds a computationally intensive scene is about to
47 happen.
48
49 On mobile hardware where the capability of the devices varies a lot, this
50 dynamic feedback loop offers a great flexibility to ensure best user experience
51 given the capabilities of any system.
52
53 Of course a static configuration is possible too. The exact usage will depend
54 on the system, application and the desired outcome.
55
56 Another example is in Android where tasks are classified as background,
57 foreground, top-app, etc. Util clamp can be used to constrain how much
58 resources background tasks are consuming by capping the performance point they
59 can run at. This constraint helps reserve resources for important tasks, like
60 the ones belonging to the currently active app (top-app group). Beside this
61 helps in limiting how much power they consume. This can be more obvious in
62 heterogeneous systems (e.g. Arm big.LITTLE); the constraint will help bias the
63 background tasks to stay on the little cores which will ensure that:
64
65         1. The big cores are free to run top-app tasks immediately. top-app
66            tasks are the tasks the user is currently interacting with, hence
67            the most important tasks in the system.
68         2. They don't run on a power hungry core and drain battery even if they
69            are CPU intensive tasks.
70
71 .. note::
72   **little cores**:
73     CPUs with capacity < 1024
74
75   **big cores**:
76     CPUs with capacity = 1024
77
78 By making these uclamp performance requests, or rather hints, user space can
79 ensure system resources are used optimally to deliver the best possible user
80 experience.
81
82 Another use case is to help with **overcoming the ramp up latency inherit in
83 how scheduler utilization signal is calculated**.
84
85 On the other hand, a busy task for instance that requires to run at maximum
86 performance point will suffer a delay of ~200ms (PELT HALFIFE = 32ms) for the
87 scheduler to realize that. This is known to affect workloads like gaming on
88 mobile devices where frames will drop due to slow response time to select the
89 higher frequency required for the tasks to finish their work in time. Setting
90 UCLAMP_MIN=1024 will ensure such tasks will always see the highest performance
91 level when they start running.
92
93 The overall visible effect goes beyond better perceived user
94 experience/performance and stretches to help achieve a better overall
95 performance/watt if used effectively.
96
97 User space can form a feedback loop with the thermal subsystem too to ensure
98 the device doesn't heat up to the point where it will throttle.
99
100 Both SCHED_NORMAL/OTHER and SCHED_FIFO/RR honour uclamp requests/hints.
101
102 In the SCHED_FIFO/RR case, uclamp gives the option to run RT tasks at any
103 performance point rather than being tied to MAX frequency all the time. Which
104 can be useful on general purpose systems that run on battery powered devices.
105
106 Note that by design RT tasks don't have per-task PELT signal and must always
107 run at a constant frequency to combat undeterministic DVFS rampup delays.
108
109 Note that using schedutil always implies a single delay to modify the frequency
110 when an RT task wakes up. This cost is unchanged by using uclamp. Uclamp only
111 helps picking what frequency to request instead of schedutil always requesting
112 MAX for all RT tasks.
113
114 See :ref:`section 3.4 <uclamp-default-values>` for default values and
115 :ref:`3.4.1 <sched-util-clamp-min-rt-default>` on how to change RT tasks
116 default value.
117
118 2. Design
119 =========
120
121 Util clamp is a property of every task in the system. It sets the boundaries of
122 its utilization signal; acting as a bias mechanism that influences certain
123 decisions within the scheduler.
124
125 The actual utilization signal of a task is never clamped in reality. If you
126 inspect PELT signals at any point of time you should continue to see them as
127 they are intact. Clamping happens only when needed, e.g: when a task wakes up
128 and the scheduler needs to select a suitable CPU for it to run on.
129
130 Since the goal of util clamp is to allow requesting a minimum and maximum
131 performance point for a task to run on, it must be able to influence the
132 frequency selection as well as task placement to be most effective. Both of
133 which have implications on the utilization value at CPU runqueue (rq for short)
134 level, which brings us to the main design challenge.
135
136 When a task wakes up on an rq, the utilization signal of the rq will be
137 affected by the uclamp settings of all the tasks enqueued on it. For example if
138 a task requests to run at UTIL_MIN = 512, then the util signal of the rq needs
139 to respect to this request as well as all other requests from all of the
140 enqueued tasks.
141
142 To be able to aggregate the util clamp value of all the tasks attached to the
143 rq, uclamp must do some housekeeping at every enqueue/dequeue, which is the
144 scheduler hot path. Hence care must be taken since any slow down will have
145 significant impact on a lot of use cases and could hinder its usability in
146 practice.
