Merge remote-tracking branches 'asoc/topic/intel', 'asoc/topic/kirkwood', 'asoc/topic...
[linux-2.6-block.git] / sound / soc / fsl / fsl_ssi.c
... / ...
CommitLineData
1/*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
11 *
12 *
13 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14 *
15 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17 * one FIFO which combines all valid receive slots. We cannot even select
18 * which slots we want to receive. The WM9712 with which this driver
19 * was developed with always sends GPIO status data in slot 12 which
20 * we receive in our (PCM-) data stream. The only chance we have is to
21 * manually skip this data in the FIQ handler. With sampling rates different
22 * from 48000Hz not every frame has valid receive data, so the ratio
23 * between pcm data and GPIO status data changes. Our FIQ handler is not
24 * able to handle this, hence this driver only works with 48000Hz sampling
25 * rate.
26 * Reading and writing AC97 registers is another challenge. The core
27 * provides us status bits when the read register is updated with *another*
28 * value. When we read the same register two times (and the register still
29 * contains the same value) these status bits are not set. We work
30 * around this by not polling these bits but only wait a fixed delay.
31 */
32
33#include <linux/init.h>
34#include <linux/io.h>
35#include <linux/module.h>
36#include <linux/interrupt.h>
37#include <linux/clk.h>
38#include <linux/device.h>
39#include <linux/delay.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/of.h>
43#include <linux/of_address.h>
44#include <linux/of_irq.h>
45#include <linux/of_platform.h>
46
47#include <sound/core.h>
48#include <sound/pcm.h>
49#include <sound/pcm_params.h>
50#include <sound/initval.h>
51#include <sound/soc.h>
52#include <sound/dmaengine_pcm.h>
53
54#include "fsl_ssi.h"
55#include "imx-pcm.h"
56
57/**
58 * FSLSSI_I2S_RATES: sample rates supported by the I2S
59 *
60 * This driver currently only supports the SSI running in I2S slave mode,
61 * which means the codec determines the sample rate. Therefore, we tell
62 * ALSA that we support all rates and let the codec driver decide what rates
63 * are really supported.
64 */
65#define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
66
67/**
68 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
69 *
70 * This driver currently only supports the SSI running in I2S slave mode.
71 *
72 * The SSI has a limitation in that the samples must be in the same byte
73 * order as the host CPU. This is because when multiple bytes are written
74 * to the STX register, the bytes and bits must be written in the same
75 * order. The STX is a shift register, so all the bits need to be aligned
76 * (bit-endianness must match byte-endianness). Processors typically write
77 * the bits within a byte in the same order that the bytes of a word are
78 * written in. So if the host CPU is big-endian, then only big-endian
79 * samples will be written to STX properly.
80 */
81#ifdef __BIG_ENDIAN
82#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
83 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
84 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
85#else
86#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
87 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
88 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
89#endif
90
91#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
92 CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
93 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
94#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
95 CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
96 CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
97
98enum fsl_ssi_type {
99 FSL_SSI_MCP8610,
100 FSL_SSI_MX21,
101 FSL_SSI_MX35,
102 FSL_SSI_MX51,
103};
104
105struct fsl_ssi_reg_val {
106 u32 sier;
107 u32 srcr;
108 u32 stcr;
109 u32 scr;
110};
111
112struct fsl_ssi_rxtx_reg_val {
113 struct fsl_ssi_reg_val rx;
114 struct fsl_ssi_reg_val tx;
115};
116static const struct regmap_config fsl_ssi_regconfig = {
117 .max_register = CCSR_SSI_SACCDIS,
118 .reg_bits = 32,
119 .val_bits = 32,
120 .reg_stride = 4,
121 .val_format_endian = REGMAP_ENDIAN_NATIVE,
122};
123
124struct fsl_ssi_soc_data {
125 bool imx;
126 bool offline_config;
127 u32 sisr_write_mask;
128};
129
130/**
131 * fsl_ssi_private: per-SSI private data
132 *
133 * @reg: Pointer to the regmap registers
134 * @irq: IRQ of this SSI
135 * @cpu_dai_drv: CPU DAI driver for this device
136 *
137 * @dai_fmt: DAI configuration this device is currently used with
138 * @i2s_mode: i2s and network mode configuration of the device. Is used to
139 * switch between normal and i2s/network mode
140 * mode depending on the number of channels
141 * @use_dma: DMA is used or FIQ with stream filter
142 * @use_dual_fifo: DMA with support for both FIFOs used
143 * @fifo_deph: Depth of the SSI FIFOs
144 * @rxtx_reg_val: Specific register settings for receive/transmit configuration
145 *
146 * @clk: SSI clock
147 * @baudclk: SSI baud clock for master mode
148 * @baudclk_streams: Active streams that are using baudclk
149 * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
150 *
151 * @dma_params_tx: DMA transmit parameters
152 * @dma_params_rx: DMA receive parameters
153 * @ssi_phys: physical address of the SSI registers
154 *
155 * @fiq_params: FIQ stream filtering parameters
156 *
157 * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
158 *
159 * @dbg_stats: Debugging statistics
160 *
161 * @soc: SoC specifc data
162 */
163struct fsl_ssi_private {
164 struct regmap *regs;
165 unsigned int irq;
166 struct snd_soc_dai_driver cpu_dai_drv;
167
168 unsigned int dai_fmt;
169 u8 i2s_mode;
170 bool use_dma;
171 bool use_dual_fifo;
172 unsigned int fifo_depth;
173 struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
174
175 struct clk *clk;
176 struct clk *baudclk;
177 unsigned int baudclk_streams;
178 unsigned int bitclk_freq;
179
180 /* DMA params */
181 struct snd_dmaengine_dai_dma_data dma_params_tx;
182 struct snd_dmaengine_dai_dma_data dma_params_rx;
183 dma_addr_t ssi_phys;
184
185 /* params for non-dma FIQ stream filtered mode */
186 struct imx_pcm_fiq_params fiq_params;
187
188 /* Used when using fsl-ssi as sound-card. This is only used by ppc and
189 * should be replaced with simple-sound-card. */
190 struct platform_device *pdev;
191
192 struct fsl_ssi_dbg dbg_stats;
193
194 const struct fsl_ssi_soc_data *soc;
195};
196
197/*
198 * imx51 and later SoCs have a slightly different IP that allows the
199 * SSI configuration while the SSI unit is running.
