Merge branch 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / virt / kvm / kvm_main.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16#include <kvm/iodev.h>
17
18#include <linux/kvm_host.h>
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
22#include <linux/percpu.h>
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
26#include <linux/reboot.h>
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
30#include <linux/syscore_ops.h>
31#include <linux/cpu.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/mm.h>
34#include <linux/sched/stat.h>
35#include <linux/cpumask.h>
36#include <linux/smp.h>
37#include <linux/anon_inodes.h>
38#include <linux/profile.h>
39#include <linux/kvm_para.h>
40#include <linux/pagemap.h>
41#include <linux/mman.h>
42#include <linux/swap.h>
43#include <linux/bitops.h>
44#include <linux/spinlock.h>
45#include <linux/compat.h>
46#include <linux/srcu.h>
47#include <linux/hugetlb.h>
48#include <linux/slab.h>
49#include <linux/sort.h>
50#include <linux/bsearch.h>
51#include <linux/io.h>
52#include <linux/lockdep.h>
53#include <linux/kthread.h>
54
55#include <asm/processor.h>
56#include <asm/ioctl.h>
57#include <linux/uaccess.h>
58#include <asm/pgtable.h>
59
60#include "coalesced_mmio.h"
61#include "async_pf.h"
62#include "vfio.h"
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/kvm.h>
66
67/* Worst case buffer size needed for holding an integer. */
68#define ITOA_MAX_LEN 12
69
70MODULE_AUTHOR("Qumranet");
71MODULE_LICENSE("GPL");
72
73/* Architectures should define their poll value according to the halt latency */
74unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75module_param(halt_poll_ns, uint, 0644);
76EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78/* Default doubles per-vcpu halt_poll_ns. */
79unsigned int halt_poll_ns_grow = 2;
80module_param(halt_poll_ns_grow, uint, 0644);
81EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83/* The start value to grow halt_poll_ns from */
84unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85module_param(halt_poll_ns_grow_start, uint, 0644);
86EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88/* Default resets per-vcpu halt_poll_ns . */
89unsigned int halt_poll_ns_shrink;
90module_param(halt_poll_ns_shrink, uint, 0644);
91EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93/*
94 * Ordering of locks:
95 *
96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97 */
98
99DEFINE_MUTEX(kvm_lock);
100static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101LIST_HEAD(vm_list);
102
103static cpumask_var_t cpus_hardware_enabled;
104static int kvm_usage_count;
105static atomic_t hardware_enable_failed;
106
107static struct kmem_cache *kvm_vcpu_cache;
108
109static __read_mostly struct preempt_ops kvm_preempt_ops;
110static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111
112struct dentry *kvm_debugfs_dir;
113EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115static int kvm_debugfs_num_entries;
116static const struct file_operations stat_fops_per_vm;
117
118static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120#ifdef CONFIG_KVM_COMPAT
121static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
123#define KVM_COMPAT(c) .compat_ioctl = (c)
124#else
125/*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
132static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
134
135static int kvm_no_compat_open(struct inode *inode, struct file *file)
136{
137 return is_compat_task() ? -ENODEV : 0;
138}
139#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
141#endif
142static int hardware_enable_all(void);
143static void hardware_disable_all(void);
144
145static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149__visible bool kvm_rebooting;
150EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152static bool largepages_enabled = true;
153
154#define KVM_EVENT_CREATE_VM 0
155#define KVM_EVENT_DESTROY_VM 1
156static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157static unsigned long long kvm_createvm_count;
158static unsigned long long kvm_active_vms;
159
160__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 unsigned long start, unsigned long end, bool blockable)
162{
163 return 0;
164}
165
166bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167{
168 /*
169 * The metadata used by is_zone_device_page() to determine whether or
170 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 * the device has been pinned, e.g. by get_user_pages(). WARN if the
172 * page_count() is zero to help detect bad usage of this helper.
173 */
174 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175 return false;
176
177 return is_zone_device_page(pfn_to_page(pfn));
178}
179
180bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181{
182 /*
183 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184 * perspective they are "normal" pages, albeit with slightly different
185 * usage rules.
186 */
187 if (pfn_valid(pfn))
188 return PageReserved(pfn_to_page(pfn)) &&
189 !is_zero_pfn(pfn) &&
190 !kvm_is_zone_device_pfn(pfn);
191
192 return true;
193}
194
195bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
196{
197 struct page *page = pfn_to_page(pfn);
198
199 if (!PageTransCompoundMap(page))
200 return false;
201
202 return is_transparent_hugepage(compound_head(page));
203}
204
205/*
206 * Switches to specified vcpu, until a matching vcpu_put()
207 */
208void vcpu_load(struct kvm_vcpu *vcpu)
209{
210 int cpu = get_cpu();
211
212 __this_cpu_write(kvm_running_vcpu, vcpu);
213 preempt_notifier_register(&vcpu->preempt_notifier);
214 kvm_arch_vcpu_load(vcpu, cpu);
215 put_cpu();
216}
217EXPORT_SYMBOL_GPL(vcpu_load);
218
219void vcpu_put(struct kvm_vcpu *vcpu)
220{
221 preempt_disable();
222 kvm_arch_vcpu_put(vcpu);
223 preempt_notifier_unregister(&vcpu->preempt_notifier);
224 __this_cpu_write(kvm_running_vcpu, NULL);
225 preempt_enable();
226}
227EXPORT_SYMBOL_GPL(vcpu_put);
228
229/* TODO: merge with kvm_arch_vcpu_should_kick */
230static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231{
232 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234 /*
235 * We need to wait for the VCPU to reenable interrupts and get out of
236 * READING_SHADOW_PAGE_TABLES mode.
237 */
238 if (req & KVM_REQUEST_WAIT)
239 return mode != OUTSIDE_GUEST_MODE;
240
241 /*
242 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 */
244 return mode == IN_GUEST_MODE;
245}
246
247static void ack_flush(void *_completed)
248{
249}
250
251static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
252{
253 if (unlikely(!cpus))
254 cpus = cpu_online_mask;
255
256 if (cpumask_empty(cpus))
257 return false;
258
259 smp_call_function_many(cpus, ack_flush, NULL, wait);
260 return true;
261}
262
263bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
264 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
265{
266 int i, cpu, me;
267 struct kvm_vcpu *vcpu;
268 bool called;
269
270 me = get_cpu();
271
272 kvm_for_each_vcpu(i, vcpu, kvm) {
273 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
274 continue;
275
276 kvm_make_request(req, vcpu);
277 cpu = vcpu->cpu;
278
279 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280 continue;
281
282 if (tmp != NULL && cpu != -1 && cpu != me &&
283 kvm_request_needs_ipi(vcpu, req))
284 __cpumask_set_cpu(cpu, tmp);
285 }
286
287 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
288 put_cpu();
289
290 return called;
291}
292
293bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
294{
295 cpumask_var_t cpus;
296 bool called;
297
298 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
300 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
301
302 free_cpumask_var(cpus);
303 return called;
304}
305
306#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
307void kvm_flush_remote_tlbs(struct kvm *kvm)
308{
309 /*
310 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
311 * kvm_make_all_cpus_request.
312 */
313 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
314
315 /*
316 * We want to publish modifications to the page tables before reading
317 * mode. Pairs with a memory barrier in arch-specific code.
318 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
319 * and smp_mb in walk_shadow_page_lockless_begin/end.
320 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
321 *
322 * There is already an smp_mb__after_atomic() before
323 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
324 * barrier here.
325 */
326 if (!kvm_arch_flush_remote_tlb(kvm)
327 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
328 ++kvm->stat.remote_tlb_flush;
329 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
330}
331EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
332#endif
333
334void kvm_reload_remote_mmus(struct kvm *kvm)
335{
336 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
337}
338
339static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
340{
341 mutex_init(&vcpu->mutex);
342 vcpu->cpu = -1;
343 vcpu->kvm = kvm;
344 vcpu->vcpu_id = id;
345 vcpu->pid = NULL;
346 init_swait_queue_head(&vcpu->wq);
347 kvm_async_pf_vcpu_init(vcpu);
348
349 vcpu->pre_pcpu = -1;
350 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
351
352 kvm_vcpu_set_in_spin_loop(vcpu, false);
353 kvm_vcpu_set_dy_eligible(vcpu, false);
354 vcpu->preempted = false;
355 vcpu->ready = false;
356 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
357}
358
359void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
360{
361 kvm_arch_vcpu_destroy(vcpu);
362
363 /*
364 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
365 * the vcpu->pid pointer, and at destruction time all file descriptors
366 * are already gone.
367 */
368 put_pid(rcu_dereference_protected(vcpu->pid, 1));
369
370 free_page((unsigned long)vcpu->run);
371 kmem_cache_free(kvm_vcpu_cache, vcpu);
372}
373EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
374
375#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
376static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
377{
378 return container_of(mn, struct kvm, mmu_notifier);
379}
380
381static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
382 struct mm_struct *mm,
383 unsigned long address,
384 pte_t pte)
385{
386 struct kvm *kvm = mmu_notifier_to_kvm(mn);
387 int idx;
388
389 idx = srcu_read_lock(&kvm->srcu);
390 spin_lock(&kvm->mmu_lock);
391 kvm->mmu_notifier_seq++;
392
393 if (kvm_set_spte_hva(kvm, address, pte))
394 kvm_flush_remote_tlbs(kvm);
395
396 spin_unlock(&kvm->mmu_lock);
397 srcu_read_unlock(&kvm->srcu, idx);
398}
399
400static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
401 const struct mmu_notifier_range *range)
402{
403 struct kvm *kvm = mmu_notifier_to_kvm(mn);
404 int need_tlb_flush = 0, idx;
405 int ret;
406
407 idx = srcu_read_lock(&kvm->srcu);
408 spin_lock(&kvm->mmu_lock);
409 /*
410 * The count increase must become visible at unlock time as no
411 * spte can be established without taking the mmu_lock and
412 * count is also read inside the mmu_lock critical section.
413 */
414 kvm->mmu_notifier_count++;
415 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
416 need_tlb_flush |= kvm->tlbs_dirty;
417 /* we've to flush the tlb before the pages can be freed */
418 if (need_tlb_flush)
419 kvm_flush_remote_tlbs(kvm);
420
421 spin_unlock(&kvm->mmu_lock);
422
423 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
424 range->end,
425 mmu_notifier_range_blockable(range));
426
427 srcu_read_unlock(&kvm->srcu, idx);
428
429 return ret;
430}
431
432static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
433 const struct mmu_notifier_range *range)
434{
435 struct kvm *kvm = mmu_notifier_to_kvm(mn);
436
437 spin_lock(&kvm->mmu_lock);
438 /*
439 * This sequence increase will notify the kvm page fault that
440 * the page that is going to be mapped in the spte could have
441 * been freed.
442 */
443 kvm->mmu_notifier_seq++;
444 smp_wmb();
445 /*
446 * The above sequence increase must be visible before the
447 * below count decrease, which is ensured by the smp_wmb above
448 * in conjunction with the smp_rmb in mmu_notifier_retry().
449 */
450 kvm->mmu_notifier_count--;
451 spin_unlock(&kvm->mmu_lock);
452
453 BUG_ON(kvm->mmu_notifier_count < 0);
454}
455
456static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
457 struct mm_struct *mm,
458 unsigned long start,
459 unsigned long end)
460{
461 struct kvm *kvm = mmu_notifier_to_kvm(mn);
462 int young, idx;
463
464 idx = srcu_read_lock(&kvm->srcu);
465 spin_lock(&kvm->mmu_lock);
466
467 young = kvm_age_hva(kvm, start, end);
468 if (young)
469 kvm_flush_remote_tlbs(kvm);
470
471 spin_unlock(&kvm->mmu_lock);
472 srcu_read_unlock(&kvm->srcu, idx);
473
474 return young;
475}
476
477static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
478 struct mm_struct *mm,
479 unsigned long start,
480 unsigned long end)
481{
482 struct kvm *kvm = mmu_notifier_to_kvm(mn);
483 int young, idx;
484
485 idx = srcu_read_lock(&kvm->srcu);
486 spin_lock(&kvm->mmu_lock);
487 /*
488 * Even though we do not flush TLB, this will still adversely
489 * affect performance on pre-Haswell Intel EPT, where there is
490 * no EPT Access Bit to clear so that we have to tear down EPT
491 * tables instead. If we find this unacceptable, we can always
492 * add a parameter to kvm_age_hva so that it effectively doesn't
493 * do anything on clear_young.
494 *
495 * Also note that currently we never issue secondary TLB flushes
496 * from clear_young, leaving this job up to the regular system
497 * cadence. If we find this inaccurate, we might come up with a
498 * more sophisticated heuristic later.
499 */
500 young = kvm_age_hva(kvm, start, end);
501 spin_unlock(&kvm->mmu_lock);
502 srcu_read_unlock(&kvm->srcu, idx);
503
504 return young;
505}
506
507static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
508 struct mm_struct *mm,
509 unsigned long address)
510{
511 struct kvm *kvm = mmu_notifier_to_kvm(mn);
512 int young, idx;
513
514 idx = srcu_read_lock(&kvm->srcu);
515 spin_lock(&kvm->mmu_lock);
516 young = kvm_test_age_hva(kvm, address);
517 spin_unlock(&kvm->mmu_lock);
518 srcu_read_unlock(&kvm->srcu, idx);
519
520 return young;
521}
522
523static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
524 struct mm_struct *mm)
525{
526 struct kvm *kvm = mmu_notifier_to_kvm(mn);
527 int idx;
528
529 idx = srcu_read_lock(&kvm->srcu);
530 kvm_arch_flush_shadow_all(kvm);
531 srcu_read_unlock(&kvm->srcu, idx);
532}
533
534static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
535 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
536 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
537 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
538 .clear_young = kvm_mmu_notifier_clear_young,
539 .test_young = kvm_mmu_notifier_test_young,
540 .change_pte = kvm_mmu_notifier_change_pte,
541 .release = kvm_mmu_notifier_release,
542};
543
544static int kvm_init_mmu_notifier(struct kvm *kvm)
545{
546 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
547 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
548}
549
550#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
551
552static int kvm_init_mmu_notifier(struct kvm *kvm)
553{
554 return 0;
555}
556
557#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
558
559static struct kvm_memslots *kvm_alloc_memslots(void)
560{
561 int i;
562 struct kvm_memslots *slots;
563
564 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
565 if (!slots)
566 return NULL;
567
568 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
569 slots->id_to_index[i] = slots->memslots[i].id = i;
570
571 return slots;
572}
573
574static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
575{
576 if (!memslot->dirty_bitmap)
577 return;
578
579 kvfree(memslot->dirty_bitmap);
580 memslot->dirty_bitmap = NULL;
581}
582
583/*
584 * Free any memory in @free but not in @dont.
