f2fs: Provide a splice-read wrapper
[linux-block.git] / Documentation / mm / hmm.rst
1 =====================================
2 Heterogeneous Memory Management (HMM)
3 =====================================
4
5 Provide infrastructure and helpers to integrate non-conventional memory (device
6 memory like GPU on board memory) into regular kernel path, with the cornerstone
7 of this being specialized struct page for such memory (see sections 5 to 7 of
8 this document).
9
10 HMM also provides optional helpers for SVM (Share Virtual Memory), i.e.,
11 allowing a device to transparently access program addresses coherently with
12 the CPU meaning that any valid pointer on the CPU is also a valid pointer
13 for the device. This is becoming mandatory to simplify the use of advanced
14 heterogeneous computing where GPU, DSP, or FPGA are used to perform various
15 computations on behalf of a process.
16
17 This document is divided as follows: in the first section I expose the problems
18 related to using device specific memory allocators. In the second section, I
19 expose the hardware limitations that are inherent to many platforms. The third
20 section gives an overview of the HMM design. The fourth section explains how
21 CPU page-table mirroring works and the purpose of HMM in this context. The
22 fifth section deals with how device memory is represented inside the kernel.
23 Finally, the last section presents a new migration helper that allows
24 leveraging the device DMA engine.
25
26 .. contents:: :local:
27
28 Problems of using a device specific memory allocator
29 ====================================================
30
31 Devices with a large amount of on board memory (several gigabytes) like GPUs
32 have historically managed their memory through dedicated driver specific APIs.
33 This creates a disconnect between memory allocated and managed by a device
34 driver and regular application memory (private anonymous, shared memory, or
35 regular file backed memory). From here on I will refer to this aspect as split
36 address space. I use shared address space to refer to the opposite situation:
37 i.e., one in which any application memory region can be used by a device
38 transparently.
39
40 Split address space happens because devices can only access memory allocated
41 through a device specific API. This implies that all memory objects in a program
42 are not equal from the device point of view which complicates large programs
43 that rely on a wide set of libraries.
44
45 Concretely, this means that code that wants to leverage devices like GPUs needs
46 to copy objects between generically allocated memory (malloc, mmap private, mmap
47 share) and memory allocated through the device driver API (this still ends up
48 with an mmap but of the device file).
49
50 For flat data sets (array, grid, image, ...) this isn't too hard to achieve but
51 for complex data sets (list, tree, ...) it's hard to get right. Duplicating a
52 complex data set needs to re-map all the pointer relations between each of its
53 elements. This is error prone and programs get harder to debug because of the
54 duplicate data set and addresses.
55
56 Split address space also means that libraries cannot transparently use data
57 they are getting from the core program or another library and thus each library
58 might have to duplicate its input data set using the device specific memory
59 allocator. Large projects suffer from this and waste resources because of the
60 various memory copies.
61
62 Duplicating each library API to accept as input or output memory allocated by
63 each device specific allocator is not a viable option. It would lead to a
64 combinatorial explosion in the library entry points.
65
66 Finally, with the advance of high level language constructs (in C++ but in
67 other languages too) it is now possible for the compiler to leverage GPUs and
68 other devices without programmer knowledge. Some compiler identified patterns
69 are only do-able with a shared address space. It is also more reasonable to use
70 a shared address space for all other patterns.
71
72
73 I/O bus, device memory characteristics
74 ======================================
75
76 I/O buses cripple shared address spaces due to a few limitations. Most I/O
77 buses only allow basic memory access from device to main memory; even cache
78 coherency is often optional. Access to device memory from a CPU is even more
79 limited. More often than not, it is not cache coherent.
80
81 If we only consider the PCIE bus, then a device can access main memory (often
82 through an IOMMU) and be cache coherent with the CPUs. However, it only allows
83 a limited set of atomic operations from the device on main memory. This is worse
84 in the other direction: the CPU can only access a limited range of the device
85 memory and cannot perform atomic operations on it. Thus device memory cannot
86 be considered the same as regular memory from the kernel point of view.