200 *
201 * More important, it is necessary on those SoCs to configure the
202 * sperate TX/RX DMA bits just before starting the stream
203 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
204 * sends any DMA requests to the SDMA unit, otherwise it is not defined
205 * how the SDMA unit handles the DMA request.
206 *
207 * SDMA units are present on devices starting at imx35 but the imx35
208 * reference manual states that the DMA bits should not be changed
209 * while the SSI unit is running (SSIEN). So we support the necessary
210 * online configuration of fsl-ssi starting at imx51.
211 */
212
213static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
214 .imx = false,
215 .offline_config = true,
216 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
217 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
218 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
219};
220
221static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
222 .imx = true,
223 .offline_config = true,
224 .sisr_write_mask = 0,
225};
226
227static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
228 .imx = true,
229 .offline_config = true,
230 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
231 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
232 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
233};
234
235static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
236 .imx = true,
237 .offline_config = false,
238 .sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
239 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
240};
241
242static const struct of_device_id fsl_ssi_ids[] = {
243 { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
244 { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
245 { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
246 { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
247 {}
248};
249MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
250
251static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
252{
253 return !!(ssi_private->dai_fmt & SND_SOC_DAIFMT_AC97);
254}
255
256static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
257{
258 return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
259 SND_SOC_DAIFMT_CBS_CFS;
260}
261
262/**
263 * fsl_ssi_isr: SSI interrupt handler
264 *
265 * Although it's possible to use the interrupt handler to send and receive
266 * data to/from the SSI, we use the DMA instead. Programming is more
267 * complicated, but the performance is much better.
268 *
269 * This interrupt handler is used only to gather statistics.
270 *
271 * @irq: IRQ of the SSI device
272 * @dev_id: pointer to the ssi_private structure for this SSI device
273 */
274static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
275{
276 struct fsl_ssi_private *ssi_private = dev_id;
277 struct regmap *regs = ssi_private->regs;
278 __be32 sisr;
279 __be32 sisr2;
280
281 /* We got an interrupt, so read the status register to see what we
282 were interrupted for. We mask it with the Interrupt Enable register
283 so that we only check for events that we're interested in.
284 */
285 regmap_read(regs, CCSR_SSI_SISR, &sisr);
286
287 sisr2 = sisr & ssi_private->soc->sisr_write_mask;
288 /* Clear the bits that we set */
289 if (sisr2)
290 regmap_write(regs, CCSR_SSI_SISR, sisr2);
291
292 fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
293
294 return IRQ_HANDLED;
295}
296
297/*
298 * Enable/Disable all rx/tx config flags at once.
299 */
300static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
301 bool enable)
302{
303 struct regmap *regs = ssi_private->regs;
304 struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
305
306 if (enable) {
307 regmap_update_bits(regs, CCSR_SSI_SIER,
308 vals->rx.sier | vals->tx.sier,
309 vals->rx.sier | vals->tx.sier);
310 regmap_update_bits(regs, CCSR_SSI_SRCR,
311 vals->rx.srcr | vals->tx.srcr,
312 vals->rx.srcr | vals->tx.srcr);
313 regmap_update_bits(regs, CCSR_SSI_STCR,
314 vals->rx.stcr | vals->tx.stcr,
315 vals->rx.stcr | vals->tx.stcr);
316 } else {
317 regmap_update_bits(regs, CCSR_SSI_SRCR,
318 vals->rx.srcr | vals->tx.srcr, 0);
319 regmap_update_bits(regs, CCSR_SSI_STCR,
320 vals->rx.stcr | vals->tx.stcr, 0);
321 regmap_update_bits(regs, CCSR_SSI_SIER,
322 vals->rx.sier | vals->tx.sier, 0);
323 }
324}
325
326/*
327 * Calculate the bits that have to be disabled for the current stream that is
328 * getting disabled. This keeps the bits enabled that are necessary for the
329 * second stream to work if 'stream_active' is true.
