| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include "builtin.h" |
| 3 | #include "perf.h" |
| 4 | #include "perf-sys.h" |
| 5 | |
| 6 | #include "util/cpumap.h" |
| 7 | #include "util/evlist.h" |
| 8 | #include "util/evsel.h" |
| 9 | #include "util/evsel_fprintf.h" |
| 10 | #include "util/mutex.h" |
| 11 | #include "util/symbol.h" |
| 12 | #include "util/thread.h" |
| 13 | #include "util/header.h" |
| 14 | #include "util/session.h" |
| 15 | #include "util/tool.h" |
| 16 | #include "util/cloexec.h" |
| 17 | #include "util/thread_map.h" |
| 18 | #include "util/color.h" |
| 19 | #include "util/stat.h" |
| 20 | #include "util/string2.h" |
| 21 | #include "util/callchain.h" |
| 22 | #include "util/time-utils.h" |
| 23 | |
| 24 | #include <subcmd/pager.h> |
| 25 | #include <subcmd/parse-options.h> |
| 26 | #include "util/trace-event.h" |
| 27 | |
| 28 | #include "util/debug.h" |
| 29 | #include "util/event.h" |
| 30 | #include "util/util.h" |
| 31 | |
| 32 | #include <linux/kernel.h> |
| 33 | #include <linux/log2.h> |
| 34 | #include <linux/zalloc.h> |
| 35 | #include <sys/prctl.h> |
| 36 | #include <sys/resource.h> |
| 37 | #include <inttypes.h> |
| 38 | |
| 39 | #include <errno.h> |
| 40 | #include <semaphore.h> |
| 41 | #include <pthread.h> |
| 42 | #include <math.h> |
| 43 | #include <api/fs/fs.h> |
| 44 | #include <perf/cpumap.h> |
| 45 | #include <linux/time64.h> |
| 46 | #include <linux/err.h> |
| 47 | |
| 48 | #include <linux/ctype.h> |
| 49 | |
| 50 | #define PR_SET_NAME 15 /* Set process name */ |
| 51 | #define MAX_CPUS 4096 |
| 52 | #define COMM_LEN 20 |
| 53 | #define SYM_LEN 129 |
| 54 | #define MAX_PID 1024000 |
| 55 | #define MAX_PRIO 140 |
| 56 | |
| 57 | static const char *cpu_list; |
| 58 | static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS); |
| 59 | |
| 60 | struct sched_atom; |
| 61 | |
| 62 | struct task_desc { |
| 63 | unsigned long nr; |
| 64 | unsigned long pid; |
| 65 | char comm[COMM_LEN]; |
| 66 | |
| 67 | unsigned long nr_events; |
| 68 | unsigned long curr_event; |
| 69 | struct sched_atom **atoms; |
| 70 | |
| 71 | pthread_t thread; |
| 72 | |
| 73 | sem_t ready_for_work; |
| 74 | sem_t work_done_sem; |
| 75 | |
| 76 | u64 cpu_usage; |
| 77 | }; |
| 78 | |
| 79 | enum sched_event_type { |
| 80 | SCHED_EVENT_RUN, |
| 81 | SCHED_EVENT_SLEEP, |
| 82 | SCHED_EVENT_WAKEUP, |
| 83 | }; |
| 84 | |
| 85 | struct sched_atom { |
| 86 | enum sched_event_type type; |
| 87 | u64 timestamp; |
| 88 | u64 duration; |
| 89 | unsigned long nr; |
| 90 | sem_t *wait_sem; |
| 91 | struct task_desc *wakee; |
| 92 | }; |
| 93 | |
| 94 | enum thread_state { |
| 95 | THREAD_SLEEPING = 0, |
| 96 | THREAD_WAIT_CPU, |
| 97 | THREAD_SCHED_IN, |
| 98 | THREAD_IGNORE |
| 99 | }; |
| 100 | |
| 101 | struct work_atom { |
| 102 | struct list_head list; |
| 103 | enum thread_state state; |
| 104 | u64 sched_out_time; |
| 105 | u64 wake_up_time; |
| 106 | u64 sched_in_time; |
| 107 | u64 runtime; |
| 108 | }; |
| 109 | |
| 110 | struct work_atoms { |
| 111 | struct list_head work_list; |
| 112 | struct thread *thread; |
| 113 | struct rb_node node; |
| 114 | u64 max_lat; |
| 115 | u64 max_lat_start; |
| 116 | u64 max_lat_end; |
| 117 | u64 total_lat; |
| 118 | u64 nb_atoms; |
| 119 | u64 total_runtime; |
| 120 | int num_merged; |
| 121 | }; |
| 122 | |
| 123 | typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); |
| 124 | |
| 125 | struct perf_sched; |
| 126 | |
| 127 | struct trace_sched_handler { |
| 128 | int (*switch_event)(struct perf_sched *sched, struct evsel *evsel, |
| 129 | struct perf_sample *sample, struct machine *machine); |
| 130 | |
| 131 | int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel, |
| 132 | struct perf_sample *sample, struct machine *machine); |
| 133 | |
| 134 | int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel, |
| 135 | struct perf_sample *sample, struct machine *machine); |
| 136 | |
| 137 | /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ |
| 138 | int (*fork_event)(struct perf_sched *sched, union perf_event *event, |
| 139 | struct machine *machine); |
| 140 | |
| 141 | int (*migrate_task_event)(struct perf_sched *sched, |
| 142 | struct evsel *evsel, |
| 143 | struct perf_sample *sample, |
| 144 | struct machine *machine); |
| 145 | }; |
| 146 | |
| 147 | #define COLOR_PIDS PERF_COLOR_BLUE |
| 148 | #define COLOR_CPUS PERF_COLOR_BG_RED |
| 149 | |
| 150 | struct perf_sched_map { |
| 151 | DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); |
| 152 | struct perf_cpu *comp_cpus; |
| 153 | bool comp; |
| 154 | struct perf_thread_map *color_pids; |
| 155 | const char *color_pids_str; |
| 156 | struct perf_cpu_map *color_cpus; |
| 157 | const char *color_cpus_str; |
| 158 | const char *task_name; |
| 159 | struct strlist *task_names; |
| 160 | bool fuzzy; |
| 161 | struct perf_cpu_map *cpus; |
| 162 | const char *cpus_str; |
| 163 | }; |
| 164 | |
| 165 | struct perf_sched { |
| 166 | struct perf_tool tool; |
| 167 | const char *sort_order; |
| 168 | unsigned long nr_tasks; |
| 169 | struct task_desc **pid_to_task; |
| 170 | struct task_desc **tasks; |
| 171 | const struct trace_sched_handler *tp_handler; |
| 172 | struct mutex start_work_mutex; |
| 173 | struct mutex work_done_wait_mutex; |
| 174 | int profile_cpu; |
| 175 | /* |
| 176 | * Track the current task - that way we can know whether there's any |
| 177 | * weird events, such as a task being switched away that is not current. |
| 178 | */ |
| 179 | struct perf_cpu max_cpu; |
| 180 | u32 *curr_pid; |
| 181 | struct thread **curr_thread; |
| 182 | struct thread **curr_out_thread; |
| 183 | char next_shortname1; |
| 184 | char next_shortname2; |
| 185 | unsigned int replay_repeat; |
| 186 | unsigned long nr_run_events; |
| 187 | unsigned long nr_sleep_events; |
| 188 | unsigned long nr_wakeup_events; |
| 189 | unsigned long nr_sleep_corrections; |
| 190 | unsigned long nr_run_events_optimized; |
| 191 | unsigned long targetless_wakeups; |
| 192 | unsigned long multitarget_wakeups; |
| 193 | unsigned long nr_runs; |
| 194 | unsigned long nr_timestamps; |
| 195 | unsigned long nr_unordered_timestamps; |
| 196 | unsigned long nr_context_switch_bugs; |
| 197 | unsigned long nr_events; |
| 198 | unsigned long nr_lost_chunks; |
| 199 | unsigned long nr_lost_events; |
| 200 | u64 run_measurement_overhead; |
| 201 | u64 sleep_measurement_overhead; |
| 202 | u64 start_time; |
| 203 | u64 cpu_usage; |
| 204 | u64 runavg_cpu_usage; |
| 205 | u64 parent_cpu_usage; |
| 206 | u64 runavg_parent_cpu_usage; |
| 207 | u64 sum_runtime; |
| 208 | u64 sum_fluct; |
| 209 | u64 run_avg; |
| 210 | u64 all_runtime; |
| 211 | u64 all_count; |
| 212 | u64 *cpu_last_switched; |
| 213 | struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root; |
| 214 | struct list_head sort_list, cmp_pid; |
| 215 | bool force; |
| 216 | bool skip_merge; |
| 217 | struct perf_sched_map map; |
| 218 | |
| 219 | /* options for timehist command */ |
| 220 | bool summary; |
| 221 | bool summary_only; |
| 222 | bool idle_hist; |
| 223 | bool show_callchain; |
| 224 | unsigned int max_stack; |
| 225 | bool show_cpu_visual; |
| 226 | bool show_wakeups; |
| 227 | bool show_next; |
| 228 | bool show_migrations; |
| 229 | bool pre_migrations; |
| 230 | bool show_state; |
| 231 | bool show_prio; |
| 232 | u64 skipped_samples; |
| 233 | const char *time_str; |
| 234 | struct perf_time_interval ptime; |
| 235 | struct perf_time_interval hist_time; |
| 236 | volatile bool thread_funcs_exit; |
| 237 | const char *prio_str; |
| 238 | DECLARE_BITMAP(prio_bitmap, MAX_PRIO); |
| 239 | }; |
| 240 | |
| 241 | /* per thread run time data */ |
| 242 | struct thread_runtime { |
| 243 | u64 last_time; /* time of previous sched in/out event */ |
| 244 | u64 dt_run; /* run time */ |
| 245 | u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ |
| 246 | u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ |
| 247 | u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ |
| 248 | u64 dt_delay; /* time between wakeup and sched-in */ |
| 249 | u64 dt_pre_mig; /* time between migration and wakeup */ |
| 250 | u64 ready_to_run; /* time of wakeup */ |
| 251 | u64 migrated; /* time when a thread is migrated */ |
| 252 | |
| 253 | struct stats run_stats; |
| 254 | u64 total_run_time; |
| 255 | u64 total_sleep_time; |
| 256 | u64 total_iowait_time; |
| 257 | u64 total_preempt_time; |
| 258 | u64 total_delay_time; |
| 259 | u64 total_pre_mig_time; |
| 260 | |
| 261 | char last_state; |
| 262 | |
| 263 | char shortname[3]; |
| 264 | bool comm_changed; |
| 265 | |
| 266 | u64 migrations; |
| 267 | |
| 268 | int prio; |
| 269 | }; |
| 270 | |
| 271 | /* per event run time data */ |
| 272 | struct evsel_runtime { |
| 273 | u64 *last_time; /* time this event was last seen per cpu */ |
| 274 | u32 ncpu; /* highest cpu slot allocated */ |
| 275 | }; |
| 276 | |
| 277 | /* per cpu idle time data */ |
| 278 | struct idle_thread_runtime { |
| 279 | struct thread_runtime tr; |
| 280 | struct thread *last_thread; |
| 281 | struct rb_root_cached sorted_root; |
| 282 | struct callchain_root callchain; |
| 283 | struct callchain_cursor cursor; |
| 284 | }; |
| 285 | |
| 286 | /* track idle times per cpu */ |
| 287 | static struct thread **idle_threads; |
| 288 | static int idle_max_cpu; |
| 289 | static char idle_comm[] = "<idle>"; |
| 290 | |
| 291 | static u64 get_nsecs(void) |
| 292 | { |
| 293 | struct timespec ts; |
| 294 | |
| 295 | clock_gettime(CLOCK_MONOTONIC, &ts); |
| 296 | |
| 297 | return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; |
| 298 | } |
| 299 | |
| 300 | static void burn_nsecs(struct perf_sched *sched, u64 nsecs) |
| 301 | { |
| 302 | u64 T0 = get_nsecs(), T1; |
| 303 | |
| 304 | do { |
| 305 | T1 = get_nsecs(); |
| 306 | } while (T1 + sched->run_measurement_overhead < T0 + nsecs); |
| 307 | } |
| 308 | |
| 309 | static void sleep_nsecs(u64 nsecs) |
| 310 | { |
| 311 | struct timespec ts; |
| 312 | |
| 313 | ts.tv_nsec = nsecs % 999999999; |
| 314 | ts.tv_sec = nsecs / 999999999; |
| 315 | |
| 316 | nanosleep(&ts, NULL); |
| 317 | } |
| 318 | |
| 319 | static void calibrate_run_measurement_overhead(struct perf_sched *sched) |
| 320 | { |
| 321 | u64 T0, T1, delta, min_delta = NSEC_PER_SEC; |
| 322 | int i; |
| 323 | |
| 324 | for (i = 0; i < 10; i++) { |
| 325 | T0 = get_nsecs(); |
| 326 | burn_nsecs(sched, 0); |
| 327 | T1 = get_nsecs(); |
| 328 | delta = T1-T0; |
| 329 | min_delta = min(min_delta, delta); |
| 330 | } |
| 331 | sched->run_measurement_overhead = min_delta; |
| 332 | |
| 333 | printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); |
| 334 | } |
| 335 | |
| 336 | static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) |
| 337 | { |
| 338 | u64 T0, T1, delta, min_delta = NSEC_PER_SEC; |
| 339 | int i; |
| 340 | |
| 341 | for (i = 0; i < 10; i++) { |
| 342 | T0 = get_nsecs(); |
| 343 | sleep_nsecs(10000); |
| 344 | T1 = get_nsecs(); |
| 345 | delta = T1-T0; |
| 346 | min_delta = min(min_delta, delta); |
| 347 | } |
| 348 | min_delta -= 10000; |
| 349 | sched->sleep_measurement_overhead = min_delta; |
| 350 | |
| 351 | printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); |
| 352 | } |
| 353 | |
| 354 | static struct sched_atom * |
| 355 | get_new_event(struct task_desc *task, u64 timestamp) |
| 356 | { |
| 357 | struct sched_atom *event = zalloc(sizeof(*event)); |
| 358 | unsigned long idx = task->nr_events; |
| 359 | size_t size; |
| 360 | |
| 361 | event->timestamp = timestamp; |
| 362 | event->nr = idx; |
| 363 | |
| 364 | task->nr_events++; |
| 365 | size = sizeof(struct sched_atom *) * task->nr_events; |
| 366 | task->atoms = realloc(task->atoms, size); |
| 367 | BUG_ON(!task->atoms); |
| 368 | |
| 369 | task->atoms[idx] = event; |
| 370 | |
| 371 | return event; |
| 372 | } |
| 373 | |
| 374 | static struct sched_atom *last_event(struct task_desc *task) |
| 375 | { |
| 376 | if (!task->nr_events) |
| 377 | return NULL; |
| 378 | |
| 379 | return task->atoms[task->nr_events - 1]; |
| 380 | } |
| 381 | |
| 382 | static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, |
| 383 | u64 timestamp, u64 duration) |
| 384 | { |
| 385 | struct sched_atom *event, *curr_event = last_event(task); |
| 386 | |
| 387 | /* |
| 388 | * optimize an existing RUN event by merging this one |
| 389 | * to it: |
| 390 | */ |
| 391 | if (curr_event && curr_event->type == SCHED_EVENT_RUN) { |
| 392 | sched->nr_run_events_optimized++; |
| 393 | curr_event->duration += duration; |
| 394 | return; |
| 395 | } |
| 396 | |
| 397 | event = get_new_event(task, timestamp); |
| 398 | |
| 399 | event->type = SCHED_EVENT_RUN; |
| 400 | event->duration = duration; |
| 401 | |
| 402 | sched->nr_run_events++; |
| 403 | } |
| 404 | |
| 405 | static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, |
| 406 | u64 timestamp, struct task_desc *wakee) |
| 407 | { |
| 408 | struct sched_atom *event, *wakee_event; |
| 409 | |
| 410 | event = get_new_event(task, timestamp); |
| 411 | event->type = SCHED_EVENT_WAKEUP; |
| 412 | event->wakee = wakee; |
| 413 | |
| 414 | wakee_event = last_event(wakee); |
| 415 | if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { |
| 416 | sched->targetless_wakeups++; |
| 417 | return; |
| 418 | } |
| 419 | if (wakee_event->wait_sem) { |
| 420 | sched->multitarget_wakeups++; |
| 421 | return; |
| 422 | } |
| 423 | |
| 424 | wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); |
| 425 | sem_init(wakee_event->wait_sem, 0, 0); |
| 426 | event->wait_sem = wakee_event->wait_sem; |
| 427 | |
| 428 | sched->nr_wakeup_events++; |
| 429 | } |
| 430 | |
| 431 | static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, |
| 432 | u64 timestamp) |
| 433 | { |
| 434 | struct sched_atom *event = get_new_event(task, timestamp); |
| 435 | |
| 436 | event->type = SCHED_EVENT_SLEEP; |
| 437 | |
| 438 | sched->nr_sleep_events++; |
| 439 | } |
| 440 | |
| 441 | static struct task_desc *register_pid(struct perf_sched *sched, |
| 442 | unsigned long pid, const char *comm) |
| 443 | { |
| 444 | struct task_desc *task; |
| 445 | static int pid_max; |
| 446 | |
| 447 | if (sched->pid_to_task == NULL) { |
| 448 | if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) |
| 449 | pid_max = MAX_PID; |
| 450 | BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); |
| 451 | } |
| 452 | if (pid >= (unsigned long)pid_max) { |
| 453 | BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * |
| 454 | sizeof(struct task_desc *))) == NULL); |
| 455 | while (pid >= (unsigned long)pid_max) |
| 456 | sched->pid_to_task[pid_max++] = NULL; |
| 457 | } |
| 458 | |
| 459 | task = sched->pid_to_task[pid]; |
| 460 | |
| 461 | if (task) |
| 462 | return task; |
| 463 | |
| 464 | task = zalloc(sizeof(*task)); |
| 465 | task->pid = pid; |
| 466 | task->nr = sched->nr_tasks; |
| 467 | strcpy(task->comm, comm); |
| 468 | /* |
| 469 | * every task starts in sleeping state - this gets ignored |
| 470 | * if there's no wakeup pointing to this sleep state: |
| 471 | */ |
| 472 | add_sched_event_sleep(sched, task, 0); |
| 473 | |
| 474 | sched->pid_to_task[pid] = task; |
| 475 | sched->nr_tasks++; |
| 476 | sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); |
| 477 | BUG_ON(!sched->tasks); |
| 478 | sched->tasks[task->nr] = task; |
| 479 | |
| 480 | if (verbose > 0) |
| 481 | printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); |
| 482 | |
| 483 | return task; |
| 484 | } |
| 485 | |
| 486 | |
| 487 | static void print_task_traces(struct perf_sched *sched) |
| 488 | { |
| 489 | struct task_desc *task; |
| 490 | unsigned long i; |
| 491 | |
| 492 | for (i = 0; i < sched->nr_tasks; i++) { |
| 493 | task = sched->tasks[i]; |
| 494 | printf("task %6ld (%20s:%10ld), nr_events: %ld\n", |
| 495 | task->nr, task->comm, task->pid, task->nr_events); |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | static void add_cross_task_wakeups(struct perf_sched *sched) |
| 500 | { |
| 501 | struct task_desc *task1, *task2; |
| 502 | unsigned long i, j; |
| 503 | |
| 504 | for (i = 0; i < sched->nr_tasks; i++) { |
| 505 | task1 = sched->tasks[i]; |
| 506 | j = i + 1; |
| 507 | if (j == sched->nr_tasks) |
| 508 | j = 0; |
| 509 | task2 = sched->tasks[j]; |
| 510 | add_sched_event_wakeup(sched, task1, 0, task2); |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | static void perf_sched__process_event(struct perf_sched *sched, |
| 515 | struct sched_atom *atom) |
| 516 | { |
| 517 | int ret = 0; |
| 518 | |
| 519 | switch (atom->type) { |
| 520 | case SCHED_EVENT_RUN: |
| 521 | burn_nsecs(sched, atom->duration); |
| 522 | break; |
| 523 | case SCHED_EVENT_SLEEP: |
| 524 | if (atom->wait_sem) |
| 525 | ret = sem_wait(atom->wait_sem); |
| 526 | BUG_ON(ret); |
| 527 | break; |
| 528 | case SCHED_EVENT_WAKEUP: |
| 529 | if (atom->wait_sem) |
| 530 | ret = sem_post(atom->wait_sem); |
| 531 | BUG_ON(ret); |
| 532 | break; |
| 533 | default: |