585 */
586static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
587 struct kvm_memory_slot *dont)
588{
589 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
590 kvm_destroy_dirty_bitmap(free);
591
592 kvm_arch_free_memslot(kvm, free, dont);
593
594 free->npages = 0;
595}
596
597static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
598{
599 struct kvm_memory_slot *memslot;
600
601 if (!slots)
602 return;
603
604 kvm_for_each_memslot(memslot, slots)
605 kvm_free_memslot(kvm, memslot, NULL);
606
607 kvfree(slots);
608}
609
610static void kvm_destroy_vm_debugfs(struct kvm *kvm)
611{
612 int i;
613
614 if (!kvm->debugfs_dentry)
615 return;
616
617 debugfs_remove_recursive(kvm->debugfs_dentry);
618
619 if (kvm->debugfs_stat_data) {
620 for (i = 0; i < kvm_debugfs_num_entries; i++)
621 kfree(kvm->debugfs_stat_data[i]);
622 kfree(kvm->debugfs_stat_data);
623 }
624}
625
626static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
627{
628 char dir_name[ITOA_MAX_LEN * 2];
629 struct kvm_stat_data *stat_data;
630 struct kvm_stats_debugfs_item *p;
631
632 if (!debugfs_initialized())
633 return 0;
634
635 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
636 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
637
638 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
639 sizeof(*kvm->debugfs_stat_data),
640 GFP_KERNEL_ACCOUNT);
641 if (!kvm->debugfs_stat_data)
642 return -ENOMEM;
643
644 for (p = debugfs_entries; p->name; p++) {
645 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
646 if (!stat_data)
647 return -ENOMEM;
648
649 stat_data->kvm = kvm;
650 stat_data->dbgfs_item = p;
651 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
652 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
653 kvm->debugfs_dentry, stat_data,
654 &stat_fops_per_vm);
655 }
656 return 0;
657}
658
659/*
660 * Called after the VM is otherwise initialized, but just before adding it to
661 * the vm_list.
662 */
663int __weak kvm_arch_post_init_vm(struct kvm *kvm)
664{
665 return 0;
666}
667
668/*
669 * Called just after removing the VM from the vm_list, but before doing any
670 * other destruction.
671 */
672void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
673{
674}
675
676static struct kvm *kvm_create_vm(unsigned long type)
677{
678 struct kvm *kvm = kvm_arch_alloc_vm();
679 int r = -ENOMEM;
680 int i;
681
682 if (!kvm)
683 return ERR_PTR(-ENOMEM);
684
685 spin_lock_init(&kvm->mmu_lock);
686 mmgrab(current->mm);
687 kvm->mm = current->mm;
688 kvm_eventfd_init(kvm);
689 mutex_init(&kvm->lock);
690 mutex_init(&kvm->irq_lock);
691 mutex_init(&kvm->slots_lock);
692 INIT_LIST_HEAD(&kvm->devices);
693
694 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
695
696 if (init_srcu_struct(&kvm->srcu))
697 goto out_err_no_srcu;
698 if (init_srcu_struct(&kvm->irq_srcu))
699 goto out_err_no_irq_srcu;
700
701 refcount_set(&kvm->users_count, 1);
702 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
703 struct kvm_memslots *slots = kvm_alloc_memslots();
704
705 if (!slots)
706 goto out_err_no_arch_destroy_vm;
707 /* Generations must be different for each address space. */
708 slots->generation = i;
709 rcu_assign_pointer(kvm->memslots[i], slots);
710 }
711
712 for (i = 0; i < KVM_NR_BUSES; i++) {
713 rcu_assign_pointer(kvm->buses[i],
714 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
715 if (!kvm->buses[i])
716 goto out_err_no_arch_destroy_vm;
717 }
718
719 r = kvm_arch_init_vm(kvm, type);
720 if (r)
721 goto out_err_no_arch_destroy_vm;
722
723 r = hardware_enable_all();
724 if (r)
725 goto out_err_no_disable;
726
727#ifdef CONFIG_HAVE_KVM_IRQFD
728 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
729#endif
730
731 r = kvm_init_mmu_notifier(kvm);
732 if (r)
733 goto out_err_no_mmu_notifier;
734
735 r = kvm_arch_post_init_vm(kvm);
736 if (r)
737 goto out_err;
738
739 mutex_lock(&kvm_lock);
740 list_add(&kvm->vm_list, &vm_list);
741 mutex_unlock(&kvm_lock);
742
743 preempt_notifier_inc();
744
745 return kvm;
746
747out_err:
748#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
749 if (kvm->mmu_notifier.ops)
750 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
751#endif
752out_err_no_mmu_notifier:
753 hardware_disable_all();
754out_err_no_disable:
755 kvm_arch_destroy_vm(kvm);
756out_err_no_arch_destroy_vm:
757 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
758 for (i = 0; i < KVM_NR_BUSES; i++)
759 kfree(kvm_get_bus(kvm, i));
760 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
761 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
762 cleanup_srcu_struct(&kvm->irq_srcu);
763out_err_no_irq_srcu:
764 cleanup_srcu_struct(&kvm->srcu);
765out_err_no_srcu:
766 kvm_arch_free_vm(kvm);
767 mmdrop(current->mm);
768 return ERR_PTR(r);
769}
770
771static void kvm_destroy_devices(struct kvm *kvm)
772{
773 struct kvm_device *dev, *tmp;
774
775 /*
776 * We do not need to take the kvm->lock here, because nobody else
777 * has a reference to the struct kvm at this point and therefore
778 * cannot access the devices list anyhow.
779 */
780 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
781 list_del(&dev->vm_node);
782 dev->ops->destroy(dev);
783 }
784}
785
786static void kvm_destroy_vm(struct kvm *kvm)
787{
788 int i;
789 struct mm_struct *mm = kvm->mm;
790
791 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
792 kvm_destroy_vm_debugfs(kvm);
793 kvm_arch_sync_events(kvm);
794 mutex_lock(&kvm_lock);
795 list_del(&kvm->vm_list);
796 mutex_unlock(&kvm_lock);
797 kvm_arch_pre_destroy_vm(kvm);
798
799 kvm_free_irq_routing(kvm);
800 for (i = 0; i < KVM_NR_BUSES; i++) {
801 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
802
803 if (bus)
804 kvm_io_bus_destroy(bus);
805 kvm->buses[i] = NULL;
806 }
807 kvm_coalesced_mmio_free(kvm);
808#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
809 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
810#else
811 kvm_arch_flush_shadow_all(kvm);
812#endif
813 kvm_arch_destroy_vm(kvm);
814 kvm_destroy_devices(kvm);
815 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
816 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
817 cleanup_srcu_struct(&kvm->irq_srcu);
818 cleanup_srcu_struct(&kvm->srcu);
819 kvm_arch_free_vm(kvm);
820 preempt_notifier_dec();
821 hardware_disable_all();
822 mmdrop(mm);
823}
824
825void kvm_get_kvm(struct kvm *kvm)
826{
827 refcount_inc(&kvm->users_count);
828}
829EXPORT_SYMBOL_GPL(kvm_get_kvm);
830
831void kvm_put_kvm(struct kvm *kvm)
832{
833 if (refcount_dec_and_test(&kvm->users_count))
834 kvm_destroy_vm(kvm);
835}
836EXPORT_SYMBOL_GPL(kvm_put_kvm);
837
838/*
839 * Used to put a reference that was taken on behalf of an object associated
840 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
841 * of the new file descriptor fails and the reference cannot be transferred to
842 * its final owner. In such cases, the caller is still actively using @kvm and
843 * will fail miserably if the refcount unexpectedly hits zero.
844 */
845void kvm_put_kvm_no_destroy(struct kvm *kvm)
846{
847 WARN_ON(refcount_dec_and_test(&kvm->users_count));
848}
849EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
850
851static int kvm_vm_release(struct inode *inode, struct file *filp)
852{
853 struct kvm *kvm = filp->private_data;
854
855 kvm_irqfd_release(kvm);
856
857 kvm_put_kvm(kvm);
858 return 0;
859}
860
861/*
862 * Allocation size is twice as large as the actual dirty bitmap size.
863 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
864 */
865static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
866{
867 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
868
869 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
870 if (!memslot->dirty_bitmap)
871 return -ENOMEM;
872
873 return 0;
874}
875
876/*
877 * Insert memslot and re-sort memslots based on their GFN,
878 * so binary search could be used to lookup GFN.
879 * Sorting algorithm takes advantage of having initially
880 * sorted array and known changed memslot position.
881 */
882static void update_memslots(struct kvm_memslots *slots,
883 struct kvm_memory_slot *new,
884 enum kvm_mr_change change)
885{
886 int id = new->id;
887 int i = slots->id_to_index[id];
888 struct kvm_memory_slot *mslots = slots->memslots;
889
890 WARN_ON(mslots[i].id != id);
891 switch (change) {
892 case KVM_MR_CREATE:
893 slots->used_slots++;
894 WARN_ON(mslots[i].npages || !new->npages);
895 break;
896 case KVM_MR_DELETE:
897 slots->used_slots--;
898 WARN_ON(new->npages || !mslots[i].npages);
899 break;
900 default:
901 break;
902 }
903
904 while (i < KVM_MEM_SLOTS_NUM - 1 &&
905 new->base_gfn <= mslots[i + 1].base_gfn) {
906 if (!mslots[i + 1].npages)
907 break;
908 mslots[i] = mslots[i + 1];
909 slots->id_to_index[mslots[i].id] = i;
910 i++;
911 }
912
913 /*
914 * The ">=" is needed when creating a slot with base_gfn == 0,
915 * so that it moves before all those with base_gfn == npages == 0.
916 *
917 * On the other hand, if new->npages is zero, the above loop has
918 * already left i pointing to the beginning of the empty part of
919 * mslots, and the ">=" would move the hole backwards in this
920 * case---which is wrong. So skip the loop when deleting a slot.
921 */
922 if (new->npages) {
923 while (i > 0 &&
924 new->base_gfn >= mslots[i - 1].base_gfn) {
925 mslots[i] = mslots[i - 1];
926 slots->id_to_index[mslots[i].id] = i;
927 i--;
928 }
929 } else
930 WARN_ON_ONCE(i != slots->used_slots);
931
932 mslots[i] = *new;
933 slots->id_to_index[mslots[i].id] = i;
934}
935
936static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
937{
938 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
939
940#ifdef __KVM_HAVE_READONLY_MEM
941 valid_flags |= KVM_MEM_READONLY;
942#endif
943
944 if (mem->flags & ~valid_flags)
945 return -EINVAL;
946
947 return 0;
948}
949
950static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
951 int as_id, struct kvm_memslots *slots)
952{
953 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
954 u64 gen = old_memslots->generation;
955
956 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
957 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
958
959 rcu_assign_pointer(kvm->memslots[as_id], slots);
960 synchronize_srcu_expedited(&kvm->srcu);
961
962 /*
963 * Increment the new memslot generation a second time, dropping the
964 * update in-progress flag and incrementing the generation based on
965 * the number of address spaces. This provides a unique and easily
966 * identifiable generation number while the memslots are in flux.
967 */
968 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
969
970 /*
971 * Generations must be unique even across address spaces. We do not need
972 * a global counter for that, instead the generation space is evenly split
973 * across address spaces. For example, with two address spaces, address
974 * space 0 will use generations 0, 2, 4, ... while address space 1 will
975 * use generations 1, 3, 5, ...
976 */
977 gen += KVM_ADDRESS_SPACE_NUM;
978
979 kvm_arch_memslots_updated(kvm, gen);
980
981 slots->generation = gen;
982
983 return old_memslots;
984}
985
986/*
987 * Allocate some memory and give it an address in the guest physical address
988 * space.
989 *
990 * Discontiguous memory is allowed, mostly for framebuffers.
991 *
992 * Must be called holding kvm->slots_lock for write.
993 */
994int __kvm_set_memory_region(struct kvm *kvm,
995 const struct kvm_userspace_memory_region *mem)
996{
997 int r;
998 gfn_t base_gfn;
999 unsigned long npages;
1000 struct kvm_memory_slot *slot;
1001 struct kvm_memory_slot old, new;
1002 struct kvm_memslots *slots = NULL, *old_memslots;
1003 int as_id, id;
1004 enum kvm_mr_change change;
1005
1006 r = check_memory_region_flags(mem);
1007 if (r)
1008 goto out;
1009
1010 r = -EINVAL;
1011 as_id = mem->slot >> 16;
1012 id = (u16)mem->slot;
1013
1014 /* General sanity checks */
1015 if (mem->memory_size & (PAGE_SIZE - 1))
1016 goto out;
1017 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1018 goto out;
1019 /* We can read the guest memory with __xxx_user() later on. */
1020 if ((id < KVM_USER_MEM_SLOTS) &&
1021 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1022 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1023 mem->memory_size)))
1024 goto out;
1025 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1026 goto out;
1027 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1028 goto out;
1029
1030 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1031 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1032 npages = mem->memory_size >> PAGE_SHIFT;
1033
1034 if (npages > KVM_MEM_MAX_NR_PAGES)
1035 goto out;
1036
1037 new = old = *slot;
1038
1039 new.id = id;
1040 new.base_gfn = base_gfn;
1041 new.npages = npages;
1042 new.flags = mem->flags;
1043
1044 if (npages) {
1045 if (!old.npages)
1046 change = KVM_MR_CREATE;
1047 else { /* Modify an existing slot. */
1048 if ((mem->userspace_addr != old.userspace_addr) ||
1049 (npages != old.npages) ||
1050 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1051 goto out;
1052
1053 if (base_gfn != old.base_gfn)
1054 change = KVM_MR_MOVE;
1055 else if (new.flags != old.flags)
1056 change = KVM_MR_FLAGS_ONLY;
1057 else { /* Nothing to change. */
1058 r = 0;
1059 goto out;
1060 }
1061 }
1062 } else {
1063 if (!old.npages)
1064 goto out;
1065
1066 change = KVM_MR_DELETE;
1067 new.base_gfn = 0;
1068 new.flags = 0;
1069 }
1070
1071 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1072 /* Check for overlaps */
1073 r = -EEXIST;
1074 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1075 if (slot->id == id)
1076 continue;
1077 if (!((base_gfn + npages <= slot->base_gfn) ||
1078 (base_gfn >= slot->base_gfn + slot->npages)))
1079 goto out;
1080 }
1081 }
1082
1083 /* Free page dirty bitmap if unneeded */
1084 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1085 new.dirty_bitmap = NULL;
1086
1087 r = -ENOMEM;
1088 if (change == KVM_MR_CREATE) {
1089 new.userspace_addr = mem->userspace_addr;
1090
1091 if (kvm_arch_create_memslot(kvm, &new, npages))
1092 goto out_free;
1093 }
1094
1095 /* Allocate page dirty bitmap if needed */
1096 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1097 if (kvm_create_dirty_bitmap(&new) < 0)
1098 goto out_free;
1099 }
1100
1101 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1102 if (!slots)
1103 goto out_free;
1104 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1105
1106 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1107 slot = id_to_memslot(slots, id);
1108 slot->flags |= KVM_MEMSLOT_INVALID;
1109
1110 old_memslots = install_new_memslots(kvm, as_id, slots);
1111
1112 /* From this point no new shadow pages pointing to a deleted,
1113 * or moved, memslot will be created.
1114 *
1115 * validation of sp->gfn happens in:
1116 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1117 * - kvm_is_visible_gfn (mmu_check_root)
1118 */
1119 kvm_arch_flush_shadow_memslot(kvm, slot);
1120
1121 /*
1122 * We can re-use the old_memslots from above, the only difference
1123 * from the currently installed memslots is the invalid flag. This
1124 * will get overwritten by update_memslots anyway.