147
148 The way this is handled is by dividing the utilization range into buckets
149 (struct uclamp_bucket) which allows us to reduce the search space from every
150 task on the rq to only a subset of tasks on the top-most bucket.
151
152 When a task is enqueued, the counter in the matching bucket is incremented,
153 and on dequeue it is decremented. This makes keeping track of the effective
154 uclamp value at rq level a lot easier.
155
156 As tasks are enqueued and dequeued, we keep track of the current effective
157 uclamp value of the rq. See :ref:`section 2.1 <uclamp-buckets>` for details on
158 how this works.
159
160 Later at any path that wants to identify the effective uclamp value of the rq,
161 it will simply need to read this effective uclamp value of the rq at that exact
162 moment of time it needs to take a decision.
163
164 For task placement case, only Energy Aware and Capacity Aware Scheduling
165 (EAS/CAS) make use of uclamp for now, which implies that it is applied on
166 heterogeneous systems only.
167 When a task wakes up, the scheduler will look at the current effective uclamp
168 value of every rq and compare it with the potential new value if the task were
169 to be enqueued there. Favoring the rq that will end up with the most energy
170 efficient combination.
171
172 Similarly in schedutil, when it needs to make a frequency update it will look
173 at the current effective uclamp value of the rq which is influenced by the set
174 of tasks currently enqueued there and select the appropriate frequency that
175 will satisfy constraints from requests.
176
177 Other paths like setting overutilization state (which effectively disables EAS)
178 make use of uclamp as well. Such cases are considered necessary housekeeping to
179 allow the 2 main use cases above and will not be covered in detail here as they
180 could change with implementation details.
181
182 .. _uclamp-buckets:
183
184 2.1. Buckets
185 ------------
186
187 ::
188
189                            [struct rq]
190
191   (bottom)                                                    (top)
192
193     0                                                          1024
194     |                                                           |
195     +-----------+-----------+-----------+----   ----+-----------+
196     |  Bucket 0 |  Bucket 1 |  Bucket 2 |    ...    |  Bucket N |
197     +-----------+-----------+-----------+----   ----+-----------+
198        :           :                                   :
199        +- p0       +- p3                               +- p4
200        :                                               :
201        +- p1                                           +- p5
202        :
203        +- p2
204
205
206 .. note::
207   The diagram above is an illustration rather than a true depiction of the
208   internal data structure.
209
210 To reduce the search space when trying to decide the effective uclamp value of
211 an rq as tasks are enqueued/dequeued, the whole utilization range is divided
212 into N buckets where N is configured at compile time by setting
213 CONFIG_UCLAMP_BUCKETS_COUNT. By default it is set to 5.
214
215 The rq has a bucket for each uclamp_id tunables: [UCLAMP_MIN, UCLAMP_MAX].
216
217 The range of each bucket is 1024/N. For example, for the default value of
218 5 there will be 5 buckets, each of which will cover the following range:
219
220 ::
221
222         DELTA = round_closest(1024/5) = 204.8 = 205
223
224         Bucket 0: [0:204]
225         Bucket 1: [205:409]
226         Bucket 2: [410:614]
227         Bucket 3: [615:819]
228         Bucket 4: [820:1024]
229
230 When a task p with following tunable parameters
231
232 ::
233
234         p->uclamp[UCLAMP_MIN] = 300
235         p->uclamp[UCLAMP_MAX] = 1024
236
237 is enqueued into the rq, bucket 1 will be incremented for UCLAMP_MIN and bucket
238 4 will be incremented for UCLAMP_MAX to reflect the fact the rq has a task in
239 this range.
240
241 The rq then keeps track of its current effective uclamp value for each
242 uclamp_id.
243
244 When a task p is enqueued, the rq value changes to:
245
246 ::
247
248         // update bucket logic goes here
249         rq->uclamp[UCLAMP_MIN] = max(rq->uclamp[UCLAMP_MIN], p->uclamp[UCLAMP_MIN])
250         // repeat for UCLAMP_MAX
251
252 Similarly, when p is dequeued the rq value changes to:
253
254 ::
255
256         // update bucket logic goes here
257         rq->uclamp[UCLAMP_MIN] = search_top_bucket_for_highest_value()
258         // repeat for UCLAMP_MAX
259
260 When all buckets are empty, the rq uclamp values are reset to system defaults.
261 See :ref:`section 3.4 <uclamp-default-values>` for details on default values.
262
263
264 2.2. Max aggregation
265 --------------------
266
267 Util clamp is tuned to honour the request for the task that requires the
268 highest performance point.