| 534 | BUG_ON(1); |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | static u64 get_cpu_usage_nsec_parent(void) |
| 539 | { |
| 540 | struct rusage ru; |
| 541 | u64 sum; |
| 542 | int err; |
| 543 | |
| 544 | err = getrusage(RUSAGE_SELF, &ru); |
| 545 | BUG_ON(err); |
| 546 | |
| 547 | sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; |
| 548 | sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; |
| 549 | |
| 550 | return sum; |
| 551 | } |
| 552 | |
| 553 | static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) |
| 554 | { |
| 555 | struct perf_event_attr attr; |
| 556 | char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; |
| 557 | int fd; |
| 558 | struct rlimit limit; |
| 559 | bool need_privilege = false; |
| 560 | |
| 561 | memset(&attr, 0, sizeof(attr)); |
| 562 | |
| 563 | attr.type = PERF_TYPE_SOFTWARE; |
| 564 | attr.config = PERF_COUNT_SW_TASK_CLOCK; |
| 565 | |
| 566 | force_again: |
| 567 | fd = sys_perf_event_open(&attr, 0, -1, -1, |
| 568 | perf_event_open_cloexec_flag()); |
| 569 | |
| 570 | if (fd < 0) { |
| 571 | if (errno == EMFILE) { |
| 572 | if (sched->force) { |
| 573 | BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); |
| 574 | limit.rlim_cur += sched->nr_tasks - cur_task; |
| 575 | if (limit.rlim_cur > limit.rlim_max) { |
| 576 | limit.rlim_max = limit.rlim_cur; |
| 577 | need_privilege = true; |
| 578 | } |
| 579 | if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { |
| 580 | if (need_privilege && errno == EPERM) |
| 581 | strcpy(info, "Need privilege\n"); |
| 582 | } else |
| 583 | goto force_again; |
| 584 | } else |
| 585 | strcpy(info, "Have a try with -f option\n"); |
| 586 | } |
| 587 | pr_err("Error: sys_perf_event_open() syscall returned " |
| 588 | "with %d (%s)\n%s", fd, |
| 589 | str_error_r(errno, sbuf, sizeof(sbuf)), info); |
| 590 | exit(EXIT_FAILURE); |
| 591 | } |
| 592 | return fd; |
| 593 | } |
| 594 | |
| 595 | static u64 get_cpu_usage_nsec_self(int fd) |
| 596 | { |
| 597 | u64 runtime; |
| 598 | int ret; |
| 599 | |
| 600 | ret = read(fd, &runtime, sizeof(runtime)); |
| 601 | BUG_ON(ret != sizeof(runtime)); |
| 602 | |
| 603 | return runtime; |
| 604 | } |
| 605 | |
| 606 | struct sched_thread_parms { |
| 607 | struct task_desc *task; |
| 608 | struct perf_sched *sched; |
| 609 | int fd; |
| 610 | }; |
| 611 | |
| 612 | static void *thread_func(void *ctx) |
| 613 | { |
| 614 | struct sched_thread_parms *parms = ctx; |
| 615 | struct task_desc *this_task = parms->task; |
| 616 | struct perf_sched *sched = parms->sched; |
| 617 | u64 cpu_usage_0, cpu_usage_1; |
| 618 | unsigned long i, ret; |
| 619 | char comm2[22]; |
| 620 | int fd = parms->fd; |
| 621 | |
| 622 | zfree(&parms); |
| 623 | |
| 624 | sprintf(comm2, ":%s", this_task->comm); |
| 625 | prctl(PR_SET_NAME, comm2); |
| 626 | if (fd < 0) |
| 627 | return NULL; |
| 628 | |
| 629 | while (!sched->thread_funcs_exit) { |
| 630 | ret = sem_post(&this_task->ready_for_work); |
| 631 | BUG_ON(ret); |
| 632 | mutex_lock(&sched->start_work_mutex); |
| 633 | mutex_unlock(&sched->start_work_mutex); |
| 634 | |
| 635 | cpu_usage_0 = get_cpu_usage_nsec_self(fd); |
| 636 | |
| 637 | for (i = 0; i < this_task->nr_events; i++) { |
| 638 | this_task->curr_event = i; |
| 639 | perf_sched__process_event(sched, this_task->atoms[i]); |
| 640 | } |
| 641 | |
| 642 | cpu_usage_1 = get_cpu_usage_nsec_self(fd); |
| 643 | this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; |
| 644 | ret = sem_post(&this_task->work_done_sem); |
| 645 | BUG_ON(ret); |
| 646 | |
| 647 | mutex_lock(&sched->work_done_wait_mutex); |
| 648 | mutex_unlock(&sched->work_done_wait_mutex); |
| 649 | } |
| 650 | return NULL; |
| 651 | } |
| 652 | |
| 653 | static void create_tasks(struct perf_sched *sched) |
| 654 | EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex) |
| 655 | EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex) |
| 656 | { |
| 657 | struct task_desc *task; |
| 658 | pthread_attr_t attr; |
| 659 | unsigned long i; |
| 660 | int err; |
| 661 | |
| 662 | err = pthread_attr_init(&attr); |
| 663 | BUG_ON(err); |
| 664 | err = pthread_attr_setstacksize(&attr, |
| 665 | (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN)); |
| 666 | BUG_ON(err); |
| 667 | mutex_lock(&sched->start_work_mutex); |
| 668 | mutex_lock(&sched->work_done_wait_mutex); |
| 669 | for (i = 0; i < sched->nr_tasks; i++) { |
| 670 | struct sched_thread_parms *parms = malloc(sizeof(*parms)); |
| 671 | BUG_ON(parms == NULL); |
| 672 | parms->task = task = sched->tasks[i]; |
| 673 | parms->sched = sched; |
| 674 | parms->fd = self_open_counters(sched, i); |
| 675 | sem_init(&task->ready_for_work, 0, 0); |
| 676 | sem_init(&task->work_done_sem, 0, 0); |
| 677 | task->curr_event = 0; |
| 678 | err = pthread_create(&task->thread, &attr, thread_func, parms); |
| 679 | BUG_ON(err); |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | static void destroy_tasks(struct perf_sched *sched) |
| 684 | UNLOCK_FUNCTION(sched->start_work_mutex) |
| 685 | UNLOCK_FUNCTION(sched->work_done_wait_mutex) |
| 686 | { |
| 687 | struct task_desc *task; |
| 688 | unsigned long i; |
| 689 | int err; |
| 690 | |
| 691 | mutex_unlock(&sched->start_work_mutex); |
| 692 | mutex_unlock(&sched->work_done_wait_mutex); |
| 693 | /* Get rid of threads so they won't be upset by mutex destrunction */ |
| 694 | for (i = 0; i < sched->nr_tasks; i++) { |
| 695 | task = sched->tasks[i]; |
| 696 | err = pthread_join(task->thread, NULL); |
| 697 | BUG_ON(err); |
| 698 | sem_destroy(&task->ready_for_work); |
| 699 | sem_destroy(&task->work_done_sem); |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | static void wait_for_tasks(struct perf_sched *sched) |
| 704 | EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) |
| 705 | EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) |
| 706 | { |
| 707 | u64 cpu_usage_0, cpu_usage_1; |
| 708 | struct task_desc *task; |
| 709 | unsigned long i, ret; |
| 710 | |
| 711 | sched->start_time = get_nsecs(); |
| 712 | sched->cpu_usage = 0; |
| 713 | mutex_unlock(&sched->work_done_wait_mutex); |
| 714 | |
| 715 | for (i = 0; i < sched->nr_tasks; i++) { |
| 716 | task = sched->tasks[i]; |
| 717 | ret = sem_wait(&task->ready_for_work); |
| 718 | BUG_ON(ret); |
| 719 | sem_init(&task->ready_for_work, 0, 0); |
| 720 | } |
| 721 | mutex_lock(&sched->work_done_wait_mutex); |
| 722 | |
| 723 | cpu_usage_0 = get_cpu_usage_nsec_parent(); |
| 724 | |
| 725 | mutex_unlock(&sched->start_work_mutex); |
| 726 | |
| 727 | for (i = 0; i < sched->nr_tasks; i++) { |
| 728 | task = sched->tasks[i]; |
| 729 | ret = sem_wait(&task->work_done_sem); |
| 730 | BUG_ON(ret); |
| 731 | sem_init(&task->work_done_sem, 0, 0); |
| 732 | sched->cpu_usage += task->cpu_usage; |
| 733 | task->cpu_usage = 0; |
| 734 | } |
| 735 | |
| 736 | cpu_usage_1 = get_cpu_usage_nsec_parent(); |
| 737 | if (!sched->runavg_cpu_usage) |
| 738 | sched->runavg_cpu_usage = sched->cpu_usage; |
| 739 | sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; |
| 740 | |
| 741 | sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; |
| 742 | if (!sched->runavg_parent_cpu_usage) |
| 743 | sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; |
| 744 | sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + |
| 745 | sched->parent_cpu_usage)/sched->replay_repeat; |
| 746 | |
| 747 | mutex_lock(&sched->start_work_mutex); |
| 748 | |
| 749 | for (i = 0; i < sched->nr_tasks; i++) { |
| 750 | task = sched->tasks[i]; |
| 751 | task->curr_event = 0; |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | static void run_one_test(struct perf_sched *sched) |
| 756 | EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) |
| 757 | EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) |
| 758 | { |
| 759 | u64 T0, T1, delta, avg_delta, fluct; |
| 760 | |
| 761 | T0 = get_nsecs(); |
| 762 | wait_for_tasks(sched); |
| 763 | T1 = get_nsecs(); |
| 764 | |
| 765 | delta = T1 - T0; |
| 766 | sched->sum_runtime += delta; |
| 767 | sched->nr_runs++; |
| 768 | |
| 769 | avg_delta = sched->sum_runtime / sched->nr_runs; |
| 770 | if (delta < avg_delta) |
| 771 | fluct = avg_delta - delta; |
| 772 | else |
| 773 | fluct = delta - avg_delta; |
| 774 | sched->sum_fluct += fluct; |
| 775 | if (!sched->run_avg) |
| 776 | sched->run_avg = delta; |
| 777 | sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; |
| 778 | |
| 779 | printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); |
| 780 | |
| 781 | printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); |
| 782 | |
| 783 | printf("cpu: %0.2f / %0.2f", |
| 784 | (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); |
| 785 | |
| 786 | #if 0 |
| 787 | /* |
| 788 | * rusage statistics done by the parent, these are less |
| 789 | * accurate than the sched->sum_exec_runtime based statistics: |
| 790 | */ |
| 791 | printf(" [%0.2f / %0.2f]", |
| 792 | (double)sched->parent_cpu_usage / NSEC_PER_MSEC, |
| 793 | (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); |
| 794 | #endif |
| 795 | |
| 796 | printf("\n"); |
| 797 | |
| 798 | if (sched->nr_sleep_corrections) |
| 799 | printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); |
| 800 | sched->nr_sleep_corrections = 0; |
| 801 | } |
| 802 | |
| 803 | static void test_calibrations(struct perf_sched *sched) |
| 804 | { |
| 805 | u64 T0, T1; |
| 806 | |
| 807 | T0 = get_nsecs(); |
| 808 | burn_nsecs(sched, NSEC_PER_MSEC); |
| 809 | T1 = get_nsecs(); |
| 810 | |
| 811 | printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); |
| 812 | |
| 813 | T0 = get_nsecs(); |
| 814 | sleep_nsecs(NSEC_PER_MSEC); |
| 815 | T1 = get_nsecs(); |
| 816 | |
| 817 | printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); |
| 818 | } |
| 819 | |
| 820 | static int |
| 821 | replay_wakeup_event(struct perf_sched *sched, |
| 822 | struct evsel *evsel, struct perf_sample *sample, |
| 823 | struct machine *machine __maybe_unused) |
| 824 | { |
| 825 | const char *comm = evsel__strval(evsel, sample, "comm"); |
| 826 | const u32 pid = evsel__intval(evsel, sample, "pid"); |
| 827 | struct task_desc *waker, *wakee; |
| 828 | |
| 829 | if (verbose > 0) { |
| 830 | printf("sched_wakeup event %p\n", evsel); |
| 831 | |
| 832 | printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); |
| 833 | } |
| 834 | |
| 835 | waker = register_pid(sched, sample->tid, "<unknown>"); |
| 836 | wakee = register_pid(sched, pid, comm); |
| 837 | |
| 838 | add_sched_event_wakeup(sched, waker, sample->time, wakee); |
| 839 | return 0; |
| 840 | } |
| 841 | |
| 842 | static int replay_switch_event(struct perf_sched *sched, |
| 843 | struct evsel *evsel, |
| 844 | struct perf_sample *sample, |
| 845 | struct machine *machine __maybe_unused) |
| 846 | { |
| 847 | const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"), |
| 848 | *next_comm = evsel__strval(evsel, sample, "next_comm"); |
| 849 | const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), |
| 850 | next_pid = evsel__intval(evsel, sample, "next_pid"); |
| 851 | struct task_desc *prev, __maybe_unused *next; |
| 852 | u64 timestamp0, timestamp = sample->time; |
| 853 | int cpu = sample->cpu; |
| 854 | s64 delta; |
| 855 | |
| 856 | if (verbose > 0) |
| 857 | printf("sched_switch event %p\n", evsel); |
| 858 | |
| 859 | if (cpu >= MAX_CPUS || cpu < 0) |
| 860 | return 0; |
| 861 | |
| 862 | timestamp0 = sched->cpu_last_switched[cpu]; |
| 863 | if (timestamp0) |
| 864 | delta = timestamp - timestamp0; |
| 865 | else |
| 866 | delta = 0; |
| 867 | |
| 868 | if (delta < 0) { |
| 869 | pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); |
| 870 | return -1; |
| 871 | } |
| 872 | |
| 873 | pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", |
| 874 | prev_comm, prev_pid, next_comm, next_pid, delta); |
| 875 | |
| 876 | prev = register_pid(sched, prev_pid, prev_comm); |
| 877 | next = register_pid(sched, next_pid, next_comm); |
| 878 | |
| 879 | sched->cpu_last_switched[cpu] = timestamp; |
| 880 | |
| 881 | add_sched_event_run(sched, prev, timestamp, delta); |
| 882 | add_sched_event_sleep(sched, prev, timestamp); |
| 883 | |
| 884 | return 0; |
| 885 | } |
| 886 | |
| 887 | static int replay_fork_event(struct perf_sched *sched, |
| 888 | union perf_event *event, |
| 889 | struct machine *machine) |
| 890 | { |
| 891 | struct thread *child, *parent; |
| 892 | |
| 893 | child = machine__findnew_thread(machine, event->fork.pid, |
| 894 | event->fork.tid); |
| 895 | parent = machine__findnew_thread(machine, event->fork.ppid, |
| 896 | event->fork.ptid); |
| 897 | |
| 898 | if (child == NULL || parent == NULL) { |
| 899 | pr_debug("thread does not exist on fork event: child %p, parent %p\n", |
| 900 | child, parent); |
| 901 | goto out_put; |
| 902 | } |
| 903 | |
| 904 | if (verbose > 0) { |
| 905 | printf("fork event\n"); |
| 906 | printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent)); |
| 907 | printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child)); |
| 908 | } |
| 909 | |
| 910 | register_pid(sched, thread__tid(parent), thread__comm_str(parent)); |
| 911 | register_pid(sched, thread__tid(child), thread__comm_str(child)); |
| 912 | out_put: |
| 913 | thread__put(child); |
| 914 | thread__put(parent); |
| 915 | return 0; |
| 916 | } |
| 917 | |
| 918 | struct sort_dimension { |
| 919 | const char *name; |
| 920 | sort_fn_t cmp; |
| 921 | struct list_head list; |
| 922 | }; |
| 923 | |
| 924 | static inline void init_prio(struct thread_runtime *r) |
| 925 | { |
| 926 | r->prio = -1; |
| 927 | } |
| 928 | |
| 929 | /* |
| 930 | * handle runtime stats saved per thread |
| 931 | */ |
| 932 | static struct thread_runtime *thread__init_runtime(struct thread *thread) |
| 933 | { |
| 934 | struct thread_runtime *r; |
| 935 | |
| 936 | r = zalloc(sizeof(struct thread_runtime)); |
| 937 | if (!r) |
| 938 | return NULL; |
| 939 | |
| 940 | init_stats(&r->run_stats); |
| 941 | init_prio(r); |
| 942 | thread__set_priv(thread, r); |
| 943 | |
| 944 | return r; |
| 945 | } |
| 946 | |
| 947 | static struct thread_runtime *thread__get_runtime(struct thread *thread) |
| 948 | { |
| 949 | struct thread_runtime *tr; |
| 950 | |
| 951 | tr = thread__priv(thread); |
| 952 | if (tr == NULL) { |
| 953 | tr = thread__init_runtime(thread); |
| 954 | if (tr == NULL) |
| 955 | pr_debug("Failed to malloc memory for runtime data.\n"); |
| 956 | } |
| 957 | |
| 958 | return tr; |
| 959 | } |
| 960 | |
| 961 | static int |
| 962 | thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) |
| 963 | { |
| 964 | struct sort_dimension *sort; |
| 965 | int ret = 0; |
| 966 | |
| 967 | BUG_ON(list_empty(list)); |
| 968 | |
| 969 | list_for_each_entry(sort, list, list) { |
| 970 | ret = sort->cmp(l, r); |
| 971 | if (ret) |
| 972 | return ret; |
| 973 | } |
| 974 | |
| 975 | return ret; |
| 976 | } |
| 977 | |
| 978 | static struct work_atoms * |
| 979 | thread_atoms_search(struct rb_root_cached *root, struct thread *thread, |
| 980 | struct list_head *sort_list) |
| 981 | { |
| 982 | struct rb_node *node = root->rb_root.rb_node; |
| 983 | struct work_atoms key = { .thread = thread }; |
| 984 | |
| 985 | while (node) { |
| 986 | struct work_atoms *atoms; |
| 987 | int cmp; |
| 988 | |
| 989 | atoms = container_of(node, struct work_atoms, node); |
| 990 | |
| 991 | cmp = thread_lat_cmp(sort_list, &key, atoms); |
| 992 | if (cmp > 0) |
| 993 | node = node->rb_left; |
| 994 | else if (cmp < 0) |
| 995 | node = node->rb_right; |
| 996 | else { |
| 997 | BUG_ON(thread != atoms->thread); |
| 998 | return atoms; |
| 999 | } |
| 1000 | } |
| 1001 | return NULL; |
| 1002 | } |
| 1003 | |
| 1004 | static void |
| 1005 | __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data, |
| 1006 | struct list_head *sort_list) |
| 1007 | { |
| 1008 | struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; |
| 1009 | bool leftmost = true; |
| 1010 | |
| 1011 | while (*new) { |
| 1012 | struct work_atoms *this; |
| 1013 | int cmp; |
| 1014 | |
| 1015 | this = container_of(*new, struct work_atoms, node); |
| 1016 | parent = *new; |
| 1017 | |
| 1018 | cmp = thread_lat_cmp(sort_list, data, this); |
| 1019 | |
| 1020 | if (cmp > 0) |
| 1021 | new = &((*new)->rb_left); |
| 1022 | else { |
| 1023 | new = &((*new)->rb_right); |
| 1024 | leftmost = false; |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | rb_link_node(&data->node, parent, new); |
| 1029 | rb_insert_color_cached(&data->node, root, leftmost); |
| 1030 | } |
| 1031 | |
| 1032 | static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) |
| 1033 | { |
| 1034 | struct work_atoms *atoms = zalloc(sizeof(*atoms)); |
| 1035 | if (!atoms) { |
| 1036 | pr_err("No memory at %s\n", __func__); |
| 1037 | return -1; |
| 1038 | } |
| 1039 | |
| 1040 | atoms->thread = thread__get(thread); |
| 1041 | INIT_LIST_HEAD(&atoms->work_list); |
| 1042 | __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); |
| 1043 | return 0; |
| 1044 | } |
| 1045 | |
| 1046 | static int |