1125 */
1126 slots = old_memslots;
1127 }
1128
1129 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1130 if (r)
1131 goto out_slots;
1132
1133 /* actual memory is freed via old in kvm_free_memslot below */
1134 if (change == KVM_MR_DELETE) {
1135 new.dirty_bitmap = NULL;
1136 memset(&new.arch, 0, sizeof(new.arch));
1137 }
1138
1139 update_memslots(slots, &new, change);
1140 old_memslots = install_new_memslots(kvm, as_id, slots);
1141
1142 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1143
1144 kvm_free_memslot(kvm, &old, &new);
1145 kvfree(old_memslots);
1146 return 0;
1147
1148out_slots:
1149 kvfree(slots);
1150out_free:
1151 kvm_free_memslot(kvm, &new, &old);
1152out:
1153 return r;
1154}
1155EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1156
1157int kvm_set_memory_region(struct kvm *kvm,
1158 const struct kvm_userspace_memory_region *mem)
1159{
1160 int r;
1161
1162 mutex_lock(&kvm->slots_lock);
1163 r = __kvm_set_memory_region(kvm, mem);
1164 mutex_unlock(&kvm->slots_lock);
1165 return r;
1166}
1167EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1168
1169static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1170 struct kvm_userspace_memory_region *mem)
1171{
1172 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1173 return -EINVAL;
1174
1175 return kvm_set_memory_region(kvm, mem);
1176}
1177
1178int kvm_get_dirty_log(struct kvm *kvm,
1179 struct kvm_dirty_log *log, int *is_dirty)
1180{
1181 struct kvm_memslots *slots;
1182 struct kvm_memory_slot *memslot;
1183 int i, as_id, id;
1184 unsigned long n;
1185 unsigned long any = 0;
1186
1187 as_id = log->slot >> 16;
1188 id = (u16)log->slot;
1189 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1190 return -EINVAL;
1191
1192 slots = __kvm_memslots(kvm, as_id);
1193 memslot = id_to_memslot(slots, id);
1194 if (!memslot->dirty_bitmap)
1195 return -ENOENT;
1196
1197 n = kvm_dirty_bitmap_bytes(memslot);
1198
1199 for (i = 0; !any && i < n/sizeof(long); ++i)
1200 any = memslot->dirty_bitmap[i];
1201
1202 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1203 return -EFAULT;
1204
1205 if (any)
1206 *is_dirty = 1;
1207 return 0;
1208}
1209EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1210
1211#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1212/**
1213 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1214 * and reenable dirty page tracking for the corresponding pages.
1215 * @kvm: pointer to kvm instance
1216 * @log: slot id and address to which we copy the log
1217 * @flush: true if TLB flush is needed by caller
1218 *
1219 * We need to keep it in mind that VCPU threads can write to the bitmap
1220 * concurrently. So, to avoid losing track of dirty pages we keep the
1221 * following order:
1222 *
1223 * 1. Take a snapshot of the bit and clear it if needed.
1224 * 2. Write protect the corresponding page.
1225 * 3. Copy the snapshot to the userspace.
1226 * 4. Upon return caller flushes TLB's if needed.
1227 *
1228 * Between 2 and 4, the guest may write to the page using the remaining TLB
1229 * entry. This is not a problem because the page is reported dirty using
1230 * the snapshot taken before and step 4 ensures that writes done after
1231 * exiting to userspace will be logged for the next call.
1232 *
1233 */
1234int kvm_get_dirty_log_protect(struct kvm *kvm,
1235 struct kvm_dirty_log *log, bool *flush)
1236{
1237 struct kvm_memslots *slots;
1238 struct kvm_memory_slot *memslot;
1239 int i, as_id, id;
1240 unsigned long n;
1241 unsigned long *dirty_bitmap;
1242 unsigned long *dirty_bitmap_buffer;
1243
1244 as_id = log->slot >> 16;
1245 id = (u16)log->slot;
1246 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1247 return -EINVAL;
1248
1249 slots = __kvm_memslots(kvm, as_id);
1250 memslot = id_to_memslot(slots, id);
1251
1252 dirty_bitmap = memslot->dirty_bitmap;
1253 if (!dirty_bitmap)
1254 return -ENOENT;
1255
1256 n = kvm_dirty_bitmap_bytes(memslot);
1257 *flush = false;
1258 if (kvm->manual_dirty_log_protect) {
1259 /*
1260 * Unlike kvm_get_dirty_log, we always return false in *flush,
1261 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1262 * is some code duplication between this function and
1263 * kvm_get_dirty_log, but hopefully all architecture
1264 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1265 * can be eliminated.
1266 */
1267 dirty_bitmap_buffer = dirty_bitmap;
1268 } else {
1269 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1270 memset(dirty_bitmap_buffer, 0, n);
1271
1272 spin_lock(&kvm->mmu_lock);
1273 for (i = 0; i < n / sizeof(long); i++) {
1274 unsigned long mask;
1275 gfn_t offset;
1276
1277 if (!dirty_bitmap[i])
1278 continue;
1279
1280 *flush = true;
1281 mask = xchg(&dirty_bitmap[i], 0);
1282 dirty_bitmap_buffer[i] = mask;
1283
1284 offset = i * BITS_PER_LONG;
1285 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1286 offset, mask);
1287 }
1288 spin_unlock(&kvm->mmu_lock);
1289 }
1290
1291 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1292 return -EFAULT;
1293 return 0;
1294}
1295EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1296
1297/**
1298 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1299 * and reenable dirty page tracking for the corresponding pages.
1300 * @kvm: pointer to kvm instance
1301 * @log: slot id and address from which to fetch the bitmap of dirty pages
1302 * @flush: true if TLB flush is needed by caller
1303 */
1304int kvm_clear_dirty_log_protect(struct kvm *kvm,
1305 struct kvm_clear_dirty_log *log, bool *flush)
1306{
1307 struct kvm_memslots *slots;
1308 struct kvm_memory_slot *memslot;
1309 int as_id, id;
1310 gfn_t offset;
1311 unsigned long i, n;
1312 unsigned long *dirty_bitmap;
1313 unsigned long *dirty_bitmap_buffer;
1314
1315 as_id = log->slot >> 16;
1316 id = (u16)log->slot;
1317 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1318 return -EINVAL;
1319
1320 if (log->first_page & 63)
1321 return -EINVAL;
1322
1323 slots = __kvm_memslots(kvm, as_id);
1324 memslot = id_to_memslot(slots, id);
1325
1326 dirty_bitmap = memslot->dirty_bitmap;
1327 if (!dirty_bitmap)
1328 return -ENOENT;
1329
1330 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1331
1332 if (log->first_page > memslot->npages ||
1333 log->num_pages > memslot->npages - log->first_page ||
1334 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1335 return -EINVAL;
1336
1337 *flush = false;
1338 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1339 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1340 return -EFAULT;
1341
1342 spin_lock(&kvm->mmu_lock);
1343 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1344 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1345 i++, offset += BITS_PER_LONG) {
1346 unsigned long mask = *dirty_bitmap_buffer++;
1347 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1348 if (!mask)
1349 continue;
1350
1351 mask &= atomic_long_fetch_andnot(mask, p);
1352
1353 /*
1354 * mask contains the bits that really have been cleared. This
1355 * never includes any bits beyond the length of the memslot (if
1356 * the length is not aligned to 64 pages), therefore it is not
1357 * a problem if userspace sets them in log->dirty_bitmap.
1358 */
1359 if (mask) {
1360 *flush = true;
1361 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1362 offset, mask);
1363 }
1364 }
1365 spin_unlock(&kvm->mmu_lock);
1366
1367 return 0;
1368}
1369EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1370#endif
1371
1372bool kvm_largepages_enabled(void)
1373{
1374 return largepages_enabled;
1375}
1376
1377void kvm_disable_largepages(void)
1378{
1379 largepages_enabled = false;
1380}
1381EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1382
1383struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1384{
1385 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1386}
1387EXPORT_SYMBOL_GPL(gfn_to_memslot);
1388
1389struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1390{
1391 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1392}
1393
1394bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1395{
1396 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1397
1398 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1399 memslot->flags & KVM_MEMSLOT_INVALID)
1400 return false;
1401
1402 return true;
1403}
1404EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1405
1406unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1407{
1408 struct vm_area_struct *vma;
1409 unsigned long addr, size;
1410
1411 size = PAGE_SIZE;
1412
1413 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1414 if (kvm_is_error_hva(addr))
1415 return PAGE_SIZE;
1416
1417 down_read(&current->mm->mmap_sem);
1418 vma = find_vma(current->mm, addr);
1419 if (!vma)
1420 goto out;
1421
1422 size = vma_kernel_pagesize(vma);
1423
1424out:
1425 up_read(&current->mm->mmap_sem);
1426
1427 return size;
1428}
1429
1430static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1431{
1432 return slot->flags & KVM_MEM_READONLY;
1433}
1434
1435static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1436 gfn_t *nr_pages, bool write)
1437{
1438 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1439 return KVM_HVA_ERR_BAD;
1440
1441 if (memslot_is_readonly(slot) && write)
1442 return KVM_HVA_ERR_RO_BAD;
1443
1444 if (nr_pages)
1445 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1446
1447 return __gfn_to_hva_memslot(slot, gfn);
1448}
1449
1450static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1451 gfn_t *nr_pages)
1452{
1453 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1454}
1455
1456unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1457 gfn_t gfn)
1458{
1459 return gfn_to_hva_many(slot, gfn, NULL);
1460}
1461EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1462
1463unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1464{
1465 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1466}
1467EXPORT_SYMBOL_GPL(gfn_to_hva);
1468
1469unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1470{
1471 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1472}
1473EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1474
1475/*
1476 * Return the hva of a @gfn and the R/W attribute if possible.
1477 *
1478 * @slot: the kvm_memory_slot which contains @gfn
1479 * @gfn: the gfn to be translated
1480 * @writable: used to return the read/write attribute of the @slot if the hva
1481 * is valid and @writable is not NULL
1482 */
1483unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1484 gfn_t gfn, bool *writable)
1485{
1486 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1487
1488 if (!kvm_is_error_hva(hva) && writable)
1489 *writable = !memslot_is_readonly(slot);
1490
1491 return hva;
1492}
1493
1494unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1495{
1496 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1497
1498 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1499}
1500
1501unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1502{
1503 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1504
1505 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1506}
1507
1508static inline int check_user_page_hwpoison(unsigned long addr)
1509{
1510 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1511
1512 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1513 return rc == -EHWPOISON;
1514}
1515
1516/*
1517 * The fast path to get the writable pfn which will be stored in @pfn,
1518 * true indicates success, otherwise false is returned. It's also the
1519 * only part that runs if we can in atomic context.
1520 */
1521static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1522 bool *writable, kvm_pfn_t *pfn)
1523{
1524 struct page *page[1];
1525 int npages;
1526
1527 /*
1528 * Fast pin a writable pfn only if it is a write fault request
1529 * or the caller allows to map a writable pfn for a read fault
1530 * request.
1531 */
1532 if (!(write_fault || writable))
1533 return false;
1534
1535 npages = __get_user_pages_fast(addr, 1, 1, page);
1536 if (npages == 1) {
1537 *pfn = page_to_pfn(page[0]);
1538
1539 if (writable)
1540 *writable = true;
1541 return true;
1542 }
1543
1544 return false;
1545}
1546
1547/*
1548 * The slow path to get the pfn of the specified host virtual address,
1549 * 1 indicates success, -errno is returned if error is detected.
1550 */
1551static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1552 bool *writable, kvm_pfn_t *pfn)
1553{
1554 unsigned int flags = FOLL_HWPOISON;
1555 struct page *page;
1556 int npages = 0;
1557
1558 might_sleep();
1559
1560 if (writable)
1561 *writable = write_fault;
1562
1563 if (write_fault)
1564 flags |= FOLL_WRITE;
1565 if (async)
1566 flags |= FOLL_NOWAIT;
1567
1568 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1569 if (npages != 1)
1570 return npages;
1571
1572 /* map read fault as writable if possible */
1573 if (unlikely(!write_fault) && writable) {
1574 struct page *wpage;
1575
1576 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1577 *writable = true;
1578 put_page(page);
1579 page = wpage;
1580 }
1581 }
1582 *pfn = page_to_pfn(page);
1583 return npages;
1584}
1585
1586static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1587{
1588 if (unlikely(!(vma->vm_flags & VM_READ)))
1589 return false;
1590
1591 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1592 return false;
1593
1594 return true;
1595}
1596
1597static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1598 unsigned long addr, bool *async,
1599 bool write_fault, bool *writable,
1600 kvm_pfn_t *p_pfn)
1601{
1602 unsigned long pfn;
1603 int r;
1604
1605 r = follow_pfn(vma, addr, &pfn);
1606 if (r) {
1607 /*
1608 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1609 * not call the fault handler, so do it here.
1610 */
1611 bool unlocked = false;
1612 r = fixup_user_fault(current, current->mm, addr,
1613 (write_fault ? FAULT_FLAG_WRITE : 0),
1614 &unlocked);
1615 if (unlocked)
1616 return -EAGAIN;
1617 if (r)
1618 return r;
1619
1620 r = follow_pfn(vma, addr, &pfn);
1621 if (r)
1622 return r;
1623
1624 }
1625
1626 if (writable)
1627 *writable = true;
1628
1629 /*
1630 * Get a reference here because callers of *hva_to_pfn* and
1631 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1632 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1633 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1634 * simply do nothing for reserved pfns.
1635 *
1636 * Whoever called remap_pfn_range is also going to call e.g.
1637 * unmap_mapping_range before the underlying pages are freed,
1638 * causing a call to our MMU notifier.
1639 */
1640 kvm_get_pfn(pfn);
1641
1642 *p_pfn = pfn;
1643 return 0;
1644}
1645
1646/*
1647 * Pin guest page in memory and return its pfn.
1648 * @addr: host virtual address which maps memory to the guest
1649 * @atomic: whether this function can sleep
1650 * @async: whether this function need to wait IO complete if the
1651 * host page is not in the memory
1652 * @write_fault: whether we should get a writable host page
1653 * @writable: whether it allows to map a writable host page for !@write_fault
1654 *
1655 * The function will map a writable host page for these two cases:
1656 * 1): @write_fault = true
1657 * 2): @write_fault = false && @writable, @writable will tell the caller
1658 * whether the mapping is writable.