330 *
331 * Detailed calculation:
332 * These are the values that need to be active after disabling. For non-active
333 * second stream, this is 0:
334 * vals_stream * !!stream_active
335 *
336 * The following computes the overall differences between the setup for the
337 * to-disable stream and the active stream, a simple XOR:
338 * vals_disable ^ (vals_stream * !!(stream_active))
339 *
340 * The full expression adds a mask on all values we care about
341 */
342#define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
343 ((vals_disable) & \
344 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
345
346/*
347 * Enable/Disable a ssi configuration. You have to pass either
348 * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
349 */
350static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
351 struct fsl_ssi_reg_val *vals)
352{
353 struct regmap *regs = ssi_private->regs;
354 struct fsl_ssi_reg_val *avals;
355 int nr_active_streams;
356 u32 scr_val;
357 int keep_active;
358
359 regmap_read(regs, CCSR_SSI_SCR, &scr_val);
360
361 nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
362 !!(scr_val & CCSR_SSI_SCR_RE);
363
364 if (nr_active_streams - 1 > 0)
365 keep_active = 1;
366 else
367 keep_active = 0;
368
369 /* Find the other direction values rx or tx which we do not want to
370 * modify */
371 if (&ssi_private->rxtx_reg_val.rx == vals)
372 avals = &ssi_private->rxtx_reg_val.tx;
373 else
374 avals = &ssi_private->rxtx_reg_val.rx;
375
376 /* If vals should be disabled, start with disabling the unit */
377 if (!enable) {
378 u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
379 keep_active);
380 regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
381 }
382
383 /*
384 * We are running on a SoC which does not support online SSI
385 * reconfiguration, so we have to enable all necessary flags at once
386 * even if we do not use them later (capture and playback configuration)
387 */
388 if (ssi_private->soc->offline_config) {
389 if ((enable && !nr_active_streams) ||
390 (!enable && !keep_active))
391 fsl_ssi_rxtx_config(ssi_private, enable);
392
393 goto config_done;
394 }
395
396 /*
397 * Configure single direction units while the SSI unit is running
398 * (online configuration)
399 */
400 if (enable) {
401 regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
402 regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
403 regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
404 } else {
405 u32 sier;
406 u32 srcr;
407 u32 stcr;
408
409 /*
410 * Disabling the necessary flags for one of rx/tx while the
411 * other stream is active is a little bit more difficult. We
412 * have to disable only those flags that differ between both
413 * streams (rx XOR tx) and that are set in the stream that is
414 * disabled now. Otherwise we could alter flags of the other
415 * stream
416 */
417
418 /* These assignments are simply vals without bits set in avals*/
419 sier = fsl_ssi_disable_val(vals->sier, avals->sier,
420 keep_active);
421 srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
422 keep_active);
423 stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
424 keep_active);
425
426 regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
427 regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
428 regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
429 }
430
431config_done:
432 /* Enabling of subunits is done after configuration */
433 if (enable)
434 regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
435}
436
437
438static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
439{
440 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
441}
442
443static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
444{
445 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
446}
447
448/*
449 * Setup rx/tx register values used to enable/disable the streams. These will
450 * be used later in fsl_ssi_config to setup the streams without the need to
451 * check for all different SSI modes.
452 */
453static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
454{
455 struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
456
457 reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
458 reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
459 reg->rx.scr = 0;
460 reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
461 reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
462 reg->tx.scr = 0;
463
464 if (!fsl_ssi_is_ac97(ssi_private)) {
465 reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
466 reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
467 reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
468 reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
469 }
470
471 if (ssi_private->use_dma) {
472 reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
473 reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
474 } else {
475 reg->rx.sier |= CCSR_SSI_SIER_RIE;
476 reg->tx.sier |= CCSR_SSI_SIER_TIE;
477 }
478
479 reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
480 reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
481}
482
483static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
484{
485 struct regmap *regs = ssi_private->regs;
486
487 /*
488 * Setup the clock control register
489 */
490 regmap_write(regs, CCSR_SSI_STCCR,
491 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
492 regmap_write(regs, CCSR_SSI_SRCCR,
493 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
494
495 /*
496 * Enable AC97 mode and startup the SSI
497 */
498 regmap_write(regs, CCSR_SSI_SACNT,
499 CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
500 regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
501 regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
502
503 /*
504 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
505 * codec before a stream is started.
506 */
507 regmap_update_bits(regs, CCSR_SSI_SCR,
508 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
509 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
510
511 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
512}
513
514/**
515 * fsl_ssi_startup: create a new substream
516 *
517 * This is the first function called when a stream is opened.
518 *
519 * If this is the first stream open, then grab the IRQ and program most of
520 * the SSI registers.
521 */
522static int fsl_ssi_startup(struct snd_pcm_substream *substream,
523 struct snd_soc_dai *dai)
524{
525 struct snd_soc_pcm_runtime *rtd = substream->private_data;
526 struct fsl_ssi_private *ssi_private =
527 snd_soc_dai_get_drvdata(rtd->cpu_dai);
528
529 /* When using dual fifo mode, it is safer to ensure an even period
530 * size. If appearing to an odd number while DMA always starts its
531 * task from fifo0, fifo1 would be neglected at the end of each
532 * period. But SSI would still access fifo1 with an invalid data.