| 1047 | add_sched_out_event(struct work_atoms *atoms, |
| 1048 | char run_state, |
| 1049 | u64 timestamp) |
| 1050 | { |
| 1051 | struct work_atom *atom = zalloc(sizeof(*atom)); |
| 1052 | if (!atom) { |
| 1053 | pr_err("Non memory at %s", __func__); |
| 1054 | return -1; |
| 1055 | } |
| 1056 | |
| 1057 | atom->sched_out_time = timestamp; |
| 1058 | |
| 1059 | if (run_state == 'R') { |
| 1060 | atom->state = THREAD_WAIT_CPU; |
| 1061 | atom->wake_up_time = atom->sched_out_time; |
| 1062 | } |
| 1063 | |
| 1064 | list_add_tail(&atom->list, &atoms->work_list); |
| 1065 | return 0; |
| 1066 | } |
| 1067 | |
| 1068 | static void |
| 1069 | add_runtime_event(struct work_atoms *atoms, u64 delta, |
| 1070 | u64 timestamp __maybe_unused) |
| 1071 | { |
| 1072 | struct work_atom *atom; |
| 1073 | |
| 1074 | BUG_ON(list_empty(&atoms->work_list)); |
| 1075 | |
| 1076 | atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| 1077 | |
| 1078 | atom->runtime += delta; |
| 1079 | atoms->total_runtime += delta; |
| 1080 | } |
| 1081 | |
| 1082 | static void |
| 1083 | add_sched_in_event(struct work_atoms *atoms, u64 timestamp) |
| 1084 | { |
| 1085 | struct work_atom *atom; |
| 1086 | u64 delta; |
| 1087 | |
| 1088 | if (list_empty(&atoms->work_list)) |
| 1089 | return; |
| 1090 | |
| 1091 | atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| 1092 | |
| 1093 | if (atom->state != THREAD_WAIT_CPU) |
| 1094 | return; |
| 1095 | |
| 1096 | if (timestamp < atom->wake_up_time) { |
| 1097 | atom->state = THREAD_IGNORE; |
| 1098 | return; |
| 1099 | } |
| 1100 | |
| 1101 | atom->state = THREAD_SCHED_IN; |
| 1102 | atom->sched_in_time = timestamp; |
| 1103 | |
| 1104 | delta = atom->sched_in_time - atom->wake_up_time; |
| 1105 | atoms->total_lat += delta; |
| 1106 | if (delta > atoms->max_lat) { |
| 1107 | atoms->max_lat = delta; |
| 1108 | atoms->max_lat_start = atom->wake_up_time; |
| 1109 | atoms->max_lat_end = timestamp; |
| 1110 | } |
| 1111 | atoms->nb_atoms++; |
| 1112 | } |
| 1113 | |
| 1114 | static int latency_switch_event(struct perf_sched *sched, |
| 1115 | struct evsel *evsel, |
| 1116 | struct perf_sample *sample, |
| 1117 | struct machine *machine) |
| 1118 | { |
| 1119 | const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), |
| 1120 | next_pid = evsel__intval(evsel, sample, "next_pid"); |
| 1121 | const char prev_state = evsel__taskstate(evsel, sample, "prev_state"); |
| 1122 | struct work_atoms *out_events, *in_events; |
| 1123 | struct thread *sched_out, *sched_in; |
| 1124 | u64 timestamp0, timestamp = sample->time; |
| 1125 | int cpu = sample->cpu, err = -1; |
| 1126 | s64 delta; |
| 1127 | |
| 1128 | BUG_ON(cpu >= MAX_CPUS || cpu < 0); |
| 1129 | |
| 1130 | timestamp0 = sched->cpu_last_switched[cpu]; |
| 1131 | sched->cpu_last_switched[cpu] = timestamp; |
| 1132 | if (timestamp0) |
| 1133 | delta = timestamp - timestamp0; |
| 1134 | else |
| 1135 | delta = 0; |
| 1136 | |
| 1137 | if (delta < 0) { |
| 1138 | pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); |
| 1139 | return -1; |
| 1140 | } |
| 1141 | |
| 1142 | sched_out = machine__findnew_thread(machine, -1, prev_pid); |
| 1143 | sched_in = machine__findnew_thread(machine, -1, next_pid); |
| 1144 | if (sched_out == NULL || sched_in == NULL) |
| 1145 | goto out_put; |
| 1146 | |
| 1147 | out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); |
| 1148 | if (!out_events) { |
| 1149 | if (thread_atoms_insert(sched, sched_out)) |
| 1150 | goto out_put; |
| 1151 | out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); |
| 1152 | if (!out_events) { |
| 1153 | pr_err("out-event: Internal tree error"); |
| 1154 | goto out_put; |
| 1155 | } |
| 1156 | } |
| 1157 | if (add_sched_out_event(out_events, prev_state, timestamp)) |
| 1158 | return -1; |
| 1159 | |
| 1160 | in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); |
| 1161 | if (!in_events) { |
| 1162 | if (thread_atoms_insert(sched, sched_in)) |
| 1163 | goto out_put; |
| 1164 | in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); |
| 1165 | if (!in_events) { |
| 1166 | pr_err("in-event: Internal tree error"); |
| 1167 | goto out_put; |
| 1168 | } |
| 1169 | /* |
| 1170 | * Take came in we have not heard about yet, |
| 1171 | * add in an initial atom in runnable state: |
| 1172 | */ |
| 1173 | if (add_sched_out_event(in_events, 'R', timestamp)) |
| 1174 | goto out_put; |
| 1175 | } |
| 1176 | add_sched_in_event(in_events, timestamp); |
| 1177 | err = 0; |
| 1178 | out_put: |
| 1179 | thread__put(sched_out); |
| 1180 | thread__put(sched_in); |
| 1181 | return err; |
| 1182 | } |
| 1183 | |
| 1184 | static int latency_runtime_event(struct perf_sched *sched, |
| 1185 | struct evsel *evsel, |
| 1186 | struct perf_sample *sample, |
| 1187 | struct machine *machine) |
| 1188 | { |
| 1189 | const u32 pid = evsel__intval(evsel, sample, "pid"); |
| 1190 | const u64 runtime = evsel__intval(evsel, sample, "runtime"); |
| 1191 | struct thread *thread = machine__findnew_thread(machine, -1, pid); |
| 1192 | struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); |
| 1193 | u64 timestamp = sample->time; |
| 1194 | int cpu = sample->cpu, err = -1; |
| 1195 | |
| 1196 | if (thread == NULL) |
| 1197 | return -1; |
| 1198 | |
| 1199 | BUG_ON(cpu >= MAX_CPUS || cpu < 0); |
| 1200 | if (!atoms) { |
| 1201 | if (thread_atoms_insert(sched, thread)) |
| 1202 | goto out_put; |
| 1203 | atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); |
| 1204 | if (!atoms) { |
| 1205 | pr_err("in-event: Internal tree error"); |
| 1206 | goto out_put; |
| 1207 | } |
| 1208 | if (add_sched_out_event(atoms, 'R', timestamp)) |
| 1209 | goto out_put; |
| 1210 | } |
| 1211 | |
| 1212 | add_runtime_event(atoms, runtime, timestamp); |
| 1213 | err = 0; |
| 1214 | out_put: |
| 1215 | thread__put(thread); |
| 1216 | return err; |
| 1217 | } |
| 1218 | |
| 1219 | static int latency_wakeup_event(struct perf_sched *sched, |
| 1220 | struct evsel *evsel, |
| 1221 | struct perf_sample *sample, |
| 1222 | struct machine *machine) |
| 1223 | { |
| 1224 | const u32 pid = evsel__intval(evsel, sample, "pid"); |
| 1225 | struct work_atoms *atoms; |
| 1226 | struct work_atom *atom; |
| 1227 | struct thread *wakee; |
| 1228 | u64 timestamp = sample->time; |
| 1229 | int err = -1; |
| 1230 | |
| 1231 | wakee = machine__findnew_thread(machine, -1, pid); |
| 1232 | if (wakee == NULL) |
| 1233 | return -1; |
| 1234 | atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); |
| 1235 | if (!atoms) { |
| 1236 | if (thread_atoms_insert(sched, wakee)) |
| 1237 | goto out_put; |
| 1238 | atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); |
| 1239 | if (!atoms) { |
| 1240 | pr_err("wakeup-event: Internal tree error"); |
| 1241 | goto out_put; |
| 1242 | } |
| 1243 | if (add_sched_out_event(atoms, 'S', timestamp)) |
| 1244 | goto out_put; |
| 1245 | } |
| 1246 | |
| 1247 | BUG_ON(list_empty(&atoms->work_list)); |
| 1248 | |
| 1249 | atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| 1250 | |
| 1251 | /* |
| 1252 | * As we do not guarantee the wakeup event happens when |
| 1253 | * task is out of run queue, also may happen when task is |
| 1254 | * on run queue and wakeup only change ->state to TASK_RUNNING, |
| 1255 | * then we should not set the ->wake_up_time when wake up a |
| 1256 | * task which is on run queue. |
| 1257 | * |
| 1258 | * You WILL be missing events if you've recorded only |
| 1259 | * one CPU, or are only looking at only one, so don't |
| 1260 | * skip in this case. |
| 1261 | */ |
| 1262 | if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) |
| 1263 | goto out_ok; |
| 1264 | |
| 1265 | sched->nr_timestamps++; |
| 1266 | if (atom->sched_out_time > timestamp) { |
| 1267 | sched->nr_unordered_timestamps++; |
| 1268 | goto out_ok; |
| 1269 | } |
| 1270 | |
| 1271 | atom->state = THREAD_WAIT_CPU; |
| 1272 | atom->wake_up_time = timestamp; |
| 1273 | out_ok: |
| 1274 | err = 0; |
| 1275 | out_put: |
| 1276 | thread__put(wakee); |
| 1277 | return err; |
| 1278 | } |
| 1279 | |
| 1280 | static int latency_migrate_task_event(struct perf_sched *sched, |
| 1281 | struct evsel *evsel, |
| 1282 | struct perf_sample *sample, |
| 1283 | struct machine *machine) |
| 1284 | { |
| 1285 | const u32 pid = evsel__intval(evsel, sample, "pid"); |
| 1286 | u64 timestamp = sample->time; |
| 1287 | struct work_atoms *atoms; |
| 1288 | struct work_atom *atom; |
| 1289 | struct thread *migrant; |
| 1290 | int err = -1; |
| 1291 | |
| 1292 | /* |
| 1293 | * Only need to worry about migration when profiling one CPU. |
| 1294 | */ |
| 1295 | if (sched->profile_cpu == -1) |
| 1296 | return 0; |
| 1297 | |
| 1298 | migrant = machine__findnew_thread(machine, -1, pid); |
| 1299 | if (migrant == NULL) |
| 1300 | return -1; |
| 1301 | atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); |
| 1302 | if (!atoms) { |
| 1303 | if (thread_atoms_insert(sched, migrant)) |
| 1304 | goto out_put; |
| 1305 | register_pid(sched, thread__tid(migrant), thread__comm_str(migrant)); |
| 1306 | atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); |
| 1307 | if (!atoms) { |
| 1308 | pr_err("migration-event: Internal tree error"); |
| 1309 | goto out_put; |
| 1310 | } |
| 1311 | if (add_sched_out_event(atoms, 'R', timestamp)) |
| 1312 | goto out_put; |
| 1313 | } |
| 1314 | |
| 1315 | BUG_ON(list_empty(&atoms->work_list)); |
| 1316 | |
| 1317 | atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| 1318 | atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; |
| 1319 | |
| 1320 | sched->nr_timestamps++; |
| 1321 | |
| 1322 | if (atom->sched_out_time > timestamp) |
| 1323 | sched->nr_unordered_timestamps++; |
| 1324 | err = 0; |
| 1325 | out_put: |
| 1326 | thread__put(migrant); |
| 1327 | return err; |
| 1328 | } |
| 1329 | |
| 1330 | static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) |
| 1331 | { |
| 1332 | int i; |
| 1333 | int ret; |
| 1334 | u64 avg; |
| 1335 | char max_lat_start[32], max_lat_end[32]; |
| 1336 | |
| 1337 | if (!work_list->nb_atoms) |
| 1338 | return; |
| 1339 | /* |
| 1340 | * Ignore idle threads: |
| 1341 | */ |
| 1342 | if (!strcmp(thread__comm_str(work_list->thread), "swapper")) |
| 1343 | return; |
| 1344 | |
| 1345 | sched->all_runtime += work_list->total_runtime; |
| 1346 | sched->all_count += work_list->nb_atoms; |
| 1347 | |
| 1348 | if (work_list->num_merged > 1) { |
| 1349 | ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), |
| 1350 | work_list->num_merged); |
| 1351 | } else { |
| 1352 | ret = printf(" %s:%d ", thread__comm_str(work_list->thread), |
| 1353 | thread__tid(work_list->thread)); |
| 1354 | } |
| 1355 | |
| 1356 | for (i = 0; i < 24 - ret; i++) |
| 1357 | printf(" "); |
| 1358 | |
| 1359 | avg = work_list->total_lat / work_list->nb_atoms; |
| 1360 | timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start)); |
| 1361 | timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end)); |
| 1362 | |
| 1363 | printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n", |
| 1364 | (double)work_list->total_runtime / NSEC_PER_MSEC, |
| 1365 | work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, |
| 1366 | (double)work_list->max_lat / NSEC_PER_MSEC, |
| 1367 | max_lat_start, max_lat_end); |
| 1368 | } |
| 1369 | |
| 1370 | static int pid_cmp(struct work_atoms *l, struct work_atoms *r) |
| 1371 | { |
| 1372 | pid_t l_tid, r_tid; |
| 1373 | |
| 1374 | if (RC_CHK_EQUAL(l->thread, r->thread)) |
| 1375 | return 0; |
| 1376 | l_tid = thread__tid(l->thread); |
| 1377 | r_tid = thread__tid(r->thread); |
| 1378 | if (l_tid < r_tid) |
| 1379 | return -1; |
| 1380 | if (l_tid > r_tid) |
| 1381 | return 1; |
| 1382 | return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread)); |
| 1383 | } |
| 1384 | |
| 1385 | static int avg_cmp(struct work_atoms *l, struct work_atoms *r) |
| 1386 | { |
| 1387 | u64 avgl, avgr; |
| 1388 | |
| 1389 | if (!l->nb_atoms) |
| 1390 | return -1; |
| 1391 | |
| 1392 | if (!r->nb_atoms) |
| 1393 | return 1; |
| 1394 | |
| 1395 | avgl = l->total_lat / l->nb_atoms; |
| 1396 | avgr = r->total_lat / r->nb_atoms; |
| 1397 | |
| 1398 | if (avgl < avgr) |
| 1399 | return -1; |
| 1400 | if (avgl > avgr) |
| 1401 | return 1; |
| 1402 | |
| 1403 | return 0; |
| 1404 | } |
| 1405 | |
| 1406 | static int max_cmp(struct work_atoms *l, struct work_atoms *r) |
| 1407 | { |
| 1408 | if (l->max_lat < r->max_lat) |
| 1409 | return -1; |
| 1410 | if (l->max_lat > r->max_lat) |
| 1411 | return 1; |
| 1412 | |
| 1413 | return 0; |
| 1414 | } |
| 1415 | |
| 1416 | static int switch_cmp(struct work_atoms *l, struct work_atoms *r) |
| 1417 | { |
| 1418 | if (l->nb_atoms < r->nb_atoms) |
| 1419 | return -1; |
| 1420 | if (l->nb_atoms > r->nb_atoms) |
| 1421 | return 1; |
| 1422 | |
| 1423 | return 0; |
| 1424 | } |
| 1425 | |
| 1426 | static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) |
| 1427 | { |
| 1428 | if (l->total_runtime < r->total_runtime) |
| 1429 | return -1; |
| 1430 | if (l->total_runtime > r->total_runtime) |
| 1431 | return 1; |
| 1432 | |
| 1433 | return 0; |
| 1434 | } |
| 1435 | |
| 1436 | static int sort_dimension__add(const char *tok, struct list_head *list) |
| 1437 | { |
| 1438 | size_t i; |
| 1439 | static struct sort_dimension avg_sort_dimension = { |
| 1440 | .name = "avg", |
| 1441 | .cmp = avg_cmp, |
| 1442 | }; |
| 1443 | static struct sort_dimension max_sort_dimension = { |
| 1444 | .name = "max", |
| 1445 | .cmp = max_cmp, |
| 1446 | }; |
| 1447 | static struct sort_dimension pid_sort_dimension = { |
| 1448 | .name = "pid", |
| 1449 | .cmp = pid_cmp, |
| 1450 | }; |
| 1451 | static struct sort_dimension runtime_sort_dimension = { |
| 1452 | .name = "runtime", |
| 1453 | .cmp = runtime_cmp, |
| 1454 | }; |
| 1455 | static struct sort_dimension switch_sort_dimension = { |
| 1456 | .name = "switch", |
| 1457 | .cmp = switch_cmp, |
| 1458 | }; |
| 1459 | struct sort_dimension *available_sorts[] = { |
| 1460 | &pid_sort_dimension, |
| 1461 | &avg_sort_dimension, |
| 1462 | &max_sort_dimension, |
| 1463 | &switch_sort_dimension, |
| 1464 | &runtime_sort_dimension, |
| 1465 | }; |
| 1466 | |
| 1467 | for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { |
| 1468 | if (!strcmp(available_sorts[i]->name, tok)) { |
| 1469 | list_add_tail(&available_sorts[i]->list, list); |
| 1470 | |
| 1471 | return 0; |
| 1472 | } |
| 1473 | } |
| 1474 | |
| 1475 | return -1; |
| 1476 | } |
| 1477 | |
| 1478 | static void perf_sched__sort_lat(struct perf_sched *sched) |
| 1479 | { |
| 1480 | struct rb_node *node; |
| 1481 | struct rb_root_cached *root = &sched->atom_root; |
| 1482 | again: |
| 1483 | for (;;) { |
| 1484 | struct work_atoms *data; |
| 1485 | node = rb_first_cached(root); |
| 1486 | if (!node) |
| 1487 | break; |
| 1488 | |
| 1489 | rb_erase_cached(node, root); |
| 1490 | data = rb_entry(node, struct work_atoms, node); |
| 1491 | __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); |
| 1492 | } |
| 1493 | if (root == &sched->atom_root) { |
| 1494 | root = &sched->merged_atom_root; |
| 1495 | goto again; |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | static int process_sched_wakeup_event(const struct perf_tool *tool, |
| 1500 | struct evsel *evsel, |
| 1501 | struct perf_sample *sample, |
| 1502 | struct machine *machine) |
| 1503 | { |
| 1504 | struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| 1505 | |
| 1506 | if (sched->tp_handler->wakeup_event) |
| 1507 | return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); |
| 1508 | |
| 1509 | return 0; |
| 1510 | } |
| 1511 | |
| 1512 | static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused, |
| 1513 | struct evsel *evsel __maybe_unused, |
| 1514 | struct perf_sample *sample __maybe_unused, |
| 1515 | struct machine *machine __maybe_unused) |
| 1516 | { |
| 1517 | return 0; |
| 1518 | } |
| 1519 | |
| 1520 | union map_priv { |
| 1521 | void *ptr; |
| 1522 | bool color; |
| 1523 | }; |
| 1524 | |
| 1525 | static bool thread__has_color(struct thread *thread) |
| 1526 | { |
| 1527 | union map_priv priv = { |
| 1528 | .ptr = thread__priv(thread), |
| 1529 | }; |
| 1530 | |
| 1531 | return priv.color; |
| 1532 | } |
| 1533 | |
| 1534 | static struct thread* |
| 1535 | map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) |
| 1536 | { |
| 1537 | struct thread *thread = machine__findnew_thread(machine, pid, tid); |
| 1538 | union map_priv priv = { |
| 1539 | .color = false, |
| 1540 | }; |
| 1541 | |
| 1542 | if (!sched->map.color_pids || !thread || thread__priv(thread)) |
| 1543 | return thread; |
| 1544 | |
| 1545 | if (thread_map__has(sched->map.color_pids, tid)) |
| 1546 | priv.color = true; |
| 1547 | |
| 1548 | thread__set_priv(thread, priv.ptr); |
| 1549 | return thread; |
| 1550 | } |
| 1551 | |
| 1552 | static bool sched_match_task(struct perf_sched *sched, const char *comm_str) |
| 1553 | { |
| 1554 | bool fuzzy_match = sched->map.fuzzy; |
| 1555 | struct strlist *task_names = sched->map.task_names; |