87
88 Another crippling factor is the limited bandwidth (~32GBytes/s with PCIE 4.0
89 and 16 lanes). This is 33 times less than the fastest GPU memory (1 TBytes/s).
90 The final limitation is latency. Access to main memory from the device has an
91 order of magnitude higher latency than when the device accesses its own memory.
92
93 Some platforms are developing new I/O buses or additions/modifications to PCIE
94 to address some of these limitations (OpenCAPI, CCIX). They mainly allow
95 two-way cache coherency between CPU and device and allow all atomic operations the
96 architecture supports. Sadly, not all platforms are following this trend and
97 some major architectures are left without hardware solutions to these problems.
98
99 So for shared address space to make sense, not only must we allow devices to
100 access any memory but we must also permit any memory to be migrated to device
101 memory while the device is using it (blocking CPU access while it happens).
102
103
104 Shared address space and migration
105 ==================================
106
107 HMM intends to provide two main features. The first one is to share the address
108 space by duplicating the CPU page table in the device page table so the same
109 address points to the same physical memory for any valid main memory address in
110 the process address space.
111
112 To achieve this, HMM offers a set of helpers to populate the device page table
113 while keeping track of CPU page table updates. Device page table updates are
114 not as easy as CPU page table updates. To update the device page table, you must
115 allocate a buffer (or use a pool of pre-allocated buffers) and write GPU
116 specific commands in it to perform the update (unmap, cache invalidations, and
117 flush, ...). This cannot be done through common code for all devices. Hence
118 why HMM provides helpers to factor out everything that can be while leaving the
119 hardware specific details to the device driver.
120
121 The second mechanism HMM provides is a new kind of ZONE_DEVICE memory that
122 allows allocating a struct page for each page of device memory. Those pages
123 are special because the CPU cannot map them. However, they allow migrating
124 main memory to device memory using existing migration mechanisms and everything
125 looks like a page that is swapped out to disk from the CPU point of view. Using a
126 struct page gives the easiest and cleanest integration with existing mm
127 mechanisms. Here again, HMM only provides helpers, first to hotplug new ZONE_DEVICE
128 memory for the device memory and second to perform migration. Policy decisions
129 of what and when to migrate is left to the device driver.
130
131 Note that any CPU access to a device page triggers a page fault and a migration
132 back to main memory. For example, when a page backing a given CPU address A is
133 migrated from a main memory page to a device page, then any CPU access to
134 address A triggers a page fault and initiates a migration back to main memory.
135
136 With these two features, HMM not only allows a device to mirror process address
137 space and keeps both CPU and device page tables synchronized, but also
138 leverages device memory by migrating the part of the data set that is actively being
139 used by the device.
140
141
142 Address space mirroring implementation and API
143 ==============================================
144
145 Address space mirroring's main objective is to allow duplication of a range of
146 CPU page table into a device page table; HMM helps keep both synchronized. A
147 device driver that wants to mirror a process address space must start with the
148 registration of a mmu_interval_notifier::
149
150  int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
151                                   struct mm_struct *mm, unsigned long start,
152                                   unsigned long length,
153                                   const struct mmu_interval_notifier_ops *ops);
154
155 During the ops->invalidate() callback the device driver must perform the
156 update action to the range (mark range read only, or fully unmap, etc.). The
157 device must complete the update before the driver callback returns.
158
159 When the device driver wants to populate a range of virtual addresses, it can
160 use::
161
162   int hmm_range_fault(struct hmm_range *range);
163
164 It will trigger a page fault on missing or read-only entries if write access is
165 requested (see below). Page faults use the generic mm page fault code path just
166 like a CPU page fault.
167
168 Both functions copy CPU page table entries into their pfns array argument. Each
169 entry in that array corresponds to an address in the virtual range. HMM
170 provides a set of flags to help the driver identify special CPU page table
171 entries.