1659 */
1660static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1661 bool write_fault, bool *writable)
1662{
1663 struct vm_area_struct *vma;
1664 kvm_pfn_t pfn = 0;
1665 int npages, r;
1666
1667 /* we can do it either atomically or asynchronously, not both */
1668 BUG_ON(atomic && async);
1669
1670 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1671 return pfn;
1672
1673 if (atomic)
1674 return KVM_PFN_ERR_FAULT;
1675
1676 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1677 if (npages == 1)
1678 return pfn;
1679
1680 down_read(&current->mm->mmap_sem);
1681 if (npages == -EHWPOISON ||
1682 (!async && check_user_page_hwpoison(addr))) {
1683 pfn = KVM_PFN_ERR_HWPOISON;
1684 goto exit;
1685 }
1686
1687retry:
1688 vma = find_vma_intersection(current->mm, addr, addr + 1);
1689
1690 if (vma == NULL)
1691 pfn = KVM_PFN_ERR_FAULT;
1692 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1693 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1694 if (r == -EAGAIN)
1695 goto retry;
1696 if (r < 0)
1697 pfn = KVM_PFN_ERR_FAULT;
1698 } else {
1699 if (async && vma_is_valid(vma, write_fault))
1700 *async = true;
1701 pfn = KVM_PFN_ERR_FAULT;
1702 }
1703exit:
1704 up_read(&current->mm->mmap_sem);
1705 return pfn;
1706}
1707
1708kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1709 bool atomic, bool *async, bool write_fault,
1710 bool *writable)
1711{
1712 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1713
1714 if (addr == KVM_HVA_ERR_RO_BAD) {
1715 if (writable)
1716 *writable = false;
1717 return KVM_PFN_ERR_RO_FAULT;
1718 }
1719
1720 if (kvm_is_error_hva(addr)) {
1721 if (writable)
1722 *writable = false;
1723 return KVM_PFN_NOSLOT;
1724 }
1725
1726 /* Do not map writable pfn in the readonly memslot. */
1727 if (writable && memslot_is_readonly(slot)) {
1728 *writable = false;
1729 writable = NULL;
1730 }
1731
1732 return hva_to_pfn(addr, atomic, async, write_fault,
1733 writable);
1734}
1735EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1736
1737kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1738 bool *writable)
1739{
1740 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1741 write_fault, writable);
1742}
1743EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1744
1745kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1746{
1747 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1748}
1749EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1750
1751kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1752{
1753 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1754}
1755EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1756
1757kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1758{
1759 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1760}
1761EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1762
1763kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1764{
1765 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1766}
1767EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1768
1769kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1770{
1771 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1772}
1773EXPORT_SYMBOL_GPL(gfn_to_pfn);
1774
1775kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1776{
1777 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1778}
1779EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1780
1781int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1782 struct page **pages, int nr_pages)
1783{
1784 unsigned long addr;
1785 gfn_t entry = 0;
1786
1787 addr = gfn_to_hva_many(slot, gfn, &entry);
1788 if (kvm_is_error_hva(addr))
1789 return -1;
1790
1791 if (entry < nr_pages)
1792 return 0;
1793
1794 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1795}
1796EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1797
1798static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1799{
1800 if (is_error_noslot_pfn(pfn))
1801 return KVM_ERR_PTR_BAD_PAGE;
1802
1803 if (kvm_is_reserved_pfn(pfn)) {
1804 WARN_ON(1);
1805 return KVM_ERR_PTR_BAD_PAGE;
1806 }
1807
1808 return pfn_to_page(pfn);
1809}
1810
1811struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1812{
1813 kvm_pfn_t pfn;
1814
1815 pfn = gfn_to_pfn(kvm, gfn);
1816
1817 return kvm_pfn_to_page(pfn);
1818}
1819EXPORT_SYMBOL_GPL(gfn_to_page);
1820
1821void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
1822{
1823 if (pfn == 0)
1824 return;
1825
1826 if (cache)
1827 cache->pfn = cache->gfn = 0;
1828
1829 if (dirty)
1830 kvm_release_pfn_dirty(pfn);
1831 else
1832 kvm_release_pfn_clean(pfn);
1833}
1834
1835static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
1836 struct gfn_to_pfn_cache *cache, u64 gen)
1837{
1838 kvm_release_pfn(cache->pfn, cache->dirty, cache);
1839
1840 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
1841 cache->gfn = gfn;
1842 cache->dirty = false;
1843 cache->generation = gen;
1844}
1845
1846static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
1847 struct kvm_host_map *map,
1848 struct gfn_to_pfn_cache *cache,
1849 bool atomic)
1850{
1851 kvm_pfn_t pfn;
1852 void *hva = NULL;
1853 struct page *page = KVM_UNMAPPED_PAGE;
1854 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
1855 u64 gen = slots->generation;
1856
1857 if (!map)
1858 return -EINVAL;
1859
1860 if (cache) {
1861 if (!cache->pfn || cache->gfn != gfn ||
1862 cache->generation != gen) {
1863 if (atomic)
1864 return -EAGAIN;
1865 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
1866 }
1867 pfn = cache->pfn;
1868 } else {
1869 if (atomic)
1870 return -EAGAIN;
1871 pfn = gfn_to_pfn_memslot(slot, gfn);
1872 }
1873 if (is_error_noslot_pfn(pfn))
1874 return -EINVAL;
1875
1876 if (pfn_valid(pfn)) {
1877 page = pfn_to_page(pfn);
1878 if (atomic)
1879 hva = kmap_atomic(page);
1880 else
1881 hva = kmap(page);
1882#ifdef CONFIG_HAS_IOMEM
1883 } else if (!atomic) {
1884 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1885 } else {
1886 return -EINVAL;
1887#endif
1888 }
1889
1890 if (!hva)
1891 return -EFAULT;
1892
1893 map->page = page;
1894 map->hva = hva;
1895 map->pfn = pfn;
1896 map->gfn = gfn;
1897
1898 return 0;
1899}
1900
1901int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
1902 struct gfn_to_pfn_cache *cache, bool atomic)
1903{
1904 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
1905 cache, atomic);
1906}
1907EXPORT_SYMBOL_GPL(kvm_map_gfn);
1908
1909int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1910{
1911 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
1912 NULL, false);
1913}
1914EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1915
1916static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
1917 struct kvm_host_map *map,
1918 struct gfn_to_pfn_cache *cache,
1919 bool dirty, bool atomic)
1920{
1921 if (!map)
1922 return;
1923
1924 if (!map->hva)
1925 return;
1926
1927 if (map->page != KVM_UNMAPPED_PAGE) {
1928 if (atomic)
1929 kunmap_atomic(map->hva);
1930 else
1931 kunmap(map->page);
1932 }
1933#ifdef CONFIG_HAS_IOMEM
1934 else if (!atomic)
1935 memunmap(map->hva);
1936 else
1937 WARN_ONCE(1, "Unexpected unmapping in atomic context");
1938#endif
1939
1940 if (dirty)
1941 mark_page_dirty_in_slot(memslot, map->gfn);
1942
1943 if (cache)
1944 cache->dirty |= dirty;
1945 else
1946 kvm_release_pfn(map->pfn, dirty, NULL);
1947
1948 map->hva = NULL;
1949 map->page = NULL;
1950}
1951
1952int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1953 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1954{
1955 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
1956 cache, dirty, atomic);
1957 return 0;
1958}
1959EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
1960
1961void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1962{
1963 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
1964 dirty, false);
1965}
1966EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1967
1968struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1969{
1970 kvm_pfn_t pfn;
1971
1972 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1973
1974 return kvm_pfn_to_page(pfn);
1975}
1976EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1977
1978void kvm_release_page_clean(struct page *page)
1979{
1980 WARN_ON(is_error_page(page));
1981
1982 kvm_release_pfn_clean(page_to_pfn(page));
1983}
1984EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1985
1986void kvm_release_pfn_clean(kvm_pfn_t pfn)
1987{
1988 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1989 put_page(pfn_to_page(pfn));
1990}
1991EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1992
1993void kvm_release_page_dirty(struct page *page)
1994{
1995 WARN_ON(is_error_page(page));
1996
1997 kvm_release_pfn_dirty(page_to_pfn(page));
1998}
1999EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2000
2001void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2002{
2003 kvm_set_pfn_dirty(pfn);
2004 kvm_release_pfn_clean(pfn);
2005}
2006EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2007
2008void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2009{
2010 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2011 SetPageDirty(pfn_to_page(pfn));
2012}
2013EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2014
2015void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2016{
2017 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2018 mark_page_accessed(pfn_to_page(pfn));
2019}
2020EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2021
2022void kvm_get_pfn(kvm_pfn_t pfn)
2023{
2024 if (!kvm_is_reserved_pfn(pfn))
2025 get_page(pfn_to_page(pfn));
2026}
2027EXPORT_SYMBOL_GPL(kvm_get_pfn);
2028
2029static int next_segment(unsigned long len, int offset)
2030{
2031 if (len > PAGE_SIZE - offset)
2032 return PAGE_SIZE - offset;
2033 else
2034 return len;
2035}
2036
2037static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2038 void *data, int offset, int len)
2039{
2040 int r;
2041 unsigned long addr;
2042
2043 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2044 if (kvm_is_error_hva(addr))
2045 return -EFAULT;
2046 r = __copy_from_user(data, (void __user *)addr + offset, len);
2047 if (r)
2048 return -EFAULT;
2049 return 0;
2050}
2051
2052int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2053 int len)
2054{
2055 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2056
2057 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2058}
2059EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2060
2061int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2062 int offset, int len)
2063{
2064 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2065
2066 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2067}
2068EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2069
2070int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2071{
2072 gfn_t gfn = gpa >> PAGE_SHIFT;
2073 int seg;
2074 int offset = offset_in_page(gpa);
2075 int ret;
2076
2077 while ((seg = next_segment(len, offset)) != 0) {
2078 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2079 if (ret < 0)
2080 return ret;
2081 offset = 0;
2082 len -= seg;
2083 data += seg;
2084 ++gfn;
2085 }
2086 return 0;
2087}
2088EXPORT_SYMBOL_GPL(kvm_read_guest);
2089
2090int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2091{
2092 gfn_t gfn = gpa >> PAGE_SHIFT;
2093 int seg;
2094 int offset = offset_in_page(gpa);
2095 int ret;
2096
2097 while ((seg = next_segment(len, offset)) != 0) {
2098 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2099 if (ret < 0)
2100 return ret;
2101 offset = 0;
2102 len -= seg;
2103 data += seg;
2104 ++gfn;
2105 }
2106 return 0;
2107}
2108EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2109
2110static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2111 void *data, int offset, unsigned long len)
2112{
2113 int r;
2114 unsigned long addr;
2115
2116 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2117 if (kvm_is_error_hva(addr))
2118 return -EFAULT;
2119 pagefault_disable();
2120 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2121 pagefault_enable();
2122 if (r)
2123 return -EFAULT;
2124 return 0;
2125}
2126
2127int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2128 void *data, unsigned long len)
2129{
2130 gfn_t gfn = gpa >> PAGE_SHIFT;
2131 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2132 int offset = offset_in_page(gpa);
2133
2134 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2135}
2136EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2137
2138static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2139 const void *data, int offset, int len)
2140{
2141 int r;
2142 unsigned long addr;
2143
2144 addr = gfn_to_hva_memslot(memslot, gfn);
2145 if (kvm_is_error_hva(addr))
2146 return -EFAULT;
2147 r = __copy_to_user((void __user *)addr + offset, data, len);
2148 if (r)
2149 return -EFAULT;
2150 mark_page_dirty_in_slot(memslot, gfn);
2151 return 0;
2152}
2153
2154int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2155 const void *data, int offset, int len)
2156{
2157 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2158
2159 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2160}
2161EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2162
2163int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2164 const void *data, int offset, int len)
2165{
2166 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2167
2168 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2169}
2170EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2171
2172int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2173 unsigned long len)
2174{
2175 gfn_t gfn = gpa >> PAGE_SHIFT;
2176 int seg;
2177 int offset = offset_in_page(gpa);
2178 int ret;
2179
2180 while ((seg = next_segment(len, offset)) != 0) {
2181 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2182 if (ret < 0)
2183 return ret;
2184 offset = 0;
2185 len -= seg;
2186 data += seg;
2187 ++gfn;
2188 }
2189 return 0;
2190}
2191EXPORT_SYMBOL_GPL(kvm_write_guest);
2192
2193int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2194 unsigned long len)
2195{
2196 gfn_t gfn = gpa >> PAGE_SHIFT;
2197 int seg;
2198 int offset = offset_in_page(gpa);
2199 int ret;
2200
2201 while ((seg = next_segment(len, offset)) != 0) {
2202 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2203 if (ret < 0)
2204 return ret;
2205 offset = 0;
2206 len -= seg;
2207 data += seg;
2208 ++gfn;
2209 }
2210 return 0;
2211}
2212EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2213
2214static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2215 struct gfn_to_hva_cache *ghc,
2216 gpa_t gpa, unsigned long len)
2217{
2218 int offset = offset_in_page(gpa);
2219 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2220 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2221 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2222 gfn_t nr_pages_avail;
2223
2224 /* Update ghc->generation before performing any error checks. */
2225 ghc->generation = slots->generation;
2226
2227 if (start_gfn > end_gfn) {
2228 ghc->hva = KVM_HVA_ERR_BAD;
2229 return -EINVAL;
2230 }
2231
2232 /*
2233 * If the requested region crosses two memslots, we still
2234 * verify that the entire region is valid here.
2235 */
2236 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2237 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2238 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2239 &nr_pages_avail);
2240 if (kvm_is_error_hva(ghc->hva))
2241 return -EFAULT;
2242 }
2243
2244 /* Use the slow path for cross page reads and writes. */
2245 if (nr_pages_needed == 1)
2246 ghc->hva += offset;
2247 else
2248 ghc->memslot = NULL;
2249
2250 ghc->gpa = gpa;
2251 ghc->len = len;
2252 return 0;
2253}
2254
2255int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2256 gpa_t gpa, unsigned long len)
2257{
2258 struct kvm_memslots *slots = kvm_memslots(kvm);
2259 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2260}
2261EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2262
2263int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2264 void *data, unsigned int offset,
2265 unsigned long len)
2266{
2267 struct kvm_memslots *slots = kvm_memslots(kvm);
2268 int r;
2269 gpa_t gpa = ghc->gpa + offset;
2270
2271 BUG_ON(len + offset > ghc->len);
2272
2273 if (slots->generation != ghc->generation) {
2274 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2275 return -EFAULT;
2276 }
2277
2278 if (kvm_is_error_hva(ghc->hva))
2279 return -EFAULT;
2280
2281 if (unlikely(!ghc->memslot))
2282 return kvm_write_guest(kvm, gpa, data, len);
2283
2284 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2285 if (r)
2286 return -EFAULT;
2287 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2288
2289 return 0;
2290}
2291EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2292
2293int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2294 void *data, unsigned long len)
2295{
2296 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2297}
2298EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2299
2300int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2301 void *data, unsigned long len)
2302{
2303 struct kvm_memslots *slots = kvm_memslots(kvm);
2304 int r;
2305
2306 BUG_ON(len > ghc->len);
2307
2308 if (slots->generation != ghc->generation) {
2309 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2310 return -EFAULT;
2311 }
2312
2313 if (kvm_is_error_hva(ghc->hva))
2314 return -EFAULT;
2315
2316 if (unlikely(!ghc->memslot))
2317 return kvm_read_guest(kvm, ghc->gpa, data, len);
2318
2319 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2320 if (r)
2321 return -EFAULT;
2322
2323 return 0;
2324}
2325EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2326
2327int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2328{
2329 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2330
2331 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2332}
2333EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2334
2335int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2336{
2337 gfn_t gfn = gpa >> PAGE_SHIFT;
2338 int seg;
2339 int offset = offset_in_page(gpa);
2340 int ret;
2341
2342 while ((seg = next_segment(len, offset)) != 0) {
2343 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2344 if (ret < 0)
2345 return ret;
2346 offset = 0;
2347 len -= seg;
2348 ++gfn;
2349 }
2350 return 0;
2351}
2352EXPORT_SYMBOL_GPL(kvm_clear_guest);
2353
2354static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2355 gfn_t gfn)
2356{
2357 if (memslot && memslot->dirty_bitmap) {
2358 unsigned long rel_gfn = gfn - memslot->base_gfn;
2359
2360 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2361 }
2362}
2363
2364void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2365{
2366 struct kvm_memory_slot *memslot;
2367
2368 memslot = gfn_to_memslot(kvm, gfn);
2369 mark_page_dirty_in_slot(memslot, gfn);
2370}
2371EXPORT_SYMBOL_GPL(mark_page_dirty);
2372
2373void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2374{
2375 struct kvm_memory_slot *memslot;
2376
2377 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2378 mark_page_dirty_in_slot(memslot, gfn);
2379}
2380EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2381
2382void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2383{
2384 if (!vcpu->sigset_active)
2385 return;
2386
2387 /*
2388 * This does a lockless modification of ->real_blocked, which is fine
2389 * because, only current can change ->real_blocked and all readers of
2390 * ->real_blocked don't care as long ->real_blocked is always a subset
2391 * of ->blocked.