| 1556 | struct str_node *node; |
| 1557 | |
| 1558 | strlist__for_each_entry(node, task_names) { |
| 1559 | bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) : |
| 1560 | !strcmp(comm_str, node->s); |
| 1561 | if (match_found) |
| 1562 | return true; |
| 1563 | } |
| 1564 | |
| 1565 | return false; |
| 1566 | } |
| 1567 | |
| 1568 | static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr, |
| 1569 | const char *color, bool sched_out) |
| 1570 | { |
| 1571 | for (int i = 0; i < cpus_nr; i++) { |
| 1572 | struct perf_cpu cpu = { |
| 1573 | .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i, |
| 1574 | }; |
| 1575 | struct thread *curr_thread = sched->curr_thread[cpu.cpu]; |
| 1576 | struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu]; |
| 1577 | struct thread_runtime *curr_tr; |
| 1578 | const char *pid_color = color; |
| 1579 | const char *cpu_color = color; |
| 1580 | char symbol = ' '; |
| 1581 | struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread; |
| 1582 | |
| 1583 | if (thread_to_check && thread__has_color(thread_to_check)) |
| 1584 | pid_color = COLOR_PIDS; |
| 1585 | |
| 1586 | if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu)) |
| 1587 | cpu_color = COLOR_CPUS; |
| 1588 | |
| 1589 | if (cpu.cpu == this_cpu.cpu) |
| 1590 | symbol = '*'; |
| 1591 | |
| 1592 | color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol); |
| 1593 | |
| 1594 | thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] : |
| 1595 | sched->curr_thread[cpu.cpu]; |
| 1596 | |
| 1597 | if (thread_to_check) { |
| 1598 | curr_tr = thread__get_runtime(thread_to_check); |
| 1599 | if (curr_tr == NULL) |
| 1600 | return; |
| 1601 | |
| 1602 | if (sched_out) { |
| 1603 | if (cpu.cpu == this_cpu.cpu) |
| 1604 | color_fprintf(stdout, color, "- "); |
| 1605 | else { |
| 1606 | curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]); |
| 1607 | if (curr_tr != NULL) |
| 1608 | color_fprintf(stdout, pid_color, "%2s ", |
| 1609 | curr_tr->shortname); |
| 1610 | } |
| 1611 | } else |
| 1612 | color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); |
| 1613 | } else |
| 1614 | color_fprintf(stdout, color, " "); |
| 1615 | } |
| 1616 | } |
| 1617 | |
| 1618 | static int map_switch_event(struct perf_sched *sched, struct evsel *evsel, |
| 1619 | struct perf_sample *sample, struct machine *machine) |
| 1620 | { |
| 1621 | const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); |
| 1622 | const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"); |
| 1623 | struct thread *sched_in, *sched_out; |
| 1624 | struct thread_runtime *tr; |
| 1625 | int new_shortname; |
| 1626 | u64 timestamp0, timestamp = sample->time; |
| 1627 | s64 delta; |
| 1628 | struct perf_cpu this_cpu = { |
| 1629 | .cpu = sample->cpu, |
| 1630 | }; |
| 1631 | int cpus_nr; |
| 1632 | int proceed; |
| 1633 | bool new_cpu = false; |
| 1634 | const char *color = PERF_COLOR_NORMAL; |
| 1635 | char stimestamp[32]; |
| 1636 | const char *str; |
| 1637 | |
| 1638 | BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0); |
| 1639 | |
| 1640 | if (this_cpu.cpu > sched->max_cpu.cpu) |
| 1641 | sched->max_cpu = this_cpu; |
| 1642 | |
| 1643 | if (sched->map.comp) { |
| 1644 | cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); |
| 1645 | if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) { |
| 1646 | sched->map.comp_cpus[cpus_nr++] = this_cpu; |
| 1647 | new_cpu = true; |
| 1648 | } |
| 1649 | } else |
| 1650 | cpus_nr = sched->max_cpu.cpu; |
| 1651 | |
| 1652 | timestamp0 = sched->cpu_last_switched[this_cpu.cpu]; |
| 1653 | sched->cpu_last_switched[this_cpu.cpu] = timestamp; |
| 1654 | if (timestamp0) |
| 1655 | delta = timestamp - timestamp0; |
| 1656 | else |
| 1657 | delta = 0; |
| 1658 | |
| 1659 | if (delta < 0) { |
| 1660 | pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); |
| 1661 | return -1; |
| 1662 | } |
| 1663 | |
| 1664 | sched_in = map__findnew_thread(sched, machine, -1, next_pid); |
| 1665 | sched_out = map__findnew_thread(sched, machine, -1, prev_pid); |
| 1666 | if (sched_in == NULL || sched_out == NULL) |
| 1667 | return -1; |
| 1668 | |
| 1669 | tr = thread__get_runtime(sched_in); |
| 1670 | if (tr == NULL) { |
| 1671 | thread__put(sched_in); |
| 1672 | return -1; |
| 1673 | } |
| 1674 | |
| 1675 | sched->curr_thread[this_cpu.cpu] = thread__get(sched_in); |
| 1676 | sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out); |
| 1677 | |
| 1678 | str = thread__comm_str(sched_in); |
| 1679 | new_shortname = 0; |
| 1680 | if (!tr->shortname[0]) { |
| 1681 | if (!strcmp(thread__comm_str(sched_in), "swapper")) { |
| 1682 | /* |
| 1683 | * Don't allocate a letter-number for swapper:0 |
| 1684 | * as a shortname. Instead, we use '.' for it. |
| 1685 | */ |
| 1686 | tr->shortname[0] = '.'; |
| 1687 | tr->shortname[1] = ' '; |
| 1688 | } else if (!sched->map.task_name || sched_match_task(sched, str)) { |
| 1689 | tr->shortname[0] = sched->next_shortname1; |
| 1690 | tr->shortname[1] = sched->next_shortname2; |
| 1691 | |
| 1692 | if (sched->next_shortname1 < 'Z') { |
| 1693 | sched->next_shortname1++; |
| 1694 | } else { |
| 1695 | sched->next_shortname1 = 'A'; |
| 1696 | if (sched->next_shortname2 < '9') |
| 1697 | sched->next_shortname2++; |
| 1698 | else |
| 1699 | sched->next_shortname2 = '0'; |
| 1700 | } |
| 1701 | } else { |
| 1702 | tr->shortname[0] = '-'; |
| 1703 | tr->shortname[1] = ' '; |
| 1704 | } |
| 1705 | new_shortname = 1; |
| 1706 | } |
| 1707 | |
| 1708 | if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu)) |
| 1709 | goto out; |
| 1710 | |
| 1711 | proceed = 0; |
| 1712 | str = thread__comm_str(sched_in); |
| 1713 | /* |
| 1714 | * Check which of sched_in and sched_out matches the passed --task-name |
| 1715 | * arguments and call the corresponding print_sched_map. |
| 1716 | */ |
| 1717 | if (sched->map.task_name && !sched_match_task(sched, str)) { |
| 1718 | if (!sched_match_task(sched, thread__comm_str(sched_out))) |
| 1719 | goto out; |
| 1720 | else |
| 1721 | goto sched_out; |
| 1722 | |
| 1723 | } else { |
| 1724 | str = thread__comm_str(sched_out); |
| 1725 | if (!(sched->map.task_name && !sched_match_task(sched, str))) |
| 1726 | proceed = 1; |
| 1727 | } |
| 1728 | |
| 1729 | printf(" "); |
| 1730 | |
| 1731 | print_sched_map(sched, this_cpu, cpus_nr, color, false); |
| 1732 | |
| 1733 | timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); |
| 1734 | color_fprintf(stdout, color, " %12s secs ", stimestamp); |
| 1735 | if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) { |
| 1736 | const char *pid_color = color; |
| 1737 | |
| 1738 | if (thread__has_color(sched_in)) |
| 1739 | pid_color = COLOR_PIDS; |
| 1740 | |
| 1741 | color_fprintf(stdout, pid_color, "%s => %s:%d", |
| 1742 | tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in)); |
| 1743 | tr->comm_changed = false; |
| 1744 | } |
| 1745 | |
| 1746 | if (sched->map.comp && new_cpu) |
| 1747 | color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu); |
| 1748 | |
| 1749 | if (proceed != 1) { |
| 1750 | color_fprintf(stdout, color, "\n"); |
| 1751 | goto out; |
| 1752 | } |
| 1753 | |
| 1754 | sched_out: |
| 1755 | if (sched->map.task_name) { |
| 1756 | tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]); |
| 1757 | if (strcmp(tr->shortname, "") == 0) |
| 1758 | goto out; |
| 1759 | |
| 1760 | if (proceed == 1) |
| 1761 | color_fprintf(stdout, color, "\n"); |
| 1762 | |
| 1763 | printf(" "); |
| 1764 | print_sched_map(sched, this_cpu, cpus_nr, color, true); |
| 1765 | timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); |
| 1766 | color_fprintf(stdout, color, " %12s secs ", stimestamp); |
| 1767 | } |
| 1768 | |
| 1769 | color_fprintf(stdout, color, "\n"); |
| 1770 | |
| 1771 | out: |
| 1772 | if (sched->map.task_name) |
| 1773 | thread__put(sched_out); |
| 1774 | |
| 1775 | thread__put(sched_in); |
| 1776 | |
| 1777 | return 0; |
| 1778 | } |
| 1779 | |
| 1780 | static int process_sched_switch_event(const struct perf_tool *tool, |
| 1781 | struct evsel *evsel, |
| 1782 | struct perf_sample *sample, |
| 1783 | struct machine *machine) |
| 1784 | { |
| 1785 | struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| 1786 | int this_cpu = sample->cpu, err = 0; |
| 1787 | u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), |
| 1788 | next_pid = evsel__intval(evsel, sample, "next_pid"); |
| 1789 | |
| 1790 | if (sched->curr_pid[this_cpu] != (u32)-1) { |
| 1791 | /* |
| 1792 | * Are we trying to switch away a PID that is |
| 1793 | * not current? |
| 1794 | */ |
| 1795 | if (sched->curr_pid[this_cpu] != prev_pid) |
| 1796 | sched->nr_context_switch_bugs++; |
| 1797 | } |
| 1798 | |
| 1799 | if (sched->tp_handler->switch_event) |
| 1800 | err = sched->tp_handler->switch_event(sched, evsel, sample, machine); |
| 1801 | |
| 1802 | sched->curr_pid[this_cpu] = next_pid; |
| 1803 | return err; |
| 1804 | } |
| 1805 | |
| 1806 | static int process_sched_runtime_event(const struct perf_tool *tool, |
| 1807 | struct evsel *evsel, |
| 1808 | struct perf_sample *sample, |
| 1809 | struct machine *machine) |
| 1810 | { |
| 1811 | struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| 1812 | |
| 1813 | if (sched->tp_handler->runtime_event) |
| 1814 | return sched->tp_handler->runtime_event(sched, evsel, sample, machine); |
| 1815 | |
| 1816 | return 0; |
| 1817 | } |
| 1818 | |
| 1819 | static int perf_sched__process_fork_event(const struct perf_tool *tool, |
| 1820 | union perf_event *event, |
| 1821 | struct perf_sample *sample, |
| 1822 | struct machine *machine) |
| 1823 | { |
| 1824 | struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| 1825 | |
| 1826 | /* run the fork event through the perf machinery */ |
| 1827 | perf_event__process_fork(tool, event, sample, machine); |
| 1828 | |
| 1829 | /* and then run additional processing needed for this command */ |
| 1830 | if (sched->tp_handler->fork_event) |
| 1831 | return sched->tp_handler->fork_event(sched, event, machine); |
| 1832 | |
| 1833 | return 0; |
| 1834 | } |
| 1835 | |
| 1836 | static int process_sched_migrate_task_event(const struct perf_tool *tool, |
| 1837 | struct evsel *evsel, |
| 1838 | struct perf_sample *sample, |
| 1839 | struct machine *machine) |
| 1840 | { |
| 1841 | struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| 1842 | |
| 1843 | if (sched->tp_handler->migrate_task_event) |
| 1844 | return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); |
| 1845 | |
| 1846 | return 0; |
| 1847 | } |
| 1848 | |
| 1849 | typedef int (*tracepoint_handler)(const struct perf_tool *tool, |
| 1850 | struct evsel *evsel, |
| 1851 | struct perf_sample *sample, |
| 1852 | struct machine *machine); |
| 1853 | |
| 1854 | static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused, |
| 1855 | union perf_event *event __maybe_unused, |
| 1856 | struct perf_sample *sample, |
| 1857 | struct evsel *evsel, |
| 1858 | struct machine *machine) |
| 1859 | { |
| 1860 | int err = 0; |
| 1861 | |
| 1862 | if (evsel->handler != NULL) { |
| 1863 | tracepoint_handler f = evsel->handler; |
| 1864 | err = f(tool, evsel, sample, machine); |
| 1865 | } |
| 1866 | |
| 1867 | return err; |
| 1868 | } |
| 1869 | |
| 1870 | static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused, |
| 1871 | union perf_event *event, |
| 1872 | struct perf_sample *sample, |
| 1873 | struct machine *machine) |
| 1874 | { |
| 1875 | struct thread *thread; |
| 1876 | struct thread_runtime *tr; |
| 1877 | int err; |
| 1878 | |
| 1879 | err = perf_event__process_comm(tool, event, sample, machine); |
| 1880 | if (err) |
| 1881 | return err; |
| 1882 | |
| 1883 | thread = machine__find_thread(machine, sample->pid, sample->tid); |
| 1884 | if (!thread) { |
| 1885 | pr_err("Internal error: can't find thread\n"); |
| 1886 | return -1; |
| 1887 | } |
| 1888 | |
| 1889 | tr = thread__get_runtime(thread); |
| 1890 | if (tr == NULL) { |
| 1891 | thread__put(thread); |
| 1892 | return -1; |
| 1893 | } |
| 1894 | |
| 1895 | tr->comm_changed = true; |
| 1896 | thread__put(thread); |
| 1897 | |
| 1898 | return 0; |
| 1899 | } |
| 1900 | |
| 1901 | static int perf_sched__read_events(struct perf_sched *sched) |
| 1902 | { |
| 1903 | struct evsel_str_handler handlers[] = { |
| 1904 | { "sched:sched_switch", process_sched_switch_event, }, |
| 1905 | { "sched:sched_stat_runtime", process_sched_runtime_event, }, |
| 1906 | { "sched:sched_wakeup", process_sched_wakeup_event, }, |
| 1907 | { "sched:sched_waking", process_sched_wakeup_event, }, |
| 1908 | { "sched:sched_wakeup_new", process_sched_wakeup_event, }, |
| 1909 | { "sched:sched_migrate_task", process_sched_migrate_task_event, }, |
| 1910 | }; |
| 1911 | struct perf_session *session; |
| 1912 | struct perf_data data = { |
| 1913 | .path = input_name, |
| 1914 | .mode = PERF_DATA_MODE_READ, |
| 1915 | .force = sched->force, |
| 1916 | }; |
| 1917 | int rc = -1; |
| 1918 | |
| 1919 | session = perf_session__new(&data, &sched->tool); |
| 1920 | if (IS_ERR(session)) { |
| 1921 | pr_debug("Error creating perf session"); |
| 1922 | return PTR_ERR(session); |
| 1923 | } |
| 1924 | |
| 1925 | symbol__init(&session->header.env); |
| 1926 | |
| 1927 | /* prefer sched_waking if it is captured */ |
| 1928 | if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) |
| 1929 | handlers[2].handler = process_sched_wakeup_ignore; |
| 1930 | |
| 1931 | if (perf_session__set_tracepoints_handlers(session, handlers)) |
| 1932 | goto out_delete; |
| 1933 | |
| 1934 | if (perf_session__has_traces(session, "record -R")) { |
| 1935 | int err = perf_session__process_events(session); |
| 1936 | if (err) { |
| 1937 | pr_err("Failed to process events, error %d", err); |
| 1938 | goto out_delete; |
| 1939 | } |
| 1940 | |
| 1941 | sched->nr_events = session->evlist->stats.nr_events[0]; |
| 1942 | sched->nr_lost_events = session->evlist->stats.total_lost; |
| 1943 | sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; |
| 1944 | } |
| 1945 | |
| 1946 | rc = 0; |
| 1947 | out_delete: |
| 1948 | perf_session__delete(session); |
| 1949 | return rc; |
| 1950 | } |
| 1951 | |
| 1952 | /* |
| 1953 | * scheduling times are printed as msec.usec |
| 1954 | */ |
| 1955 | static inline void print_sched_time(unsigned long long nsecs, int width) |
| 1956 | { |
| 1957 | unsigned long msecs; |
| 1958 | unsigned long usecs; |
| 1959 | |
| 1960 | msecs = nsecs / NSEC_PER_MSEC; |
| 1961 | nsecs -= msecs * NSEC_PER_MSEC; |
| 1962 | usecs = nsecs / NSEC_PER_USEC; |
| 1963 | printf("%*lu.%03lu ", width, msecs, usecs); |
| 1964 | } |
| 1965 | |
| 1966 | /* |
| 1967 | * returns runtime data for event, allocating memory for it the |
| 1968 | * first time it is used. |
| 1969 | */ |
| 1970 | static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel) |
| 1971 | { |
| 1972 | struct evsel_runtime *r = evsel->priv; |
| 1973 | |
| 1974 | if (r == NULL) { |
| 1975 | r = zalloc(sizeof(struct evsel_runtime)); |
| 1976 | evsel->priv = r; |
| 1977 | } |
| 1978 | |
| 1979 | return r; |
| 1980 | } |
| 1981 | |
| 1982 | /* |
| 1983 | * save last time event was seen per cpu |
| 1984 | */ |
| 1985 | static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu) |
| 1986 | { |
| 1987 | struct evsel_runtime *r = evsel__get_runtime(evsel); |
| 1988 | |
| 1989 | if (r == NULL) |
| 1990 | return; |
| 1991 | |
| 1992 | if ((cpu >= r->ncpu) || (r->last_time == NULL)) { |
| 1993 | int i, n = __roundup_pow_of_two(cpu+1); |
| 1994 | void *p = r->last_time; |
| 1995 | |
| 1996 | p = realloc(r->last_time, n * sizeof(u64)); |
| 1997 | if (!p) |
| 1998 | return; |
| 1999 | |
| 2000 | r->last_time = p; |
| 2001 | for (i = r->ncpu; i < n; ++i) |
| 2002 | r->last_time[i] = (u64) 0; |
| 2003 | |
| 2004 | r->ncpu = n; |
| 2005 | } |
| 2006 | |
| 2007 | r->last_time[cpu] = timestamp; |
| 2008 | } |
| 2009 | |
| 2010 | /* returns last time this event was seen on the given cpu */ |
| 2011 | static u64 evsel__get_time(struct evsel *evsel, u32 cpu) |
| 2012 | { |
| 2013 | struct evsel_runtime *r = evsel__get_runtime(evsel); |
| 2014 | |
| 2015 | if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) |
| 2016 | return 0; |
| 2017 | |
| 2018 | return r->last_time[cpu]; |
| 2019 | } |
| 2020 | |
| 2021 | static int comm_width = 30; |
| 2022 | |
| 2023 | static char *timehist_get_commstr(struct thread *thread) |
| 2024 | { |
| 2025 | static char str[32]; |
| 2026 | const char *comm = thread__comm_str(thread); |
| 2027 | pid_t tid = thread__tid(thread); |
| 2028 | pid_t pid = thread__pid(thread); |
| 2029 | int n; |
| 2030 | |
| 2031 | if (pid == 0) |
| 2032 | n = scnprintf(str, sizeof(str), "%s", comm); |
| 2033 | |
| 2034 | else if (tid != pid) |
| 2035 | n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); |
| 2036 | |
| 2037 | else |
| 2038 | n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); |
| 2039 | |
| 2040 | if (n > comm_width) |
| 2041 | comm_width = n; |
| 2042 | |
| 2043 | return str; |