533 */
534 if (ssi_private->use_dual_fifo)
535 snd_pcm_hw_constraint_step(substream->runtime, 0,
536 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
537
538 return 0;
539}
540
541/**
542 * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
543 *
544 * Note: This function can be only called when using SSI as DAI master
545 *
546 * Quick instruction for parameters:
547 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
548 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
549 */
550static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
551 struct snd_soc_dai *cpu_dai,
552 struct snd_pcm_hw_params *hw_params)
553{
554 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
555 struct regmap *regs = ssi_private->regs;
556 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
557 u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
558 unsigned long clkrate, baudrate, tmprate;
559 u64 sub, savesub = 100000;
560 unsigned int freq;
561 bool baudclk_is_used;
562
563 /* Prefer the explicitly set bitclock frequency */
564 if (ssi_private->bitclk_freq)
565 freq = ssi_private->bitclk_freq;
566 else
567 freq = params_channels(hw_params) * 32 * params_rate(hw_params);
568
569 /* Don't apply it to any non-baudclk circumstance */
570 if (IS_ERR(ssi_private->baudclk))
571 return -EINVAL;
572
573 baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
574
575 /* It should be already enough to divide clock by setting pm alone */
576 psr = 0;
577 div2 = 0;
578
579 factor = (div2 + 1) * (7 * psr + 1) * 2;
580
581 for (i = 0; i < 255; i++) {
582 /* The bclk rate must be smaller than 1/5 sysclk rate */
583 if (factor * (i + 1) < 5)
584 continue;
585
586 tmprate = freq * factor * (i + 2);
587
588 if (baudclk_is_used)
589 clkrate = clk_get_rate(ssi_private->baudclk);
590 else
591 clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
592
593 clkrate /= factor;
594 afreq = clkrate / (i + 1);
595
596 if (freq == afreq)
597 sub = 0;
598 else if (freq / afreq == 1)
599 sub = freq - afreq;
600 else if (afreq / freq == 1)
601 sub = afreq - freq;
602 else
603 continue;
604
605 /* Calculate the fraction */
606 sub *= 100000;
607 do_div(sub, freq);
608
609 if (sub < savesub) {
610 baudrate = tmprate;
611 savesub = sub;
612 pm = i;
613 }
614
615 /* We are lucky */
616 if (savesub == 0)
617 break;
618 }
619
620 /* No proper pm found if it is still remaining the initial value */
621 if (pm == 999) {
622 dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
623 return -EINVAL;
624 }
625
626 stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
627 (psr ? CCSR_SSI_SxCCR_PSR : 0);
628 mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
629 CCSR_SSI_SxCCR_PSR;
630
631 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
632 regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
633 else
634 regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
635
636 if (!baudclk_is_used) {
637 ret = clk_set_rate(ssi_private->baudclk, baudrate);
638 if (ret) {
639 dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
640 return -EINVAL;
641 }
642 }
643
644 return 0;
645}
646
647static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
648 int clk_id, unsigned int freq, int dir)
649{
650 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
651
652 ssi_private->bitclk_freq = freq;
653
654 return 0;
655}
656
657/**
658 * fsl_ssi_hw_params - program the sample size
659 *
660 * Most of the SSI registers have been programmed in the startup function,
661 * but the word length must be programmed here. Unfortunately, programming
662 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
663 * cause a problem with supporting simultaneous playback and capture. If
664 * the SSI is already playing a stream, then that stream may be temporarily
665 * stopped when you start capture.
666 *
667 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
668 * clock master.
669 */
670static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
671 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
672{
673 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
674 struct regmap *regs = ssi_private->regs;
675 unsigned int channels = params_channels(hw_params);
676 unsigned int sample_size =
677 snd_pcm_format_width(params_format(hw_params));
678 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
679 int ret;
680 u32 scr_val;
681 int enabled;
682
683 regmap_read(regs, CCSR_SSI_SCR, &scr_val);
684 enabled = scr_val & CCSR_SSI_SCR_SSIEN;
685
686 /*
687 * If we're in synchronous mode, and the SSI is already enabled,
688 * then STCCR is already set properly.
689 */
690 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
691 return 0;
692
693 if (fsl_ssi_is_i2s_master(ssi_private)) {
694 ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
695 if (ret)
696 return ret;
697
698 /* Do not enable the clock if it is already enabled */
699 if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
700 ret = clk_prepare_enable(ssi_private->baudclk);
701 if (ret)
702 return ret;
703
704 ssi_private->baudclk_streams |= BIT(substream->stream);
705 }
706 }
707
708 /*
709 * FIXME: The documentation says that SxCCR[WL] should not be
710 * modified while the SSI is enabled. The only time this can
711 * happen is if we're trying to do simultaneous playback and
712 * capture in asynchronous mode. Unfortunately, I have been enable
713 * to get that to work at all on the P1022DS. Therefore, we don't
714 * bother to disable/enable the SSI when setting SxCCR[WL], because
715 * the SSI will stop anyway. Maybe one day, this will get fixed.