172
173 Locking within the sync_cpu_device_pagetables() callback is the most important
174 aspect the driver must respect in order to keep things properly synchronized.
175 The usage pattern is::
176
177  int driver_populate_range(...)
178  {
179       struct hmm_range range;
180       ...
181
182       range.notifier = &interval_sub;
183       range.start = ...;
184       range.end = ...;
185       range.hmm_pfns = ...;
186
187       if (!mmget_not_zero(interval_sub->notifier.mm))
188           return -EFAULT;
189
190  again:
191       range.notifier_seq = mmu_interval_read_begin(&interval_sub);
192       mmap_read_lock(mm);
193       ret = hmm_range_fault(&range);
194       if (ret) {
195           mmap_read_unlock(mm);
196           if (ret == -EBUSY)
197                  goto again;
198           return ret;
199       }
200       mmap_read_unlock(mm);
201
202       take_lock(driver->update);
203       if (mmu_interval_read_retry(&ni, range.notifier_seq) {
204           release_lock(driver->update);
205           goto again;
206       }
207
208       /* Use pfns array content to update device page table,
209        * under the update lock */
210
211       release_lock(driver->update);
212       return 0;
213  }
214
215 The driver->update lock is the same lock that the driver takes inside its
216 invalidate() callback. That lock must be held before calling
217 mmu_interval_read_retry() to avoid any race with a concurrent CPU page table
218 update.
219
220 Leverage default_flags and pfn_flags_mask
221 =========================================
222
223 The hmm_range struct has 2 fields, default_flags and pfn_flags_mask, that specify
224 fault or snapshot policy for the whole range instead of having to set them
225 for each entry in the pfns array.
226
227 For instance if the device driver wants pages for a range with at least read
228 permission, it sets::
229
230     range->default_flags = HMM_PFN_REQ_FAULT;
231     range->pfn_flags_mask = 0;
232
233 and calls hmm_range_fault() as described above. This will fill fault all pages
234 in the range with at least read permission.
235
236 Now let's say the driver wants to do the same except for one page in the range for
237 which it wants to have write permission. Now driver set::
238
239     range->default_flags = HMM_PFN_REQ_FAULT;
240     range->pfn_flags_mask = HMM_PFN_REQ_WRITE;
241     range->pfns[index_of_write] = HMM_PFN_REQ_WRITE;
242
243 With this, HMM will fault in all pages with at least read (i.e., valid) and for the
244 address == range->start + (index_of_write << PAGE_SHIFT) it will fault with
245 write permission i.e., if the CPU pte does not have write permission set then HMM
246 will call handle_mm_fault().
247
248 After hmm_range_fault completes the flag bits are set to the current state of
249 the page tables, ie HMM_PFN_VALID | HMM_PFN_WRITE will be set if the page is
250 writable.
251
252
253 Represent and manage device memory from core kernel point of view
254 =================================================================
255
256 Several different designs were tried to support device memory. The first one
257 used a device specific data structure to keep information about migrated memory
258 and HMM hooked itself in various places of mm code to handle any access to
259 addresses that were backed by device memory. It turns out that this ended up
260 replicating most of the fields of struct page and also needed many kernel code
261 paths to be updated to understand this new kind of memory.
262
263 Most kernel code paths never try to access the memory behind a page
264 but only care about struct page contents. Because of this, HMM switched to
265 directly using struct page for device memory which left most kernel code paths
266 unaware of the difference. We only need to make sure that no one ever tries to
267 map those pages from the CPU side.
268
269 Migration to and from device memory
270 ===================================
271
272 Because the CPU cannot access device memory directly, the device driver must
273 use hardware DMA or device specific load/store instructions to migrate data.
274 The migrate_vma_setup(), migrate_vma_pages(), and migrate_vma_finalize()
275 functions are designed to make drivers easier to write and to centralize common
276 code across drivers.