| 2044 | } |
| 2045 | |
| 2046 | /* prio field format: xxx or xxx->yyy */ |
| 2047 | #define MAX_PRIO_STR_LEN 8 |
| 2048 | static char *timehist_get_priostr(struct evsel *evsel, |
| 2049 | struct thread *thread, |
| 2050 | struct perf_sample *sample) |
| 2051 | { |
| 2052 | static char prio_str[16]; |
| 2053 | int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio"); |
| 2054 | struct thread_runtime *tr = thread__priv(thread); |
| 2055 | |
| 2056 | if (tr->prio != prev_prio && tr->prio != -1) |
| 2057 | scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio); |
| 2058 | else |
| 2059 | scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio); |
| 2060 | |
| 2061 | return prio_str; |
| 2062 | } |
| 2063 | |
| 2064 | static void timehist_header(struct perf_sched *sched) |
| 2065 | { |
| 2066 | u32 ncpus = sched->max_cpu.cpu + 1; |
| 2067 | u32 i, j; |
| 2068 | |
| 2069 | printf("%15s %6s ", "time", "cpu"); |
| 2070 | |
| 2071 | if (sched->show_cpu_visual) { |
| 2072 | printf(" "); |
| 2073 | for (i = 0, j = 0; i < ncpus; ++i) { |
| 2074 | printf("%x", j++); |
| 2075 | if (j > 15) |
| 2076 | j = 0; |
| 2077 | } |
| 2078 | printf(" "); |
| 2079 | } |
| 2080 | |
| 2081 | printf(" %-*s", comm_width, "task name"); |
| 2082 | |
| 2083 | if (sched->show_prio) |
| 2084 | printf(" %-*s", MAX_PRIO_STR_LEN, "prio"); |
| 2085 | |
| 2086 | printf(" %9s %9s %9s", "wait time", "sch delay", "run time"); |
| 2087 | |
| 2088 | if (sched->pre_migrations) |
| 2089 | printf(" %9s", "pre-mig time"); |
| 2090 | |
| 2091 | if (sched->show_state) |
| 2092 | printf(" %s", "state"); |
| 2093 | |
| 2094 | printf("\n"); |
| 2095 | |
| 2096 | /* |
| 2097 | * units row |
| 2098 | */ |
| 2099 | printf("%15s %-6s ", "", ""); |
| 2100 | |
| 2101 | if (sched->show_cpu_visual) |
| 2102 | printf(" %*s ", ncpus, ""); |
| 2103 | |
| 2104 | printf(" %-*s", comm_width, "[tid/pid]"); |
| 2105 | |
| 2106 | if (sched->show_prio) |
| 2107 | printf(" %-*s", MAX_PRIO_STR_LEN, ""); |
| 2108 | |
| 2109 | printf(" %9s %9s %9s", "(msec)", "(msec)", "(msec)"); |
| 2110 | |
| 2111 | if (sched->pre_migrations) |
| 2112 | printf(" %9s", "(msec)"); |
| 2113 | |
| 2114 | printf("\n"); |
| 2115 | |
| 2116 | /* |
| 2117 | * separator |
| 2118 | */ |
| 2119 | printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); |
| 2120 | |
| 2121 | if (sched->show_cpu_visual) |
| 2122 | printf(" %.*s ", ncpus, graph_dotted_line); |
| 2123 | |
| 2124 | printf(" %.*s", comm_width, graph_dotted_line); |
| 2125 | |
| 2126 | if (sched->show_prio) |
| 2127 | printf(" %.*s", MAX_PRIO_STR_LEN, graph_dotted_line); |
| 2128 | |
| 2129 | printf(" %.9s %.9s %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line); |
| 2130 | |
| 2131 | if (sched->pre_migrations) |
| 2132 | printf(" %.9s", graph_dotted_line); |
| 2133 | |
| 2134 | if (sched->show_state) |
| 2135 | printf(" %.5s", graph_dotted_line); |
| 2136 | |
| 2137 | printf("\n"); |
| 2138 | } |
| 2139 | |
| 2140 | static void timehist_print_sample(struct perf_sched *sched, |
| 2141 | struct evsel *evsel, |
| 2142 | struct perf_sample *sample, |
| 2143 | struct addr_location *al, |
| 2144 | struct thread *thread, |
| 2145 | u64 t, const char state) |
| 2146 | { |
| 2147 | struct thread_runtime *tr = thread__priv(thread); |
| 2148 | const char *next_comm = evsel__strval(evsel, sample, "next_comm"); |
| 2149 | const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); |
| 2150 | u32 max_cpus = sched->max_cpu.cpu + 1; |
| 2151 | char tstr[64]; |
| 2152 | char nstr[30]; |
| 2153 | u64 wait_time; |
| 2154 | |
| 2155 | if (cpu_list && !test_bit(sample->cpu, cpu_bitmap)) |
| 2156 | return; |
| 2157 | |
| 2158 | timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); |
| 2159 | printf("%15s [%04d] ", tstr, sample->cpu); |
| 2160 | |
| 2161 | if (sched->show_cpu_visual) { |
| 2162 | u32 i; |
| 2163 | char c; |
| 2164 | |
| 2165 | printf(" "); |
| 2166 | for (i = 0; i < max_cpus; ++i) { |
| 2167 | /* flag idle times with 'i'; others are sched events */ |
| 2168 | if (i == sample->cpu) |
| 2169 | c = (thread__tid(thread) == 0) ? 'i' : 's'; |
| 2170 | else |
| 2171 | c = ' '; |
| 2172 | printf("%c", c); |
| 2173 | } |
| 2174 | printf(" "); |
| 2175 | } |
| 2176 | |
| 2177 | printf(" %-*s ", comm_width, timehist_get_commstr(thread)); |
| 2178 | |
| 2179 | if (sched->show_prio) |
| 2180 | printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample)); |
| 2181 | |
| 2182 | wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; |
| 2183 | print_sched_time(wait_time, 6); |
| 2184 | |
| 2185 | print_sched_time(tr->dt_delay, 6); |
| 2186 | print_sched_time(tr->dt_run, 6); |
| 2187 | if (sched->pre_migrations) |
| 2188 | print_sched_time(tr->dt_pre_mig, 6); |
| 2189 | |
| 2190 | if (sched->show_state) |
| 2191 | printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state); |
| 2192 | |
| 2193 | if (sched->show_next) { |
| 2194 | snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); |
| 2195 | printf(" %-*s", comm_width, nstr); |
| 2196 | } |
| 2197 | |
| 2198 | if (sched->show_wakeups && !sched->show_next) |
| 2199 | printf(" %-*s", comm_width, ""); |
| 2200 | |
| 2201 | if (thread__tid(thread) == 0) |
| 2202 | goto out; |
| 2203 | |
| 2204 | if (sched->show_callchain) |
| 2205 | printf(" "); |
| 2206 | |
| 2207 | sample__fprintf_sym(sample, al, 0, |
| 2208 | EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | |
| 2209 | EVSEL__PRINT_CALLCHAIN_ARROW | |
| 2210 | EVSEL__PRINT_SKIP_IGNORED, |
| 2211 | get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout); |
| 2212 | |
| 2213 | out: |
| 2214 | printf("\n"); |
| 2215 | } |
| 2216 | |
| 2217 | /* |
| 2218 | * Explanation of delta-time stats: |
| 2219 | * |
| 2220 | * t = time of current schedule out event |
| 2221 | * tprev = time of previous sched out event |
| 2222 | * also time of schedule-in event for current task |
| 2223 | * last_time = time of last sched change event for current task |
| 2224 | * (i.e, time process was last scheduled out) |
| 2225 | * ready_to_run = time of wakeup for current task |
| 2226 | * migrated = time of task migration to another CPU |
| 2227 | * |
| 2228 | * -----|-------------|-------------|-------------|-------------|----- |
| 2229 | * last ready migrated tprev t |
| 2230 | * time to run |
| 2231 | * |
| 2232 | * |---------------- dt_wait ----------------| |
| 2233 | * |--------- dt_delay ---------|-- dt_run --| |
| 2234 | * |- dt_pre_mig -| |
| 2235 | * |
| 2236 | * dt_run = run time of current task |
| 2237 | * dt_wait = time between last schedule out event for task and tprev |
| 2238 | * represents time spent off the cpu |
| 2239 | * dt_delay = time between wakeup and schedule-in of task |
| 2240 | * dt_pre_mig = time between wakeup and migration to another CPU |
| 2241 | */ |
| 2242 | |
| 2243 | static void timehist_update_runtime_stats(struct thread_runtime *r, |
| 2244 | u64 t, u64 tprev) |
| 2245 | { |
| 2246 | r->dt_delay = 0; |
| 2247 | r->dt_sleep = 0; |
| 2248 | r->dt_iowait = 0; |
| 2249 | r->dt_preempt = 0; |
| 2250 | r->dt_run = 0; |
| 2251 | r->dt_pre_mig = 0; |
| 2252 | |
| 2253 | if (tprev) { |
| 2254 | r->dt_run = t - tprev; |
| 2255 | if (r->ready_to_run) { |
| 2256 | if (r->ready_to_run > tprev) |
| 2257 | pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); |
| 2258 | else |
| 2259 | r->dt_delay = tprev - r->ready_to_run; |
| 2260 | |
| 2261 | if ((r->migrated > r->ready_to_run) && (r->migrated < tprev)) |
| 2262 | r->dt_pre_mig = r->migrated - r->ready_to_run; |
| 2263 | } |
| 2264 | |
| 2265 | if (r->last_time > tprev) |
| 2266 | pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); |
| 2267 | else if (r->last_time) { |
| 2268 | u64 dt_wait = tprev - r->last_time; |
| 2269 | |
| 2270 | if (r->last_state == 'R') |
| 2271 | r->dt_preempt = dt_wait; |
| 2272 | else if (r->last_state == 'D') |
| 2273 | r->dt_iowait = dt_wait; |
| 2274 | else |
| 2275 | r->dt_sleep = dt_wait; |
| 2276 | } |
| 2277 | } |
| 2278 | |
| 2279 | update_stats(&r->run_stats, r->dt_run); |
| 2280 | |
| 2281 | r->total_run_time += r->dt_run; |
| 2282 | r->total_delay_time += r->dt_delay; |
| 2283 | r->total_sleep_time += r->dt_sleep; |
| 2284 | r->total_iowait_time += r->dt_iowait; |
| 2285 | r->total_preempt_time += r->dt_preempt; |
| 2286 | r->total_pre_mig_time += r->dt_pre_mig; |
| 2287 | } |
| 2288 | |
| 2289 | static bool is_idle_sample(struct perf_sample *sample, |
| 2290 | struct evsel *evsel) |
| 2291 | { |
| 2292 | /* pid 0 == swapper == idle task */ |
| 2293 | if (evsel__name_is(evsel, "sched:sched_switch")) |
| 2294 | return evsel__intval(evsel, sample, "prev_pid") == 0; |
| 2295 | |
| 2296 | return sample->pid == 0; |
| 2297 | } |
| 2298 | |
| 2299 | static void save_task_callchain(struct perf_sched *sched, |
| 2300 | struct perf_sample *sample, |
| 2301 | struct evsel *evsel, |
| 2302 | struct machine *machine) |
| 2303 | { |
| 2304 | struct callchain_cursor *cursor; |
| 2305 | struct thread *thread; |
| 2306 | |
| 2307 | /* want main thread for process - has maps */ |
| 2308 | thread = machine__findnew_thread(machine, sample->pid, sample->pid); |
| 2309 | if (thread == NULL) { |
| 2310 | pr_debug("Failed to get thread for pid %d.\n", sample->pid); |
| 2311 | return; |
| 2312 | } |
| 2313 | |
| 2314 | if (!sched->show_callchain || sample->callchain == NULL) |
| 2315 | return; |
| 2316 | |
| 2317 | cursor = get_tls_callchain_cursor(); |
| 2318 | |
| 2319 | if (thread__resolve_callchain(thread, cursor, evsel, sample, |
| 2320 | NULL, NULL, sched->max_stack + 2) != 0) { |
| 2321 | if (verbose > 0) |
| 2322 | pr_err("Failed to resolve callchain. Skipping\n"); |
| 2323 | |
| 2324 | return; |
| 2325 | } |
| 2326 | |
| 2327 | callchain_cursor_commit(cursor); |
| 2328 | |
| 2329 | while (true) { |
| 2330 | struct callchain_cursor_node *node; |
| 2331 | struct symbol *sym; |
| 2332 | |
| 2333 | node = callchain_cursor_current(cursor); |
| 2334 | if (node == NULL) |
| 2335 | break; |
| 2336 | |
| 2337 | sym = node->ms.sym; |
| 2338 | if (sym) { |
| 2339 | if (!strcmp(sym->name, "schedule") || |
| 2340 | !strcmp(sym->name, "__schedule") || |
| 2341 | !strcmp(sym->name, "preempt_schedule")) |
| 2342 | sym->ignore = 1; |
| 2343 | } |
| 2344 | |
| 2345 | callchain_cursor_advance(cursor); |
| 2346 | } |
| 2347 | } |
| 2348 | |
| 2349 | static int init_idle_thread(struct thread *thread) |
| 2350 | { |
| 2351 | struct idle_thread_runtime *itr; |
| 2352 | |
| 2353 | thread__set_comm(thread, idle_comm, 0); |
| 2354 | |
| 2355 | itr = zalloc(sizeof(*itr)); |
| 2356 | if (itr == NULL) |
| 2357 | return -ENOMEM; |
| 2358 | |
| 2359 | init_prio(&itr->tr); |
| 2360 | init_stats(&itr->tr.run_stats); |
| 2361 | callchain_init(&itr->callchain); |
| 2362 | callchain_cursor_reset(&itr->cursor); |
| 2363 | thread__set_priv(thread, itr); |
| 2364 | |
| 2365 | return 0; |
| 2366 | } |
| 2367 | |
| 2368 | /* |
| 2369 | * Track idle stats per cpu by maintaining a local thread |
| 2370 | * struct for the idle task on each cpu. |
| 2371 | */ |
| 2372 | static int init_idle_threads(int ncpu) |
| 2373 | { |
| 2374 | int i, ret; |
| 2375 | |
| 2376 | idle_threads = zalloc(ncpu * sizeof(struct thread *)); |
| 2377 | if (!idle_threads) |
| 2378 | return -ENOMEM; |
| 2379 | |
| 2380 | idle_max_cpu = ncpu; |
| 2381 | |
| 2382 | /* allocate the actual thread struct if needed */ |
| 2383 | for (i = 0; i < ncpu; ++i) { |
| 2384 | idle_threads[i] = thread__new(0, 0); |
| 2385 | if (idle_threads[i] == NULL) |
| 2386 | return -ENOMEM; |
| 2387 | |
| 2388 | ret = init_idle_thread(idle_threads[i]); |
| 2389 | if (ret < 0) |
| 2390 | return ret; |
| 2391 | } |
| 2392 | |
| 2393 | return 0; |
| 2394 | } |
| 2395 | |
| 2396 | static void free_idle_threads(void) |
| 2397 | { |
| 2398 | int i; |
| 2399 | |
| 2400 | if (idle_threads == NULL) |
| 2401 | return; |
| 2402 | |
| 2403 | for (i = 0; i < idle_max_cpu; ++i) { |
| 2404 | if ((idle_threads[i])) |
| 2405 | thread__delete(idle_threads[i]); |
| 2406 | } |
| 2407 | |
| 2408 | free(idle_threads); |
| 2409 | } |
| 2410 | |
| 2411 | static struct thread *get_idle_thread(int cpu) |
| 2412 | { |
| 2413 | /* |
| 2414 | * expand/allocate array of pointers to local thread |
| 2415 | * structs if needed |
| 2416 | */ |
| 2417 | if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { |
| 2418 | int i, j = __roundup_pow_of_two(cpu+1); |
| 2419 | void *p; |
| 2420 | |
| 2421 | p = realloc(idle_threads, j * sizeof(struct thread *)); |
| 2422 | if (!p) |
| 2423 | return NULL; |
| 2424 | |
| 2425 | idle_threads = (struct thread **) p; |
| 2426 | for (i = idle_max_cpu; i < j; ++i) |
| 2427 | idle_threads[i] = NULL; |
| 2428 | |
| 2429 | idle_max_cpu = j; |
| 2430 | } |
| 2431 | |
| 2432 | /* allocate a new thread struct if needed */ |
| 2433 | if (idle_threads[cpu] == NULL) { |
| 2434 | idle_threads[cpu] = thread__new(0, 0); |
| 2435 | |
| 2436 | if (idle_threads[cpu]) { |
| 2437 | if (init_idle_thread(idle_threads[cpu]) < 0) |
| 2438 | return NULL; |
| 2439 | } |
| 2440 | } |
| 2441 | |
| 2442 | return idle_threads[cpu]; |
| 2443 | } |
| 2444 | |
| 2445 | static void save_idle_callchain(struct perf_sched *sched, |
| 2446 | struct idle_thread_runtime *itr, |
| 2447 | struct perf_sample *sample) |
| 2448 | { |
| 2449 | struct callchain_cursor *cursor; |
| 2450 | |
| 2451 | if (!sched->show_callchain || sample->callchain == NULL) |
| 2452 | return; |
| 2453 | |
| 2454 | cursor = get_tls_callchain_cursor(); |
| 2455 | if (cursor == NULL) |
| 2456 | return; |
| 2457 | |
| 2458 | callchain_cursor__copy(&itr->cursor, cursor); |
| 2459 | } |
| 2460 | |
| 2461 | static struct thread *timehist_get_thread(struct perf_sched *sched, |
| 2462 | struct perf_sample *sample, |
| 2463 | struct machine *machine, |
| 2464 | struct evsel *evsel) |
| 2465 | { |
| 2466 | struct thread *thread; |
| 2467 | |
| 2468 | if (is_idle_sample(sample, evsel)) { |
| 2469 | thread = get_idle_thread(sample->cpu); |
| 2470 | if (thread == NULL) |
| 2471 | pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); |
| 2472 | |
| 2473 | } else { |
| 2474 | /* there were samples with tid 0 but non-zero pid */ |
| 2475 | thread = machine__findnew_thread(machine, sample->pid, |
| 2476 | sample->tid ?: sample->pid); |
| 2477 | if (thread == NULL) { |
| 2478 | pr_debug("Failed to get thread for tid %d. skipping sample.\n", |
| 2479 | sample->tid); |
| 2480 | } |
| 2481 | |
| 2482 | save_task_callchain(sched, sample, evsel, machine); |
| 2483 | if (sched->idle_hist) { |
| 2484 | struct thread *idle; |
| 2485 | struct idle_thread_runtime *itr; |
| 2486 | |
| 2487 | idle = get_idle_thread(sample->cpu); |
| 2488 | if (idle == NULL) { |
| 2489 | pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); |
| 2490 | return NULL; |
| 2491 | } |
| 2492 | |
| 2493 | itr = thread__priv(idle); |
| 2494 | if (itr == NULL) |
| 2495 | return NULL; |
| 2496 | |
| 2497 | itr->last_thread = thread; |
| 2498 | |
| 2499 | /* copy task callchain when entering to idle */ |
| 2500 | if (evsel__intval(evsel, sample, "next_pid") == 0) |
| 2501 | save_idle_callchain(sched, itr, sample); |
| 2502 | } |
| 2503 | } |
| 2504 | |
| 2505 | return thread; |
| 2506 | } |
| 2507 | |
| 2508 | static bool timehist_skip_sample(struct perf_sched *sched, |
| 2509 | struct thread *thread, |
| 2510 | struct evsel *evsel, |
| 2511 | struct perf_sample *sample) |
| 2512 | { |
| 2513 | bool rc = false; |
| 2514 | int prio = -1; |
| 2515 | struct thread_runtime *tr = NULL; |
| 2516 | |
| 2517 | if (thread__is_filtered(thread)) { |
| 2518 | rc = true; |
| 2519 | sched->skipped_samples++; |
| 2520 | } |
| 2521 | |
| 2522 | if (sched->prio_str) { |
| 2523 | /* |
| 2524 | * Because priority may be changed during task execution, |
| 2525 | * first read priority from prev sched_in event for current task. |
| 2526 | * If prev sched_in event is not saved, then read priority from |
| 2527 | * current task sched_out event. |
| 2528 | */ |
| 2529 | tr = thread__get_runtime(thread); |
| 2530 | if (tr && tr->prio != -1) |
| 2531 | prio = tr->prio; |
| 2532 | else if (evsel__name_is(evsel, "sched:sched_switch")) |
| 2533 | prio = evsel__intval(evsel, sample, "prev_prio"); |
| 2534 | |
| 2535 | if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) { |
| 2536 | rc = true; |
| 2537 | sched->skipped_samples++; |
| 2538 | } |
| 2539 | } |
| 2540 | |
| 2541 | if (sched->idle_hist) { |
| 2542 | if (!evsel__name_is(evsel, "sched:sched_switch")) |
| 2543 | rc = true; |
| 2544 | else if (evsel__intval(evsel, sample, "prev_pid") != 0 && |
| 2545 | evsel__intval(evsel, sample, "next_pid") != 0) |
| 2546 | rc = true; |
| 2547 | } |
| 2548 | |
| 2549 | return rc; |
| 2550 | } |
| 2551 | |
| 2552 | static void timehist_print_wakeup_event(struct perf_sched *sched, |
| 2553 | struct evsel *evsel, |
| 2554 | struct perf_sample *sample, |
| 2555 | struct machine *machine, |
| 2556 | struct thread *awakened) |
| 2557 | { |
| 2558 | struct thread *thread; |
| 2559 | char tstr[64]; |