716 */
717
718 /* In synchronous mode, the SSI uses STCCR for capture */
719 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
720 ssi_private->cpu_dai_drv.symmetric_rates)
721 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
722 wl);
723 else
724 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
725 wl);
726
727 if (!fsl_ssi_is_ac97(ssi_private))
728 regmap_update_bits(regs, CCSR_SSI_SCR,
729 CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
730 channels == 1 ? 0 : ssi_private->i2s_mode);
731
732 return 0;
733}
734
735static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
736 struct snd_soc_dai *cpu_dai)
737{
738 struct snd_soc_pcm_runtime *rtd = substream->private_data;
739 struct fsl_ssi_private *ssi_private =
740 snd_soc_dai_get_drvdata(rtd->cpu_dai);
741
742 if (fsl_ssi_is_i2s_master(ssi_private) &&
743 ssi_private->baudclk_streams & BIT(substream->stream)) {
744 clk_disable_unprepare(ssi_private->baudclk);
745 ssi_private->baudclk_streams &= ~BIT(substream->stream);
746 }
747
748 return 0;
749}
750
751static int _fsl_ssi_set_dai_fmt(struct fsl_ssi_private *ssi_private,
752 unsigned int fmt)
753{
754 struct regmap *regs = ssi_private->regs;
755 u32 strcr = 0, stcr, srcr, scr, mask;
756 u8 wm;
757
758 ssi_private->dai_fmt = fmt;
759
760 if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
761 dev_err(&ssi_private->pdev->dev, "baudclk is missing which is necessary for master mode\n");
762 return -EINVAL;
763 }
764
765 fsl_ssi_setup_reg_vals(ssi_private);
766
767 regmap_read(regs, CCSR_SSI_SCR, &scr);
768 scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
769 scr |= CCSR_SSI_SCR_SYNC_TX_FS;
770
771 mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
772 CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
773 CCSR_SSI_STCR_TEFS;
774 regmap_read(regs, CCSR_SSI_STCR, &stcr);
775 regmap_read(regs, CCSR_SSI_SRCR, &srcr);
776 stcr &= ~mask;
777 srcr &= ~mask;
778
779 ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
780 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
781 case SND_SOC_DAIFMT_I2S:
782 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
783 case SND_SOC_DAIFMT_CBS_CFS:
784 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
785 regmap_update_bits(regs, CCSR_SSI_STCCR,
786 CCSR_SSI_SxCCR_DC_MASK,
787 CCSR_SSI_SxCCR_DC(2));
788 regmap_update_bits(regs, CCSR_SSI_SRCCR,
789 CCSR_SSI_SxCCR_DC_MASK,
790 CCSR_SSI_SxCCR_DC(2));
791 break;
792 case SND_SOC_DAIFMT_CBM_CFM:
793 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
794 break;
795 default:
796 return -EINVAL;
797 }
798
799 /* Data on rising edge of bclk, frame low, 1clk before data */
800 strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
801 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
802 break;
803 case SND_SOC_DAIFMT_LEFT_J:
804 /* Data on rising edge of bclk, frame high */
805 strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
806 break;
807 case SND_SOC_DAIFMT_DSP_A:
808 /* Data on rising edge of bclk, frame high, 1clk before data */
809 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
810 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
811 break;
812 case SND_SOC_DAIFMT_DSP_B:
813 /* Data on rising edge of bclk, frame high */
814 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
815 CCSR_SSI_STCR_TXBIT0;
816 break;
817 case SND_SOC_DAIFMT_AC97:
818 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
819 break;
820 default:
821 return -EINVAL;
822 }
823 scr |= ssi_private->i2s_mode;
824
825 /* DAI clock inversion */
826 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
827 case SND_SOC_DAIFMT_NB_NF:
828 /* Nothing to do for both normal cases */
829 break;
830 case SND_SOC_DAIFMT_IB_NF:
831 /* Invert bit clock */
832 strcr ^= CCSR_SSI_STCR_TSCKP;
833 break;
834 case SND_SOC_DAIFMT_NB_IF:
835 /* Invert frame clock */
836 strcr ^= CCSR_SSI_STCR_TFSI;
837 break;
838 case SND_SOC_DAIFMT_IB_IF:
839 /* Invert both clocks */
840 strcr ^= CCSR_SSI_STCR_TSCKP;
841 strcr ^= CCSR_SSI_STCR_TFSI;
842 break;
843 default:
844 return -EINVAL;
845 }
846
847 /* DAI clock master masks */
848 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
849 case SND_SOC_DAIFMT_CBS_CFS:
850 strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
851 scr |= CCSR_SSI_SCR_SYS_CLK_EN;
852 break;
853 case SND_SOC_DAIFMT_CBM_CFM:
854 scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
855 break;
856 default:
857 return -EINVAL;
858 }
859
860 stcr |= strcr;
861 srcr |= strcr;
862
863 if (ssi_private->cpu_dai_drv.symmetric_rates) {
864 /* Need to clear RXDIR when using SYNC mode */
865 srcr &= ~CCSR_SSI_SRCR_RXDIR;
866 scr |= CCSR_SSI_SCR_SYN;
867 }
868
869 regmap_write(regs, CCSR_SSI_STCR, stcr);
870 regmap_write(regs, CCSR_SSI_SRCR, srcr);
871 regmap_write(regs, CCSR_SSI_SCR, scr);
872
873 /*
874 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
875 * use FIFO 1. We program the transmit water to signal a DMA transfer
876 * if there are only two (or fewer) elements left in the FIFO. Two
877 * elements equals one frame (left channel, right channel). This value,
878 * however, depends on the depth of the transmit buffer.
879 *
880 * We set the watermark on the same level as the DMA burstsize. For
881 * fiq it is probably better to use the biggest possible watermark
882 * size.