277
278 Before migrating pages to device private memory, special device private
279 ``struct page`` need to be created. These will be used as special "swap"
280 page table entries so that a CPU process will fault if it tries to access
281 a page that has been migrated to device private memory.
282
283 These can be allocated and freed with::
284
285     struct resource *res;
286     struct dev_pagemap pagemap;
287
288     res = request_free_mem_region(&iomem_resource, /* number of bytes */,
289                                   "name of driver resource");
290     pagemap.type = MEMORY_DEVICE_PRIVATE;
291     pagemap.range.start = res->start;
292     pagemap.range.end = res->end;
293     pagemap.nr_range = 1;
294     pagemap.ops = &device_devmem_ops;
295     memremap_pages(&pagemap, numa_node_id());
296
297     memunmap_pages(&pagemap);
298     release_mem_region(pagemap.range.start, range_len(&pagemap.range));
299
300 There are also devm_request_free_mem_region(), devm_memremap_pages(),
301 devm_memunmap_pages(), and devm_release_mem_region() when the resources can
302 be tied to a ``struct device``.
303
304 The overall migration steps are similar to migrating NUMA pages within system
305 memory (see Documentation/mm/page_migration.rst) but the steps are split
306 between device driver specific code and shared common code:
307
308 1. ``mmap_read_lock()``
309
310    The device driver has to pass a ``struct vm_area_struct`` to
311    migrate_vma_setup() so the mmap_read_lock() or mmap_write_lock() needs to
312    be held for the duration of the migration.
313
314 2. ``migrate_vma_setup(struct migrate_vma *args)``
315
316    The device driver initializes the ``struct migrate_vma`` fields and passes
317    the pointer to migrate_vma_setup(). The ``args->flags`` field is used to
318    filter which source pages should be migrated. For example, setting
319    ``MIGRATE_VMA_SELECT_SYSTEM`` will only migrate system memory and
320    ``MIGRATE_VMA_SELECT_DEVICE_PRIVATE`` will only migrate pages residing in
321    device private memory. If the latter flag is set, the ``args->pgmap_owner``
322    field is used to identify device private pages owned by the driver. This
323    avoids trying to migrate device private pages residing in other devices.
324    Currently only anonymous private VMA ranges can be migrated to or from
325    system memory and device private memory.
326
327    One of the first steps migrate_vma_setup() does is to invalidate other
328    device's MMUs with the ``mmu_notifier_invalidate_range_start(()`` and
329    ``mmu_notifier_invalidate_range_end()`` calls around the page table
330    walks to fill in the ``args->src`` array with PFNs to be migrated.
331    The ``invalidate_range_start()`` callback is passed a
332    ``struct mmu_notifier_range`` with the ``event`` field set to
333    ``MMU_NOTIFY_MIGRATE`` and the ``owner`` field set to
334    the ``args->pgmap_owner`` field passed to migrate_vma_setup(). This is
335    allows the device driver to skip the invalidation callback and only
336    invalidate device private MMU mappings that are actually migrating.
337    This is explained more in the next section.
338
339    While walking the page tables, a ``pte_none()`` or ``is_zero_pfn()``
340    entry results in a valid "zero" PFN stored in the ``args->src`` array.
341    This lets the driver allocate device private memory and clear it instead
342    of copying a page of zeros. Valid PTE entries to system memory or
343    device private struct pages will be locked with ``lock_page()``, isolated
344    from the LRU (if system memory since device private pages are not on
345    the LRU), unmapped from the process, and a special migration PTE is
346    inserted in place of the original PTE.
347    migrate_vma_setup() also clears the ``args->dst`` array.
348
349 3. The device driver allocates destination pages and copies source pages to
350    destination pages.
351
352    The driver checks each ``src`` entry to see if the ``MIGRATE_PFN_MIGRATE``
353    bit is set and skips entries that are not migrating. The device driver
354    can also choose to skip migrating a page by not filling in the ``dst``
355    array for that page.