| 2560 | |
| 2561 | thread = machine__findnew_thread(machine, sample->pid, sample->tid); |
| 2562 | if (thread == NULL) |
| 2563 | return; |
| 2564 | |
| 2565 | /* show wakeup unless both awakee and awaker are filtered */ |
| 2566 | if (timehist_skip_sample(sched, thread, evsel, sample) && |
| 2567 | timehist_skip_sample(sched, awakened, evsel, sample)) { |
| 2568 | return; |
| 2569 | } |
| 2570 | |
| 2571 | timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); |
| 2572 | printf("%15s [%04d] ", tstr, sample->cpu); |
| 2573 | if (sched->show_cpu_visual) |
| 2574 | printf(" %*s ", sched->max_cpu.cpu + 1, ""); |
| 2575 | |
| 2576 | printf(" %-*s ", comm_width, timehist_get_commstr(thread)); |
| 2577 | |
| 2578 | /* dt spacer */ |
| 2579 | printf(" %9s %9s %9s ", "", "", ""); |
| 2580 | |
| 2581 | printf("awakened: %s", timehist_get_commstr(awakened)); |
| 2582 | |
| 2583 | printf("\n"); |
| 2584 | } |
| 2585 | |
| 2586 | static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused, |
| 2587 | union perf_event *event __maybe_unused, |
| 2588 | struct evsel *evsel __maybe_unused, |
| 2589 | struct perf_sample *sample __maybe_unused, |
| 2590 | struct machine *machine __maybe_unused) |
| 2591 | { |
| 2592 | return 0; |
| 2593 | } |
| 2594 | |
| 2595 | static int timehist_sched_wakeup_event(const struct perf_tool *tool, |
| 2596 | union perf_event *event __maybe_unused, |
| 2597 | struct evsel *evsel, |
| 2598 | struct perf_sample *sample, |
| 2599 | struct machine *machine) |
| 2600 | { |
| 2601 | struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| 2602 | struct thread *thread; |
| 2603 | struct thread_runtime *tr = NULL; |
| 2604 | /* want pid of awakened task not pid in sample */ |
| 2605 | const u32 pid = evsel__intval(evsel, sample, "pid"); |
| 2606 | |
| 2607 | thread = machine__findnew_thread(machine, 0, pid); |
| 2608 | if (thread == NULL) |
| 2609 | return -1; |
| 2610 | |
| 2611 | tr = thread__get_runtime(thread); |
| 2612 | if (tr == NULL) |
| 2613 | return -1; |
| 2614 | |
| 2615 | if (tr->ready_to_run == 0) |
| 2616 | tr->ready_to_run = sample->time; |
| 2617 | |
| 2618 | /* show wakeups if requested */ |
| 2619 | if (sched->show_wakeups && |
| 2620 | !perf_time__skip_sample(&sched->ptime, sample->time)) |
| 2621 | timehist_print_wakeup_event(sched, evsel, sample, machine, thread); |
| 2622 | |
| 2623 | return 0; |
| 2624 | } |
| 2625 | |
| 2626 | static void timehist_print_migration_event(struct perf_sched *sched, |
| 2627 | struct evsel *evsel, |
| 2628 | struct perf_sample *sample, |
| 2629 | struct machine *machine, |
| 2630 | struct thread *migrated) |
| 2631 | { |
| 2632 | struct thread *thread; |
| 2633 | char tstr[64]; |
| 2634 | u32 max_cpus; |
| 2635 | u32 ocpu, dcpu; |
| 2636 | |
| 2637 | if (sched->summary_only) |
| 2638 | return; |
| 2639 | |
| 2640 | max_cpus = sched->max_cpu.cpu + 1; |
| 2641 | ocpu = evsel__intval(evsel, sample, "orig_cpu"); |
| 2642 | dcpu = evsel__intval(evsel, sample, "dest_cpu"); |
| 2643 | |
| 2644 | thread = machine__findnew_thread(machine, sample->pid, sample->tid); |
| 2645 | if (thread == NULL) |
| 2646 | return; |
| 2647 | |
| 2648 | if (timehist_skip_sample(sched, thread, evsel, sample) && |
| 2649 | timehist_skip_sample(sched, migrated, evsel, sample)) { |
| 2650 | return; |
| 2651 | } |
| 2652 | |
| 2653 | timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); |
| 2654 | printf("%15s [%04d] ", tstr, sample->cpu); |
| 2655 | |
| 2656 | if (sched->show_cpu_visual) { |
| 2657 | u32 i; |
| 2658 | char c; |
| 2659 | |
| 2660 | printf(" "); |
| 2661 | for (i = 0; i < max_cpus; ++i) { |
| 2662 | c = (i == sample->cpu) ? 'm' : ' '; |
| 2663 | printf("%c", c); |
| 2664 | } |
| 2665 | printf(" "); |
| 2666 | } |
| 2667 | |
| 2668 | printf(" %-*s ", comm_width, timehist_get_commstr(thread)); |
| 2669 | |
| 2670 | /* dt spacer */ |
| 2671 | printf(" %9s %9s %9s ", "", "", ""); |
| 2672 | |
| 2673 | printf("migrated: %s", timehist_get_commstr(migrated)); |
| 2674 | printf(" cpu %d => %d", ocpu, dcpu); |
| 2675 | |
| 2676 | printf("\n"); |
| 2677 | } |
| 2678 | |
| 2679 | static int timehist_migrate_task_event(const struct perf_tool *tool, |
| 2680 | union perf_event *event __maybe_unused, |
| 2681 | struct evsel *evsel, |
| 2682 | struct perf_sample *sample, |
| 2683 | struct machine *machine) |
| 2684 | { |
| 2685 | struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| 2686 | struct thread *thread; |
| 2687 | struct thread_runtime *tr = NULL; |
| 2688 | /* want pid of migrated task not pid in sample */ |
| 2689 | const u32 pid = evsel__intval(evsel, sample, "pid"); |
| 2690 | |
| 2691 | thread = machine__findnew_thread(machine, 0, pid); |
| 2692 | if (thread == NULL) |
| 2693 | return -1; |
| 2694 | |
| 2695 | tr = thread__get_runtime(thread); |
| 2696 | if (tr == NULL) |
| 2697 | return -1; |
| 2698 | |
| 2699 | tr->migrations++; |
| 2700 | tr->migrated = sample->time; |
| 2701 | |
| 2702 | /* show migrations if requested */ |
| 2703 | if (sched->show_migrations) { |
| 2704 | timehist_print_migration_event(sched, evsel, sample, |
| 2705 | machine, thread); |
| 2706 | } |
| 2707 | |
| 2708 | return 0; |
| 2709 | } |
| 2710 | |
| 2711 | static void timehist_update_task_prio(struct evsel *evsel, |
| 2712 | struct perf_sample *sample, |
| 2713 | struct machine *machine) |
| 2714 | { |
| 2715 | struct thread *thread; |
| 2716 | struct thread_runtime *tr = NULL; |
| 2717 | const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); |
| 2718 | const u32 next_prio = evsel__intval(evsel, sample, "next_prio"); |
| 2719 | |
| 2720 | if (next_pid == 0) |
| 2721 | thread = get_idle_thread(sample->cpu); |
| 2722 | else |
| 2723 | thread = machine__findnew_thread(machine, -1, next_pid); |
| 2724 | |
| 2725 | if (thread == NULL) |
| 2726 | return; |
| 2727 | |
| 2728 | tr = thread__get_runtime(thread); |
| 2729 | if (tr == NULL) |
| 2730 | return; |
| 2731 | |
| 2732 | tr->prio = next_prio; |
| 2733 | } |
| 2734 | |
| 2735 | static int timehist_sched_change_event(const struct perf_tool *tool, |
| 2736 | union perf_event *event, |
| 2737 | struct evsel *evsel, |
| 2738 | struct perf_sample *sample, |
| 2739 | struct machine *machine) |
| 2740 | { |
| 2741 | struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| 2742 | struct perf_time_interval *ptime = &sched->ptime; |
| 2743 | struct addr_location al; |
| 2744 | struct thread *thread; |
| 2745 | struct thread_runtime *tr = NULL; |
| 2746 | u64 tprev, t = sample->time; |
| 2747 | int rc = 0; |
| 2748 | const char state = evsel__taskstate(evsel, sample, "prev_state"); |
| 2749 | |
| 2750 | addr_location__init(&al); |
| 2751 | if (machine__resolve(machine, &al, sample) < 0) { |
| 2752 | pr_err("problem processing %d event. skipping it\n", |
| 2753 | event->header.type); |
| 2754 | rc = -1; |
| 2755 | goto out; |
| 2756 | } |
| 2757 | |
| 2758 | if (sched->show_prio || sched->prio_str) |
| 2759 | timehist_update_task_prio(evsel, sample, machine); |
| 2760 | |
| 2761 | thread = timehist_get_thread(sched, sample, machine, evsel); |
| 2762 | if (thread == NULL) { |
| 2763 | rc = -1; |
| 2764 | goto out; |
| 2765 | } |
| 2766 | |
| 2767 | if (timehist_skip_sample(sched, thread, evsel, sample)) |
| 2768 | goto out; |
| 2769 | |
| 2770 | tr = thread__get_runtime(thread); |
| 2771 | if (tr == NULL) { |
| 2772 | rc = -1; |
| 2773 | goto out; |
| 2774 | } |
| 2775 | |
| 2776 | tprev = evsel__get_time(evsel, sample->cpu); |
| 2777 | |
| 2778 | /* |
| 2779 | * If start time given: |
| 2780 | * - sample time is under window user cares about - skip sample |
| 2781 | * - tprev is under window user cares about - reset to start of window |
| 2782 | */ |
| 2783 | if (ptime->start && ptime->start > t) |
| 2784 | goto out; |
| 2785 | |
| 2786 | if (tprev && ptime->start > tprev) |
| 2787 | tprev = ptime->start; |
| 2788 | |
| 2789 | /* |
| 2790 | * If end time given: |
| 2791 | * - previous sched event is out of window - we are done |
| 2792 | * - sample time is beyond window user cares about - reset it |
| 2793 | * to close out stats for time window interest |
| 2794 | * - If tprev is 0, that is, sched_in event for current task is |
| 2795 | * not recorded, cannot determine whether sched_in event is |
| 2796 | * within time window interest - ignore it |
| 2797 | */ |
| 2798 | if (ptime->end) { |
| 2799 | if (!tprev || tprev > ptime->end) |
| 2800 | goto out; |
| 2801 | |
| 2802 | if (t > ptime->end) |
| 2803 | t = ptime->end; |
| 2804 | } |
| 2805 | |
| 2806 | if (!sched->idle_hist || thread__tid(thread) == 0) { |
| 2807 | if (!cpu_list || test_bit(sample->cpu, cpu_bitmap)) |
| 2808 | timehist_update_runtime_stats(tr, t, tprev); |
| 2809 | |
| 2810 | if (sched->idle_hist) { |
| 2811 | struct idle_thread_runtime *itr = (void *)tr; |
| 2812 | struct thread_runtime *last_tr; |
| 2813 | |
| 2814 | if (itr->last_thread == NULL) |
| 2815 | goto out; |
| 2816 | |
| 2817 | /* add current idle time as last thread's runtime */ |
| 2818 | last_tr = thread__get_runtime(itr->last_thread); |
| 2819 | if (last_tr == NULL) |
| 2820 | goto out; |
| 2821 | |
| 2822 | timehist_update_runtime_stats(last_tr, t, tprev); |
| 2823 | /* |
| 2824 | * remove delta time of last thread as it's not updated |
| 2825 | * and otherwise it will show an invalid value next |
| 2826 | * time. we only care total run time and run stat. |
| 2827 | */ |
| 2828 | last_tr->dt_run = 0; |
| 2829 | last_tr->dt_delay = 0; |
| 2830 | last_tr->dt_sleep = 0; |
| 2831 | last_tr->dt_iowait = 0; |
| 2832 | last_tr->dt_preempt = 0; |
| 2833 | |
| 2834 | if (itr->cursor.nr) |
| 2835 | callchain_append(&itr->callchain, &itr->cursor, t - tprev); |
| 2836 | |
| 2837 | itr->last_thread = NULL; |
| 2838 | } |
| 2839 | |
| 2840 | if (!sched->summary_only) |
| 2841 | timehist_print_sample(sched, evsel, sample, &al, thread, t, state); |
| 2842 | } |
| 2843 | |
| 2844 | out: |
| 2845 | if (sched->hist_time.start == 0 && t >= ptime->start) |
| 2846 | sched->hist_time.start = t; |
| 2847 | if (ptime->end == 0 || t <= ptime->end) |
| 2848 | sched->hist_time.end = t; |
| 2849 | |
| 2850 | if (tr) { |
| 2851 | /* time of this sched_switch event becomes last time task seen */ |
| 2852 | tr->last_time = sample->time; |
| 2853 | |
| 2854 | /* last state is used to determine where to account wait time */ |
| 2855 | tr->last_state = state; |
| 2856 | |
| 2857 | /* sched out event for task so reset ready to run time and migrated time */ |
| 2858 | if (state == 'R') |
| 2859 | tr->ready_to_run = t; |
| 2860 | else |
| 2861 | tr->ready_to_run = 0; |
| 2862 | |
| 2863 | tr->migrated = 0; |
| 2864 | } |
| 2865 | |
| 2866 | evsel__save_time(evsel, sample->time, sample->cpu); |
| 2867 | |
| 2868 | addr_location__exit(&al); |
| 2869 | return rc; |
| 2870 | } |
| 2871 | |
| 2872 | static int timehist_sched_switch_event(const struct perf_tool *tool, |
| 2873 | union perf_event *event, |
| 2874 | struct evsel *evsel, |
| 2875 | struct perf_sample *sample, |
| 2876 | struct machine *machine __maybe_unused) |
| 2877 | { |
| 2878 | return timehist_sched_change_event(tool, event, evsel, sample, machine); |
| 2879 | } |
| 2880 | |
| 2881 | static int process_lost(const struct perf_tool *tool __maybe_unused, |
| 2882 | union perf_event *event, |
| 2883 | struct perf_sample *sample, |
| 2884 | struct machine *machine __maybe_unused) |
| 2885 | { |
| 2886 | char tstr[64]; |
| 2887 | |
| 2888 | timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); |
| 2889 | printf("%15s ", tstr); |
| 2890 | printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu); |
| 2891 | |
| 2892 | return 0; |
| 2893 | } |
| 2894 | |
| 2895 | |
| 2896 | static void print_thread_runtime(struct thread *t, |
| 2897 | struct thread_runtime *r) |
| 2898 | { |
| 2899 | double mean = avg_stats(&r->run_stats); |
| 2900 | float stddev; |
| 2901 | |
| 2902 | printf("%*s %5d %9" PRIu64 " ", |
| 2903 | comm_width, timehist_get_commstr(t), thread__ppid(t), |
| 2904 | (u64) r->run_stats.n); |
| 2905 | |
| 2906 | print_sched_time(r->total_run_time, 8); |
| 2907 | stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); |
| 2908 | print_sched_time(r->run_stats.min, 6); |
| 2909 | printf(" "); |
| 2910 | print_sched_time((u64) mean, 6); |
| 2911 | printf(" "); |
| 2912 | print_sched_time(r->run_stats.max, 6); |
| 2913 | printf(" "); |
| 2914 | printf("%5.2f", stddev); |
| 2915 | printf(" %5" PRIu64, r->migrations); |
| 2916 | printf("\n"); |
| 2917 | } |
| 2918 | |
| 2919 | static void print_thread_waittime(struct thread *t, |
| 2920 | struct thread_runtime *r) |
| 2921 | { |
| 2922 | printf("%*s %5d %9" PRIu64 " ", |
| 2923 | comm_width, timehist_get_commstr(t), thread__ppid(t), |
| 2924 | (u64) r->run_stats.n); |
| 2925 | |
| 2926 | print_sched_time(r->total_run_time, 8); |
| 2927 | print_sched_time(r->total_sleep_time, 6); |
| 2928 | printf(" "); |
| 2929 | print_sched_time(r->total_iowait_time, 6); |
| 2930 | printf(" "); |
| 2931 | print_sched_time(r->total_preempt_time, 6); |
| 2932 | printf(" "); |
| 2933 | print_sched_time(r->total_delay_time, 6); |
| 2934 | printf("\n"); |
| 2935 | } |
| 2936 | |
| 2937 | struct total_run_stats { |
| 2938 | struct perf_sched *sched; |
| 2939 | u64 sched_count; |
| 2940 | u64 task_count; |
| 2941 | u64 total_run_time; |
| 2942 | }; |
| 2943 | |
| 2944 | static int show_thread_runtime(struct thread *t, void *priv) |
| 2945 | { |
| 2946 | struct total_run_stats *stats = priv; |
| 2947 | struct thread_runtime *r; |
| 2948 | |
| 2949 | if (thread__is_filtered(t)) |
| 2950 | return 0; |
| 2951 | |
| 2952 | r = thread__priv(t); |
| 2953 | if (r && r->run_stats.n) { |
| 2954 | stats->task_count++; |
| 2955 | stats->sched_count += r->run_stats.n; |
| 2956 | stats->total_run_time += r->total_run_time; |
| 2957 | |
| 2958 | if (stats->sched->show_state) |
| 2959 | print_thread_waittime(t, r); |
| 2960 | else |
| 2961 | print_thread_runtime(t, r); |
| 2962 | } |
| 2963 | |
| 2964 | return 0; |
| 2965 | } |
| 2966 | |
| 2967 | static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) |
| 2968 | { |
| 2969 | const char *sep = " <- "; |
| 2970 | struct callchain_list *chain; |
| 2971 | size_t ret = 0; |
| 2972 | char bf[1024]; |
| 2973 | bool first; |
| 2974 | |
| 2975 | if (node == NULL) |
| 2976 | return 0; |
| 2977 | |
| 2978 | ret = callchain__fprintf_folded(fp, node->parent); |
| 2979 | first = (ret == 0); |
| 2980 | |
| 2981 | list_for_each_entry(chain, &node->val, list) { |
| 2982 | if (chain->ip >= PERF_CONTEXT_MAX) |
| 2983 | continue; |
| 2984 | if (chain->ms.sym && chain->ms.sym->ignore) |
| 2985 | continue; |
| 2986 | ret += fprintf(fp, "%s%s", first ? "" : sep, |
| 2987 | callchain_list__sym_name(chain, bf, sizeof(bf), |
| 2988 | false)); |
| 2989 | first = false; |
| 2990 | } |
| 2991 | |
| 2992 | return ret; |
| 2993 | } |
| 2994 | |
| 2995 | static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root) |
| 2996 | { |
| 2997 | size_t ret = 0; |
| 2998 | FILE *fp = stdout; |
| 2999 | struct callchain_node *chain; |
| 3000 | struct rb_node *rb_node = rb_first_cached(root); |
| 3001 | |
| 3002 | printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); |
| 3003 | printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, |
| 3004 | graph_dotted_line); |
| 3005 | |
| 3006 | while (rb_node) { |
| 3007 | chain = rb_entry(rb_node, struct callchain_node, rb_node); |
| 3008 | rb_node = rb_next(rb_node); |
| 3009 | |
| 3010 | ret += fprintf(fp, " "); |
| 3011 | print_sched_time(chain->hit, 12); |
| 3012 | ret += 16; /* print_sched_time returns 2nd arg + 4 */ |
| 3013 | ret += fprintf(fp, " %8d ", chain->count); |
| 3014 | ret += callchain__fprintf_folded(fp, chain); |
| 3015 | ret += fprintf(fp, "\n"); |
| 3016 | } |
| 3017 | |
| 3018 | return ret; |
| 3019 | } |
| 3020 | |
| 3021 | static void timehist_print_summary(struct perf_sched *sched, |
| 3022 | struct perf_session *session) |
| 3023 | { |
| 3024 | struct machine *m = &session->machines.host; |
| 3025 | struct total_run_stats totals; |
| 3026 | u64 task_count; |
| 3027 | struct thread *t; |
| 3028 | struct thread_runtime *r; |
| 3029 | int i; |
| 3030 | u64 hist_time = sched->hist_time.end - sched->hist_time.start; |
| 3031 | |
| 3032 | memset(&totals, 0, sizeof(totals)); |
| 3033 | totals.sched = sched; |
| 3034 | |
| 3035 | if (sched->idle_hist) { |
| 3036 | printf("\nIdle-time summary\n"); |
| 3037 | printf("%*s parent sched-out ", comm_width, "comm"); |
| 3038 | printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); |
| 3039 | } else if (sched->show_state) { |
| 3040 | printf("\nWait-time summary\n"); |
| 3041 | printf("%*s parent sched-in ", comm_width, "comm"); |
| 3042 | printf(" run-time sleep iowait preempt delay\n"); |
| 3043 | } else { |
| 3044 | printf("\nRuntime summary\n"); |
| 3045 | printf("%*s parent sched-in ", comm_width, "comm"); |
| 3046 | printf(" run-time min-run avg-run max-run stddev migrations\n"); |
| 3047 | } |
