| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _TOOLS_LINUX_COMPILER_H_ |
| 3 | #define _TOOLS_LINUX_COMPILER_H_ |
| 4 | |
| 5 | #ifndef __ASSEMBLY__ |
| 6 | |
| 7 | #include <linux/compiler_types.h> |
| 8 | |
| 9 | #ifndef __compiletime_error |
| 10 | # define __compiletime_error(message) |
| 11 | #endif |
| 12 | |
| 13 | #ifdef __OPTIMIZE__ |
| 14 | # define __compiletime_assert(condition, msg, prefix, suffix) \ |
| 15 | do { \ |
| 16 | extern void prefix ## suffix(void) __compiletime_error(msg); \ |
| 17 | if (!(condition)) \ |
| 18 | prefix ## suffix(); \ |
| 19 | } while (0) |
| 20 | #else |
| 21 | # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0) |
| 22 | #endif |
| 23 | |
| 24 | #define _compiletime_assert(condition, msg, prefix, suffix) \ |
| 25 | __compiletime_assert(condition, msg, prefix, suffix) |
| 26 | |
| 27 | /** |
| 28 | * compiletime_assert - break build and emit msg if condition is false |
| 29 | * @condition: a compile-time constant condition to check |
| 30 | * @msg: a message to emit if condition is false |
| 31 | * |
| 32 | * In tradition of POSIX assert, this macro will break the build if the |
| 33 | * supplied condition is *false*, emitting the supplied error message if the |
| 34 | * compiler has support to do so. |
| 35 | */ |
| 36 | #define compiletime_assert(condition, msg) \ |
| 37 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) |
| 38 | |
| 39 | /* Optimization barrier */ |
| 40 | /* The "volatile" is due to gcc bugs */ |
| 41 | #define barrier() __asm__ __volatile__("": : :"memory") |
| 42 | |
| 43 | #ifndef __always_inline |
| 44 | # define __always_inline inline __attribute__((always_inline)) |
| 45 | #endif |
| 46 | |
| 47 | #ifndef __always_unused |
| 48 | #define __always_unused __attribute__((__unused__)) |
| 49 | #endif |
| 50 | |
| 51 | #ifndef __noreturn |
| 52 | #define __noreturn __attribute__((__noreturn__)) |
| 53 | #endif |
| 54 | |
| 55 | #ifndef unreachable |
| 56 | #define unreachable() __builtin_unreachable() |
| 57 | #endif |
| 58 | |
| 59 | #ifndef noinline |
| 60 | #define noinline |
| 61 | #endif |
| 62 | |
| 63 | #ifndef __nocf_check |
| 64 | #define __nocf_check __attribute__((nocf_check)) |
| 65 | #endif |
| 66 | |
| 67 | #ifndef __naked |
| 68 | #define __naked __attribute__((__naked__)) |
| 69 | #endif |
| 70 | |
| 71 | /* Are two types/vars the same type (ignoring qualifiers)? */ |
| 72 | #ifndef __same_type |
| 73 | # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b)) |
| 74 | #endif |
| 75 | |
| 76 | /* |
| 77 | * This returns a constant expression while determining if an argument is |
| 78 | * a constant expression, most importantly without evaluating the argument. |
| 79 | * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> |
| 80 | */ |
| 81 | #define __is_constexpr(x) \ |
| 82 | (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) |
| 83 | |
| 84 | /* |
| 85 | * Similar to statically_true() but produces a constant expression |
| 86 | * |
| 87 | * To be used in conjunction with macros, such as BUILD_BUG_ON_ZERO(), |
| 88 | * which require their input to be a constant expression and for which |
| 89 | * statically_true() would otherwise fail. |
| 90 | * |
| 91 | * This is a trade-off: const_true() requires all its operands to be |
| 92 | * compile time constants. Else, it would always returns false even on |
| 93 | * the most trivial cases like: |
| 94 | * |
| 95 | * true || non_const_var |
| 96 | * |
| 97 | * On the opposite, statically_true() is able to fold more complex |
| 98 | * tautologies and will return true on expressions such as: |
| 99 | * |
| 100 | * !(non_const_var * 8 % 4) |
| 101 | * |
| 102 | * For the general case, statically_true() is better. |
| 103 | */ |
| 104 | #define const_true(x) __builtin_choose_expr(__is_constexpr(x), x, false) |
| 105 | |
| 106 | #ifdef __ANDROID__ |
| 107 | /* |
| 108 | * FIXME: Big hammer to get rid of tons of: |
| 109 | * "warning: always_inline function might not be inlinable" |
| 110 | * |
| 111 | * At least on android-ndk-r12/platforms/android-24/arch-arm |
| 112 | */ |
| 113 | #undef __always_inline |
| 114 | #define __always_inline inline |
| 115 | #endif |
| 116 | |
| 117 | #define __user |
| 118 | #define __rcu |
| 119 | #define __read_mostly |
| 120 | |
| 121 | #ifndef __attribute_const__ |
| 122 | # define __attribute_const__ |
| 123 | #endif |
| 124 | |
| 125 | #ifndef __maybe_unused |
| 126 | # define __maybe_unused __attribute__((unused)) |
| 127 | #endif |
| 128 | |
| 129 | #ifndef __used |
| 130 | # define __used __attribute__((__unused__)) |
| 131 | #endif |
| 132 | |
| 133 | #ifndef __packed |
| 134 | # define __packed __attribute__((__packed__)) |
| 135 | #endif |
| 136 | |
| 137 | #ifndef __force |
| 138 | # define __force |
| 139 | #endif |
| 140 | |
| 141 | #ifndef __weak |
