Merge drm/drm-next into drm-intel-next-queued
[linux-2.6-block.git] / sound / soc / fsl / fsl_ssi.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2//
3// Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
4//
5// Author: Timur Tabi <timur@freescale.com>
6//
7// Copyright 2007-2010 Freescale Semiconductor, Inc.
8//
9// Some notes why imx-pcm-fiq is used instead of DMA on some boards:
10//
11// The i.MX SSI core has some nasty limitations in AC97 mode. While most
12// sane processor vendors have a FIFO per AC97 slot, the i.MX has only
13// one FIFO which combines all valid receive slots. We cannot even select
14// which slots we want to receive. The WM9712 with which this driver
15// was developed with always sends GPIO status data in slot 12 which
16// we receive in our (PCM-) data stream. The only chance we have is to
17// manually skip this data in the FIQ handler. With sampling rates different
18// from 48000Hz not every frame has valid receive data, so the ratio
19// between pcm data and GPIO status data changes. Our FIQ handler is not
20// able to handle this, hence this driver only works with 48000Hz sampling
21// rate.
22// Reading and writing AC97 registers is another challenge. The core
23// provides us status bits when the read register is updated with *another*
24// value. When we read the same register two times (and the register still
25// contains the same value) these status bits are not set. We work
26// around this by not polling these bits but only wait a fixed delay.
27
28#include <linux/init.h>
29#include <linux/io.h>
30#include <linux/module.h>
31#include <linux/interrupt.h>
32#include <linux/clk.h>
33#include <linux/ctype.h>
34#include <linux/device.h>
35#include <linux/delay.h>
36#include <linux/mutex.h>
37#include <linux/slab.h>
38#include <linux/spinlock.h>
39#include <linux/of.h>
40#include <linux/of_address.h>
41#include <linux/of_irq.h>
42#include <linux/of_platform.h>
43
44#include <sound/core.h>
45#include <sound/pcm.h>
46#include <sound/pcm_params.h>
47#include <sound/initval.h>
48#include <sound/soc.h>
49#include <sound/dmaengine_pcm.h>
50
51#include "fsl_ssi.h"
52#include "imx-pcm.h"
53
54/* Define RX and TX to index ssi->regvals array; Can be 0 or 1 only */
55#define RX 0
56#define TX 1
57
58/**
59 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
60 *
61 * The SSI has a limitation in that the samples must be in the same byte
62 * order as the host CPU. This is because when multiple bytes are written
63 * to the STX register, the bytes and bits must be written in the same
64 * order. The STX is a shift register, so all the bits need to be aligned
65 * (bit-endianness must match byte-endianness). Processors typically write
66 * the bits within a byte in the same order that the bytes of a word are
67 * written in. So if the host CPU is big-endian, then only big-endian
68 * samples will be written to STX properly.
69 */
70#ifdef __BIG_ENDIAN
71#define FSLSSI_I2S_FORMATS \
72 (SNDRV_PCM_FMTBIT_S8 | \
73 SNDRV_PCM_FMTBIT_S16_BE | \
74 SNDRV_PCM_FMTBIT_S18_3BE | \
75 SNDRV_PCM_FMTBIT_S20_3BE | \
76 SNDRV_PCM_FMTBIT_S24_3BE | \
77 SNDRV_PCM_FMTBIT_S24_BE)
78#else
79#define FSLSSI_I2S_FORMATS \
80 (SNDRV_PCM_FMTBIT_S8 | \
81 SNDRV_PCM_FMTBIT_S16_LE | \
82 SNDRV_PCM_FMTBIT_S18_3LE | \
83 SNDRV_PCM_FMTBIT_S20_3LE | \
84 SNDRV_PCM_FMTBIT_S24_3LE | \
85 SNDRV_PCM_FMTBIT_S24_LE)
86#endif
87
88/*
89 * In AC97 mode, TXDIR bit is forced to 0 and TFDIR bit is forced to 1:
90 * - SSI inputs external bit clock and outputs frame sync clock -- CBM_CFS
91 * - Also have NB_NF to mark these two clocks will not be inverted
92 */
93#define FSLSSI_AC97_DAIFMT \
94 (SND_SOC_DAIFMT_AC97 | \
95 SND_SOC_DAIFMT_CBM_CFS | \
96 SND_SOC_DAIFMT_NB_NF)
97
98#define FSLSSI_SIER_DBG_RX_FLAGS \
99 (SSI_SIER_RFF0_EN | \
100 SSI_SIER_RLS_EN | \
101 SSI_SIER_RFS_EN | \
102 SSI_SIER_ROE0_EN | \
103 SSI_SIER_RFRC_EN)
104#define FSLSSI_SIER_DBG_TX_FLAGS \
105 (SSI_SIER_TFE0_EN | \
106 SSI_SIER_TLS_EN | \
107 SSI_SIER_TFS_EN | \
108 SSI_SIER_TUE0_EN | \
109 SSI_SIER_TFRC_EN)
110
111enum fsl_ssi_type {
112 FSL_SSI_MCP8610,
113 FSL_SSI_MX21,
114 FSL_SSI_MX35,
115 FSL_SSI_MX51,
116};
117
118struct fsl_ssi_regvals {
119 u32 sier;
120 u32 srcr;
121 u32 stcr;
122 u32 scr;
123};
124
125static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
126{
127 switch (reg) {
128 case REG_SSI_SACCEN:
129 case REG_SSI_SACCDIS:
130 return false;
131 default:
132 return true;
133 }
134}
135
136static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
137{
138 switch (reg) {
139 case REG_SSI_STX0:
140 case REG_SSI_STX1:
141 case REG_SSI_SRX0:
142 case REG_SSI_SRX1:
143 case REG_SSI_SISR:
144 case REG_SSI_SFCSR:
145 case REG_SSI_SACNT:
146 case REG_SSI_SACADD:
147 case REG_SSI_SACDAT:
148 case REG_SSI_SATAG:
149 case REG_SSI_SACCST:
150 case REG_SSI_SOR:
151 return true;
152 default:
153 return false;
154 }
155}
156
157static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
158{
159 switch (reg) {
160 case REG_SSI_SRX0:
161 case REG_SSI_SRX1:
162 case REG_SSI_SISR:
163 case REG_SSI_SACADD:
164 case REG_SSI_SACDAT:
165 case REG_SSI_SATAG:
166 return true;
167 default:
168 return false;
169 }
170}
171
172static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
173{
174 switch (reg) {
175 case REG_SSI_SRX0:
176 case REG_SSI_SRX1:
177 case REG_SSI_SACCST:
178 return false;
179 default:
180 return true;
181 }
182}
183
184static const struct regmap_config fsl_ssi_regconfig = {
185 .max_register = REG_SSI_SACCDIS,
186 .reg_bits = 32,
187 .val_bits = 32,
188 .reg_stride = 4,
189 .val_format_endian = REGMAP_ENDIAN_NATIVE,
190 .num_reg_defaults_raw = REG_SSI_SACCDIS / sizeof(uint32_t) + 1,
191 .readable_reg = fsl_ssi_readable_reg,
192 .volatile_reg = fsl_ssi_volatile_reg,
193 .precious_reg = fsl_ssi_precious_reg,
194 .writeable_reg = fsl_ssi_writeable_reg,
195 .cache_type = REGCACHE_FLAT,
196};
197
198struct fsl_ssi_soc_data {
199 bool imx;
200 bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
201 bool offline_config;
202 u32 sisr_write_mask;
203};
204
205/**
206 * fsl_ssi: per-SSI private data
207 *
208 * @regs: Pointer to the regmap registers
209 * @irq: IRQ of this SSI
210 * @cpu_dai_drv: CPU DAI driver for this device
211 *
212 * @dai_fmt: DAI configuration this device is currently used with
213 * @streams: Mask of current active streams: BIT(TX) and BIT(RX)
214 * @i2s_net: I2S and Network mode configurations of SCR register
215 * (this is the initial settings based on the DAI format)
216 * @synchronous: Use synchronous mode - both of TX and RX use STCK and SFCK
217 * @use_dma: DMA is used or FIQ with stream filter
218 * @use_dual_fifo: DMA with support for dual FIFO mode
219 * @has_ipg_clk_name: If "ipg" is in the clock name list of device tree
220 * @fifo_depth: Depth of the SSI FIFOs
221 * @slot_width: Width of each DAI slot
222 * @slots: Number of slots
223 * @regvals: Specific RX/TX register settings
224 *
225 * @clk: Clock source to access register
226 * @baudclk: Clock source to generate bit and frame-sync clocks
227 * @baudclk_streams: Active streams that are using baudclk
228 *
229 * @regcache_sfcsr: Cache sfcsr register value during suspend and resume
230 * @regcache_sacnt: Cache sacnt register value during suspend and resume
231 *
232 * @dma_params_tx: DMA transmit parameters
233 * @dma_params_rx: DMA receive parameters
234 * @ssi_phys: physical address of the SSI registers
235 *
236 * @fiq_params: FIQ stream filtering parameters
237 *
238 * @card_pdev: Platform_device pointer to register a sound card for PowerPC or
239 * to register a CODEC platform device for AC97
240 * @card_name: Platform_device name to register a sound card for PowerPC or
241 * to register a CODEC platform device for AC97
242 * @card_idx: The index of SSI to register a sound card for PowerPC or
243 * to register a CODEC platform device for AC97
244 *
245 * @dbg_stats: Debugging statistics
246 *
247 * @soc: SoC specific data
248 * @dev: Pointer to &pdev->dev
249 *
250 * @fifo_watermark: The FIFO watermark setting. Notifies DMA when there are
251 * @fifo_watermark or fewer words in TX fifo or
252 * @fifo_watermark or more empty words in RX fifo.