2392 */
2393 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2394}
2395
2396void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2397{
2398 if (!vcpu->sigset_active)
2399 return;
2400
2401 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2402 sigemptyset(&current->real_blocked);
2403}
2404
2405static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2406{
2407 unsigned int old, val, grow, grow_start;
2408
2409 old = val = vcpu->halt_poll_ns;
2410 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2411 grow = READ_ONCE(halt_poll_ns_grow);
2412 if (!grow)
2413 goto out;
2414
2415 val *= grow;
2416 if (val < grow_start)
2417 val = grow_start;
2418
2419 if (val > halt_poll_ns)
2420 val = halt_poll_ns;
2421
2422 vcpu->halt_poll_ns = val;
2423out:
2424 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2425}
2426
2427static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2428{
2429 unsigned int old, val, shrink;
2430
2431 old = val = vcpu->halt_poll_ns;
2432 shrink = READ_ONCE(halt_poll_ns_shrink);
2433 if (shrink == 0)
2434 val = 0;
2435 else
2436 val /= shrink;
2437
2438 vcpu->halt_poll_ns = val;
2439 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2440}
2441
2442static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2443{
2444 int ret = -EINTR;
2445 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2446
2447 if (kvm_arch_vcpu_runnable(vcpu)) {
2448 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2449 goto out;
2450 }
2451 if (kvm_cpu_has_pending_timer(vcpu))
2452 goto out;
2453 if (signal_pending(current))
2454 goto out;
2455
2456 ret = 0;
2457out:
2458 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2459 return ret;
2460}
2461
2462/*
2463 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2464 */
2465void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2466{
2467 ktime_t start, cur;
2468 DECLARE_SWAITQUEUE(wait);
2469 bool waited = false;
2470 u64 block_ns;
2471
2472 kvm_arch_vcpu_blocking(vcpu);
2473
2474 start = cur = ktime_get();
2475 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2476 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2477
2478 ++vcpu->stat.halt_attempted_poll;
2479 do {
2480 /*
2481 * This sets KVM_REQ_UNHALT if an interrupt
2482 * arrives.
2483 */
2484 if (kvm_vcpu_check_block(vcpu) < 0) {
2485 ++vcpu->stat.halt_successful_poll;
2486 if (!vcpu_valid_wakeup(vcpu))
2487 ++vcpu->stat.halt_poll_invalid;
2488 goto out;
2489 }
2490 cur = ktime_get();
2491 } while (single_task_running() && ktime_before(cur, stop));
2492 }
2493
2494 for (;;) {
2495 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2496
2497 if (kvm_vcpu_check_block(vcpu) < 0)
2498 break;
2499
2500 waited = true;
2501 schedule();
2502 }
2503
2504 finish_swait(&vcpu->wq, &wait);
2505 cur = ktime_get();
2506out:
2507 kvm_arch_vcpu_unblocking(vcpu);
2508 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2509
2510 if (!kvm_arch_no_poll(vcpu)) {
2511 if (!vcpu_valid_wakeup(vcpu)) {
2512 shrink_halt_poll_ns(vcpu);
2513 } else if (halt_poll_ns) {
2514 if (block_ns <= vcpu->halt_poll_ns)
2515 ;
2516 /* we had a long block, shrink polling */
2517 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2518 shrink_halt_poll_ns(vcpu);
2519 /* we had a short halt and our poll time is too small */
2520 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2521 block_ns < halt_poll_ns)
2522 grow_halt_poll_ns(vcpu);
2523 } else {
2524 vcpu->halt_poll_ns = 0;
2525 }
2526 }
2527
2528 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2529 kvm_arch_vcpu_block_finish(vcpu);
2530}
2531EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2532
2533bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2534{
2535 struct swait_queue_head *wqp;
2536
2537 wqp = kvm_arch_vcpu_wq(vcpu);
2538 if (swq_has_sleeper(wqp)) {
2539 swake_up_one(wqp);
2540 WRITE_ONCE(vcpu->ready, true);
2541 ++vcpu->stat.halt_wakeup;
2542 return true;
2543 }
2544
2545 return false;
2546}
2547EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2548
2549#ifndef CONFIG_S390
2550/*
2551 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2552 */
2553void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2554{
2555 int me;
2556 int cpu = vcpu->cpu;
2557
2558 if (kvm_vcpu_wake_up(vcpu))
2559 return;
2560
2561 me = get_cpu();
2562 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2563 if (kvm_arch_vcpu_should_kick(vcpu))
2564 smp_send_reschedule(cpu);
2565 put_cpu();
2566}
2567EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2568#endif /* !CONFIG_S390 */
2569
2570int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2571{
2572 struct pid *pid;
2573 struct task_struct *task = NULL;
2574 int ret = 0;
2575
2576 rcu_read_lock();
2577 pid = rcu_dereference(target->pid);
2578 if (pid)
2579 task = get_pid_task(pid, PIDTYPE_PID);
2580 rcu_read_unlock();
2581 if (!task)
2582 return ret;
2583 ret = yield_to(task, 1);
2584 put_task_struct(task);
2585
2586 return ret;
2587}
2588EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2589
2590/*
2591 * Helper that checks whether a VCPU is eligible for directed yield.
2592 * Most eligible candidate to yield is decided by following heuristics:
2593 *
2594 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2595 * (preempted lock holder), indicated by @in_spin_loop.
2596 * Set at the beiginning and cleared at the end of interception/PLE handler.
2597 *
2598 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2599 * chance last time (mostly it has become eligible now since we have probably
2600 * yielded to lockholder in last iteration. This is done by toggling
2601 * @dy_eligible each time a VCPU checked for eligibility.)
2602 *
2603 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2604 * to preempted lock-holder could result in wrong VCPU selection and CPU
2605 * burning. Giving priority for a potential lock-holder increases lock
2606 * progress.
2607 *
2608 * Since algorithm is based on heuristics, accessing another VCPU data without
2609 * locking does not harm. It may result in trying to yield to same VCPU, fail
2610 * and continue with next VCPU and so on.
2611 */
2612static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2613{
2614#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2615 bool eligible;
2616
2617 eligible = !vcpu->spin_loop.in_spin_loop ||
2618 vcpu->spin_loop.dy_eligible;
2619
2620 if (vcpu->spin_loop.in_spin_loop)
2621 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2622
2623 return eligible;
2624#else
2625 return true;
2626#endif
2627}
2628
2629/*
2630 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2631 * a vcpu_load/vcpu_put pair. However, for most architectures
2632 * kvm_arch_vcpu_runnable does not require vcpu_load.
2633 */
2634bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2635{
2636 return kvm_arch_vcpu_runnable(vcpu);
2637}
2638
2639static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2640{
2641 if (kvm_arch_dy_runnable(vcpu))
2642 return true;
2643
2644#ifdef CONFIG_KVM_ASYNC_PF
2645 if (!list_empty_careful(&vcpu->async_pf.done))
2646 return true;
2647#endif
2648
2649 return false;
2650}
2651
2652void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2653{
2654 struct kvm *kvm = me->kvm;
2655 struct kvm_vcpu *vcpu;
2656 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2657 int yielded = 0;
2658 int try = 3;
2659 int pass;
2660 int i;
2661
2662 kvm_vcpu_set_in_spin_loop(me, true);
2663 /*
2664 * We boost the priority of a VCPU that is runnable but not
2665 * currently running, because it got preempted by something
2666 * else and called schedule in __vcpu_run. Hopefully that
2667 * VCPU is holding the lock that we need and will release it.
2668 * We approximate round-robin by starting at the last boosted VCPU.
2669 */
2670 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2671 kvm_for_each_vcpu(i, vcpu, kvm) {
2672 if (!pass && i <= last_boosted_vcpu) {
2673 i = last_boosted_vcpu;
2674 continue;
2675 } else if (pass && i > last_boosted_vcpu)
2676 break;
2677 if (!READ_ONCE(vcpu->ready))
2678 continue;
2679 if (vcpu == me)
2680 continue;
2681 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2682 continue;
2683 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2684 !kvm_arch_vcpu_in_kernel(vcpu))
2685 continue;
2686 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2687 continue;
2688
2689 yielded = kvm_vcpu_yield_to(vcpu);
2690 if (yielded > 0) {
2691 kvm->last_boosted_vcpu = i;
2692 break;
2693 } else if (yielded < 0) {
2694 try--;
2695 if (!try)
2696 break;
2697 }
2698 }
2699 }
2700 kvm_vcpu_set_in_spin_loop(me, false);
2701
2702 /* Ensure vcpu is not eligible during next spinloop */
2703 kvm_vcpu_set_dy_eligible(me, false);
2704}
2705EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2706
2707static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2708{
2709 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2710 struct page *page;
2711
2712 if (vmf->pgoff == 0)
2713 page = virt_to_page(vcpu->run);
2714#ifdef CONFIG_X86
2715 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2716 page = virt_to_page(vcpu->arch.pio_data);
2717#endif
2718#ifdef CONFIG_KVM_MMIO
2719 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2720 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2721#endif
2722 else
2723 return kvm_arch_vcpu_fault(vcpu, vmf);
2724 get_page(page);
2725 vmf->page = page;
2726 return 0;
2727}
2728
2729static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2730 .fault = kvm_vcpu_fault,
2731};
2732
2733static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2734{
2735 vma->vm_ops = &kvm_vcpu_vm_ops;
2736 return 0;
2737}
2738
2739static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2740{
2741 struct kvm_vcpu *vcpu = filp->private_data;
2742
2743 debugfs_remove_recursive(vcpu->debugfs_dentry);
2744 kvm_put_kvm(vcpu->kvm);
2745 return 0;
2746}
2747
2748static struct file_operations kvm_vcpu_fops = {
2749 .release = kvm_vcpu_release,
2750 .unlocked_ioctl = kvm_vcpu_ioctl,
2751 .mmap = kvm_vcpu_mmap,
2752 .llseek = noop_llseek,
2753 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2754};
2755
2756/*
2757 * Allocates an inode for the vcpu.
2758 */
2759static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2760{
2761 char name[8 + 1 + ITOA_MAX_LEN + 1];
2762
2763 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2764 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2765}
2766
2767static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2768{
2769#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2770 char dir_name[ITOA_MAX_LEN * 2];
2771
2772 if (!debugfs_initialized())
2773 return;
2774
2775 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2776 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2777 vcpu->kvm->debugfs_dentry);
2778
2779 kvm_arch_create_vcpu_debugfs(vcpu);
2780#endif
2781}
2782
2783/*
2784 * Creates some virtual cpus. Good luck creating more than one.
2785 */
2786static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2787{
2788 int r;
2789 struct kvm_vcpu *vcpu;
2790 struct page *page;
2791
2792 if (id >= KVM_MAX_VCPU_ID)
2793 return -EINVAL;
2794
2795 mutex_lock(&kvm->lock);
2796 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2797 mutex_unlock(&kvm->lock);
2798 return -EINVAL;
2799 }
2800
2801 kvm->created_vcpus++;
2802 mutex_unlock(&kvm->lock);
2803
2804 r = kvm_arch_vcpu_precreate(kvm, id);
2805 if (r)
2806 goto vcpu_decrement;
2807
2808 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2809 if (!vcpu) {
2810 r = -ENOMEM;
2811 goto vcpu_decrement;
2812 }
2813
2814 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
2815 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2816 if (!page) {
2817 r = -ENOMEM;
2818 goto vcpu_free;
2819 }
2820 vcpu->run = page_address(page);
2821
2822 kvm_vcpu_init(vcpu, kvm, id);
2823
2824 r = kvm_arch_vcpu_create(vcpu);
2825 if (r)
2826 goto vcpu_free_run_page;
2827
2828 kvm_create_vcpu_debugfs(vcpu);
2829
2830 mutex_lock(&kvm->lock);
2831 if (kvm_get_vcpu_by_id(kvm, id)) {
2832 r = -EEXIST;
2833 goto unlock_vcpu_destroy;
2834 }
2835
2836 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2837 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2838
2839 /* Now it's all set up, let userspace reach it */
2840 kvm_get_kvm(kvm);
2841 r = create_vcpu_fd(vcpu);
2842 if (r < 0) {
2843 kvm_put_kvm_no_destroy(kvm);
2844 goto unlock_vcpu_destroy;
2845 }
2846
2847 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2848
2849 /*
2850 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2851 * before kvm->online_vcpu's incremented value.
2852 */
2853 smp_wmb();
2854 atomic_inc(&kvm->online_vcpus);
2855
2856 mutex_unlock(&kvm->lock);
2857 kvm_arch_vcpu_postcreate(vcpu);
2858 return r;
2859
2860unlock_vcpu_destroy:
2861 mutex_unlock(&kvm->lock);
2862 debugfs_remove_recursive(vcpu->debugfs_dentry);
2863 kvm_arch_vcpu_destroy(vcpu);
2864vcpu_free_run_page:
2865 free_page((unsigned long)vcpu->run);
2866vcpu_free:
2867 kmem_cache_free(kvm_vcpu_cache, vcpu);
2868vcpu_decrement:
2869 mutex_lock(&kvm->lock);
2870 kvm->created_vcpus--;
2871 mutex_unlock(&kvm->lock);
2872 return r;
2873}
2874
2875static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2876{
2877 if (sigset) {
2878 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2879 vcpu->sigset_active = 1;
2880 vcpu->sigset = *sigset;
2881 } else
2882 vcpu->sigset_active = 0;
2883 return 0;
2884}
2885
2886static long kvm_vcpu_ioctl(struct file *filp,
2887 unsigned int ioctl, unsigned long arg)
2888{
2889 struct kvm_vcpu *vcpu = filp->private_data;
2890 void __user *argp = (void __user *)arg;
2891 int r;
2892 struct kvm_fpu *fpu = NULL;
2893 struct kvm_sregs *kvm_sregs = NULL;
2894
2895 if (vcpu->kvm->mm != current->mm)
2896 return -EIO;
2897
2898 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2899 return -EINVAL;
2900
2901 /*
2902 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2903 * execution; mutex_lock() would break them.