| 142 | # define __weak __attribute__((weak)) |
| 143 | #endif |
| 144 | |
| 145 | #ifndef likely |
| 146 | # define likely(x) __builtin_expect(!!(x), 1) |
| 147 | #endif |
| 148 | |
| 149 | #ifndef unlikely |
| 150 | # define unlikely(x) __builtin_expect(!!(x), 0) |
| 151 | #endif |
| 152 | |
| 153 | #include <linux/types.h> |
| 154 | |
| 155 | /* |
| 156 | * Following functions are taken from kernel sources and |
| 157 | * break aliasing rules in their original form. |
| 158 | * |
| 159 | * While kernel is compiled with -fno-strict-aliasing, |
| 160 | * perf uses -Wstrict-aliasing=3 which makes build fail |
| 161 | * under gcc 4.4. |
| 162 | * |
| 163 | * Using extra __may_alias__ type to allow aliasing |
| 164 | * in this case. |
| 165 | */ |
| 166 | typedef __u8 __attribute__((__may_alias__)) __u8_alias_t; |
| 167 | typedef __u16 __attribute__((__may_alias__)) __u16_alias_t; |
| 168 | typedef __u32 __attribute__((__may_alias__)) __u32_alias_t; |
| 169 | typedef __u64 __attribute__((__may_alias__)) __u64_alias_t; |
| 170 | |
| 171 | static __always_inline void __read_once_size(const volatile void *p, void *res, int size) |
| 172 | { |
| 173 | switch (size) { |
| 174 | case 1: *(__u8_alias_t *) res = *(volatile __u8_alias_t *) p; break; |
| 175 | case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break; |
| 176 | case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break; |
| 177 | case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break; |
| 178 | default: |
| 179 | barrier(); |
| 180 | __builtin_memcpy((void *)res, (const void *)p, size); |
| 181 | barrier(); |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | static __always_inline void __write_once_size(volatile void *p, void *res, int size) |
| 186 | { |
| 187 | switch (size) { |
| 188 | case 1: *(volatile __u8_alias_t *) p = *(__u8_alias_t *) res; break; |
| 189 | case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break; |
| 190 | case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break; |
| 191 | case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break; |
| 192 | default: |
| 193 | barrier(); |
| 194 | __builtin_memcpy((void *)p, (const void *)res, size); |
| 195 | barrier(); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Prevent the compiler from merging or refetching reads or writes. The |
| 201 | * compiler is also forbidden from reordering successive instances of |
| 202 | * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some |
| 203 | * particular ordering. One way to make the compiler aware of ordering is to |
| 204 | * put the two invocations of READ_ONCE or WRITE_ONCE in different C |
| 205 | * statements. |
| 206 | * |
| 207 | * These two macros will also work on aggregate data types like structs or |
| 208 | * unions. If the size of the accessed data type exceeds the word size of |
| 209 | * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will |
| 210 | * fall back to memcpy and print a compile-time warning. |
| 211 | * |
| 212 | * Their two major use cases are: (1) Mediating communication between |
| 213 | * process-level code and irq/NMI handlers, all running on the same CPU, |
| 214 | * and (2) Ensuring that the compiler does not fold, spindle, or otherwise |
| 215 | * mutilate accesses that either do not require ordering or that interact |
| 216 | * with an explicit memory barrier or atomic instruction that provides the |
| 217 | * required ordering. |
| 218 | */ |
| 219 | |
| 220 | #define READ_ONCE(x) \ |
| 221 | ({ \ |
| 222 | union { typeof(x) __val; char __c[1]; } __u = \ |
| 223 | { .__c = { 0 } }; \ |
| 224 | __read_once_size(&(x), __u.__c, sizeof(x)); \ |
| 225 | __u.__val; \ |
| 226 | }) |
| 227 | |
| 228 | #define WRITE_ONCE(x, val) \ |
| 229 | ({ \ |
| 230 | union { typeof(x) __val; char __c[1]; } __u = \ |
| 231 | { .__val = (val) }; \ |
| 232 | __write_once_size(&(x), __u.__c, sizeof(x)); \ |
| 233 | __u.__val; \ |
| 234 | }) |
| 235 | |
| 236 | |
| 237 | /* Indirect macros required for expanded argument pasting, eg. __LINE__. */ |
| 238 | #define ___PASTE(a, b) a##b |
| 239 | #define __PASTE(a, b) ___PASTE(a, b) |
| 240 | |
| 241 | #ifndef OPTIMIZER_HIDE_VAR |
| 242 | /* Make the optimizer believe the variable can be manipulated arbitrarily. */ |
| 243 | #define OPTIMIZER_HIDE_VAR(var) \ |
| 244 | __asm__ ("" : "=r" (var) : "0" (var)) |
| 245 | #endif |
| 246 | |
| 247 | #ifndef __BUILD_BUG_ON_ZERO_MSG |
| 248 | #if defined(__clang__) |
| 249 | #define __BUILD_BUG_ON_ZERO_MSG(e, msg, ...) ((int)(sizeof(struct { int:(-!!(e)); }))) |
| 250 | #else |
| 251 | #define __BUILD_BUG_ON_ZERO_MSG(e, msg, ...) ((int)sizeof(struct {_Static_assert(!(e), msg);})) |
| 252 | #endif |
| 253 | #endif |
| 254 | |
| 255 | #endif /* __ASSEMBLY__ */ |
| 256 | |
| 257 | #endif /* _TOOLS_LINUX_COMPILER_H */ |