269
270 When multiple tasks are attached to the same rq, then util clamp must make sure
271 the task that needs the highest performance point gets it even if there's
272 another task that doesn't need it or is disallowed from reaching this point.
273
274 For example, if there are multiple tasks attached to an rq with the following
275 values:
276
277 ::
278
279         p0->uclamp[UCLAMP_MIN] = 300
280         p0->uclamp[UCLAMP_MAX] = 900
281
282         p1->uclamp[UCLAMP_MIN] = 500
283         p1->uclamp[UCLAMP_MAX] = 500
284
285 then assuming both p0 and p1 are enqueued to the same rq, both UCLAMP_MIN
286 and UCLAMP_MAX become:
287
288 ::
289
290         rq->uclamp[UCLAMP_MIN] = max(300, 500) = 500
291         rq->uclamp[UCLAMP_MAX] = max(900, 500) = 900
292
293 As we shall see in :ref:`section 5.1 <uclamp-capping-fail>`, this max
294 aggregation is the cause of one of limitations when using util clamp, in
295 particular for UCLAMP_MAX hint when user space would like to save power.
296
297 2.3. Hierarchical aggregation
298 -----------------------------
299
300 As stated earlier, util clamp is a property of every task in the system. But
301 the actual applied (effective) value can be influenced by more than just the
302 request made by the task or another actor on its behalf (middleware library).
303
304 The effective util clamp value of any task is restricted as follows:
305
306   1. By the uclamp settings defined by the cgroup CPU controller it is attached
307      to, if any.
308   2. The restricted value in (1) is then further restricted by the system wide
309      uclamp settings.
310
311 :ref:`Section 3 <uclamp-interfaces>` discusses the interfaces and will expand
312 further on that.
313
314 For now suffice to say that if a task makes a request, its actual effective
315 value will have to adhere to some restrictions imposed by cgroup and system
316 wide settings.
317
318 The system will still accept the request even if effectively will be beyond the
319 constraints, but as soon as the task moves to a different cgroup or a sysadmin
320 modifies the system settings, the request will be satisfied only if it is
321 within new constraints.
322
323 In other words, this aggregation will not cause an error when a task changes
324 its uclamp values, but rather the system may not be able to satisfy requests
325 based on those factors.
326
327 2.4. Range
328 ----------
329
330 Uclamp performance request has the range of 0 to 1024 inclusive.
331
332 For cgroup interface percentage is used (that is 0 to 100 inclusive).
333 Just like other cgroup interfaces, you can use 'max' instead of 100.
334
335 .. _uclamp-interfaces:
336
337 3. Interfaces
338 =============
339
340 3.1. Per task interface
341 -----------------------
342
343 sched_setattr() syscall was extended to accept two new fields:
344
345 * sched_util_min: requests the minimum performance point the system should run
346   at when this task is running. Or lower performance bound.
347 * sched_util_max: requests the maximum performance point the system should run
348   at when this task is running. Or upper performance bound.
349
350 For example, the following scenario have 40% to 80% utilization constraints:
351
352 ::
353
354         attr->sched_util_min = 40% * 1024;
355         attr->sched_util_max = 80% * 1024;
356
357 When task @p is running, **the scheduler should try its best to ensure it
358 starts at 40% performance level**. If the task runs for a long enough time so
359 that its actual utilization goes above 80%, the utilization, or performance
360 level, will be capped.
361
362 The special value -1 is used to reset the uclamp settings to the system
363 default.
364
365 Note that resetting the uclamp value to system default using -1 is not the same
366 as manually setting uclamp value to system default. This distinction is
367 important because as we shall see in system interfaces, the default value for
368 RT could be changed. SCHED_NORMAL/OTHER might gain similar knobs too in the
369 future.
370
371 3.2. cgroup interface
372 ---------------------
373
374 There are two uclamp related values in the CPU cgroup controller:
375
376 * cpu.uclamp.min
377 * cpu.uclamp.max
378
379 When a task is attached to a CPU controller, its uclamp values will be impacted
380 as follows:
381
382 * cpu.uclamp.min is a protection as described in :ref:`section 3-3 of cgroup
383   v2 documentation <cgroupv2-protections-distributor>`.
384
385   If a task uclamp_min value is lower than cpu.uclamp.min, then the task will
386   inherit the cgroup cpu.uclamp.min value.