253 * @dma_maxburst: Max number of words to transfer in one go. So far,
254 * this is always the same as fifo_watermark.
255 *
256 * @ac97_reg_lock: Mutex lock to serialize AC97 register access operations
257 */
258struct fsl_ssi {
259 struct regmap *regs;
260 int irq;
261 struct snd_soc_dai_driver cpu_dai_drv;
262
263 unsigned int dai_fmt;
264 u8 streams;
265 u8 i2s_net;
266 bool synchronous;
267 bool use_dma;
268 bool use_dual_fifo;
269 bool has_ipg_clk_name;
270 unsigned int fifo_depth;
271 unsigned int slot_width;
272 unsigned int slots;
273 struct fsl_ssi_regvals regvals[2];
274
275 struct clk *clk;
276 struct clk *baudclk;
277 unsigned int baudclk_streams;
278
279 u32 regcache_sfcsr;
280 u32 regcache_sacnt;
281
282 struct snd_dmaengine_dai_dma_data dma_params_tx;
283 struct snd_dmaengine_dai_dma_data dma_params_rx;
284 dma_addr_t ssi_phys;
285
286 struct imx_pcm_fiq_params fiq_params;
287
288 struct platform_device *card_pdev;
289 char card_name[32];
290 u32 card_idx;
291
292 struct fsl_ssi_dbg dbg_stats;
293
294 const struct fsl_ssi_soc_data *soc;
295 struct device *dev;
296
297 u32 fifo_watermark;
298 u32 dma_maxburst;
299
300 struct mutex ac97_reg_lock;
301};
302
303/*
304 * SoC specific data
305 *
306 * Notes:
307 * 1) SSI in earlier SoCS has critical bits in control registers that
308 * cannot be changed after SSI starts running -- a software reset
309 * (set SSIEN to 0) is required to change their values. So adding
310 * an offline_config flag for these SoCs.
311 * 2) SDMA is available since imx35. However, imx35 does not support
312 * DMA bits changing when SSI is running, so set offline_config.
313 * 3) imx51 and later versions support register configurations when
314 * SSI is running (SSIEN); For these versions, DMA needs to be
315 * configured before SSI sends DMA request to avoid an undefined
316 * DMA request on the SDMA side.
317 */
318
319static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
320 .imx = false,
321 .offline_config = true,
322 .sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
323 SSI_SISR_ROE0 | SSI_SISR_ROE1 |
324 SSI_SISR_TUE0 | SSI_SISR_TUE1,
325};
326
327static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
328 .imx = true,
329 .imx21regs = true,
330 .offline_config = true,
331 .sisr_write_mask = 0,
332};
333
334static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
335 .imx = true,
336 .offline_config = true,
337 .sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
338 SSI_SISR_ROE0 | SSI_SISR_ROE1 |
339 SSI_SISR_TUE0 | SSI_SISR_TUE1,
340};
341
342static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
343 .imx = true,
344 .offline_config = false,
345 .sisr_write_mask = SSI_SISR_ROE0 | SSI_SISR_ROE1 |
346 SSI_SISR_TUE0 | SSI_SISR_TUE1,
347};
348
349static const struct of_device_id fsl_ssi_ids[] = {
350 { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
351 { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
352 { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
353 { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
354 {}
355};
356MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
357
358static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi)
359{
360 return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
361 SND_SOC_DAIFMT_AC97;
362}
363
364static bool fsl_ssi_is_i2s_master(struct fsl_ssi *ssi)
365{
366 return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
367 SND_SOC_DAIFMT_CBS_CFS;
368}
369
370static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi *ssi)
371{
372 return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
373 SND_SOC_DAIFMT_CBM_CFS;
374}
375
376/**
377 * Interrupt handler to gather states
378 */
379static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
380{
381 struct fsl_ssi *ssi = dev_id;
382 struct regmap *regs = ssi->regs;
383 u32 sisr, sisr2;
384
385 regmap_read(regs, REG_SSI_SISR, &sisr);
386
387 sisr2 = sisr & ssi->soc->sisr_write_mask;
388 /* Clear the bits that we set */
389 if (sisr2)
390 regmap_write(regs, REG_SSI_SISR, sisr2);
391
392 fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr);
393
394 return IRQ_HANDLED;
395}
396
397/**
398 * Set SCR, SIER, STCR and SRCR registers with cached values in regvals
399 *
400 * Notes:
401 * 1) For offline_config SoCs, enable all necessary bits of both streams
402 * when 1st stream starts, even if the opposite stream will not start
403 * 2) It also clears FIFO before setting regvals; SOR is safe to set online
404 */
405static void fsl_ssi_config_enable(struct fsl_ssi *ssi, bool tx)
406{
407 struct fsl_ssi_regvals *vals = ssi->regvals;
408 int dir = tx ? TX : RX;
409 u32 sier, srcr, stcr;
410
411 /* Clear dirty data in the FIFO; It also prevents channel slipping */
412 regmap_update_bits(ssi->regs, REG_SSI_SOR,
413 SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
414
415 /*
416 * On offline_config SoCs, SxCR and SIER are already configured when
417 * the previous stream started. So skip all SxCR and SIER settings
418 * to prevent online reconfigurations, then jump to set SCR directly
419 */
420 if (ssi->soc->offline_config && ssi->streams)
421 goto enable_scr;
422
423 if (ssi->soc->offline_config) {
424 /*
425 * Online reconfiguration not supported, so enable all bits for
426 * both streams at once to avoid necessity of reconfigurations
427 */
428 srcr = vals[RX].srcr | vals[TX].srcr;
429 stcr = vals[RX].stcr | vals[TX].stcr;
430 sier = vals[RX].sier | vals[TX].sier;
431 } else {
432 /* Otherwise, only set bits for the current stream */
433 srcr = vals[dir].srcr;
434 stcr = vals[dir].stcr;
435 sier = vals[dir].sier;
436 }
437
438 /* Configure SRCR, STCR and SIER at once */
439 regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, srcr);
440 regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, stcr);
441 regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, sier);
442
443enable_scr:
444 /*
445 * Start DMA before setting TE to avoid FIFO underrun
446 * which may cause a channel slip or a channel swap
447 *
448 * TODO: FIQ cases might also need this upon testing
449 */
450 if (ssi->use_dma && tx) {
451 int try = 100;
452 u32 sfcsr;
453
454 /* Enable SSI first to send TX DMA request */
455 regmap_update_bits(ssi->regs, REG_SSI_SCR,
456 SSI_SCR_SSIEN, SSI_SCR_SSIEN);
457
458 /* Busy wait until TX FIFO not empty -- DMA working */
459 do {
460 regmap_read(ssi->regs, REG_SSI_SFCSR, &sfcsr);
461 if (SSI_SFCSR_TFCNT0(sfcsr))
462 break;
463 } while (--try);
464
465 /* FIFO still empty -- something might be wrong */
466 if (!SSI_SFCSR_TFCNT0(sfcsr))
467 dev_warn(ssi->dev, "Timeout waiting TX FIFO filling\n");
468 }
469 /* Enable all remaining bits in SCR */
470 regmap_update_bits(ssi->regs, REG_SSI_SCR,
471 vals[dir].scr, vals[dir].scr);
472
473 /* Log the enabled stream to the mask */
474 ssi->streams |= BIT(dir);
475}
476
477/**
478 * Exclude bits that are used by the opposite stream
479 *
480 * When both streams are active, disabling some bits for the current stream
481 * might break the other stream if these bits are used by it.