2904 */
2905 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2906 if (r != -ENOIOCTLCMD)
2907 return r;
2908
2909 if (mutex_lock_killable(&vcpu->mutex))
2910 return -EINTR;
2911 switch (ioctl) {
2912 case KVM_RUN: {
2913 struct pid *oldpid;
2914 r = -EINVAL;
2915 if (arg)
2916 goto out;
2917 oldpid = rcu_access_pointer(vcpu->pid);
2918 if (unlikely(oldpid != task_pid(current))) {
2919 /* The thread running this VCPU changed. */
2920 struct pid *newpid;
2921
2922 r = kvm_arch_vcpu_run_pid_change(vcpu);
2923 if (r)
2924 break;
2925
2926 newpid = get_task_pid(current, PIDTYPE_PID);
2927 rcu_assign_pointer(vcpu->pid, newpid);
2928 if (oldpid)
2929 synchronize_rcu();
2930 put_pid(oldpid);
2931 }
2932 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2933 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2934 break;
2935 }
2936 case KVM_GET_REGS: {
2937 struct kvm_regs *kvm_regs;
2938
2939 r = -ENOMEM;
2940 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2941 if (!kvm_regs)
2942 goto out;
2943 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2944 if (r)
2945 goto out_free1;
2946 r = -EFAULT;
2947 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2948 goto out_free1;
2949 r = 0;
2950out_free1:
2951 kfree(kvm_regs);
2952 break;
2953 }
2954 case KVM_SET_REGS: {
2955 struct kvm_regs *kvm_regs;
2956
2957 r = -ENOMEM;
2958 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2959 if (IS_ERR(kvm_regs)) {
2960 r = PTR_ERR(kvm_regs);
2961 goto out;
2962 }
2963 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2964 kfree(kvm_regs);
2965 break;
2966 }
2967 case KVM_GET_SREGS: {
2968 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2969 GFP_KERNEL_ACCOUNT);
2970 r = -ENOMEM;
2971 if (!kvm_sregs)
2972 goto out;
2973 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2974 if (r)
2975 goto out;
2976 r = -EFAULT;
2977 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2978 goto out;
2979 r = 0;
2980 break;
2981 }
2982 case KVM_SET_SREGS: {
2983 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2984 if (IS_ERR(kvm_sregs)) {
2985 r = PTR_ERR(kvm_sregs);
2986 kvm_sregs = NULL;
2987 goto out;
2988 }
2989 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2990 break;
2991 }
2992 case KVM_GET_MP_STATE: {
2993 struct kvm_mp_state mp_state;
2994
2995 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2996 if (r)
2997 goto out;
2998 r = -EFAULT;
2999 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3000 goto out;
3001 r = 0;
3002 break;
3003 }
3004 case KVM_SET_MP_STATE: {
3005 struct kvm_mp_state mp_state;
3006
3007 r = -EFAULT;
3008 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3009 goto out;
3010 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3011 break;
3012 }
3013 case KVM_TRANSLATE: {
3014 struct kvm_translation tr;
3015
3016 r = -EFAULT;
3017 if (copy_from_user(&tr, argp, sizeof(tr)))
3018 goto out;
3019 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3020 if (r)
3021 goto out;
3022 r = -EFAULT;
3023 if (copy_to_user(argp, &tr, sizeof(tr)))
3024 goto out;
3025 r = 0;
3026 break;
3027 }
3028 case KVM_SET_GUEST_DEBUG: {
3029 struct kvm_guest_debug dbg;
3030
3031 r = -EFAULT;
3032 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3033 goto out;
3034 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3035 break;
3036 }
3037 case KVM_SET_SIGNAL_MASK: {
3038 struct kvm_signal_mask __user *sigmask_arg = argp;
3039 struct kvm_signal_mask kvm_sigmask;
3040 sigset_t sigset, *p;
3041
3042 p = NULL;
3043 if (argp) {
3044 r = -EFAULT;
3045 if (copy_from_user(&kvm_sigmask, argp,
3046 sizeof(kvm_sigmask)))
3047 goto out;
3048 r = -EINVAL;
3049 if (kvm_sigmask.len != sizeof(sigset))
3050 goto out;
3051 r = -EFAULT;
3052 if (copy_from_user(&sigset, sigmask_arg->sigset,
3053 sizeof(sigset)))
3054 goto out;
3055 p = &sigset;
3056 }
3057 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3058 break;
3059 }
3060 case KVM_GET_FPU: {
3061 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3062 r = -ENOMEM;
3063 if (!fpu)
3064 goto out;
3065 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3066 if (r)
3067 goto out;
3068 r = -EFAULT;
3069 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3070 goto out;
3071 r = 0;
3072 break;
3073 }
3074 case KVM_SET_FPU: {
3075 fpu = memdup_user(argp, sizeof(*fpu));
3076 if (IS_ERR(fpu)) {
3077 r = PTR_ERR(fpu);
3078 fpu = NULL;
3079 goto out;
3080 }
3081 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3082 break;
3083 }
3084 default:
3085 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3086 }
3087out:
3088 mutex_unlock(&vcpu->mutex);
3089 kfree(fpu);
3090 kfree(kvm_sregs);
3091 return r;
3092}
3093
3094#ifdef CONFIG_KVM_COMPAT
3095static long kvm_vcpu_compat_ioctl(struct file *filp,
3096 unsigned int ioctl, unsigned long arg)
3097{
3098 struct kvm_vcpu *vcpu = filp->private_data;
3099 void __user *argp = compat_ptr(arg);
3100 int r;
3101
3102 if (vcpu->kvm->mm != current->mm)
3103 return -EIO;
3104
3105 switch (ioctl) {
3106 case KVM_SET_SIGNAL_MASK: {
3107 struct kvm_signal_mask __user *sigmask_arg = argp;
3108 struct kvm_signal_mask kvm_sigmask;
3109 sigset_t sigset;
3110
3111 if (argp) {
3112 r = -EFAULT;
3113 if (copy_from_user(&kvm_sigmask, argp,
3114 sizeof(kvm_sigmask)))
3115 goto out;
3116 r = -EINVAL;
3117 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3118 goto out;
3119 r = -EFAULT;
3120 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3121 goto out;
3122 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3123 } else
3124 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3125 break;
3126 }
3127 default:
3128 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3129 }
3130
3131out:
3132 return r;
3133}
3134#endif
3135
3136static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3137{
3138 struct kvm_device *dev = filp->private_data;
3139
3140 if (dev->ops->mmap)
3141 return dev->ops->mmap(dev, vma);
3142
3143 return -ENODEV;
3144}
3145
3146static int kvm_device_ioctl_attr(struct kvm_device *dev,
3147 int (*accessor)(struct kvm_device *dev,
3148 struct kvm_device_attr *attr),
3149 unsigned long arg)
3150{
3151 struct kvm_device_attr attr;
3152
3153 if (!accessor)
3154 return -EPERM;
3155
3156 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3157 return -EFAULT;
3158
3159 return accessor(dev, &attr);
3160}
3161
3162static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3163 unsigned long arg)
3164{
3165 struct kvm_device *dev = filp->private_data;
3166
3167 if (dev->kvm->mm != current->mm)
3168 return -EIO;
3169
3170 switch (ioctl) {
3171 case KVM_SET_DEVICE_ATTR:
3172 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3173 case KVM_GET_DEVICE_ATTR:
3174 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3175 case KVM_HAS_DEVICE_ATTR:
3176 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3177 default:
3178 if (dev->ops->ioctl)
3179 return dev->ops->ioctl(dev, ioctl, arg);
3180
3181 return -ENOTTY;
3182 }
3183}
3184
3185static int kvm_device_release(struct inode *inode, struct file *filp)
3186{
3187 struct kvm_device *dev = filp->private_data;
3188 struct kvm *kvm = dev->kvm;
3189
3190 if (dev->ops->release) {
3191 mutex_lock(&kvm->lock);
3192 list_del(&dev->vm_node);
3193 dev->ops->release(dev);
3194 mutex_unlock(&kvm->lock);
3195 }
3196
3197 kvm_put_kvm(kvm);
3198 return 0;
3199}
3200
3201static const struct file_operations kvm_device_fops = {
3202 .unlocked_ioctl = kvm_device_ioctl,
3203 .release = kvm_device_release,
3204 KVM_COMPAT(kvm_device_ioctl),
3205 .mmap = kvm_device_mmap,
3206};
3207
3208struct kvm_device *kvm_device_from_filp(struct file *filp)
3209{
3210 if (filp->f_op != &kvm_device_fops)
3211 return NULL;
3212
3213 return filp->private_data;
3214}
3215
3216static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3217#ifdef CONFIG_KVM_MPIC
3218 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3219 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3220#endif
3221};
3222
3223int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3224{
3225 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3226 return -ENOSPC;
3227
3228 if (kvm_device_ops_table[type] != NULL)
3229 return -EEXIST;
3230
3231 kvm_device_ops_table[type] = ops;
3232 return 0;
3233}
3234
3235void kvm_unregister_device_ops(u32 type)
3236{
3237 if (kvm_device_ops_table[type] != NULL)
3238 kvm_device_ops_table[type] = NULL;
3239}
3240
3241static int kvm_ioctl_create_device(struct kvm *kvm,
3242 struct kvm_create_device *cd)
3243{
3244 const struct kvm_device_ops *ops = NULL;
3245 struct kvm_device *dev;
3246 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3247 int type;
3248 int ret;
3249
3250 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3251 return -ENODEV;
3252
3253 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3254 ops = kvm_device_ops_table[type];
3255 if (ops == NULL)
3256 return -ENODEV;
3257
3258 if (test)
3259 return 0;
3260
3261 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3262 if (!dev)
3263 return -ENOMEM;
3264
3265 dev->ops = ops;
3266 dev->kvm = kvm;
3267
3268 mutex_lock(&kvm->lock);
3269 ret = ops->create(dev, type);
3270 if (ret < 0) {
3271 mutex_unlock(&kvm->lock);
3272 kfree(dev);
3273 return ret;
3274 }
3275 list_add(&dev->vm_node, &kvm->devices);
3276 mutex_unlock(&kvm->lock);
3277
3278 if (ops->init)
3279 ops->init(dev);
3280
3281 kvm_get_kvm(kvm);
3282 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3283 if (ret < 0) {
3284 kvm_put_kvm_no_destroy(kvm);
3285 mutex_lock(&kvm->lock);
3286 list_del(&dev->vm_node);
3287 mutex_unlock(&kvm->lock);
3288 ops->destroy(dev);
3289 return ret;
3290 }
3291
3292 cd->fd = ret;
3293 return 0;
3294}
3295
3296static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3297{
3298 switch (arg) {
3299 case KVM_CAP_USER_MEMORY:
3300 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3301 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3302 case KVM_CAP_INTERNAL_ERROR_DATA:
3303#ifdef CONFIG_HAVE_KVM_MSI
3304 case KVM_CAP_SIGNAL_MSI:
3305#endif
3306#ifdef CONFIG_HAVE_KVM_IRQFD
3307 case KVM_CAP_IRQFD:
3308 case KVM_CAP_IRQFD_RESAMPLE:
3309#endif
3310 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3311 case KVM_CAP_CHECK_EXTENSION_VM:
3312 case KVM_CAP_ENABLE_CAP_VM:
3313#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3314 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3315#endif
3316 return 1;
3317#ifdef CONFIG_KVM_MMIO
3318 case KVM_CAP_COALESCED_MMIO:
3319 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3320 case KVM_CAP_COALESCED_PIO:
3321 return 1;
3322#endif
3323#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3324 case KVM_CAP_IRQ_ROUTING:
3325 return KVM_MAX_IRQ_ROUTES;
3326#endif
3327#if KVM_ADDRESS_SPACE_NUM > 1
3328 case KVM_CAP_MULTI_ADDRESS_SPACE:
3329 return KVM_ADDRESS_SPACE_NUM;
3330#endif
3331 case KVM_CAP_NR_MEMSLOTS:
3332 return KVM_USER_MEM_SLOTS;
3333 default:
3334 break;
3335 }
3336 return kvm_vm_ioctl_check_extension(kvm, arg);
3337}
3338
3339int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3340 struct kvm_enable_cap *cap)
3341{
3342 return -EINVAL;
3343}
3344
3345static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3346 struct kvm_enable_cap *cap)
3347{
3348 switch (cap->cap) {
3349#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3350 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3351 if (cap->flags || (cap->args[0] & ~1))
3352 return -EINVAL;
3353 kvm->manual_dirty_log_protect = cap->args[0];
3354 return 0;
3355#endif
3356 default:
3357 return kvm_vm_ioctl_enable_cap(kvm, cap);
3358 }
3359}
3360
3361static long kvm_vm_ioctl(struct file *filp,
3362 unsigned int ioctl, unsigned long arg)
3363{
3364 struct kvm *kvm = filp->private_data;
3365 void __user *argp = (void __user *)arg;
3366 int r;
3367
3368 if (kvm->mm != current->mm)
3369 return -EIO;
3370 switch (ioctl) {
3371 case KVM_CREATE_VCPU:
3372 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3373 break;
3374 case KVM_ENABLE_CAP: {
3375 struct kvm_enable_cap cap;
3376
3377 r = -EFAULT;
3378 if (copy_from_user(&cap, argp, sizeof(cap)))
3379 goto out;
3380 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3381 break;
3382 }
3383 case KVM_SET_USER_MEMORY_REGION: {
3384 struct kvm_userspace_memory_region kvm_userspace_mem;
3385
3386 r = -EFAULT;
3387 if (copy_from_user(&kvm_userspace_mem, argp,
3388 sizeof(kvm_userspace_mem)))
3389 goto out;
3390
3391 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3392 break;
3393 }
3394 case KVM_GET_DIRTY_LOG: {
3395 struct kvm_dirty_log log;
3396
3397 r = -EFAULT;
3398 if (copy_from_user(&log, argp, sizeof(log)))
3399 goto out;
3400 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3401 break;
3402 }
3403#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3404 case KVM_CLEAR_DIRTY_LOG: {
3405 struct kvm_clear_dirty_log log;
3406
3407 r = -EFAULT;
3408 if (copy_from_user(&log, argp, sizeof(log)))
3409 goto out;
3410 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3411 break;
3412 }
3413#endif
3414#ifdef CONFIG_KVM_MMIO
3415 case KVM_REGISTER_COALESCED_MMIO: {
3416 struct kvm_coalesced_mmio_zone zone;
3417
3418 r = -EFAULT;
3419 if (copy_from_user(&zone, argp, sizeof(zone)))
3420 goto out;
3421 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3422 break;
3423 }
3424 case KVM_UNREGISTER_COALESCED_MMIO: {
3425 struct kvm_coalesced_mmio_zone zone;
3426
3427 r = -EFAULT;
3428 if (copy_from_user(&zone, argp, sizeof(zone)))
3429 goto out;
3430 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3431 break;
3432 }
3433#endif
3434 case KVM_IRQFD: {
3435 struct kvm_irqfd data;
3436
3437 r = -EFAULT;
3438 if (copy_from_user(&data, argp, sizeof(data)))
3439 goto out;
3440 r = kvm_irqfd(kvm, &data);
3441 break;
3442 }
3443 case KVM_IOEVENTFD: {
3444 struct kvm_ioeventfd data;
3445
3446 r = -EFAULT;
3447 if (copy_from_user(&data, argp, sizeof(data)))
3448 goto out;
3449 r = kvm_ioeventfd(kvm, &data);
3450 break;
3451 }
3452#ifdef CONFIG_HAVE_KVM_MSI
3453 case KVM_SIGNAL_MSI: {
3454 struct kvm_msi msi;
3455
3456 r = -EFAULT;
3457 if (copy_from_user(&msi, argp, sizeof(msi)))
3458 goto out;
3459 r = kvm_send_userspace_msi(kvm, &msi);
3460 break;
3461 }
3462#endif
3463#ifdef __KVM_HAVE_IRQ_LINE
3464 case KVM_IRQ_LINE_STATUS:
3465 case KVM_IRQ_LINE: {
3466 struct kvm_irq_level irq_event;
3467
3468 r = -EFAULT;
3469 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3470 goto out;
3471
3472 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3473 ioctl == KVM_IRQ_LINE_STATUS);
3474 if (r)
3475 goto out;
3476
3477 r = -EFAULT;
3478 if (ioctl == KVM_IRQ_LINE_STATUS) {
3479 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3480 goto out;
3481 }
3482
3483 r = 0;
3484 break;
3485 }
3486#endif
3487#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3488 case KVM_SET_GSI_ROUTING: {
3489 struct kvm_irq_routing routing;
3490 struct kvm_irq_routing __user *urouting;
3491 struct kvm_irq_routing_entry *entries = NULL;
3492
3493 r = -EFAULT;
3494 if (copy_from_user(&routing, argp, sizeof(routing)))
3495 goto out;
3496 r = -EINVAL;
3497 if (!kvm_arch_can_set_irq_routing(kvm))
3498 goto out;
3499 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3500 goto out;
3501 if (routing.flags)
3502 goto out;
3503 if (routing.nr) {
3504 r = -ENOMEM;
3505 entries = vmalloc(array_size(sizeof(*entries),
3506 routing.nr));
3507 if (!entries)
3508 goto out;
3509 r = -EFAULT;
3510 urouting = argp;
3511 if (copy_from_user(entries, urouting->entries,
3512 routing.nr * sizeof(*entries)))
3513 goto out_free_irq_routing;
3514 }
3515 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3516 routing.flags);
3517out_free_irq_routing:
3518 vfree(entries);
3519 break;
3520 }
3521#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3522 case KVM_CREATE_DEVICE: {
3523 struct kvm_create_device cd;
3524
3525 r = -EFAULT;
3526 if (copy_from_user(&cd, argp, sizeof(cd)))
3527 goto out;
3528
3529 r = kvm_ioctl_create_device(kvm, &cd);
3530 if (r)
3531 goto out;
3532
3533 r = -EFAULT;
3534 if (copy_to_user(argp, &cd, sizeof(cd)))
3535 goto out;
3536
3537 r = 0;
3538 break;
3539 }
3540 case KVM_CHECK_EXTENSION:
3541 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3542 break;
3543 default:
3544 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3545 }
3546out:
3547 return r;
3548}
3549
3550#ifdef CONFIG_KVM_COMPAT
3551struct compat_kvm_dirty_log {
3552 __u32 slot;
3553 __u32 padding1;
3554 union {
3555 compat_uptr_t dirty_bitmap; /* one bit per page */
3556 __u64 padding2;
3557 };
3558};
3559
3560static long kvm_vm_compat_ioctl(struct file *filp,
3561 unsigned int ioctl, unsigned long arg)
3562{
3563 struct kvm *kvm = filp->private_data;
3564 int r;
3565
3566 if (kvm->mm != current->mm)
3567 return -EIO;
3568 switch (ioctl) {
3569 case KVM_GET_DIRTY_LOG: {
3570 struct compat_kvm_dirty_log compat_log;
3571 struct kvm_dirty_log log;
3572
3573 if (copy_from_user(&compat_log, (void __user *)arg,
3574 sizeof(compat_log)))
3575 return -EFAULT;
3576 log.slot = compat_log.slot;
3577 log.padding1 = compat_log.padding1;
3578 log.padding2 = compat_log.padding2;
3579 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3580
3581 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3582 break;
3583 }
3584 default:
3585 r = kvm_vm_ioctl(filp, ioctl, arg);
3586 }
3587 return r;
3588}
3589#endif
3590
3591static struct file_operations kvm_vm_fops = {
3592 .release = kvm_vm_release,
3593 .unlocked_ioctl = kvm_vm_ioctl,
3594 .llseek = noop_llseek,
3595 KVM_COMPAT(kvm_vm_compat_ioctl),
3596};
3597
3598static int kvm_dev_ioctl_create_vm(unsigned long type)
3599{
3600 int r;
3601 struct kvm *kvm;
3602 struct file *file;
3603
3604 kvm = kvm_create_vm(type);
3605 if (IS_ERR(kvm))
3606 return PTR_ERR(kvm);
3607#ifdef CONFIG_KVM_MMIO
3608 r = kvm_coalesced_mmio_init(kvm);
3609 if (r < 0)
3610 goto put_kvm;
3611#endif
3612 r = get_unused_fd_flags(O_CLOEXEC);
3613 if (r < 0)
3614 goto put_kvm;
3615
3616 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3617 if (IS_ERR(file)) {
3618 put_unused_fd(r);
3619 r = PTR_ERR(file);
3620 goto put_kvm;
3621 }
3622
3623 /*
3624 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3625 * already set, with ->release() being kvm_vm_release(). In error
3626 * cases it will be called by the final fput(file) and will take
3627 * care of doing kvm_put_kvm(kvm).