387
388   In a cgroup hierarchy, effective cpu.uclamp.min is the max of (child,
389   parent).
390
391 * cpu.uclamp.max is a limit as described in :ref:`section 3-2 of cgroup v2
392   documentation <cgroupv2-limits-distributor>`.
393
394   If a task uclamp_max value is higher than cpu.uclamp.max, then the task will
395   inherit the cgroup cpu.uclamp.max value.
396
397   In a cgroup hierarchy, effective cpu.uclamp.max is the min of (child,
398   parent).
399
400 For example, given following parameters:
401
402 ::
403
404         p0->uclamp[UCLAMP_MIN] = // system default;
405         p0->uclamp[UCLAMP_MAX] = // system default;
406
407         p1->uclamp[UCLAMP_MIN] = 40% * 1024;
408         p1->uclamp[UCLAMP_MAX] = 50% * 1024;
409
410         cgroup0->cpu.uclamp.min = 20% * 1024;
411         cgroup0->cpu.uclamp.max = 60% * 1024;
412
413         cgroup1->cpu.uclamp.min = 60% * 1024;
414         cgroup1->cpu.uclamp.max = 100% * 1024;
415
416 when p0 and p1 are attached to cgroup0, the values become:
417
418 ::
419
420         p0->uclamp[UCLAMP_MIN] = cgroup0->cpu.uclamp.min = 20% * 1024;
421         p0->uclamp[UCLAMP_MAX] = cgroup0->cpu.uclamp.max = 60% * 1024;
422
423         p1->uclamp[UCLAMP_MIN] = 40% * 1024; // intact
424         p1->uclamp[UCLAMP_MAX] = 50% * 1024; // intact
425
426 when p0 and p1 are attached to cgroup1, these instead become:
427
428 ::
429
430         p0->uclamp[UCLAMP_MIN] = cgroup1->cpu.uclamp.min = 60% * 1024;
431         p0->uclamp[UCLAMP_MAX] = cgroup1->cpu.uclamp.max = 100% * 1024;
432
433         p1->uclamp[UCLAMP_MIN] = cgroup1->cpu.uclamp.min = 60% * 1024;
434         p1->uclamp[UCLAMP_MAX] = 50% * 1024; // intact
435
436 Note that cgroup interfaces allows cpu.uclamp.max value to be lower than
437 cpu.uclamp.min. Other interfaces don't allow that.
438
439 3.3. System interface
440 ---------------------
441
442 3.3.1 sched_util_clamp_min
443 --------------------------
444
445 System wide limit of allowed UCLAMP_MIN range. By default it is set to 1024,
446 which means that permitted effective UCLAMP_MIN range for tasks is [0:1024].
447 By changing it to 512 for example the range reduces to [0:512]. This is useful
448 to restrict how much boosting tasks are allowed to acquire.
449
450 Requests from tasks to go above this knob value will still succeed, but
451 they won't be satisfied until it is more than p->uclamp[UCLAMP_MIN].
452
453 The value must be smaller than or equal to sched_util_clamp_max.
454
455 3.3.2 sched_util_clamp_max
456 --------------------------
457
458 System wide limit of allowed UCLAMP_MAX range. By default it is set to 1024,
459 which means that permitted effective UCLAMP_MAX range for tasks is [0:1024].
460
461 By changing it to 512 for example the effective allowed range reduces to
462 [0:512]. This means is that no task can run above 512, which implies that all
463 rqs are restricted too. IOW, the whole system is capped to half its performance
464 capacity.
465
466 This is useful to restrict the overall maximum performance point of the system.
467 For example, it can be handy to limit performance when running low on battery
468 or when the system wants to limit access to more energy hungry performance
469 levels when it's in idle state or screen is off.
470
471 Requests from tasks to go above this knob value will still succeed, but they
472 won't be satisfied until it is more than p->uclamp[UCLAMP_MAX].
473
474 The value must be greater than or equal to sched_util_clamp_min.
475
476 .. _uclamp-default-values:
477
478 3.4. Default values
479 -------------------
480
481 By default all SCHED_NORMAL/SCHED_OTHER tasks are initialized to:
482
483 ::
484
485         p_fair->uclamp[UCLAMP_MIN] = 0
486         p_fair->uclamp[UCLAMP_MAX] = 1024
487
488 That is, by default they're boosted to run at the maximum performance point of
489 changed at boot or runtime. No argument was made yet as to why we should
490 provide this, but can be added in the future.