482 *
483 * @vals : regvals of the current stream
484 * @avals: regvals of the opposite stream
485 * @aactive: active state of the opposite stream
486 *
487 * 1) XOR vals and avals to get the differences if the other stream is active;
488 * Otherwise, return current vals if the other stream is not active
489 * 2) AND the result of 1) with the current vals
490 */
491#define _ssi_xor_shared_bits(vals, avals, aactive) \
492 ((vals) ^ ((avals) * (aactive)))
493
494#define ssi_excl_shared_bits(vals, avals, aactive) \
495 ((vals) & _ssi_xor_shared_bits(vals, avals, aactive))
496
497/**
498 * Unset SCR, SIER, STCR and SRCR registers with cached values in regvals
499 *
500 * Notes:
501 * 1) For offline_config SoCs, to avoid online reconfigurations, disable all
502 * bits of both streams at once when the last stream is abort to end
503 * 2) It also clears FIFO after unsetting regvals; SOR is safe to set online
504 */
505static void fsl_ssi_config_disable(struct fsl_ssi *ssi, bool tx)
506{
507 struct fsl_ssi_regvals *vals, *avals;
508 u32 sier, srcr, stcr, scr;
509 int adir = tx ? RX : TX;
510 int dir = tx ? TX : RX;
511 bool aactive;
512
513 /* Check if the opposite stream is active */
514 aactive = ssi->streams & BIT(adir);
515
516 vals = &ssi->regvals[dir];
517
518 /* Get regvals of the opposite stream to keep opposite stream safe */
519 avals = &ssi->regvals[adir];
520
521 /*
522 * To keep the other stream safe, exclude shared bits between
523 * both streams, and get safe bits to disable current stream
524 */
525 scr = ssi_excl_shared_bits(vals->scr, avals->scr, aactive);
526
527 /* Disable safe bits of SCR register for the current stream */
528 regmap_update_bits(ssi->regs, REG_SSI_SCR, scr, 0);
529
530 /* Log the disabled stream to the mask */
531 ssi->streams &= ~BIT(dir);
532
533 /*
534 * On offline_config SoCs, if the other stream is active, skip
535 * SxCR and SIER settings to prevent online reconfigurations
536 */
537 if (ssi->soc->offline_config && aactive)
538 goto fifo_clear;
539
540 if (ssi->soc->offline_config) {
541 /* Now there is only current stream active, disable all bits */
542 srcr = vals->srcr | avals->srcr;
543 stcr = vals->stcr | avals->stcr;
544 sier = vals->sier | avals->sier;
545 } else {
546 /*
547 * To keep the other stream safe, exclude shared bits between
548 * both streams, and get safe bits to disable current stream
549 */
550 sier = ssi_excl_shared_bits(vals->sier, avals->sier, aactive);
551 srcr = ssi_excl_shared_bits(vals->srcr, avals->srcr, aactive);
552 stcr = ssi_excl_shared_bits(vals->stcr, avals->stcr, aactive);
553 }
554
555 /* Clear configurations of SRCR, STCR and SIER at once */
556 regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, 0);
557 regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, 0);
558 regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, 0);
559
560fifo_clear:
561 /* Clear remaining data in the FIFO */
562 regmap_update_bits(ssi->regs, REG_SSI_SOR,
563 SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
564}
565
566static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
567{
568 struct regmap *regs = ssi->regs;
569
570 /* no SACC{ST,EN,DIS} regs on imx21-class SSI */
571 if (!ssi->soc->imx21regs) {
572 /* Disable all channel slots */
573 regmap_write(regs, REG_SSI_SACCDIS, 0xff);
574 /* Enable slots 3 & 4 -- PCM Playback Left & Right channels */
575 regmap_write(regs, REG_SSI_SACCEN, 0x300);
576 }
577}
578
579/**
580 * Cache critical bits of SIER, SRCR, STCR and SCR to later set them safely
581 */
582static void fsl_ssi_setup_regvals(struct fsl_ssi *ssi)
583{
584 struct fsl_ssi_regvals *vals = ssi->regvals;
585
586 vals[RX].sier = SSI_SIER_RFF0_EN | FSLSSI_SIER_DBG_RX_FLAGS;
587 vals[RX].srcr = SSI_SRCR_RFEN0;
588 vals[RX].scr = SSI_SCR_SSIEN | SSI_SCR_RE;
589 vals[TX].sier = SSI_SIER_TFE0_EN | FSLSSI_SIER_DBG_TX_FLAGS;
590 vals[TX].stcr = SSI_STCR_TFEN0;
591 vals[TX].scr = SSI_SCR_SSIEN | SSI_SCR_TE;
592
593 /* AC97 has already enabled SSIEN, RE and TE, so ignore them */
594 if (fsl_ssi_is_ac97(ssi))
595 vals[RX].scr = vals[TX].scr = 0;
596
597 if (ssi->use_dual_fifo) {
598 vals[RX].srcr |= SSI_SRCR_RFEN1;
599 vals[TX].stcr |= SSI_STCR_TFEN1;
600 }
601
602 if (ssi->use_dma) {
603 vals[RX].sier |= SSI_SIER_RDMAE;
604 vals[TX].sier |= SSI_SIER_TDMAE;
605 } else {
606 vals[RX].sier |= SSI_SIER_RIE;
607 vals[TX].sier |= SSI_SIER_TIE;
608 }
609}
610
611static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
612{
613 struct regmap *regs = ssi->regs;
614
615 /* Setup the clock control register */
616 regmap_write(regs, REG_SSI_STCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
617 regmap_write(regs, REG_SSI_SRCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
618
619 /* Enable AC97 mode and startup the SSI */
620 regmap_write(regs, REG_SSI_SACNT, SSI_SACNT_AC97EN | SSI_SACNT_FV);
621
622 /* AC97 has to communicate with codec before starting a stream */
623 regmap_update_bits(regs, REG_SSI_SCR,
624 SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE,
625 SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE);
626
627 regmap_write(regs, REG_SSI_SOR, SSI_SOR_WAIT(3));
628}
629
630static int fsl_ssi_startup(struct snd_pcm_substream *substream,
631 struct snd_soc_dai *dai)
632{
633 struct snd_soc_pcm_runtime *rtd = substream->private_data;
634 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
635 int ret;
636
637 ret = clk_prepare_enable(ssi->clk);
638 if (ret)
639 return ret;
640
641 /*
642 * When using dual fifo mode, it is safer to ensure an even period
643 * size. If appearing to an odd number while DMA always starts its
644 * task from fifo0, fifo1 would be neglected at the end of each
645 * period. But SSI would still access fifo1 with an invalid data.