3628 */
3629 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3630 put_unused_fd(r);
3631 fput(file);
3632 return -ENOMEM;
3633 }
3634 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3635
3636 fd_install(r, file);
3637 return r;
3638
3639put_kvm:
3640 kvm_put_kvm(kvm);
3641 return r;
3642}
3643
3644static long kvm_dev_ioctl(struct file *filp,
3645 unsigned int ioctl, unsigned long arg)
3646{
3647 long r = -EINVAL;
3648
3649 switch (ioctl) {
3650 case KVM_GET_API_VERSION:
3651 if (arg)
3652 goto out;
3653 r = KVM_API_VERSION;
3654 break;
3655 case KVM_CREATE_VM:
3656 r = kvm_dev_ioctl_create_vm(arg);
3657 break;
3658 case KVM_CHECK_EXTENSION:
3659 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3660 break;
3661 case KVM_GET_VCPU_MMAP_SIZE:
3662 if (arg)
3663 goto out;
3664 r = PAGE_SIZE; /* struct kvm_run */
3665#ifdef CONFIG_X86
3666 r += PAGE_SIZE; /* pio data page */
3667#endif
3668#ifdef CONFIG_KVM_MMIO
3669 r += PAGE_SIZE; /* coalesced mmio ring page */
3670#endif
3671 break;
3672 case KVM_TRACE_ENABLE:
3673 case KVM_TRACE_PAUSE:
3674 case KVM_TRACE_DISABLE:
3675 r = -EOPNOTSUPP;
3676 break;
3677 default:
3678 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3679 }
3680out:
3681 return r;
3682}
3683
3684static struct file_operations kvm_chardev_ops = {
3685 .unlocked_ioctl = kvm_dev_ioctl,
3686 .llseek = noop_llseek,
3687 KVM_COMPAT(kvm_dev_ioctl),
3688};
3689
3690static struct miscdevice kvm_dev = {
3691 KVM_MINOR,
3692 "kvm",
3693 &kvm_chardev_ops,
3694};
3695
3696static void hardware_enable_nolock(void *junk)
3697{
3698 int cpu = raw_smp_processor_id();
3699 int r;
3700
3701 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3702 return;
3703
3704 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3705
3706 r = kvm_arch_hardware_enable();
3707
3708 if (r) {
3709 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3710 atomic_inc(&hardware_enable_failed);
3711 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3712 }
3713}
3714
3715static int kvm_starting_cpu(unsigned int cpu)
3716{
3717 raw_spin_lock(&kvm_count_lock);
3718 if (kvm_usage_count)
3719 hardware_enable_nolock(NULL);
3720 raw_spin_unlock(&kvm_count_lock);
3721 return 0;
3722}
3723
3724static void hardware_disable_nolock(void *junk)
3725{
3726 int cpu = raw_smp_processor_id();
3727
3728 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3729 return;
3730 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3731 kvm_arch_hardware_disable();
3732}
3733
3734static int kvm_dying_cpu(unsigned int cpu)
3735{
3736 raw_spin_lock(&kvm_count_lock);
3737 if (kvm_usage_count)
3738 hardware_disable_nolock(NULL);
3739 raw_spin_unlock(&kvm_count_lock);
3740 return 0;
3741}
3742
3743static void hardware_disable_all_nolock(void)
3744{
3745 BUG_ON(!kvm_usage_count);
3746
3747 kvm_usage_count--;
3748 if (!kvm_usage_count)
3749 on_each_cpu(hardware_disable_nolock, NULL, 1);
3750}
3751
3752static void hardware_disable_all(void)
3753{
3754 raw_spin_lock(&kvm_count_lock);
3755 hardware_disable_all_nolock();
3756 raw_spin_unlock(&kvm_count_lock);
3757}
3758
3759static int hardware_enable_all(void)
3760{
3761 int r = 0;
3762
3763 raw_spin_lock(&kvm_count_lock);
3764
3765 kvm_usage_count++;
3766 if (kvm_usage_count == 1) {
3767 atomic_set(&hardware_enable_failed, 0);
3768 on_each_cpu(hardware_enable_nolock, NULL, 1);
3769
3770 if (atomic_read(&hardware_enable_failed)) {
3771 hardware_disable_all_nolock();
3772 r = -EBUSY;
3773 }
3774 }
3775
3776 raw_spin_unlock(&kvm_count_lock);
3777
3778 return r;
3779}
3780
3781static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3782 void *v)
3783{
3784 /*
3785 * Some (well, at least mine) BIOSes hang on reboot if
3786 * in vmx root mode.
3787 *
3788 * And Intel TXT required VMX off for all cpu when system shutdown.
3789 */
3790 pr_info("kvm: exiting hardware virtualization\n");
3791 kvm_rebooting = true;
3792 on_each_cpu(hardware_disable_nolock, NULL, 1);
3793 return NOTIFY_OK;
3794}
3795
3796static struct notifier_block kvm_reboot_notifier = {
3797 .notifier_call = kvm_reboot,
3798 .priority = 0,
3799};
3800
3801static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3802{
3803 int i;
3804
3805 for (i = 0; i < bus->dev_count; i++) {
3806 struct kvm_io_device *pos = bus->range[i].dev;
3807
3808 kvm_iodevice_destructor(pos);
3809 }
3810 kfree(bus);
3811}
3812
3813static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3814 const struct kvm_io_range *r2)
3815{
3816 gpa_t addr1 = r1->addr;
3817 gpa_t addr2 = r2->addr;
3818
3819 if (addr1 < addr2)
3820 return -1;
3821
3822 /* If r2->len == 0, match the exact address. If r2->len != 0,
3823 * accept any overlapping write. Any order is acceptable for
3824 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3825 * we process all of them.
3826 */
3827 if (r2->len) {
3828 addr1 += r1->len;
3829 addr2 += r2->len;
3830 }
3831
3832 if (addr1 > addr2)
3833 return 1;
3834
3835 return 0;
3836}
3837
3838static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3839{
3840 return kvm_io_bus_cmp(p1, p2);
3841}
3842
3843static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3844 gpa_t addr, int len)
3845{
3846 struct kvm_io_range *range, key;
3847 int off;
3848
3849 key = (struct kvm_io_range) {
3850 .addr = addr,
3851 .len = len,
3852 };
3853
3854 range = bsearch(&key, bus->range, bus->dev_count,
3855 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3856 if (range == NULL)
3857 return -ENOENT;
3858
3859 off = range - bus->range;
3860
3861 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3862 off--;
3863
3864 return off;
3865}
3866
3867static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3868 struct kvm_io_range *range, const void *val)
3869{
3870 int idx;
3871
3872 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3873 if (idx < 0)
3874 return -EOPNOTSUPP;
3875
3876 while (idx < bus->dev_count &&
3877 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3878 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3879 range->len, val))
3880 return idx;
3881 idx++;
3882 }
3883
3884 return -EOPNOTSUPP;
3885}
3886
3887/* kvm_io_bus_write - called under kvm->slots_lock */
3888int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3889 int len, const void *val)
3890{
3891 struct kvm_io_bus *bus;
3892 struct kvm_io_range range;
3893 int r;
3894
3895 range = (struct kvm_io_range) {
3896 .addr = addr,
3897 .len = len,
3898 };
3899
3900 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3901 if (!bus)
3902 return -ENOMEM;
3903 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3904 return r < 0 ? r : 0;
3905}
3906EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3907
3908/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3909int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3910 gpa_t addr, int len, const void *val, long cookie)
3911{
3912 struct kvm_io_bus *bus;
3913 struct kvm_io_range range;
3914
3915 range = (struct kvm_io_range) {
3916 .addr = addr,
3917 .len = len,
3918 };
3919
3920 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3921 if (!bus)
3922 return -ENOMEM;
3923
3924 /* First try the device referenced by cookie. */
3925 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3926 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3927 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3928 val))
3929 return cookie;
3930
3931 /*
3932 * cookie contained garbage; fall back to search and return the
3933 * correct cookie value.
3934 */
3935 return __kvm_io_bus_write(vcpu, bus, &range, val);
3936}
3937
3938static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3939 struct kvm_io_range *range, void *val)
3940{
3941 int idx;
3942
3943 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3944 if (idx < 0)
3945 return -EOPNOTSUPP;
3946
3947 while (idx < bus->dev_count &&
3948 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3949 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3950 range->len, val))
3951 return idx;
3952 idx++;
3953 }
3954
3955 return -EOPNOTSUPP;
3956}
3957
3958/* kvm_io_bus_read - called under kvm->slots_lock */
3959int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3960 int len, void *val)
3961{
3962 struct kvm_io_bus *bus;
3963 struct kvm_io_range range;
3964 int r;
3965
3966 range = (struct kvm_io_range) {
3967 .addr = addr,
3968 .len = len,
3969 };
3970
3971 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3972 if (!bus)
3973 return -ENOMEM;
3974 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3975 return r < 0 ? r : 0;
3976}
3977
3978/* Caller must hold slots_lock. */
3979int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3980 int len, struct kvm_io_device *dev)
3981{
3982 int i;
3983 struct kvm_io_bus *new_bus, *bus;
3984 struct kvm_io_range range;
3985
3986 bus = kvm_get_bus(kvm, bus_idx);
3987 if (!bus)
3988 return -ENOMEM;
3989
3990 /* exclude ioeventfd which is limited by maximum fd */
3991 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3992 return -ENOSPC;
3993
3994 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3995 GFP_KERNEL_ACCOUNT);
3996 if (!new_bus)
3997 return -ENOMEM;
3998
3999 range = (struct kvm_io_range) {
4000 .addr = addr,
4001 .len = len,
4002 .dev = dev,
4003 };
4004
4005 for (i = 0; i < bus->dev_count; i++)
4006 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4007 break;
4008
4009 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4010 new_bus->dev_count++;
4011 new_bus->range[i] = range;
4012 memcpy(new_bus->range + i + 1, bus->range + i,
4013 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4014 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4015 synchronize_srcu_expedited(&kvm->srcu);
4016 kfree(bus);
4017
4018 return 0;
4019}
4020
4021/* Caller must hold slots_lock. */
4022void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4023 struct kvm_io_device *dev)
4024{
4025 int i;
4026 struct kvm_io_bus *new_bus, *bus;
4027
4028 bus = kvm_get_bus(kvm, bus_idx);
4029 if (!bus)
4030 return;
4031
4032 for (i = 0; i < bus->dev_count; i++)
4033 if (bus->range[i].dev == dev) {
4034 break;
4035 }
4036
4037 if (i == bus->dev_count)
4038 return;
4039
4040 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4041 GFP_KERNEL_ACCOUNT);
4042 if (!new_bus) {
4043 pr_err("kvm: failed to shrink bus, removing it completely\n");
4044 goto broken;
4045 }
4046
4047 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4048 new_bus->dev_count--;
4049 memcpy(new_bus->range + i, bus->range + i + 1,
4050 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4051
4052broken:
4053 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4054 synchronize_srcu_expedited(&kvm->srcu);
4055 kfree(bus);
4056 return;
4057}
4058
4059struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4060 gpa_t addr)
4061{
4062 struct kvm_io_bus *bus;
4063 int dev_idx, srcu_idx;
4064 struct kvm_io_device *iodev = NULL;
4065
4066 srcu_idx = srcu_read_lock(&kvm->srcu);
4067
4068 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4069 if (!bus)
4070 goto out_unlock;
4071
4072 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4073 if (dev_idx < 0)
4074 goto out_unlock;
4075
4076 iodev = bus->range[dev_idx].dev;
4077
4078out_unlock:
4079 srcu_read_unlock(&kvm->srcu, srcu_idx);
4080
4081 return iodev;
4082}
4083EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4084
4085static int kvm_debugfs_open(struct inode *inode, struct file *file,
4086 int (*get)(void *, u64 *), int (*set)(void *, u64),
4087 const char *fmt)
4088{
4089 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4090 inode->i_private;
4091
4092 /* The debugfs files are a reference to the kvm struct which
4093 * is still valid when kvm_destroy_vm is called.
4094 * To avoid the race between open and the removal of the debugfs
4095 * directory we test against the users count.