| 3048 | printf("%*s (count) ", comm_width, ""); |
| 3049 | printf(" (msec) (msec) (msec) (msec) %s\n", |
| 3050 | sched->show_state ? "(msec)" : "%"); |
| 3051 | printf("%.117s\n", graph_dotted_line); |
| 3052 | |
| 3053 | machine__for_each_thread(m, show_thread_runtime, &totals); |
| 3054 | task_count = totals.task_count; |
| 3055 | if (!task_count) |
| 3056 | printf("<no still running tasks>\n"); |
| 3057 | |
| 3058 | /* CPU idle stats not tracked when samples were skipped */ |
| 3059 | if (sched->skipped_samples && !sched->idle_hist) |
| 3060 | return; |
| 3061 | |
| 3062 | printf("\nIdle stats:\n"); |
| 3063 | for (i = 0; i < idle_max_cpu; ++i) { |
| 3064 | if (cpu_list && !test_bit(i, cpu_bitmap)) |
| 3065 | continue; |
| 3066 | |
| 3067 | t = idle_threads[i]; |
| 3068 | if (!t) |
| 3069 | continue; |
| 3070 | |
| 3071 | r = thread__priv(t); |
| 3072 | if (r && r->run_stats.n) { |
| 3073 | totals.sched_count += r->run_stats.n; |
| 3074 | printf(" CPU %2d idle for ", i); |
| 3075 | print_sched_time(r->total_run_time, 6); |
| 3076 | printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); |
| 3077 | } else |
| 3078 | printf(" CPU %2d idle entire time window\n", i); |
| 3079 | } |
| 3080 | |
| 3081 | if (sched->idle_hist && sched->show_callchain) { |
| 3082 | callchain_param.mode = CHAIN_FOLDED; |
| 3083 | callchain_param.value = CCVAL_PERIOD; |
| 3084 | |
| 3085 | callchain_register_param(&callchain_param); |
| 3086 | |
| 3087 | printf("\nIdle stats by callchain:\n"); |
| 3088 | for (i = 0; i < idle_max_cpu; ++i) { |
| 3089 | struct idle_thread_runtime *itr; |
| 3090 | |
| 3091 | t = idle_threads[i]; |
| 3092 | if (!t) |
| 3093 | continue; |
| 3094 | |
| 3095 | itr = thread__priv(t); |
| 3096 | if (itr == NULL) |
| 3097 | continue; |
| 3098 | |
| 3099 | callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain, |
| 3100 | 0, &callchain_param); |
| 3101 | |
| 3102 | printf(" CPU %2d:", i); |
| 3103 | print_sched_time(itr->tr.total_run_time, 6); |
| 3104 | printf(" msec\n"); |
| 3105 | timehist_print_idlehist_callchain(&itr->sorted_root); |
| 3106 | printf("\n"); |
| 3107 | } |
| 3108 | } |
| 3109 | |
| 3110 | printf("\n" |
| 3111 | " Total number of unique tasks: %" PRIu64 "\n" |
| 3112 | "Total number of context switches: %" PRIu64 "\n", |
| 3113 | totals.task_count, totals.sched_count); |
| 3114 | |
| 3115 | printf(" Total run time (msec): "); |
| 3116 | print_sched_time(totals.total_run_time, 2); |
| 3117 | printf("\n"); |
| 3118 | |
| 3119 | printf(" Total scheduling time (msec): "); |
| 3120 | print_sched_time(hist_time, 2); |
| 3121 | printf(" (x %d)\n", sched->max_cpu.cpu); |
| 3122 | } |
| 3123 | |
| 3124 | typedef int (*sched_handler)(const struct perf_tool *tool, |
| 3125 | union perf_event *event, |
| 3126 | struct evsel *evsel, |
| 3127 | struct perf_sample *sample, |
| 3128 | struct machine *machine); |
| 3129 | |
| 3130 | static int perf_timehist__process_sample(const struct perf_tool *tool, |
| 3131 | union perf_event *event, |
| 3132 | struct perf_sample *sample, |
| 3133 | struct evsel *evsel, |
| 3134 | struct machine *machine) |
| 3135 | { |
| 3136 | struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| 3137 | int err = 0; |
| 3138 | struct perf_cpu this_cpu = { |
| 3139 | .cpu = sample->cpu, |
| 3140 | }; |
| 3141 | |
| 3142 | if (this_cpu.cpu > sched->max_cpu.cpu) |
| 3143 | sched->max_cpu = this_cpu; |
| 3144 | |
| 3145 | if (evsel->handler != NULL) { |
| 3146 | sched_handler f = evsel->handler; |
| 3147 | |
| 3148 | err = f(tool, event, evsel, sample, machine); |
| 3149 | } |
| 3150 | |
| 3151 | return err; |
| 3152 | } |
| 3153 | |
| 3154 | static int timehist_check_attr(struct perf_sched *sched, |
| 3155 | struct evlist *evlist) |
| 3156 | { |
| 3157 | struct evsel *evsel; |
| 3158 | struct evsel_runtime *er; |
| 3159 | |
| 3160 | list_for_each_entry(evsel, &evlist->core.entries, core.node) { |
| 3161 | er = evsel__get_runtime(evsel); |
| 3162 | if (er == NULL) { |
| 3163 | pr_err("Failed to allocate memory for evsel runtime data\n"); |
| 3164 | return -1; |
| 3165 | } |
| 3166 | |
| 3167 | /* only need to save callchain related to sched_switch event */ |
| 3168 | if (sched->show_callchain && |
| 3169 | evsel__name_is(evsel, "sched:sched_switch") && |
| 3170 | !evsel__has_callchain(evsel)) { |
| 3171 | pr_info("Samples of sched_switch event do not have callchains.\n"); |
| 3172 | sched->show_callchain = 0; |
| 3173 | symbol_conf.use_callchain = 0; |
| 3174 | } |
| 3175 | } |
| 3176 | |
| 3177 | return 0; |
| 3178 | } |
| 3179 | |
| 3180 | static int timehist_parse_prio_str(struct perf_sched *sched) |
| 3181 | { |
| 3182 | char *p; |
| 3183 | unsigned long start_prio, end_prio; |
| 3184 | const char *str = sched->prio_str; |
| 3185 | |
| 3186 | if (!str) |
| 3187 | return 0; |
| 3188 | |
| 3189 | while (isdigit(*str)) { |
| 3190 | p = NULL; |
| 3191 | start_prio = strtoul(str, &p, 0); |
| 3192 | if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-')) |
| 3193 | return -1; |
| 3194 | |
| 3195 | if (*p == '-') { |
| 3196 | str = ++p; |
| 3197 | p = NULL; |
| 3198 | end_prio = strtoul(str, &p, 0); |
| 3199 | |
| 3200 | if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ',')) |
| 3201 | return -1; |
| 3202 | |
| 3203 | if (end_prio < start_prio) |
| 3204 | return -1; |
| 3205 | } else { |
| 3206 | end_prio = start_prio; |
| 3207 | } |
| 3208 | |
| 3209 | for (; start_prio <= end_prio; start_prio++) |
| 3210 | __set_bit(start_prio, sched->prio_bitmap); |
| 3211 | |
| 3212 | if (*p) |
| 3213 | ++p; |
| 3214 | |
| 3215 | str = p; |
| 3216 | } |
| 3217 | |
| 3218 | return 0; |
| 3219 | } |
| 3220 | |
| 3221 | static int perf_sched__timehist(struct perf_sched *sched) |
| 3222 | { |
| 3223 | struct evsel_str_handler handlers[] = { |
| 3224 | { "sched:sched_switch", timehist_sched_switch_event, }, |
| 3225 | { "sched:sched_wakeup", timehist_sched_wakeup_event, }, |
| 3226 | { "sched:sched_waking", timehist_sched_wakeup_event, }, |
| 3227 | { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, |
| 3228 | }; |
| 3229 | const struct evsel_str_handler migrate_handlers[] = { |
| 3230 | { "sched:sched_migrate_task", timehist_migrate_task_event, }, |
| 3231 | }; |
| 3232 | struct perf_data data = { |
| 3233 | .path = input_name, |
| 3234 | .mode = PERF_DATA_MODE_READ, |
| 3235 | .force = sched->force, |
| 3236 | }; |
| 3237 | |
| 3238 | struct perf_session *session; |
| 3239 | struct evlist *evlist; |
| 3240 | int err = -1; |
| 3241 | |
| 3242 | /* |
| 3243 | * event handlers for timehist option |
| 3244 | */ |
| 3245 | sched->tool.sample = perf_timehist__process_sample; |
| 3246 | sched->tool.mmap = perf_event__process_mmap; |
| 3247 | sched->tool.comm = perf_event__process_comm; |
| 3248 | sched->tool.exit = perf_event__process_exit; |
| 3249 | sched->tool.fork = perf_event__process_fork; |
| 3250 | sched->tool.lost = process_lost; |
| 3251 | sched->tool.attr = perf_event__process_attr; |
| 3252 | sched->tool.tracing_data = perf_event__process_tracing_data; |
| 3253 | sched->tool.build_id = perf_event__process_build_id; |
| 3254 | |
| 3255 | sched->tool.ordering_requires_timestamps = true; |
| 3256 | |
| 3257 | symbol_conf.use_callchain = sched->show_callchain; |
| 3258 | |
| 3259 | session = perf_session__new(&data, &sched->tool); |
| 3260 | if (IS_ERR(session)) |
| 3261 | return PTR_ERR(session); |
| 3262 | |
| 3263 | if (cpu_list) { |
| 3264 | err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap); |
| 3265 | if (err < 0) |
| 3266 | goto out; |
| 3267 | } |
| 3268 | |
| 3269 | evlist = session->evlist; |
| 3270 | |
| 3271 | symbol__init(&session->header.env); |
| 3272 | |
| 3273 | if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { |
| 3274 | pr_err("Invalid time string\n"); |
| 3275 | err = -EINVAL; |
| 3276 | goto out; |
| 3277 | } |
| 3278 | |
| 3279 | if (timehist_check_attr(sched, evlist) != 0) |
| 3280 | goto out; |
| 3281 | |
| 3282 | if (timehist_parse_prio_str(sched) != 0) { |
| 3283 | pr_err("Invalid prio string\n"); |
| 3284 | goto out; |
| 3285 | } |
| 3286 | |
| 3287 | setup_pager(); |
| 3288 | |
| 3289 | /* prefer sched_waking if it is captured */ |
| 3290 | if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) |
| 3291 | handlers[1].handler = timehist_sched_wakeup_ignore; |
| 3292 | |
| 3293 | /* setup per-evsel handlers */ |
| 3294 | if (perf_session__set_tracepoints_handlers(session, handlers)) |
| 3295 | goto out; |
| 3296 | |
| 3297 | /* sched_switch event at a minimum needs to exist */ |
| 3298 | if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) { |
| 3299 | pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); |
| 3300 | goto out; |
| 3301 | } |
| 3302 | |
| 3303 | if ((sched->show_migrations || sched->pre_migrations) && |
| 3304 | perf_session__set_tracepoints_handlers(session, migrate_handlers)) |
| 3305 | goto out; |
| 3306 | |
| 3307 | /* pre-allocate struct for per-CPU idle stats */ |
| 3308 | sched->max_cpu.cpu = session->header.env.nr_cpus_online; |
| 3309 | if (sched->max_cpu.cpu == 0) |
| 3310 | sched->max_cpu.cpu = 4; |
| 3311 | if (init_idle_threads(sched->max_cpu.cpu)) |
| 3312 | goto out; |
| 3313 | |
| 3314 | /* summary_only implies summary option, but don't overwrite summary if set */ |
| 3315 | if (sched->summary_only) |
| 3316 | sched->summary = sched->summary_only; |
| 3317 | |
| 3318 | if (!sched->summary_only) |
| 3319 | timehist_header(sched); |
| 3320 | |
| 3321 | err = perf_session__process_events(session); |
| 3322 | if (err) { |
| 3323 | pr_err("Failed to process events, error %d", err); |
| 3324 | goto out; |
| 3325 | } |
| 3326 | |
| 3327 | sched->nr_events = evlist->stats.nr_events[0]; |
| 3328 | sched->nr_lost_events = evlist->stats.total_lost; |
| 3329 | sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; |
| 3330 | |
| 3331 | if (sched->summary) |
| 3332 | timehist_print_summary(sched, session); |
| 3333 | |
| 3334 | out: |
| 3335 | free_idle_threads(); |
| 3336 | perf_session__delete(session); |
| 3337 | |
| 3338 | return err; |
| 3339 | } |
| 3340 | |
| 3341 | |
| 3342 | static void print_bad_events(struct perf_sched *sched) |
| 3343 | { |
| 3344 | if (sched->nr_unordered_timestamps && sched->nr_timestamps) { |
| 3345 | printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", |
| 3346 | (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, |
| 3347 | sched->nr_unordered_timestamps, sched->nr_timestamps); |
| 3348 | } |
| 3349 | if (sched->nr_lost_events && sched->nr_events) { |
| 3350 | printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", |
| 3351 | (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, |
| 3352 | sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); |
| 3353 | } |
| 3354 | if (sched->nr_context_switch_bugs && sched->nr_timestamps) { |
| 3355 | printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", |
| 3356 | (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, |
| 3357 | sched->nr_context_switch_bugs, sched->nr_timestamps); |
| 3358 | if (sched->nr_lost_events) |
| 3359 | printf(" (due to lost events?)"); |
| 3360 | printf("\n"); |
| 3361 | } |
| 3362 | } |
| 3363 | |
| 3364 | static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data) |
| 3365 | { |
| 3366 | struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; |
| 3367 | struct work_atoms *this; |
| 3368 | const char *comm = thread__comm_str(data->thread), *this_comm; |
| 3369 | bool leftmost = true; |
| 3370 | |
| 3371 | while (*new) { |
| 3372 | int cmp; |
| 3373 | |
| 3374 | this = container_of(*new, struct work_atoms, node); |
| 3375 | parent = *new; |
| 3376 | |
| 3377 | this_comm = thread__comm_str(this->thread); |
| 3378 | cmp = strcmp(comm, this_comm); |
| 3379 | if (cmp > 0) { |
| 3380 | new = &((*new)->rb_left); |
| 3381 | } else if (cmp < 0) { |
| 3382 | new = &((*new)->rb_right); |
| 3383 | leftmost = false; |
| 3384 | } else { |
| 3385 | this->num_merged++; |
| 3386 | this->total_runtime += data->total_runtime; |
| 3387 | this->nb_atoms += data->nb_atoms; |
| 3388 | this->total_lat += data->total_lat; |
| 3389 | list_splice(&data->work_list, &this->work_list); |
| 3390 | if (this->max_lat < data->max_lat) { |
| 3391 | this->max_lat = data->max_lat; |
| 3392 | this->max_lat_start = data->max_lat_start; |
| 3393 | this->max_lat_end = data->max_lat_end; |
| 3394 | } |
| 3395 | zfree(&data); |
| 3396 | return; |
| 3397 | } |
| 3398 | } |
| 3399 | |
| 3400 | data->num_merged++; |
| 3401 | rb_link_node(&data->node, parent, new); |
| 3402 | rb_insert_color_cached(&data->node, root, leftmost); |
| 3403 | } |
| 3404 | |
| 3405 | static void perf_sched__merge_lat(struct perf_sched *sched) |
| 3406 | { |
| 3407 | struct work_atoms *data; |
| 3408 | struct rb_node *node; |
| 3409 | |
| 3410 | if (sched->skip_merge) |
| 3411 | return; |
| 3412 | |
| 3413 | while ((node = rb_first_cached(&sched->atom_root))) { |
| 3414 | rb_erase_cached(node, &sched->atom_root); |
| 3415 | data = rb_entry(node, struct work_atoms, node); |
| 3416 | __merge_work_atoms(&sched->merged_atom_root, data); |
| 3417 | } |
| 3418 | } |
| 3419 | |
| 3420 | static int setup_cpus_switch_event(struct perf_sched *sched) |
| 3421 | { |
| 3422 | unsigned int i; |
| 3423 | |
| 3424 | sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched))); |
| 3425 | if (!sched->cpu_last_switched) |
| 3426 | return -1; |
| 3427 | |
| 3428 | sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid))); |
| 3429 | if (!sched->curr_pid) { |
| 3430 | zfree(&sched->cpu_last_switched); |
| 3431 | return -1; |
| 3432 | } |
| 3433 | |
| 3434 | for (i = 0; i < MAX_CPUS; i++) |
| 3435 | sched->curr_pid[i] = -1; |
| 3436 | |
| 3437 | return 0; |
| 3438 | } |
| 3439 | |
| 3440 | static void free_cpus_switch_event(struct perf_sched *sched) |
| 3441 | { |
| 3442 | zfree(&sched->curr_pid); |
| 3443 | zfree(&sched->cpu_last_switched); |
| 3444 | } |
| 3445 | |
| 3446 | static int perf_sched__lat(struct perf_sched *sched) |
| 3447 | { |
| 3448 | int rc = -1; |
| 3449 | struct rb_node *next; |
| 3450 | |
| 3451 | setup_pager(); |
| 3452 | |
| 3453 | if (setup_cpus_switch_event(sched)) |
| 3454 | return rc; |
| 3455 | |
| 3456 | if (perf_sched__read_events(sched)) |
| 3457 | goto out_free_cpus_switch_event; |
| 3458 | |
| 3459 | perf_sched__merge_lat(sched); |
| 3460 | perf_sched__sort_lat(sched); |
| 3461 | |
| 3462 | printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n"); |
| 3463 | printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n"); |
| 3464 | printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n"); |
| 3465 | |
| 3466 | next = rb_first_cached(&sched->sorted_atom_root); |
| 3467 | |
| 3468 | while (next) { |
| 3469 | struct work_atoms *work_list; |
| 3470 | |
| 3471 | work_list = rb_entry(next, struct work_atoms, node); |
| 3472 | output_lat_thread(sched, work_list); |
| 3473 | next = rb_next(next); |
| 3474 | thread__zput(work_list->thread); |
| 3475 | } |
| 3476 | |
| 3477 | printf(" -----------------------------------------------------------------------------------------------------------------\n"); |
| 3478 | printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", |
| 3479 | (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); |
| 3480 | |
| 3481 | printf(" ---------------------------------------------------\n"); |
| 3482 | |
| 3483 | print_bad_events(sched); |
| 3484 | printf("\n"); |
| 3485 | |
| 3486 | rc = 0; |
| 3487 | |
| 3488 | out_free_cpus_switch_event: |
| 3489 | free_cpus_switch_event(sched); |
| 3490 | return rc; |
| 3491 | } |
| 3492 | |
| 3493 | static int setup_map_cpus(struct perf_sched *sched) |
| 3494 | { |
| 3495 | sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF); |
| 3496 | |
| 3497 | if (sched->map.comp) { |
| 3498 | sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int)); |
| 3499 | if (!sched->map.comp_cpus) |
| 3500 | return -1; |
| 3501 | } |
| 3502 | |
| 3503 | if (sched->map.cpus_str) { |
| 3504 | sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str); |
| 3505 | if (!sched->map.cpus) { |
| 3506 | pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); |
| 3507 | zfree(&sched->map.comp_cpus); |
| 3508 | return -1; |
| 3509 | } |
| 3510 | } |
| 3511 | |
| 3512 | return 0; |
| 3513 | } |
| 3514 | |
| 3515 | static int setup_color_pids(struct perf_sched *sched) |
| 3516 | { |
| 3517 | struct perf_thread_map *map; |
| 3518 | |
| 3519 | if (!sched->map.color_pids_str) |
| 3520 | return 0; |
| 3521 | |
| 3522 | map = thread_map__new_by_tid_str(sched->map.color_pids_str); |
| 3523 | if (!map) { |
| 3524 | pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); |
| 3525 | return -1; |
| 3526 | } |
| 3527 | |
| 3528 | sched->map.color_pids = map; |
| 3529 | return 0; |
| 3530 | } |
| 3531 | |
| 3532 | static int setup_color_cpus(struct perf_sched *sched) |
| 3533 | { |
| 3534 | struct perf_cpu_map *map; |
| 3535 | |
| 3536 | if (!sched->map.color_cpus_str) |
| 3537 | return 0; |
| 3538 | |