883 */
884 if (ssi_private->use_dma)
885 wm = ssi_private->fifo_depth - 2;
886 else
887 wm = ssi_private->fifo_depth;
888
889 regmap_write(regs, CCSR_SSI_SFCSR,
890 CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
891 CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
892
893 if (ssi_private->use_dual_fifo) {
894 regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
895 CCSR_SSI_SRCR_RFEN1);
896 regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
897 CCSR_SSI_STCR_TFEN1);
898 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
899 CCSR_SSI_SCR_TCH_EN);
900 }
901
902 if (fmt & SND_SOC_DAIFMT_AC97)
903 fsl_ssi_setup_ac97(ssi_private);
904
905 return 0;
906
907}
908
909/**
910 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
911 */
912static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
913{
914 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
915
916 return _fsl_ssi_set_dai_fmt(ssi_private, fmt);
917}
918
919/**
920 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
921 *
922 * Note: This function can be only called when using SSI as DAI master
923 */
924static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
925 u32 rx_mask, int slots, int slot_width)
926{
927 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
928 struct regmap *regs = ssi_private->regs;
929 u32 val;
930
931 /* The slot number should be >= 2 if using Network mode or I2S mode */
932 regmap_read(regs, CCSR_SSI_SCR, &val);
933 val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
934 if (val && slots < 2) {
935 dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
936 return -EINVAL;
937 }
938
939 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
940 CCSR_SSI_SxCCR_DC(slots));
941 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
942 CCSR_SSI_SxCCR_DC(slots));
943
944 /* The register SxMSKs needs SSI to provide essential clock due to
945 * hardware design. So we here temporarily enable SSI to set them.
946 */
947 regmap_read(regs, CCSR_SSI_SCR, &val);
948 val &= CCSR_SSI_SCR_SSIEN;
949 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
950 CCSR_SSI_SCR_SSIEN);
951
952 regmap_write(regs, CCSR_SSI_STMSK, tx_mask);
953 regmap_write(regs, CCSR_SSI_SRMSK, rx_mask);
954
955 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
956
957 return 0;
958}
959
960/**
961 * fsl_ssi_trigger: start and stop the DMA transfer.
962 *
963 * This function is called by ALSA to start, stop, pause, and resume the DMA
964 * transfer of data.
965 *
966 * The DMA channel is in external master start and pause mode, which
967 * means the SSI completely controls the flow of data.
968 */
969static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
970 struct snd_soc_dai *dai)
971{
972 struct snd_soc_pcm_runtime *rtd = substream->private_data;
973 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
974 struct regmap *regs = ssi_private->regs;
975
976 switch (cmd) {
977 case SNDRV_PCM_TRIGGER_START:
978 case SNDRV_PCM_TRIGGER_RESUME:
979 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
980 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
981 fsl_ssi_tx_config(ssi_private, true);
982 else
983 fsl_ssi_rx_config(ssi_private, true);
984 break;
985
986 case SNDRV_PCM_TRIGGER_STOP:
987 case SNDRV_PCM_TRIGGER_SUSPEND:
988 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
989 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
990 fsl_ssi_tx_config(ssi_private, false);
991 else
992 fsl_ssi_rx_config(ssi_private, false);
993 break;
994
995 default:
996 return -EINVAL;
997 }
998
999 if (fsl_ssi_is_ac97(ssi_private)) {
1000 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1001 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
1002 else
1003 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
1004 }
1005
1006 return 0;
1007}
1008
1009static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1010{
1011 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
1012
1013 if (ssi_private->soc->imx && ssi_private->use_dma) {
1014 dai->playback_dma_data = &ssi_private->dma_params_tx;
1015 dai->capture_dma_data = &ssi_private->dma_params_rx;
1016 }
1017
1018 return 0;
1019}
1020
1021static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1022 .startup = fsl_ssi_startup,
1023 .hw_params = fsl_ssi_hw_params,
1024 .hw_free = fsl_ssi_hw_free,
1025 .set_fmt = fsl_ssi_set_dai_fmt,
1026 .set_sysclk = fsl_ssi_set_dai_sysclk,
1027 .set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
1028 .trigger = fsl_ssi_trigger,
1029};
1030
1031/* Template for the CPU dai driver structure */
1032static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1033 .probe = fsl_ssi_dai_probe,
1034 .playback = {
1035 .stream_name = "CPU-Playback",
1036 .channels_min = 1,
1037 .channels_max = 2,
1038 .rates = FSLSSI_I2S_RATES,
1039 .formats = FSLSSI_I2S_FORMATS,
1040 },
1041 .capture = {
1042 .stream_name = "CPU-Capture",
1043 .channels_min = 1,
1044 .channels_max = 2,
1045 .rates = FSLSSI_I2S_RATES,
1046 .formats = FSLSSI_I2S_FORMATS,
1047 },
1048 .ops = &fsl_ssi_dai_ops,
1049};
1050
1051static const struct snd_soc_component_driver fsl_ssi_component = {
1052 .name = "fsl-ssi",
1053};
1054
1055static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1056 .ac97_control = 1,