646 */
647 if (ssi->use_dual_fifo)
648 snd_pcm_hw_constraint_step(substream->runtime, 0,
649 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
650
651 return 0;
652}
653
654static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
655 struct snd_soc_dai *dai)
656{
657 struct snd_soc_pcm_runtime *rtd = substream->private_data;
658 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
659
660 clk_disable_unprepare(ssi->clk);
661}
662
663/**
664 * Configure Digital Audio Interface bit clock
665 *
666 * Note: This function can be only called when using SSI as DAI master
667 *
668 * Quick instruction for parameters:
669 * freq: Output BCLK frequency = samplerate * slots * slot_width
670 * (In 2-channel I2S Master mode, slot_width is fixed 32)
671 */
672static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
673 struct snd_soc_dai *dai,
674 struct snd_pcm_hw_params *hw_params)
675{
676 bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
677 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
678 struct regmap *regs = ssi->regs;
679 u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
680 unsigned long clkrate, baudrate, tmprate;
681 unsigned int slots = params_channels(hw_params);
682 unsigned int slot_width = 32;
683 u64 sub, savesub = 100000;
684 unsigned int freq;
685 bool baudclk_is_used;
686 int ret;
687
688 /* Override slots and slot_width if being specifically set... */
689 if (ssi->slots)
690 slots = ssi->slots;
691 /* ...but keep 32 bits if slots is 2 -- I2S Master mode */
692 if (ssi->slot_width && slots != 2)
693 slot_width = ssi->slot_width;
694
695 /* Generate bit clock based on the slot number and slot width */
696 freq = slots * slot_width * params_rate(hw_params);
697
698 /* Don't apply it to any non-baudclk circumstance */
699 if (IS_ERR(ssi->baudclk))
700 return -EINVAL;
701
702 /*
703 * Hardware limitation: The bclk rate must be
704 * never greater than 1/5 IPG clock rate
705 */
706 if (freq * 5 > clk_get_rate(ssi->clk)) {
707 dev_err(dai->dev, "bitclk > ipgclk / 5\n");
708 return -EINVAL;
709 }
710
711 baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream));
712
713 /* It should be already enough to divide clock by setting pm alone */
714 psr = 0;
715 div2 = 0;
716
717 factor = (div2 + 1) * (7 * psr + 1) * 2;
718
719 for (i = 0; i < 255; i++) {
720 tmprate = freq * factor * (i + 1);
721
722 if (baudclk_is_used)
723 clkrate = clk_get_rate(ssi->baudclk);
724 else
725 clkrate = clk_round_rate(ssi->baudclk, tmprate);
726
727 clkrate /= factor;
728 afreq = clkrate / (i + 1);
729
730 if (freq == afreq)
731 sub = 0;
732 else if (freq / afreq == 1)
733 sub = freq - afreq;
734 else if (afreq / freq == 1)
735 sub = afreq - freq;
736 else
737 continue;
738
739 /* Calculate the fraction */
740 sub *= 100000;
741 do_div(sub, freq);
742
743 if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
744 baudrate = tmprate;
745 savesub = sub;
746 pm = i;
747 }
748
749 /* We are lucky */
750 if (savesub == 0)
751 break;
752 }
753
754 /* No proper pm found if it is still remaining the initial value */
755 if (pm == 999) {
756 dev_err(dai->dev, "failed to handle the required sysclk\n");
757 return -EINVAL;
758 }
759
760 stccr = SSI_SxCCR_PM(pm + 1) | (div2 ? SSI_SxCCR_DIV2 : 0) |
761 (psr ? SSI_SxCCR_PSR : 0);
762 mask = SSI_SxCCR_PM_MASK | SSI_SxCCR_DIV2 | SSI_SxCCR_PSR;
763
764 /* STCCR is used for RX in synchronous mode */
765 tx2 = tx || ssi->synchronous;
766 regmap_update_bits(regs, REG_SSI_SxCCR(tx2), mask, stccr);
767
768 if (!baudclk_is_used) {
769 ret = clk_set_rate(ssi->baudclk, baudrate);
770 if (ret) {
771 dev_err(dai->dev, "failed to set baudclk rate\n");
772 return -EINVAL;
773 }
774 }
775
776 return 0;
777}
778
779/**
780 * Configure SSI based on PCM hardware parameters
781 *
782 * Notes:
783 * 1) SxCCR.WL bits are critical bits that require SSI to be temporarily
784 * disabled on offline_config SoCs. Even for online configurable SoCs
785 * running in synchronous mode (both TX and RX use STCCR), it is not
786 * safe to re-configure them when both two streams start running.
787 * 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the
788 * fsl_ssi_set_bclk() if SSI is the DAI clock master.
789 */
790static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
791 struct snd_pcm_hw_params *hw_params,
792 struct snd_soc_dai *dai)
793{
794 bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
795 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
796 struct regmap *regs = ssi->regs;
797 unsigned int channels = params_channels(hw_params);
798 unsigned int sample_size = params_width(hw_params);
799 u32 wl = SSI_SxCCR_WL(sample_size);
800 int ret;
801
802 /*
803 * SSI is properly configured if it is enabled and running in
804 * the synchronous mode; Note that AC97 mode is an exception
805 * that should set separate configurations for STCCR and SRCCR
806 * despite running in the synchronous mode.
807 */
808 if (ssi->streams && ssi->synchronous)
809 return 0;
810
811 if (fsl_ssi_is_i2s_master(ssi)) {
812 ret = fsl_ssi_set_bclk(substream, dai, hw_params);
813 if (ret)
814 return ret;
815
816 /* Do not enable the clock if it is already enabled */
817 if (!(ssi->baudclk_streams & BIT(substream->stream))) {
818 ret = clk_prepare_enable(ssi->baudclk);
819 if (ret)
820 return ret;
821
822 ssi->baudclk_streams |= BIT(substream->stream);
823 }
824 }
825
826 if (!fsl_ssi_is_ac97(ssi)) {
827 /*
828 * Keep the ssi->i2s_net intact while having a local variable
829 * to override settings for special use cases. Otherwise, the
830 * ssi->i2s_net will lose the settings for regular use cases.