| 3539 | map = perf_cpu_map__new(sched->map.color_cpus_str); |
| 3540 | if (!map) { |
| 3541 | pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); |
| 3542 | return -1; |
| 3543 | } |
| 3544 | |
| 3545 | sched->map.color_cpus = map; |
| 3546 | return 0; |
| 3547 | } |
| 3548 | |
| 3549 | static int perf_sched__map(struct perf_sched *sched) |
| 3550 | { |
| 3551 | int rc = -1; |
| 3552 | |
| 3553 | sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread))); |
| 3554 | if (!sched->curr_thread) |
| 3555 | return rc; |
| 3556 | |
| 3557 | sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread))); |
| 3558 | if (!sched->curr_out_thread) |
| 3559 | return rc; |
| 3560 | |
| 3561 | if (setup_cpus_switch_event(sched)) |
| 3562 | goto out_free_curr_thread; |
| 3563 | |
| 3564 | if (setup_map_cpus(sched)) |
| 3565 | goto out_free_cpus_switch_event; |
| 3566 | |
| 3567 | if (setup_color_pids(sched)) |
| 3568 | goto out_put_map_cpus; |
| 3569 | |
| 3570 | if (setup_color_cpus(sched)) |
| 3571 | goto out_put_color_pids; |
| 3572 | |
| 3573 | setup_pager(); |
| 3574 | if (perf_sched__read_events(sched)) |
| 3575 | goto out_put_color_cpus; |
| 3576 | |
| 3577 | rc = 0; |
| 3578 | print_bad_events(sched); |
| 3579 | |
| 3580 | out_put_color_cpus: |
| 3581 | perf_cpu_map__put(sched->map.color_cpus); |
| 3582 | |
| 3583 | out_put_color_pids: |
| 3584 | perf_thread_map__put(sched->map.color_pids); |
| 3585 | |
| 3586 | out_put_map_cpus: |
| 3587 | zfree(&sched->map.comp_cpus); |
| 3588 | perf_cpu_map__put(sched->map.cpus); |
| 3589 | |
| 3590 | out_free_cpus_switch_event: |
| 3591 | free_cpus_switch_event(sched); |
| 3592 | |
| 3593 | out_free_curr_thread: |
| 3594 | zfree(&sched->curr_thread); |
| 3595 | return rc; |
| 3596 | } |
| 3597 | |
| 3598 | static int perf_sched__replay(struct perf_sched *sched) |
| 3599 | { |
| 3600 | int ret; |
| 3601 | unsigned long i; |
| 3602 | |
| 3603 | mutex_init(&sched->start_work_mutex); |
| 3604 | mutex_init(&sched->work_done_wait_mutex); |
| 3605 | |
| 3606 | ret = setup_cpus_switch_event(sched); |
| 3607 | if (ret) |
| 3608 | goto out_mutex_destroy; |
| 3609 | |
| 3610 | calibrate_run_measurement_overhead(sched); |
| 3611 | calibrate_sleep_measurement_overhead(sched); |
| 3612 | |
| 3613 | test_calibrations(sched); |
| 3614 | |
| 3615 | ret = perf_sched__read_events(sched); |
| 3616 | if (ret) |
| 3617 | goto out_free_cpus_switch_event; |
| 3618 | |
| 3619 | printf("nr_run_events: %ld\n", sched->nr_run_events); |
| 3620 | printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); |
| 3621 | printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); |
| 3622 | |
| 3623 | if (sched->targetless_wakeups) |
| 3624 | printf("target-less wakeups: %ld\n", sched->targetless_wakeups); |
| 3625 | if (sched->multitarget_wakeups) |
| 3626 | printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); |
| 3627 | if (sched->nr_run_events_optimized) |
| 3628 | printf("run atoms optimized: %ld\n", |
| 3629 | sched->nr_run_events_optimized); |
| 3630 | |
| 3631 | print_task_traces(sched); |
| 3632 | add_cross_task_wakeups(sched); |
| 3633 | |
| 3634 | sched->thread_funcs_exit = false; |
| 3635 | create_tasks(sched); |
| 3636 | printf("------------------------------------------------------------\n"); |
| 3637 | if (sched->replay_repeat == 0) |
| 3638 | sched->replay_repeat = UINT_MAX; |
| 3639 | |
| 3640 | for (i = 0; i < sched->replay_repeat; i++) |
| 3641 | run_one_test(sched); |
| 3642 | |
| 3643 | sched->thread_funcs_exit = true; |
| 3644 | destroy_tasks(sched); |
| 3645 | |
| 3646 | out_free_cpus_switch_event: |
| 3647 | free_cpus_switch_event(sched); |
| 3648 | |
| 3649 | out_mutex_destroy: |
| 3650 | mutex_destroy(&sched->start_work_mutex); |
| 3651 | mutex_destroy(&sched->work_done_wait_mutex); |
| 3652 | return ret; |
| 3653 | } |
| 3654 | |
| 3655 | static void setup_sorting(struct perf_sched *sched, const struct option *options, |
| 3656 | const char * const usage_msg[]) |
| 3657 | { |
| 3658 | char *tmp, *tok, *str = strdup(sched->sort_order); |
| 3659 | |
| 3660 | for (tok = strtok_r(str, ", ", &tmp); |
| 3661 | tok; tok = strtok_r(NULL, ", ", &tmp)) { |
| 3662 | if (sort_dimension__add(tok, &sched->sort_list) < 0) { |
| 3663 | usage_with_options_msg(usage_msg, options, |
| 3664 | "Unknown --sort key: `%s'", tok); |
| 3665 | } |
| 3666 | } |
| 3667 | |
| 3668 | free(str); |
| 3669 | |
| 3670 | sort_dimension__add("pid", &sched->cmp_pid); |
| 3671 | } |
| 3672 | |
| 3673 | static bool schedstat_events_exposed(void) |
| 3674 | { |
| 3675 | /* |
| 3676 | * Select "sched:sched_stat_wait" event to check |
| 3677 | * whether schedstat tracepoints are exposed. |
| 3678 | */ |
| 3679 | return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ? |
| 3680 | false : true; |
| 3681 | } |
| 3682 | |
| 3683 | static int __cmd_record(int argc, const char **argv) |
| 3684 | { |
| 3685 | unsigned int rec_argc, i, j; |
| 3686 | char **rec_argv; |
| 3687 | const char **rec_argv_copy; |
| 3688 | const char * const record_args[] = { |
| 3689 | "record", |
| 3690 | "-a", |
| 3691 | "-R", |
| 3692 | "-m", "1024", |
| 3693 | "-c", "1", |
| 3694 | "-e", "sched:sched_switch", |
| 3695 | "-e", "sched:sched_stat_runtime", |
| 3696 | "-e", "sched:sched_process_fork", |
| 3697 | "-e", "sched:sched_wakeup_new", |
| 3698 | "-e", "sched:sched_migrate_task", |
| 3699 | }; |
| 3700 | |
| 3701 | /* |
| 3702 | * The tracepoints trace_sched_stat_{wait, sleep, iowait} |
| 3703 | * are not exposed to user if CONFIG_SCHEDSTATS is not set, |
| 3704 | * to prevent "perf sched record" execution failure, determine |
| 3705 | * whether to record schedstat events according to actual situation. |
| 3706 | */ |
| 3707 | const char * const schedstat_args[] = { |
| 3708 | "-e", "sched:sched_stat_wait", |
| 3709 | "-e", "sched:sched_stat_sleep", |
| 3710 | "-e", "sched:sched_stat_iowait", |
| 3711 | }; |
| 3712 | unsigned int schedstat_argc = schedstat_events_exposed() ? |
| 3713 | ARRAY_SIZE(schedstat_args) : 0; |
| 3714 | |
| 3715 | struct tep_event *waking_event; |
| 3716 | int ret; |
| 3717 | |
| 3718 | /* |
| 3719 | * +2 for either "-e", "sched:sched_wakeup" or |
| 3720 | * "-e", "sched:sched_waking" |
| 3721 | */ |
| 3722 | rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1; |
| 3723 | rec_argv = calloc(rec_argc + 1, sizeof(char *)); |
| 3724 | if (rec_argv == NULL) |
| 3725 | return -ENOMEM; |
| 3726 | rec_argv_copy = calloc(rec_argc + 1, sizeof(char *)); |
| 3727 | if (rec_argv_copy == NULL) { |
| 3728 | free(rec_argv); |
| 3729 | return -ENOMEM; |
| 3730 | } |
| 3731 | |
| 3732 | for (i = 0; i < ARRAY_SIZE(record_args); i++) |
| 3733 | rec_argv[i] = strdup(record_args[i]); |
| 3734 | |
| 3735 | rec_argv[i++] = strdup("-e"); |
| 3736 | waking_event = trace_event__tp_format("sched", "sched_waking"); |
| 3737 | if (!IS_ERR(waking_event)) |
| 3738 | rec_argv[i++] = strdup("sched:sched_waking"); |
| 3739 | else |
| 3740 | rec_argv[i++] = strdup("sched:sched_wakeup"); |
| 3741 | |
| 3742 | for (j = 0; j < schedstat_argc; j++) |
| 3743 | rec_argv[i++] = strdup(schedstat_args[j]); |
| 3744 | |
| 3745 | for (j = 1; j < (unsigned int)argc; j++, i++) |
| 3746 | rec_argv[i] = strdup(argv[j]); |
| 3747 | |
| 3748 | BUG_ON(i != rec_argc); |
| 3749 | |
| 3750 | memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc); |
| 3751 | ret = cmd_record(rec_argc, rec_argv_copy); |
| 3752 | |
| 3753 | for (i = 0; i < rec_argc; i++) |
| 3754 | free(rec_argv[i]); |
| 3755 | free(rec_argv); |
| 3756 | free(rec_argv_copy); |
| 3757 | |
| 3758 | return ret; |
| 3759 | } |
| 3760 | |
| 3761 | int cmd_sched(int argc, const char **argv) |
| 3762 | { |
| 3763 | static const char default_sort_order[] = "avg, max, switch, runtime"; |
| 3764 | struct perf_sched sched = { |
| 3765 | .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), |
| 3766 | .sort_list = LIST_HEAD_INIT(sched.sort_list), |
| 3767 | .sort_order = default_sort_order, |
| 3768 | .replay_repeat = 10, |
| 3769 | .profile_cpu = -1, |
| 3770 | .next_shortname1 = 'A', |
| 3771 | .next_shortname2 = '0', |
| 3772 | .skip_merge = 0, |
| 3773 | .show_callchain = 1, |
| 3774 | .max_stack = 5, |
| 3775 | }; |
| 3776 | const struct option sched_options[] = { |
| 3777 | OPT_STRING('i', "input", &input_name, "file", |
| 3778 | "input file name"), |
| 3779 | OPT_INCR('v', "verbose", &verbose, |
| 3780 | "be more verbose (show symbol address, etc)"), |
| 3781 | OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, |
| 3782 | "dump raw trace in ASCII"), |
| 3783 | OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), |
| 3784 | OPT_END() |
| 3785 | }; |
| 3786 | const struct option latency_options[] = { |
| 3787 | OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", |
| 3788 | "sort by key(s): runtime, switch, avg, max"), |
| 3789 | OPT_INTEGER('C', "CPU", &sched.profile_cpu, |
| 3790 | "CPU to profile on"), |
| 3791 | OPT_BOOLEAN('p', "pids", &sched.skip_merge, |
| 3792 | "latency stats per pid instead of per comm"), |
| 3793 | OPT_PARENT(sched_options) |
| 3794 | }; |
| 3795 | const struct option replay_options[] = { |
| 3796 | OPT_UINTEGER('r', "repeat", &sched.replay_repeat, |
| 3797 | "repeat the workload replay N times (0: infinite)"), |
| 3798 | OPT_PARENT(sched_options) |
| 3799 | }; |
| 3800 | const struct option map_options[] = { |
| 3801 | OPT_BOOLEAN(0, "compact", &sched.map.comp, |
| 3802 | "map output in compact mode"), |
| 3803 | OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", |
| 3804 | "highlight given pids in map"), |
| 3805 | OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", |
| 3806 | "highlight given CPUs in map"), |
| 3807 | OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", |
| 3808 | "display given CPUs in map"), |
| 3809 | OPT_STRING(0, "task-name", &sched.map.task_name, "task", |
| 3810 | "map output only for the given task name(s)."), |
| 3811 | OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy, |
| 3812 | "given command name can be partially matched (fuzzy matching)"), |
| 3813 | OPT_PARENT(sched_options) |
| 3814 | }; |
| 3815 | const struct option timehist_options[] = { |
| 3816 | OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, |
| 3817 | "file", "vmlinux pathname"), |
| 3818 | OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, |
| 3819 | "file", "kallsyms pathname"), |
| 3820 | OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, |
| 3821 | "Display call chains if present (default on)"), |
| 3822 | OPT_UINTEGER(0, "max-stack", &sched.max_stack, |
| 3823 | "Maximum number of functions to display backtrace."), |
| 3824 | OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", |
| 3825 | "Look for files with symbols relative to this directory"), |
| 3826 | OPT_BOOLEAN('s', "summary", &sched.summary_only, |
| 3827 | "Show only syscall summary with statistics"), |
| 3828 | OPT_BOOLEAN('S', "with-summary", &sched.summary, |
| 3829 | "Show all syscalls and summary with statistics"), |
| 3830 | OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), |
| 3831 | OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), |
| 3832 | OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), |
| 3833 | OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), |
| 3834 | OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), |
| 3835 | OPT_STRING(0, "time", &sched.time_str, "str", |
| 3836 | "Time span for analysis (start,stop)"), |
| 3837 | OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), |
| 3838 | OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", |
| 3839 | "analyze events only for given process id(s)"), |
| 3840 | OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", |
| 3841 | "analyze events only for given thread id(s)"), |
| 3842 | OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"), |
| 3843 | OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"), |
| 3844 | OPT_STRING(0, "prio", &sched.prio_str, "prio", |
| 3845 | "analyze events only for given task priority(ies)"), |
| 3846 | OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"), |
| 3847 | OPT_PARENT(sched_options) |
| 3848 | }; |
| 3849 | |
| 3850 | const char * const latency_usage[] = { |
| 3851 | "perf sched latency [<options>]", |
| 3852 | NULL |
| 3853 | }; |
| 3854 | const char * const replay_usage[] = { |
| 3855 | "perf sched replay [<options>]", |
| 3856 | NULL |
| 3857 | }; |
| 3858 | const char * const map_usage[] = { |
| 3859 | "perf sched map [<options>]", |
| 3860 | NULL |
| 3861 | }; |
| 3862 | const char * const timehist_usage[] = { |
| 3863 | "perf sched timehist [<options>]", |
| 3864 | NULL |
| 3865 | }; |
| 3866 | const char *const sched_subcommands[] = { "record", "latency", "map", |
| 3867 | "replay", "script", |
| 3868 | "timehist", NULL }; |
| 3869 | const char *sched_usage[] = { |
| 3870 | NULL, |
| 3871 | NULL |
| 3872 | }; |
| 3873 | struct trace_sched_handler lat_ops = { |
| 3874 | .wakeup_event = latency_wakeup_event, |
| 3875 | .switch_event = latency_switch_event, |
| 3876 | .runtime_event = latency_runtime_event, |
| 3877 | .migrate_task_event = latency_migrate_task_event, |
| 3878 | }; |
| 3879 | struct trace_sched_handler map_ops = { |
| 3880 | .switch_event = map_switch_event, |
| 3881 | }; |
| 3882 | struct trace_sched_handler replay_ops = { |
| 3883 | .wakeup_event = replay_wakeup_event, |
| 3884 | .switch_event = replay_switch_event, |
| 3885 | .fork_event = replay_fork_event, |
| 3886 | }; |
| 3887 | int ret; |
| 3888 | |
| 3889 | perf_tool__init(&sched.tool, /*ordered_events=*/true); |
| 3890 | sched.tool.sample = perf_sched__process_tracepoint_sample; |
| 3891 | sched.tool.comm = perf_sched__process_comm; |
| 3892 | sched.tool.namespaces = perf_event__process_namespaces; |
| 3893 | sched.tool.lost = perf_event__process_lost; |
| 3894 | sched.tool.fork = perf_sched__process_fork_event; |
| 3895 | |
| 3896 | argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, |
| 3897 | sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); |
| 3898 | if (!argc) |
| 3899 | usage_with_options(sched_usage, sched_options); |
| 3900 | |
| 3901 | /* |
| 3902 | * Aliased to 'perf script' for now: |
| 3903 | */ |
| 3904 | if (!strcmp(argv[0], "script")) { |
| 3905 | return cmd_script(argc, argv); |
| 3906 | } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) { |
| 3907 | return __cmd_record(argc, argv); |
| 3908 | } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) { |
| 3909 | sched.tp_handler = &lat_ops; |
| 3910 | if (argc > 1) { |
| 3911 | argc = parse_options(argc, argv, latency_options, latency_usage, 0); |
| 3912 | if (argc) |
| 3913 | usage_with_options(latency_usage, latency_options); |
| 3914 | } |
| 3915 | setup_sorting(&sched, latency_options, latency_usage); |
| 3916 | return perf_sched__lat(&sched); |
| 3917 | } else if (!strcmp(argv[0], "map")) { |
| 3918 | if (argc) { |
| 3919 | argc = parse_options(argc, argv, map_options, map_usage, 0); |
| 3920 | if (argc) |
| 3921 | usage_with_options(map_usage, map_options); |
| 3922 | |
| 3923 | if (sched.map.task_name) { |
| 3924 | sched.map.task_names = strlist__new(sched.map.task_name, NULL); |
| 3925 | if (sched.map.task_names == NULL) { |
| 3926 | fprintf(stderr, "Failed to parse task names\n"); |
| 3927 | return -1; |
| 3928 | } |
| 3929 | } |
| 3930 | } |
| 3931 | sched.tp_handler = &map_ops; |
| 3932 | setup_sorting(&sched, latency_options, latency_usage); |
| 3933 | return perf_sched__map(&sched); |
| 3934 | } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) { |
| 3935 | sched.tp_handler = &replay_ops; |
| 3936 | if (argc) { |
| 3937 | argc = parse_options(argc, argv, replay_options, replay_usage, 0); |
| 3938 | if (argc) |
| 3939 | usage_with_options(replay_usage, replay_options); |
| 3940 | } |
| 3941 | return perf_sched__replay(&sched); |
| 3942 | } else if (!strcmp(argv[0], "timehist")) { |
| 3943 | if (argc) { |
| 3944 | argc = parse_options(argc, argv, timehist_options, |
| 3945 | timehist_usage, 0); |
| 3946 | if (argc) |
| 3947 | usage_with_options(timehist_usage, timehist_options); |
| 3948 | } |
| 3949 | if ((sched.show_wakeups || sched.show_next) && |
| 3950 | sched.summary_only) { |
| 3951 | pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); |
| 3952 | parse_options_usage(timehist_usage, timehist_options, "s", true); |
| 3953 | if (sched.show_wakeups) |
| 3954 | parse_options_usage(NULL, timehist_options, "w", true); |
| 3955 | if (sched.show_next) |
| 3956 | parse_options_usage(NULL, timehist_options, "n", true); |
| 3957 | return -EINVAL; |
| 3958 | } |
| 3959 | ret = symbol__validate_sym_arguments(); |
| 3960 | if (ret) |
| 3961 | return ret; |
| 3962 | |
| 3963 | return perf_sched__timehist(&sched); |
| 3964 | } else { |
| 3965 | usage_with_options(sched_usage, sched_options); |
| 3966 | } |
| 3967 | |
| 3968 | /* free usage string allocated by parse_options_subcommand */ |
| 3969 | free((void *)sched_usage[0]); |
| 3970 | |
| 3971 | return 0; |
| 3972 | } |