1057 .playback = {
1058 .stream_name = "AC97 Playback",
1059 .channels_min = 2,
1060 .channels_max = 2,
1061 .rates = SNDRV_PCM_RATE_8000_48000,
1062 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1063 },
1064 .capture = {
1065 .stream_name = "AC97 Capture",
1066 .channels_min = 2,
1067 .channels_max = 2,
1068 .rates = SNDRV_PCM_RATE_48000,
1069 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1070 },
1071 .ops = &fsl_ssi_dai_ops,
1072};
1073
1074
1075static struct fsl_ssi_private *fsl_ac97_data;
1076
1077static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1078 unsigned short val)
1079{
1080 struct regmap *regs = fsl_ac97_data->regs;
1081 unsigned int lreg;
1082 unsigned int lval;
1083
1084 if (reg > 0x7f)
1085 return;
1086
1087
1088 lreg = reg << 12;
1089 regmap_write(regs, CCSR_SSI_SACADD, lreg);
1090
1091 lval = val << 4;
1092 regmap_write(regs, CCSR_SSI_SACDAT, lval);
1093
1094 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1095 CCSR_SSI_SACNT_WR);
1096 udelay(100);
1097}
1098
1099static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1100 unsigned short reg)
1101{
1102 struct regmap *regs = fsl_ac97_data->regs;
1103
1104 unsigned short val = -1;
1105 u32 reg_val;
1106 unsigned int lreg;
1107
1108 lreg = (reg & 0x7f) << 12;
1109 regmap_write(regs, CCSR_SSI_SACADD, lreg);
1110 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1111 CCSR_SSI_SACNT_RD);
1112
1113 udelay(100);
1114
1115 regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
1116 val = (reg_val >> 4) & 0xffff;
1117
1118 return val;
1119}
1120
1121static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1122 .read = fsl_ssi_ac97_read,
1123 .write = fsl_ssi_ac97_write,
1124};
1125
1126/**
1127 * Make every character in a string lower-case
1128 */
1129static void make_lowercase(char *s)
1130{
1131 char *p = s;
1132 char c;
1133
1134 while ((c = *p)) {
1135 if ((c >= 'A') && (c <= 'Z'))
1136 *p = c + ('a' - 'A');
1137 p++;
1138 }
1139}
1140
1141static int fsl_ssi_imx_probe(struct platform_device *pdev,
1142 struct fsl_ssi_private *ssi_private, void __iomem *iomem)
1143{
1144 struct device_node *np = pdev->dev.of_node;
1145 u32 dmas[4];
1146 int ret;
1147
1148 ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1149 if (IS_ERR(ssi_private->clk)) {
1150 ret = PTR_ERR(ssi_private->clk);
1151 dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1152 return ret;
1153 }
1154
1155 ret = clk_prepare_enable(ssi_private->clk);
1156 if (ret) {
1157 dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1158 return ret;
1159 }
1160
1161 /* For those SLAVE implementations, we ingore non-baudclk cases
1162 * and, instead, abandon MASTER mode that needs baud clock.
1163 */
1164 ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
1165 if (IS_ERR(ssi_private->baudclk))
1166 dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1167 PTR_ERR(ssi_private->baudclk));
1168
1169 /*
1170 * We have burstsize be "fifo_depth - 2" to match the SSI
1171 * watermark setting in fsl_ssi_startup().
1172 */
1173 ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
1174 ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
1175 ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
1176 ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
1177
1178 ret = !of_property_read_u32_array(np, "dmas", dmas, 4);
1179 if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1180 ssi_private->use_dual_fifo = true;
1181 /* When using dual fifo mode, we need to keep watermark
1182 * as even numbers due to dma script limitation.
1183 */
1184 ssi_private->dma_params_tx.maxburst &= ~0x1;
1185 ssi_private->dma_params_rx.maxburst &= ~0x1;
1186 }
1187
1188 if (!ssi_private->use_dma) {
1189
1190 /*
1191 * Some boards use an incompatible codec. To get it
1192 * working, we are using imx-fiq-pcm-audio, that
1193 * can handle those codecs. DMA is not possible in this
1194 * situation.
1195 */
1196
1197 ssi_private->fiq_params.irq = ssi_private->irq;
1198 ssi_private->fiq_params.base = iomem;
1199 ssi_private->fiq_params.dma_params_rx =
1200 &ssi_private->dma_params_rx;
1201 ssi_private->fiq_params.dma_params_tx =
1202 &ssi_private->dma_params_tx;
1203
1204 ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1205 if (ret)
1206 goto error_pcm;
1207 } else {
1208 ret = imx_pcm_dma_init(pdev);
1209 if (ret)
1210 goto error_pcm;
1211 }
1212
1213 return 0;
1214
1215error_pcm:
1216 clk_disable_unprepare(ssi_private->clk);
1217
1218 return ret;
1219}
1220
1221static void fsl_ssi_imx_clean(struct platform_device *pdev,
1222 struct fsl_ssi_private *ssi_private)
1223{
1224 if (!ssi_private->use_dma)
1225 imx_pcm_fiq_exit(pdev);
1226 clk_disable_unprepare(ssi_private->clk);
1227}
1228
1229static int fsl_ssi_probe(struct platform_device *pdev)
1230{
1231 struct fsl_ssi_private *ssi_private;
1232 int ret = 0;
1233 struct device_node *np = pdev->dev.of_node;
1234 const struct of_device_id *of_id;
1235 const char *p, *sprop;
1236 const uint32_t *iprop;
1237 struct resource res;
1238 void __iomem *iomem;
1239 char name[64];
1240
1241 /* SSIs that are not connected on the board should have a
1242 * status = "disabled"
1243 * property in their device tree nodes.