831 */
832 u8 i2s_net = ssi->i2s_net;
833
834 /* Normal + Network mode to send 16-bit data in 32-bit frames */
835 if (fsl_ssi_is_i2s_cbm_cfs(ssi) && sample_size == 16)
836 i2s_net = SSI_SCR_I2S_MODE_NORMAL | SSI_SCR_NET;
837
838 /* Use Normal mode to send mono data at 1st slot of 2 slots */
839 if (channels == 1)
840 i2s_net = SSI_SCR_I2S_MODE_NORMAL;
841
842 regmap_update_bits(regs, REG_SSI_SCR,
843 SSI_SCR_I2S_NET_MASK, i2s_net);
844 }
845
846 /* In synchronous mode, the SSI uses STCCR for capture */
847 tx2 = tx || ssi->synchronous;
848 regmap_update_bits(regs, REG_SSI_SxCCR(tx2), SSI_SxCCR_WL_MASK, wl);
849
850 return 0;
851}
852
853static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
854 struct snd_soc_dai *dai)
855{
856 struct snd_soc_pcm_runtime *rtd = substream->private_data;
857 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
858
859 if (fsl_ssi_is_i2s_master(ssi) &&
860 ssi->baudclk_streams & BIT(substream->stream)) {
861 clk_disable_unprepare(ssi->baudclk);
862 ssi->baudclk_streams &= ~BIT(substream->stream);
863 }
864
865 return 0;
866}
867
868static int _fsl_ssi_set_dai_fmt(struct fsl_ssi *ssi, unsigned int fmt)
869{
870 u32 strcr = 0, scr = 0, stcr, srcr, mask;
871
872 ssi->dai_fmt = fmt;
873
874 /* Synchronize frame sync clock for TE to avoid data slipping */
875 scr |= SSI_SCR_SYNC_TX_FS;
876
877 /* Set to default shifting settings: LSB_ALIGNED */
878 strcr |= SSI_STCR_TXBIT0;
879
880 /* Use Network mode as default */
881 ssi->i2s_net = SSI_SCR_NET;
882 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
883 case SND_SOC_DAIFMT_I2S:
884 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
885 case SND_SOC_DAIFMT_CBS_CFS:
886 if (IS_ERR(ssi->baudclk)) {
887 dev_err(ssi->dev,
888 "missing baudclk for master mode\n");
889 return -EINVAL;
890 }
891 /* fall through */
892 case SND_SOC_DAIFMT_CBM_CFS:
893 ssi->i2s_net |= SSI_SCR_I2S_MODE_MASTER;
894 break;
895 case SND_SOC_DAIFMT_CBM_CFM:
896 ssi->i2s_net |= SSI_SCR_I2S_MODE_SLAVE;
897 break;
898 default:
899 return -EINVAL;
900 }
901
902 regmap_update_bits(ssi->regs, REG_SSI_STCCR,
903 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2));
904 regmap_update_bits(ssi->regs, REG_SSI_SRCCR,
905 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2));
906
907 /* Data on rising edge of bclk, frame low, 1clk before data */
908 strcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP | SSI_STCR_TEFS;
909 break;
910 case SND_SOC_DAIFMT_LEFT_J:
911 /* Data on rising edge of bclk, frame high */
912 strcr |= SSI_STCR_TSCKP;
913 break;
914 case SND_SOC_DAIFMT_DSP_A:
915 /* Data on rising edge of bclk, frame high, 1clk before data */
916 strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP | SSI_STCR_TEFS;
917 break;
918 case SND_SOC_DAIFMT_DSP_B:
919 /* Data on rising edge of bclk, frame high */
920 strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP;
921 break;
922 case SND_SOC_DAIFMT_AC97:
923 /* Data on falling edge of bclk, frame high, 1clk before data */
924 strcr |= SSI_STCR_TEFS;
925 break;
926 default:
927 return -EINVAL;
928 }
929
930 scr |= ssi->i2s_net;
931
932 /* DAI clock inversion */
933 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
934 case SND_SOC_DAIFMT_NB_NF:
935 /* Nothing to do for both normal cases */
936 break;
937 case SND_SOC_DAIFMT_IB_NF:
938 /* Invert bit clock */
939 strcr ^= SSI_STCR_TSCKP;
940 break;
941 case SND_SOC_DAIFMT_NB_IF:
942 /* Invert frame clock */
943 strcr ^= SSI_STCR_TFSI;
944 break;
945 case SND_SOC_DAIFMT_IB_IF:
946 /* Invert both clocks */
947 strcr ^= SSI_STCR_TSCKP;
948 strcr ^= SSI_STCR_TFSI;
949 break;
950 default:
951 return -EINVAL;
952 }
953
954 /* DAI clock master masks */
955 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
956 case SND_SOC_DAIFMT_CBS_CFS:
957 /* Output bit and frame sync clocks */
958 strcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR;
959 scr |= SSI_SCR_SYS_CLK_EN;
960 break;
961 case SND_SOC_DAIFMT_CBM_CFM:
962 /* Input bit or frame sync clocks */
963 break;
964 case SND_SOC_DAIFMT_CBM_CFS:
965 /* Input bit clock but output frame sync clock */
966 strcr |= SSI_STCR_TFDIR;
967 break;
968 default:
969 return -EINVAL;
970 }
971
972 stcr = strcr;
973 srcr = strcr;
974
975 /* Set SYN mode and clear RXDIR bit when using SYN or AC97 mode */
976 if (ssi->synchronous || fsl_ssi_is_ac97(ssi)) {
977 srcr &= ~SSI_SRCR_RXDIR;
978 scr |= SSI_SCR_SYN;
979 }
980
981 mask = SSI_STCR_TFDIR | SSI_STCR_TXDIR | SSI_STCR_TSCKP |
982 SSI_STCR_TFSL | SSI_STCR_TFSI | SSI_STCR_TEFS | SSI_STCR_TXBIT0;
983
984 regmap_update_bits(ssi->regs, REG_SSI_STCR, mask, stcr);
985 regmap_update_bits(ssi->regs, REG_SSI_SRCR, mask, srcr);
986
987 mask = SSI_SCR_SYNC_TX_FS | SSI_SCR_I2S_MODE_MASK |
988 SSI_SCR_SYS_CLK_EN | SSI_SCR_SYN;
989 regmap_update_bits(ssi->regs, REG_SSI_SCR, mask, scr);
990
991 return 0;
992}
993
994/**
995 * Configure Digital Audio Interface (DAI) Format
996 */
997static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
998{
999 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1000
1001 /* AC97 configured DAIFMT earlier in the probe() */
1002 if (fsl_ssi_is_ac97(ssi))
1003 return 0;
1004
1005 return _fsl_ssi_set_dai_fmt(ssi, fmt);
1006}
1007
1008/**
1009 * Set TDM slot number and slot width
1010 */
1011static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
1012 u32 rx_mask, int slots, int slot_width)
1013{
1014 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1015 struct regmap *regs = ssi->regs;
1016 u32 val;
1017
1018 /* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */
1019 if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
1020 dev_err(dai->dev, "invalid slot width: %d\n", slot_width);
1021 return -EINVAL;
1022 }
1023
1024 /* The slot number should be >= 2 if using Network mode or I2S mode */
1025 if (ssi->i2s_net && slots < 2) {
1026 dev_err(dai->dev, "slot number should be >= 2 in I2S or NET\n");
1027 return -EINVAL;
1028 }
1029
1030 regmap_update_bits(regs, REG_SSI_STCCR,
1031 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1032 regmap_update_bits(regs, REG_SSI_SRCCR,
1033 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1034
1035 /* Save the SCR register value */
1036 regmap_read(regs, REG_SSI_SCR, &val);
1037 /* Temporarily enable SSI to allow SxMSKs to be configurable */
1038 regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, SSI_SCR_SSIEN);
1039
1040 regmap_write(regs, REG_SSI_STMSK, ~tx_mask);
1041 regmap_write(regs, REG_SSI_SRMSK, ~rx_mask);
1042
1043 /* Restore the value of SSIEN bit */
1044 regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, val);
1045
1046 ssi->slot_width = slot_width;
1047 ssi->slots = slots;
1048
1049 return 0;
1050}
1051
1052/**
1053 * Start or stop SSI and corresponding DMA transaction.
1054 *
1055 * The DMA channel is in external master start and pause mode, which
1056 * means the SSI completely controls the flow of data.
1057 */
1058static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1059 struct snd_soc_dai *dai)
1060{
1061 struct snd_soc_pcm_runtime *rtd = substream->private_data;
1062 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1063 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1064
1065 switch (cmd) {
1066 case SNDRV_PCM_TRIGGER_START:
1067 case SNDRV_PCM_TRIGGER_RESUME:
1068 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1069 /*
1070 * SACCST might be modified via AC Link by a CODEC if it sends
1071 * extra bits in their SLOTREQ requests, which'll accidentally
1072 * send valid data to slots other than normal playback slots.