4096 */
4097 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4098 return -ENOENT;
4099
4100 if (simple_attr_open(inode, file, get,
4101 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4102 ? set : NULL,
4103 fmt)) {
4104 kvm_put_kvm(stat_data->kvm);
4105 return -ENOMEM;
4106 }
4107
4108 return 0;
4109}
4110
4111static int kvm_debugfs_release(struct inode *inode, struct file *file)
4112{
4113 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4114 inode->i_private;
4115
4116 simple_attr_release(inode, file);
4117 kvm_put_kvm(stat_data->kvm);
4118
4119 return 0;
4120}
4121
4122static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4123{
4124 *val = *(ulong *)((void *)kvm + offset);
4125
4126 return 0;
4127}
4128
4129static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4130{
4131 *(ulong *)((void *)kvm + offset) = 0;
4132
4133 return 0;
4134}
4135
4136static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4137{
4138 int i;
4139 struct kvm_vcpu *vcpu;
4140
4141 *val = 0;
4142
4143 kvm_for_each_vcpu(i, vcpu, kvm)
4144 *val += *(u64 *)((void *)vcpu + offset);
4145
4146 return 0;
4147}
4148
4149static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4150{
4151 int i;
4152 struct kvm_vcpu *vcpu;
4153
4154 kvm_for_each_vcpu(i, vcpu, kvm)
4155 *(u64 *)((void *)vcpu + offset) = 0;
4156
4157 return 0;
4158}
4159
4160static int kvm_stat_data_get(void *data, u64 *val)
4161{
4162 int r = -EFAULT;
4163 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4164
4165 switch (stat_data->dbgfs_item->kind) {
4166 case KVM_STAT_VM:
4167 r = kvm_get_stat_per_vm(stat_data->kvm,
4168 stat_data->dbgfs_item->offset, val);
4169 break;
4170 case KVM_STAT_VCPU:
4171 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4172 stat_data->dbgfs_item->offset, val);
4173 break;
4174 }
4175
4176 return r;
4177}
4178
4179static int kvm_stat_data_clear(void *data, u64 val)
4180{
4181 int r = -EFAULT;
4182 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4183
4184 if (val)
4185 return -EINVAL;
4186
4187 switch (stat_data->dbgfs_item->kind) {
4188 case KVM_STAT_VM:
4189 r = kvm_clear_stat_per_vm(stat_data->kvm,
4190 stat_data->dbgfs_item->offset);
4191 break;
4192 case KVM_STAT_VCPU:
4193 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4194 stat_data->dbgfs_item->offset);
4195 break;
4196 }
4197
4198 return r;
4199}
4200
4201static int kvm_stat_data_open(struct inode *inode, struct file *file)
4202{
4203 __simple_attr_check_format("%llu\n", 0ull);
4204 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4205 kvm_stat_data_clear, "%llu\n");
4206}
4207
4208static const struct file_operations stat_fops_per_vm = {
4209 .owner = THIS_MODULE,
4210 .open = kvm_stat_data_open,
4211 .release = kvm_debugfs_release,
4212 .read = simple_attr_read,
4213 .write = simple_attr_write,
4214 .llseek = no_llseek,
4215};
4216
4217static int vm_stat_get(void *_offset, u64 *val)
4218{
4219 unsigned offset = (long)_offset;
4220 struct kvm *kvm;
4221 u64 tmp_val;
4222
4223 *val = 0;
4224 mutex_lock(&kvm_lock);
4225 list_for_each_entry(kvm, &vm_list, vm_list) {
4226 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4227 *val += tmp_val;
4228 }
4229 mutex_unlock(&kvm_lock);
4230 return 0;
4231}
4232
4233static int vm_stat_clear(void *_offset, u64 val)
4234{
4235 unsigned offset = (long)_offset;
4236 struct kvm *kvm;
4237
4238 if (val)
4239 return -EINVAL;
4240
4241 mutex_lock(&kvm_lock);
4242 list_for_each_entry(kvm, &vm_list, vm_list) {
4243 kvm_clear_stat_per_vm(kvm, offset);
4244 }
4245 mutex_unlock(&kvm_lock);
4246
4247 return 0;
4248}
4249
4250DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4251
4252static int vcpu_stat_get(void *_offset, u64 *val)
4253{
4254 unsigned offset = (long)_offset;
4255 struct kvm *kvm;
4256 u64 tmp_val;
4257
4258 *val = 0;
4259 mutex_lock(&kvm_lock);
4260 list_for_each_entry(kvm, &vm_list, vm_list) {
4261 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4262 *val += tmp_val;
4263 }
4264 mutex_unlock(&kvm_lock);
4265 return 0;
4266}
4267
4268static int vcpu_stat_clear(void *_offset, u64 val)
4269{
4270 unsigned offset = (long)_offset;
4271 struct kvm *kvm;
4272
4273 if (val)
4274 return -EINVAL;
4275
4276 mutex_lock(&kvm_lock);
4277 list_for_each_entry(kvm, &vm_list, vm_list) {
4278 kvm_clear_stat_per_vcpu(kvm, offset);
4279 }
4280 mutex_unlock(&kvm_lock);
4281
4282 return 0;
4283}
4284
4285DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4286 "%llu\n");
4287
4288static const struct file_operations *stat_fops[] = {
4289 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4290 [KVM_STAT_VM] = &vm_stat_fops,
4291};
4292
4293static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4294{
4295 struct kobj_uevent_env *env;
4296 unsigned long long created, active;
4297
4298 if (!kvm_dev.this_device || !kvm)
4299 return;
4300
4301 mutex_lock(&kvm_lock);
4302 if (type == KVM_EVENT_CREATE_VM) {
4303 kvm_createvm_count++;
4304 kvm_active_vms++;
4305 } else if (type == KVM_EVENT_DESTROY_VM) {
4306 kvm_active_vms--;
4307 }
4308 created = kvm_createvm_count;
4309 active = kvm_active_vms;
4310 mutex_unlock(&kvm_lock);
4311
4312 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4313 if (!env)
4314 return;
4315
4316 add_uevent_var(env, "CREATED=%llu", created);
4317 add_uevent_var(env, "COUNT=%llu", active);
4318
4319 if (type == KVM_EVENT_CREATE_VM) {
4320 add_uevent_var(env, "EVENT=create");
4321 kvm->userspace_pid = task_pid_nr(current);
4322 } else if (type == KVM_EVENT_DESTROY_VM) {
4323 add_uevent_var(env, "EVENT=destroy");
4324 }
4325 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4326
4327 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4328 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4329
4330 if (p) {
4331 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4332 if (!IS_ERR(tmp))
4333 add_uevent_var(env, "STATS_PATH=%s", tmp);
4334 kfree(p);
4335 }
4336 }
4337 /* no need for checks, since we are adding at most only 5 keys */
4338 env->envp[env->envp_idx++] = NULL;
4339 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4340 kfree(env);
4341}
4342
4343static void kvm_init_debug(void)
4344{
4345 struct kvm_stats_debugfs_item *p;
4346
4347 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4348
4349 kvm_debugfs_num_entries = 0;
4350 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4351 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4352 kvm_debugfs_dir, (void *)(long)p->offset,
4353 stat_fops[p->kind]);
4354 }
4355}
4356
4357static int kvm_suspend(void)
4358{
4359 if (kvm_usage_count)
4360 hardware_disable_nolock(NULL);
4361 return 0;
4362}
4363
4364static void kvm_resume(void)
4365{
4366 if (kvm_usage_count) {
4367#ifdef CONFIG_LOCKDEP
4368 WARN_ON(lockdep_is_held(&kvm_count_lock));
4369#endif
4370 hardware_enable_nolock(NULL);
4371 }
4372}
4373
4374static struct syscore_ops kvm_syscore_ops = {
4375 .suspend = kvm_suspend,
4376 .resume = kvm_resume,
4377};
4378
4379static inline
4380struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4381{
4382 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4383}
4384
4385static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4386{
4387 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4388
4389 WRITE_ONCE(vcpu->preempted, false);
4390 WRITE_ONCE(vcpu->ready, false);
4391
4392 __this_cpu_write(kvm_running_vcpu, vcpu);
4393 kvm_arch_sched_in(vcpu, cpu);
4394 kvm_arch_vcpu_load(vcpu, cpu);
4395}
4396
4397static void kvm_sched_out(struct preempt_notifier *pn,
4398 struct task_struct *next)
4399{
4400 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4401
4402 if (current->state == TASK_RUNNING) {
4403 WRITE_ONCE(vcpu->preempted, true);
4404 WRITE_ONCE(vcpu->ready, true);
4405 }
4406 kvm_arch_vcpu_put(vcpu);
4407 __this_cpu_write(kvm_running_vcpu, NULL);
4408}
4409
4410/**
4411 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4412 *
4413 * We can disable preemption locally around accessing the per-CPU variable,
4414 * and use the resolved vcpu pointer after enabling preemption again,
4415 * because even if the current thread is migrated to another CPU, reading
4416 * the per-CPU value later will give us the same value as we update the
4417 * per-CPU variable in the preempt notifier handlers.
4418 */
4419struct kvm_vcpu *kvm_get_running_vcpu(void)
4420{
4421 struct kvm_vcpu *vcpu;
4422
4423 preempt_disable();
4424 vcpu = __this_cpu_read(kvm_running_vcpu);
4425 preempt_enable();
4426
4427 return vcpu;
4428}
4429
4430/**
4431 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4432 */
4433struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4434{
4435 return &kvm_running_vcpu;
4436}
4437
4438static void check_processor_compat(void *rtn)
4439{
4440 *(int *)rtn = kvm_arch_check_processor_compat();
4441}
4442
4443int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4444 struct module *module)
4445{
4446 int r;
4447 int cpu;
4448
4449 r = kvm_arch_init(opaque);
4450 if (r)
4451 goto out_fail;
4452
4453 /*
4454 * kvm_arch_init makes sure there's at most one caller
4455 * for architectures that support multiple implementations,
4456 * like intel and amd on x86.
4457 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4458 * conflicts in case kvm is already setup for another implementation.
4459 */
4460 r = kvm_irqfd_init();
4461 if (r)
4462 goto out_irqfd;
4463
4464 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4465 r = -ENOMEM;
4466 goto out_free_0;
4467 }
4468
4469 r = kvm_arch_hardware_setup();
4470 if (r < 0)
4471 goto out_free_1;
4472
4473 for_each_online_cpu(cpu) {
4474 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4475 if (r < 0)
4476 goto out_free_2;
4477 }
4478
4479 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4480 kvm_starting_cpu, kvm_dying_cpu);
4481 if (r)
4482 goto out_free_2;
4483 register_reboot_notifier(&kvm_reboot_notifier);
4484
4485 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4486 if (!vcpu_align)
4487 vcpu_align = __alignof__(struct kvm_vcpu);
4488 kvm_vcpu_cache =
4489 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4490 SLAB_ACCOUNT,
4491 offsetof(struct kvm_vcpu, arch),
4492 sizeof_field(struct kvm_vcpu, arch),
4493 NULL);
4494 if (!kvm_vcpu_cache) {
4495 r = -ENOMEM;
4496 goto out_free_3;
4497 }
4498
4499 r = kvm_async_pf_init();
4500 if (r)
4501 goto out_free;
4502
4503 kvm_chardev_ops.owner = module;
4504 kvm_vm_fops.owner = module;
4505 kvm_vcpu_fops.owner = module;
4506
4507 r = misc_register(&kvm_dev);
4508 if (r) {
4509 pr_err("kvm: misc device register failed\n");
4510 goto out_unreg;
4511 }
4512
4513 register_syscore_ops(&kvm_syscore_ops);
4514
4515 kvm_preempt_ops.sched_in = kvm_sched_in;
4516 kvm_preempt_ops.sched_out = kvm_sched_out;
4517
4518 kvm_init_debug();
4519
4520 r = kvm_vfio_ops_init();
4521 WARN_ON(r);
4522
4523 return 0;
4524
4525out_unreg:
4526 kvm_async_pf_deinit();
4527out_free:
4528 kmem_cache_destroy(kvm_vcpu_cache);
4529out_free_3:
4530 unregister_reboot_notifier(&kvm_reboot_notifier);
4531 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4532out_free_2:
4533 kvm_arch_hardware_unsetup();
4534out_free_1:
4535 free_cpumask_var(cpus_hardware_enabled);
4536out_free_0:
4537 kvm_irqfd_exit();
4538out_irqfd:
4539 kvm_arch_exit();
4540out_fail:
4541 return r;
4542}
4543EXPORT_SYMBOL_GPL(kvm_init);
4544
4545void kvm_exit(void)
4546{
4547 debugfs_remove_recursive(kvm_debugfs_dir);
4548 misc_deregister(&kvm_dev);
4549 kmem_cache_destroy(kvm_vcpu_cache);
4550 kvm_async_pf_deinit();
4551 unregister_syscore_ops(&kvm_syscore_ops);
4552 unregister_reboot_notifier(&kvm_reboot_notifier);
4553 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4554 on_each_cpu(hardware_disable_nolock, NULL, 1);
4555 kvm_arch_hardware_unsetup();
4556 kvm_arch_exit();
4557 kvm_irqfd_exit();
4558 free_cpumask_var(cpus_hardware_enabled);
4559 kvm_vfio_ops_exit();
4560}
4561EXPORT_SYMBOL_GPL(kvm_exit);
4562
4563struct kvm_vm_worker_thread_context {
4564 struct kvm *kvm;
4565 struct task_struct *parent;
4566 struct completion init_done;
4567 kvm_vm_thread_fn_t thread_fn;
4568 uintptr_t data;
4569 int err;
4570};
4571
4572static int kvm_vm_worker_thread(void *context)
4573{
4574 /*
4575 * The init_context is allocated on the stack of the parent thread, so
4576 * we have to locally copy anything that is needed beyond initialization
4577 */
4578 struct kvm_vm_worker_thread_context *init_context = context;
4579 struct kvm *kvm = init_context->kvm;
4580 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4581 uintptr_t data = init_context->data;
4582 int err;
4583
4584 err = kthread_park(current);
4585 /* kthread_park(current) is never supposed to return an error */
4586 WARN_ON(err != 0);
4587 if (err)
4588 goto init_complete;
4589
4590 err = cgroup_attach_task_all(init_context->parent, current);
4591 if (err) {
4592 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4593 __func__, err);
4594 goto init_complete;
4595 }
4596
4597 set_user_nice(current, task_nice(init_context->parent));
4598
4599init_complete:
4600 init_context->err = err;
4601 complete(&init_context->init_done);
4602 init_context = NULL;
4603
4604 if (err)
4605 return err;
4606
4607 /* Wait to be woken up by the spawner before proceeding. */
4608 kthread_parkme();
4609
4610 if (!kthread_should_stop())
4611 err = thread_fn(kvm, data);
4612
4613 return err;
4614}
4615
4616int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4617 uintptr_t data, const char *name,
4618 struct task_struct **thread_ptr)
4619{
4620 struct kvm_vm_worker_thread_context init_context = {};
4621 struct task_struct *thread;
4622
4623 *thread_ptr = NULL;
4624 init_context.kvm = kvm;
4625 init_context.parent = current;
4626 init_context.thread_fn = thread_fn;
4627 init_context.data = data;
4628 init_completion(&init_context.init_done);
4629
4630 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4631 "%s-%d", name, task_pid_nr(current));
4632 if (IS_ERR(thread))
4633 return PTR_ERR(thread);
4634
4635 /* kthread_run is never supposed to return NULL */
4636 WARN_ON(thread == NULL);
4637
4638 wait_for_completion(&init_context.init_done);
4639
4640 if (!init_context.err)
4641 *thread_ptr = thread;
4642
4643 return init_context.err;
4644}