356
357    The driver then allocates either a device private struct page or a
358    system memory page, locks the page with ``lock_page()``, and fills in the
359    ``dst`` array entry with::
360
361      dst[i] = migrate_pfn(page_to_pfn(dpage));
362
363    Now that the driver knows that this page is being migrated, it can
364    invalidate device private MMU mappings and copy device private memory
365    to system memory or another device private page. The core Linux kernel
366    handles CPU page table invalidations so the device driver only has to
367    invalidate its own MMU mappings.
368
369    The driver can use ``migrate_pfn_to_page(src[i])`` to get the
370    ``struct page`` of the source and either copy the source page to the
371    destination or clear the destination device private memory if the pointer
372    is ``NULL`` meaning the source page was not populated in system memory.
373
374 4. ``migrate_vma_pages()``
375
376    This step is where the migration is actually "committed".
377
378    If the source page was a ``pte_none()`` or ``is_zero_pfn()`` page, this
379    is where the newly allocated page is inserted into the CPU's page table.
380    This can fail if a CPU thread faults on the same page. However, the page
381    table is locked and only one of the new pages will be inserted.
382    The device driver will see that the ``MIGRATE_PFN_MIGRATE`` bit is cleared
383    if it loses the race.
384
385    If the source page was locked, isolated, etc. the source ``struct page``
386    information is now copied to destination ``struct page`` finalizing the
387    migration on the CPU side.
388
389 5. Device driver updates device MMU page tables for pages still migrating,
390    rolling back pages not migrating.
391
392    If the ``src`` entry still has ``MIGRATE_PFN_MIGRATE`` bit set, the device
393    driver can update the device MMU and set the write enable bit if the
394    ``MIGRATE_PFN_WRITE`` bit is set.
395
396 6. ``migrate_vma_finalize()``
397
398    This step replaces the special migration page table entry with the new
399    page's page table entry and releases the reference to the source and
400    destination ``struct page``.
401
402 7. ``mmap_read_unlock()``
403
404    The lock can now be released.
405
406 Exclusive access memory
407 =======================
408
409 Some devices have features such as atomic PTE bits that can be used to implement
410 atomic access to system memory. To support atomic operations to a shared virtual
411 memory page such a device needs access to that page which is exclusive of any
412 userspace access from the CPU. The ``make_device_exclusive_range()`` function
413 can be used to make a memory range inaccessible from userspace.
414
415 This replaces all mappings for pages in the given range with special swap
416 entries. Any attempt to access the swap entry results in a fault which is
417 resovled by replacing the entry with the original mapping. A driver gets
418 notified that the mapping has been changed by MMU notifiers, after which point
419 it will no longer have exclusive access to the page. Exclusive access is
420 guranteed to last until the driver drops the page lock and page reference, at
421 which point any CPU faults on the page may proceed as described.
422
423 Memory cgroup (memcg) and rss accounting
424 ========================================
425
426 For now, device memory is accounted as any regular page in rss counters (either
427 anonymous if device page is used for anonymous, file if device page is used for
428 file backed page, or shmem if device page is used for shared memory). This is a
429 deliberate choice to keep existing applications, that might start using device
430 memory without knowing about it, running unimpacted.
431
432 A drawback is that the OOM killer might kill an application using a lot of
433 device memory and not a lot of regular system memory and thus not freeing much
434 system memory. We want to gather more real world experience on how applications
435 and system react under memory pressure in the presence of device memory before
436 deciding to account device memory differently.
437
438
439 Same decision was made for memory cgroup. Device memory pages are accounted
440 against same memory cgroup a regular page would be accounted to. This does
441 simplify migration to and from device memory. This also means that migration
442 back from device memory to regular memory cannot fail because it would
443 go above memory cgroup limit. We might revisit this choice latter on once we
444 get more experience in how device memory is used and its impact on memory
445 resource control.
446
447
448 Note that device memory can never be pinned by a device driver nor through GUP
449 and thus such memory is always free upon process exit. Or when last reference
450 is dropped in case of shared memory or file backed memory.