1073 *
1074 * To be safe, configure SACCST right before TX starts.
1075 */
1076 if (tx && fsl_ssi_is_ac97(ssi))
1077 fsl_ssi_tx_ac97_saccst_setup(ssi);
1078 fsl_ssi_config_enable(ssi, tx);
1079 break;
1080
1081 case SNDRV_PCM_TRIGGER_STOP:
1082 case SNDRV_PCM_TRIGGER_SUSPEND:
1083 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1084 fsl_ssi_config_disable(ssi, tx);
1085 break;
1086
1087 default:
1088 return -EINVAL;
1089 }
1090
1091 return 0;
1092}
1093
1094static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1095{
1096 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1097
1098 if (ssi->soc->imx && ssi->use_dma)
1099 snd_soc_dai_init_dma_data(dai, &ssi->dma_params_tx,
1100 &ssi->dma_params_rx);
1101
1102 return 0;
1103}
1104
1105static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1106 .startup = fsl_ssi_startup,
1107 .shutdown = fsl_ssi_shutdown,
1108 .hw_params = fsl_ssi_hw_params,
1109 .hw_free = fsl_ssi_hw_free,
1110 .set_fmt = fsl_ssi_set_dai_fmt,
1111 .set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
1112 .trigger = fsl_ssi_trigger,
1113};
1114
1115static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1116 .probe = fsl_ssi_dai_probe,
1117 .playback = {
1118 .stream_name = "CPU-Playback",
1119 .channels_min = 1,
1120 .channels_max = 32,
1121 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1122 .formats = FSLSSI_I2S_FORMATS,
1123 },
1124 .capture = {
1125 .stream_name = "CPU-Capture",
1126 .channels_min = 1,
1127 .channels_max = 32,
1128 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1129 .formats = FSLSSI_I2S_FORMATS,
1130 },
1131 .ops = &fsl_ssi_dai_ops,
1132};
1133
1134static const struct snd_soc_component_driver fsl_ssi_component = {
1135 .name = "fsl-ssi",
1136};
1137
1138static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1139 .bus_control = true,
1140 .symmetric_channels = 1,
1141 .probe = fsl_ssi_dai_probe,
1142 .playback = {
1143 .stream_name = "AC97 Playback",
1144 .channels_min = 2,
1145 .channels_max = 2,
1146 .rates = SNDRV_PCM_RATE_8000_48000,
1147 .formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20,
1148 },
1149 .capture = {
1150 .stream_name = "AC97 Capture",
1151 .channels_min = 2,
1152 .channels_max = 2,
1153 .rates = SNDRV_PCM_RATE_48000,
1154 /* 16-bit capture is broken (errata ERR003778) */
1155 .formats = SNDRV_PCM_FMTBIT_S20,
1156 },
1157 .ops = &fsl_ssi_dai_ops,
1158};
1159
1160static struct fsl_ssi *fsl_ac97_data;
1161
1162static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1163 unsigned short val)
1164{
1165 struct regmap *regs = fsl_ac97_data->regs;
1166 unsigned int lreg;
1167 unsigned int lval;
1168 int ret;
1169
1170 if (reg > 0x7f)
1171 return;
1172
1173 mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1174
1175 ret = clk_prepare_enable(fsl_ac97_data->clk);
1176 if (ret) {
1177 pr_err("ac97 write clk_prepare_enable failed: %d\n",
1178 ret);
1179 goto ret_unlock;
1180 }
1181
1182 lreg = reg << 12;
1183 regmap_write(regs, REG_SSI_SACADD, lreg);
1184
1185 lval = val << 4;
1186 regmap_write(regs, REG_SSI_SACDAT, lval);
1187
1188 regmap_update_bits(regs, REG_SSI_SACNT,
1189 SSI_SACNT_RDWR_MASK, SSI_SACNT_WR);
1190 udelay(100);
1191
1192 clk_disable_unprepare(fsl_ac97_data->clk);
1193
1194ret_unlock:
1195 mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1196}
1197
1198static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1199 unsigned short reg)
1200{
1201 struct regmap *regs = fsl_ac97_data->regs;
1202 unsigned short val = 0;
1203 u32 reg_val;
1204 unsigned int lreg;
1205 int ret;
1206
1207 mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1208
1209 ret = clk_prepare_enable(fsl_ac97_data->clk);
1210 if (ret) {
1211 pr_err("ac97 read clk_prepare_enable failed: %d\n", ret);
1212 goto ret_unlock;
1213 }
1214
1215 lreg = (reg & 0x7f) << 12;
1216 regmap_write(regs, REG_SSI_SACADD, lreg);
1217 regmap_update_bits(regs, REG_SSI_SACNT,
1218 SSI_SACNT_RDWR_MASK, SSI_SACNT_RD);
1219
1220 udelay(100);
1221
1222 regmap_read(regs, REG_SSI_SACDAT, &reg_val);
1223 val = (reg_val >> 4) & 0xffff;
1224
1225 clk_disable_unprepare(fsl_ac97_data->clk);
1226
1227ret_unlock:
1228 mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1229 return val;
1230}
1231
1232static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1233 .read = fsl_ssi_ac97_read,
1234 .write = fsl_ssi_ac97_write,
1235};
1236
1237/**
1238 * Initialize SSI registers
1239 */
1240static int fsl_ssi_hw_init(struct fsl_ssi *ssi)
1241{
1242 u32 wm = ssi->fifo_watermark;
1243
1244 /* Initialize regvals */
1245 fsl_ssi_setup_regvals(ssi);
1246
1247 /* Set watermarks */
1248 regmap_write(ssi->regs, REG_SSI_SFCSR,
1249 SSI_SFCSR_TFWM0(wm) | SSI_SFCSR_RFWM0(wm) |
1250 SSI_SFCSR_TFWM1(wm) | SSI_SFCSR_RFWM1(wm));
1251
1252 /* Enable Dual FIFO mode */
1253 if (ssi->use_dual_fifo)
1254 regmap_update_bits(ssi->regs, REG_SSI_SCR,
1255 SSI_SCR_TCH_EN, SSI_SCR_TCH_EN);
1256
1257 /* AC97 should start earlier to communicate with CODECs */
1258 if (fsl_ssi_is_ac97(ssi)) {
1259 _fsl_ssi_set_dai_fmt(ssi, ssi->dai_fmt);
1260 fsl_ssi_setup_ac97(ssi);
1261 }
1262
1263 return 0;
1264}
1265
1266/**
1267 * Clear SSI registers
1268 */
1269static void fsl_ssi_hw_clean(struct fsl_ssi *ssi)
1270{
1271 /* Disable registers for AC97 */
1272 if (fsl_ssi_is_ac97(ssi)) {
1273 /* Disable TE and RE bits first */
1274 regmap_update_bits(ssi->regs, REG_SSI_SCR,
1275 SSI_SCR_TE | SSI_SCR_RE, 0);
1276 /* Disable AC97 mode */
1277 regmap_write(ssi->regs, REG_SSI_SACNT, 0);
1278 /* Unset WAIT bits */
1279 regmap_write(ssi->regs, REG_SSI_SOR, 0);
1280 /* Disable SSI -- software reset */
1281 regmap_update_bits(ssi->regs, REG_SSI_SCR, SSI_SCR_SSIEN, 0);
1282 }
1283}
1284/**
1285 * Make every character in a string lower-case
1286 */
1287static void make_lowercase(char *s)
1288{
1289 if (!s)
1290 return;
1291 for (; *s; s++)
1292 *s = tolower(*s);
1293}
1294
1295static int fsl_ssi_imx_probe(struct platform_device *pdev,
1296 struct fsl_ssi *ssi, void __iomem *iomem)
1297{
1298 struct device *dev = &pdev->dev;
1299 int ret;
1300
1301 /* Backward compatible for a DT without ipg clock name assigned */
1302 if (ssi->has_ipg_clk_name)
1303 ssi->clk = devm_clk_get(dev, "ipg");
1304 else
1305 ssi->clk = devm_clk_get(dev, NULL);
1306 if (IS_ERR(ssi->clk)) {
1307 ret = PTR_ERR(ssi->clk);
1308 dev_err(dev, "failed to get clock: %d\n", ret);
1309 return ret;
1310 }
1311
1312 /* Enable the clock since regmap will not handle it in this case */
1313 if (!ssi->has_ipg_clk_name) {
1314 ret = clk_prepare_enable(ssi->clk);
1315 if (ret) {
1316 dev_err(dev, "clk_prepare_enable failed: %d\n", ret);
1317 return ret;
1318 }
1319 }
1320
1321 /* Do not error out for slave cases that live without a baud clock */
1322 ssi->baudclk = devm_clk_get(dev, "baud");
1323 if (IS_ERR(ssi->baudclk))
1324 dev_dbg(dev, "failed to get baud clock: %ld\n",
1325 PTR_ERR(ssi->baudclk));
1326
1327 ssi->dma_params_tx.maxburst = ssi->dma_maxburst;
1328 ssi->dma_params_rx.maxburst = ssi->dma_maxburst;
1329 ssi->dma_params_tx.addr = ssi->ssi_phys + REG_SSI_STX0;
1330 ssi->dma_params_rx.addr = ssi->ssi_phys + REG_SSI_SRX0;
1331
1332 /* Use even numbers to avoid channel swap due to SDMA script design */
1333 if (ssi->use_dual_fifo) {
1334 ssi->dma_params_tx.maxburst &= ~0x1;
1335 ssi->dma_params_rx.maxburst &= ~0x1;
1336 }
1337
1338 if (!ssi->use_dma) {
1339 /*
1340 * Some boards use an incompatible codec. Use imx-fiq-pcm-audio
1341 * to get it working, as DMA is not possible in this situation.