491
492 For SCHED_FIFO/SCHED_RR tasks:
493
494 ::
495
496         p_rt->uclamp[UCLAMP_MIN] = 1024
497         p_rt->uclamp[UCLAMP_MAX] = 1024
498
499 That is by default they're boosted to run at the maximum performance point of
500 the system which retains the historical behavior of the RT tasks.
501
502 RT tasks default uclamp_min value can be modified at boot or runtime via
503 sysctl. See below section.
504
505 .. _sched-util-clamp-min-rt-default:
506
507 3.4.1 sched_util_clamp_min_rt_default
508 -------------------------------------
509
510 Running RT tasks at maximum performance point is expensive on battery powered
511 devices and not necessary. To allow system developer to offer good performance
512 guarantees for these tasks without pushing it all the way to maximum
513 performance point, this sysctl knob allows tuning the best boost value to
514 address the system requirement without burning power running at maximum
515 performance point all the time.
516
517 Application developer are encouraged to use the per task util clamp interface
518 to ensure they are performance and power aware. Ideally this knob should be set
519 to 0 by system designers and leave the task of managing performance
520 requirements to the apps.
521
522 4. How to use util clamp
523 ========================
524
525 Util clamp promotes the concept of user space assisted power and performance
526 management. At the scheduler level there is no info required to make the best
527 decision. However, with util clamp user space can hint to the scheduler to make
528 better decision about task placement and frequency selection.
529
530 Best results are achieved by not making any assumptions about the system the
531 application is running on and to use it in conjunction with a feedback loop to
532 dynamically monitor and adjust. Ultimately this will allow for a better user
533 experience at a better perf/watt.
534
535 For some systems and use cases, static setup will help to achieve good results.
536 Portability will be a problem in this case. How much work one can do at 100,
537 200 or 1024 is different for each system. Unless there's a specific target
538 system, static setup should be avoided.
539
540 There are enough possibilities to create a whole framework based on util clamp
541 or self contained app that makes use of it directly.
542
543 4.1. Boost important and DVFS-latency-sensitive tasks
544 -----------------------------------------------------
545
546 A GUI task might not be busy to warrant driving the frequency high when it
547 wakes up. However, it requires to finish its work within a specific time window
548 to deliver the desired user experience. The right frequency it requires at
549 wakeup will be system dependent. On some underpowered systems it will be high,
550 on other overpowered ones it will be low or 0.
551
552 This task can increase its UCLAMP_MIN value every time it misses the deadline
553 to ensure on next wake up it runs at a higher performance point. It should try
554 to approach the lowest UCLAMP_MIN value that allows to meet its deadline on any
555 particular system to achieve the best possible perf/watt for that system.
556
557 On heterogeneous systems, it might be important for this task to run on
558 a faster CPU.
559
560 **Generally it is advised to perceive the input as performance level or point
561 which will imply both task placement and frequency selection**.
562
563 4.2. Cap background tasks
564 -------------------------
565
566 Like explained for Android case in the introduction. Any app can lower
567 UCLAMP_MAX for some background tasks that don't care about performance but
568 could end up being busy and consume unnecessary system resources on the system.
569
570 4.3. Powersave mode
571 -------------------
572
573 sched_util_clamp_max system wide interface can be used to limit all tasks from
574 operating at the higher performance points which are usually energy
575 inefficient.
576
577 This is not unique to uclamp as one can achieve the same by reducing max
578 frequency of the cpufreq governor. It can be considered a more convenient
579 alternative interface.
580
581 4.4. Per-app performance restriction
582 ------------------------------------
583
584 Middleware/Utility can provide the user an option to set UCLAMP_MIN/MAX for an
585 app every time it is executed to guarantee a minimum performance point and/or
586 limit it from draining system power at the cost of reduced performance for
587 these apps.
588
589 If you want to prevent your laptop from heating up while on the go from
590 compiling the kernel and happy to sacrifice performance to save power, but
591 still would like to keep your browser performance intact, uclamp makes it
592 possible.
593
594 5. Limitations
595 ==============
596
597 .. _uclamp-capping-fail:
598
599 5.1. Capping frequency with uclamp_max fails under certain conditions
600 ---------------------------------------------------------------------
601
602 If task p0 is capped to run at 512:
603
604 ::
605
606         p0->uclamp[UCLAMP_MAX] = 512
607
608 and it shares the rq with p1 which is free to run at any performance point:
609
610 ::
611
612         p1->uclamp[UCLAMP_MAX] = 1024
613
614 then due to max aggregation the rq will be allowed to reach max performance
615 point:
616
617 ::
618
619         rq->uclamp[UCLAMP_MAX] = max(512, 1024) = 1024
620
621 Assuming both p0 and p1 have UCLAMP_MIN = 0, then the frequency selection for
622 the rq will depend on the actual utilization value of the tasks.