1244 */
1245 if (!of_device_is_available(np))
1246 return -ENODEV;
1247
1248 of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
1249 if (!of_id || !of_id->data)
1250 return -EINVAL;
1251
1252 ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
1253 GFP_KERNEL);
1254 if (!ssi_private) {
1255 dev_err(&pdev->dev, "could not allocate DAI object\n");
1256 return -ENOMEM;
1257 }
1258
1259 ssi_private->soc = of_id->data;
1260
1261 sprop = of_get_property(np, "fsl,mode", NULL);
1262 if (sprop) {
1263 if (!strcmp(sprop, "ac97-slave"))
1264 ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
1265 else if (!strcmp(sprop, "i2s-slave"))
1266 ssi_private->dai_fmt = SND_SOC_DAIFMT_I2S |
1267 SND_SOC_DAIFMT_CBM_CFM;
1268 }
1269
1270 ssi_private->use_dma = !of_property_read_bool(np,
1271 "fsl,fiq-stream-filter");
1272
1273 if (fsl_ssi_is_ac97(ssi_private)) {
1274 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
1275 sizeof(fsl_ssi_ac97_dai));
1276
1277 fsl_ac97_data = ssi_private;
1278
1279 snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1280 } else {
1281 /* Initialize this copy of the CPU DAI driver structure */
1282 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
1283 sizeof(fsl_ssi_dai_template));
1284 }
1285 ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1286
1287 /* Get the addresses and IRQ */
1288 ret = of_address_to_resource(np, 0, &res);
1289 if (ret) {
1290 dev_err(&pdev->dev, "could not determine device resources\n");
1291 return ret;
1292 }
1293 ssi_private->ssi_phys = res.start;
1294
1295 iomem = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1296 if (!iomem) {
1297 dev_err(&pdev->dev, "could not map device resources\n");
1298 return -ENOMEM;
1299 }
1300
1301 ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1302 &fsl_ssi_regconfig);
1303 if (IS_ERR(ssi_private->regs)) {
1304 dev_err(&pdev->dev, "Failed to init register map\n");
1305 return PTR_ERR(ssi_private->regs);
1306 }
1307
1308 ssi_private->irq = irq_of_parse_and_map(np, 0);
1309 if (!ssi_private->irq) {
1310 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
1311 return -ENXIO;
1312 }
1313
1314 /* Are the RX and the TX clocks locked? */
1315 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1316 ssi_private->cpu_dai_drv.symmetric_rates = 1;
1317 ssi_private->cpu_dai_drv.symmetric_channels = 1;
1318 ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
1319 }
1320
1321 /* Determine the FIFO depth. */
1322 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1323 if (iprop)
1324 ssi_private->fifo_depth = be32_to_cpup(iprop);
1325 else
1326 /* Older 8610 DTs didn't have the fifo-depth property */
1327 ssi_private->fifo_depth = 8;
1328
1329 dev_set_drvdata(&pdev->dev, ssi_private);
1330
1331 if (ssi_private->soc->imx) {
1332 ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
1333 if (ret)
1334 goto error_irqmap;
1335 }
1336
1337 ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1338 &ssi_private->cpu_dai_drv, 1);
1339 if (ret) {
1340 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1341 goto error_asoc_register;
1342 }
1343
1344 if (ssi_private->use_dma) {
1345 ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1346 fsl_ssi_isr, 0, dev_name(&pdev->dev),
1347 ssi_private);
1348 if (ret < 0) {
1349 dev_err(&pdev->dev, "could not claim irq %u\n",
1350 ssi_private->irq);
1351 goto error_irq;
1352 }
1353 }
1354
1355 ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1356 if (ret)
1357 goto error_asoc_register;
1358
1359 /*
1360 * If codec-handle property is missing from SSI node, we assume
1361 * that the machine driver uses new binding which does not require
1362 * SSI driver to trigger machine driver's probe.
1363 */
1364 if (!of_get_property(np, "codec-handle", NULL))
1365 goto done;
1366
1367 /* Trigger the machine driver's probe function. The platform driver
1368 * name of the machine driver is taken from /compatible property of the
1369 * device tree. We also pass the address of the CPU DAI driver
1370 * structure.
1371 */
1372 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1373 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1374 p = strrchr(sprop, ',');
1375 if (p)
1376 sprop = p + 1;
1377 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1378 make_lowercase(name);
1379
1380 ssi_private->pdev =
1381 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1382 if (IS_ERR(ssi_private->pdev)) {
1383 ret = PTR_ERR(ssi_private->pdev);
1384 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1385 goto error_sound_card;
1386 }
1387
1388done:
1389 if (ssi_private->dai_fmt)
1390 _fsl_ssi_set_dai_fmt(ssi_private, ssi_private->dai_fmt);
1391
1392 return 0;
1393
1394error_sound_card:
1395 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1396
1397error_irq:
1398 snd_soc_unregister_component(&pdev->dev);
1399
1400error_asoc_register:
1401 if (ssi_private->soc->imx)
1402 fsl_ssi_imx_clean(pdev, ssi_private);
1403
1404error_irqmap:
1405 if (ssi_private->use_dma)
1406 irq_dispose_mapping(ssi_private->irq);
1407
1408 return ret;
1409}
1410
1411static int fsl_ssi_remove(struct platform_device *pdev)
1412{
1413 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1414
1415 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1416
1417 if (ssi_private->pdev)
1418 platform_device_unregister(ssi_private->pdev);
1419 snd_soc_unregister_component(&pdev->dev);
1420
1421 if (ssi_private->soc->imx)
1422 fsl_ssi_imx_clean(pdev, ssi_private);
1423
1424 if (ssi_private->use_dma)
1425 irq_dispose_mapping(ssi_private->irq);
1426
1427 return 0;
1428}
1429
1430static struct platform_driver fsl_ssi_driver = {
1431 .driver = {
1432 .name = "fsl-ssi-dai",
1433 .owner = THIS_MODULE,
1434 .of_match_table = fsl_ssi_ids,
1435 },
1436 .probe = fsl_ssi_probe,
1437 .remove = fsl_ssi_remove,
1438};
1439
1440module_platform_driver(fsl_ssi_driver);
1441
1442MODULE_ALIAS("platform:fsl-ssi-dai");
1443MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1444MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1445MODULE_LICENSE("GPL v2");