1342 */
1343 ssi->fiq_params.irq = ssi->irq;
1344 ssi->fiq_params.base = iomem;
1345 ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
1346 ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx;
1347
1348 ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params);
1349 if (ret)
1350 goto error_pcm;
1351 } else {
1352 ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
1353 if (ret)
1354 goto error_pcm;
1355 }
1356
1357 return 0;
1358
1359error_pcm:
1360 if (!ssi->has_ipg_clk_name)
1361 clk_disable_unprepare(ssi->clk);
1362
1363 return ret;
1364}
1365
1366static void fsl_ssi_imx_clean(struct platform_device *pdev, struct fsl_ssi *ssi)
1367{
1368 if (!ssi->use_dma)
1369 imx_pcm_fiq_exit(pdev);
1370 if (!ssi->has_ipg_clk_name)
1371 clk_disable_unprepare(ssi->clk);
1372}
1373
1374static int fsl_ssi_probe_from_dt(struct fsl_ssi *ssi)
1375{
1376 struct device *dev = ssi->dev;
1377 struct device_node *np = dev->of_node;
1378 const struct of_device_id *of_id;
1379 const char *p, *sprop;
1380 const __be32 *iprop;
1381 u32 dmas[4];
1382 int ret;
1383
1384 of_id = of_match_device(fsl_ssi_ids, dev);
1385 if (!of_id || !of_id->data)
1386 return -EINVAL;
1387
1388 ssi->soc = of_id->data;
1389
1390 ret = of_property_match_string(np, "clock-names", "ipg");
1391 /* Get error code if not found */
1392 ssi->has_ipg_clk_name = ret >= 0;
1393
1394 /* Check if being used in AC97 mode */
1395 sprop = of_get_property(np, "fsl,mode", NULL);
1396 if (sprop && !strcmp(sprop, "ac97-slave")) {
1397 ssi->dai_fmt = FSLSSI_AC97_DAIFMT;
1398
1399 ret = of_property_read_u32(np, "cell-index", &ssi->card_idx);
1400 if (ret) {
1401 dev_err(dev, "failed to get SSI index property\n");
1402 return -EINVAL;
1403 }
1404 strcpy(ssi->card_name, "ac97-codec");
1405 } else if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1406 /*
1407 * In synchronous mode, STCK and STFS ports are used by RX
1408 * as well. So the software should limit the sample rates,
1409 * sample bits and channels to be symmetric.
1410 *
1411 * This is exclusive with FSLSSI_AC97_FORMATS as AC97 runs
1412 * in the SSI synchronous mode however it does not have to
1413 * limit symmetric sample rates and sample bits.
1414 */
1415 ssi->synchronous = true;
1416 }
1417
1418 /* Select DMA or FIQ */
1419 ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
1420
1421 /* Fetch FIFO depth; Set to 8 for older DT without this property */
1422 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1423 if (iprop)
1424 ssi->fifo_depth = be32_to_cpup(iprop);
1425 else
1426 ssi->fifo_depth = 8;
1427
1428 /* Use dual FIFO mode depending on the support from SDMA script */
1429 ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1430 if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL)
1431 ssi->use_dual_fifo = true;
1432
1433 /*
1434 * Backward compatible for older bindings by manually triggering the
1435 * machine driver's probe(). Use /compatible property, including the
1436 * address of CPU DAI driver structure, as the name of machine driver
1437 *
1438 * If card_name is set by AC97 earlier, bypass here since it uses a
1439 * different name to register the device.
1440 */
1441 if (!ssi->card_name[0] && of_get_property(np, "codec-handle", NULL)) {
1442 struct device_node *root = of_find_node_by_path("/");
1443
1444 sprop = of_get_property(root, "compatible", NULL);
1445 of_node_put(root);
1446 /* Strip "fsl," in the compatible name if applicable */
1447 p = strrchr(sprop, ',');
1448 if (p)
1449 sprop = p + 1;
1450 snprintf(ssi->card_name, sizeof(ssi->card_name),
1451 "snd-soc-%s", sprop);
1452 make_lowercase(ssi->card_name);
1453 ssi->card_idx = 0;
1454 }
1455
1456 return 0;
1457}
1458
1459static int fsl_ssi_probe(struct platform_device *pdev)
1460{
1461 struct regmap_config regconfig = fsl_ssi_regconfig;
1462 struct device *dev = &pdev->dev;
1463 struct fsl_ssi *ssi;
1464 struct resource *res;
1465 void __iomem *iomem;
1466 int ret = 0;
1467
1468 ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL);
1469 if (!ssi)
1470 return -ENOMEM;
1471
1472 ssi->dev = dev;
1473
1474 /* Probe from DT */
1475 ret = fsl_ssi_probe_from_dt(ssi);
1476 if (ret)
1477 return ret;
1478
1479 if (fsl_ssi_is_ac97(ssi)) {
1480 memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai,
1481 sizeof(fsl_ssi_ac97_dai));
1482 fsl_ac97_data = ssi;
1483 } else {
1484 memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
1485 sizeof(fsl_ssi_dai_template));
1486 }
1487 ssi->cpu_dai_drv.name = dev_name(dev);
1488
1489 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1490 iomem = devm_ioremap_resource(dev, res);
1491 if (IS_ERR(iomem))
1492 return PTR_ERR(iomem);
1493 ssi->ssi_phys = res->start;
1494
1495 if (ssi->soc->imx21regs) {
1496 /* No SACC{ST,EN,DIS} regs in imx21-class SSI */
1497 regconfig.max_register = REG_SSI_SRMSK;
1498 regconfig.num_reg_defaults_raw =
1499 REG_SSI_SRMSK / sizeof(uint32_t) + 1;
1500 }
1501
1502 if (ssi->has_ipg_clk_name)
1503 ssi->regs = devm_regmap_init_mmio_clk(dev, "ipg", iomem,
1504 &regconfig);
1505 else
1506 ssi->regs = devm_regmap_init_mmio(dev, iomem, &regconfig);
1507 if (IS_ERR(ssi->regs)) {
1508 dev_err(dev, "failed to init register map\n");
1509 return PTR_ERR(ssi->regs);
1510 }
1511
1512 ssi->irq = platform_get_irq(pdev, 0);
1513 if (ssi->irq < 0) {
1514 dev_err(dev, "no irq for node %s\n", pdev->name);
1515 return ssi->irq;
1516 }
1517
1518 /* Set software limitations for synchronous mode except AC97 */
1519 if (ssi->synchronous && !fsl_ssi_is_ac97(ssi)) {
1520 ssi->cpu_dai_drv.symmetric_rates = 1;
1521 ssi->cpu_dai_drv.symmetric_channels = 1;
1522 ssi->cpu_dai_drv.symmetric_samplebits = 1;
1523 }
1524
1525 /*
1526 * Configure TX and RX DMA watermarks -- when to send a DMA request
1527 *
1528 * Values should be tested to avoid FIFO under/over run. Set maxburst
1529 * to fifo_watermark to maxiumize DMA transaction to reduce overhead.