623
624 If p1 is a small task but p0 is a CPU intensive task, then due to the fact that
625 both are running at the same rq, p1 will cause the frequency capping to be left
626 from the rq although p1, which is allowed to run at any performance point,
627 doesn't actually need to run at that frequency.
628
629 5.2. UCLAMP_MAX can break PELT (util_avg) signal
630 ------------------------------------------------
631
632 PELT assumes that frequency will always increase as the signals grow to ensure
633 there's always some idle time on the CPU. But with UCLAMP_MAX, this frequency
634 increase will be prevented which can lead to no idle time in some
635 circumstances. When there's no idle time, a task will stuck in a busy loop,
636 which would result in util_avg being 1024.
637
638 Combing with issue described below, this can lead to unwanted frequency spikes
639 when severely capped tasks share the rq with a small non capped task.
640
641 As an example if task p, which have:
642
643 ::
644
645         p0->util_avg = 300
646         p0->uclamp[UCLAMP_MAX] = 0
647
648 wakes up on an idle CPU, then it will run at min frequency (Fmin) this
649 CPU is capable of. The max CPU frequency (Fmax) matters here as well,
650 since it designates the shortest computational time to finish the task's
651 work on this CPU.
652
653 ::
654
655         rq->uclamp[UCLAMP_MAX] = 0
656
657 If the ratio of Fmax/Fmin is 3, then maximum value will be:
658
659 ::
660
661         300 * (Fmax/Fmin) = 900
662
663 which indicates the CPU will still see idle time since 900 is < 1024. The
664 _actual_ util_avg will not be 900 though, but somewhere between 300 and 900. As
665 long as there's idle time, p->util_avg updates will be off by a some margin,
666 but not proportional to Fmax/Fmin.
667
668 ::
669
670         p0->util_avg = 300 + small_error
671
672 Now if the ratio of Fmax/Fmin is 4, the maximum value becomes:
673
674 ::
675
676         300 * (Fmax/Fmin) = 1200
677
678 which is higher than 1024 and indicates that the CPU has no idle time. When
679 this happens, then the _actual_ util_avg will become:
680
681 ::
682
683         p0->util_avg = 1024
684
685 If task p1 wakes up on this CPU, which have:
686
687 ::
688
689         p1->util_avg = 200
690         p1->uclamp[UCLAMP_MAX] = 1024
691
692 then the effective UCLAMP_MAX for the CPU will be 1024 according to max
693 aggregation rule. But since the capped p0 task was running and throttled
694 severely, then the rq->util_avg will be:
695
696 ::
697
698         p0->util_avg = 1024
699         p1->util_avg = 200
700
701         rq->util_avg = 1024
702         rq->uclamp[UCLAMP_MAX] = 1024
703
704 Hence lead to a frequency spike since if p0 wasn't throttled we should get:
705
706 ::
707
708         p0->util_avg = 300
709         p1->util_avg = 200
710
711         rq->util_avg = 500
712
713 and run somewhere near mid performance point of that CPU, not the Fmax we get.
714
715 5.3. Schedutil response time issues
716 -----------------------------------
717
718 schedutil has three limitations:
719
720         1. Hardware takes non-zero time to respond to any frequency change
721            request. On some platforms can be in the order of few ms.
722         2. Non fast-switch systems require a worker deadline thread to wake up
723            and perform the frequency change, which adds measurable overhead.
724         3. schedutil rate_limit_us drops any requests during this rate_limit_us
725            window.
726
727 If a relatively small task is doing critical job and requires a certain
728 performance point when it wakes up and starts running, then all these
729 limitations will prevent it from getting what it wants in the time scale it
730 expects.
731
732 This limitation is not only impactful when using uclamp, but will be more
733 prevalent as we no longer gradually ramp up or down. We could easily be
734 jumping between frequencies depending on the order tasks wake up, and their
735 respective uclamp values.
736
737 We regard that as a limitation of the capabilities of the underlying system
738 itself.
739
740 There is room to improve the behavior of schedutil rate_limit_us, but not much
741 to be done for 1 or 2. They are considered hard limitations of the system.