1530 */
1531 switch (ssi->fifo_depth) {
1532 case 15:
1533 /*
1534 * Set to 8 as a balanced configuration -- When TX FIFO has 8
1535 * empty slots, send a DMA request to fill these 8 slots. The
1536 * remaining 7 slots should be able to allow DMA to finish the
1537 * transaction before TX FIFO underruns; Same applies to RX.
1538 *
1539 * Tested with cases running at 48kHz @ 16 bits x 16 channels
1540 */
1541 ssi->fifo_watermark = 8;
1542 ssi->dma_maxburst = 8;
1543 break;
1544 case 8:
1545 default:
1546 /* Safely use old watermark configurations for older chips */
1547 ssi->fifo_watermark = ssi->fifo_depth - 2;
1548 ssi->dma_maxburst = ssi->fifo_depth - 2;
1549 break;
1550 }
1551
1552 dev_set_drvdata(dev, ssi);
1553
1554 if (ssi->soc->imx) {
1555 ret = fsl_ssi_imx_probe(pdev, ssi, iomem);
1556 if (ret)
1557 return ret;
1558 }
1559
1560 if (fsl_ssi_is_ac97(ssi)) {
1561 mutex_init(&ssi->ac97_reg_lock);
1562 ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1563 if (ret) {
1564 dev_err(dev, "failed to set AC'97 ops\n");
1565 goto error_ac97_ops;
1566 }
1567 }
1568
1569 ret = devm_snd_soc_register_component(dev, &fsl_ssi_component,
1570 &ssi->cpu_dai_drv, 1);
1571 if (ret) {
1572 dev_err(dev, "failed to register DAI: %d\n", ret);
1573 goto error_asoc_register;
1574 }
1575
1576 if (ssi->use_dma) {
1577 ret = devm_request_irq(dev, ssi->irq, fsl_ssi_isr, 0,
1578 dev_name(dev), ssi);
1579 if (ret < 0) {
1580 dev_err(dev, "failed to claim irq %u\n", ssi->irq);
1581 goto error_asoc_register;
1582 }
1583 }
1584
1585 ret = fsl_ssi_debugfs_create(&ssi->dbg_stats, dev);
1586 if (ret)
1587 goto error_asoc_register;
1588
1589 /* Initially configures SSI registers */
1590 fsl_ssi_hw_init(ssi);
1591
1592 /* Register a platform device for older bindings or AC97 */
1593 if (ssi->card_name[0]) {
1594 struct device *parent = dev;
1595 /*
1596 * Do not set SSI dev as the parent of AC97 CODEC device since
1597 * it does not have a DT node. Otherwise ASoC core will assume
1598 * CODEC has the same DT node as the SSI, so it may bypass the
1599 * dai_probe() of SSI and then cause NULL DMA data pointers.
1600 */
1601 if (fsl_ssi_is_ac97(ssi))
1602 parent = NULL;
1603
1604 ssi->card_pdev = platform_device_register_data(parent,
1605 ssi->card_name, ssi->card_idx, NULL, 0);
1606 if (IS_ERR(ssi->card_pdev)) {
1607 ret = PTR_ERR(ssi->card_pdev);
1608 dev_err(dev, "failed to register %s: %d\n",
1609 ssi->card_name, ret);
1610 goto error_sound_card;
1611 }
1612 }
1613
1614 return 0;
1615
1616error_sound_card:
1617 fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1618error_asoc_register:
1619 if (fsl_ssi_is_ac97(ssi))
1620 snd_soc_set_ac97_ops(NULL);
1621error_ac97_ops:
1622 if (fsl_ssi_is_ac97(ssi))
1623 mutex_destroy(&ssi->ac97_reg_lock);
1624
1625 if (ssi->soc->imx)
1626 fsl_ssi_imx_clean(pdev, ssi);
1627
1628 return ret;
1629}
1630
1631static int fsl_ssi_remove(struct platform_device *pdev)
1632{
1633 struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev);
1634
1635 fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1636
1637 if (ssi->card_pdev)
1638 platform_device_unregister(ssi->card_pdev);
1639
1640 /* Clean up SSI registers */
1641 fsl_ssi_hw_clean(ssi);
1642
1643 if (ssi->soc->imx)
1644 fsl_ssi_imx_clean(pdev, ssi);
1645
1646 if (fsl_ssi_is_ac97(ssi)) {
1647 snd_soc_set_ac97_ops(NULL);
1648 mutex_destroy(&ssi->ac97_reg_lock);
1649 }
1650
1651 return 0;
1652}
1653
1654#ifdef CONFIG_PM_SLEEP
1655static int fsl_ssi_suspend(struct device *dev)
1656{
1657 struct fsl_ssi *ssi = dev_get_drvdata(dev);
1658 struct regmap *regs = ssi->regs;
1659
1660 regmap_read(regs, REG_SSI_SFCSR, &ssi->regcache_sfcsr);
1661 regmap_read(regs, REG_SSI_SACNT, &ssi->regcache_sacnt);
1662
1663 regcache_cache_only(regs, true);
1664 regcache_mark_dirty(regs);
1665
1666 return 0;
1667}
1668
1669static int fsl_ssi_resume(struct device *dev)
1670{
1671 struct fsl_ssi *ssi = dev_get_drvdata(dev);
1672 struct regmap *regs = ssi->regs;
1673
1674 regcache_cache_only(regs, false);
1675
1676 regmap_update_bits(regs, REG_SSI_SFCSR,
1677 SSI_SFCSR_RFWM1_MASK | SSI_SFCSR_TFWM1_MASK |
1678 SSI_SFCSR_RFWM0_MASK | SSI_SFCSR_TFWM0_MASK,
1679 ssi->regcache_sfcsr);
1680 regmap_write(regs, REG_SSI_SACNT, ssi->regcache_sacnt);
1681
1682 return regcache_sync(regs);
1683}
1684#endif /* CONFIG_PM_SLEEP */
1685
1686static const struct dev_pm_ops fsl_ssi_pm = {
1687 SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1688};
1689
1690static struct platform_driver fsl_ssi_driver = {
1691 .driver = {
1692 .name = "fsl-ssi-dai",
1693 .of_match_table = fsl_ssi_ids,
1694 .pm = &fsl_ssi_pm,
1695 },
1696 .probe = fsl_ssi_probe,
1697 .remove = fsl_ssi_remove,
1698};
1699
1700module_platform_driver(fsl_ssi_driver);
1701
1702MODULE_ALIAS("platform:fsl-ssi-dai");
1703MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1704MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1705MODULE_LICENSE("GPL v2");