| 1 | /* SPDX-License-Identifier: GPL-2.0-only */ |
| 2 | /* Authors: Karl MacMillan <kmacmillan@tresys.com> |
| 3 | * Frank Mayer <mayerf@tresys.com> |
| 4 | * Copyright (C) 2003 - 2004 Tresys Technology, LLC |
| 5 | */ |
| 6 | |
| 7 | #include <linux/kernel.h> |
| 8 | #include <linux/errno.h> |
| 9 | #include <linux/string.h> |
| 10 | #include <linux/spinlock.h> |
| 11 | #include <linux/slab.h> |
| 12 | |
| 13 | #include "security.h" |
| 14 | #include "conditional.h" |
| 15 | #include "services.h" |
| 16 | |
| 17 | /* |
| 18 | * cond_evaluate_expr evaluates a conditional expr |
| 19 | * in reverse polish notation. It returns true (1), false (0), |
| 20 | * or undefined (-1). Undefined occurs when the expression |
| 21 | * exceeds the stack depth of COND_EXPR_MAXDEPTH. |
| 22 | */ |
| 23 | static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr) |
| 24 | { |
| 25 | u32 i; |
| 26 | int s[COND_EXPR_MAXDEPTH]; |
| 27 | int sp = -1; |
| 28 | |
| 29 | if (expr->len == 0) |
| 30 | return -1; |
| 31 | |
| 32 | for (i = 0; i < expr->len; i++) { |
| 33 | struct cond_expr_node *node = &expr->nodes[i]; |
| 34 | |
| 35 | switch (node->expr_type) { |
| 36 | case COND_BOOL: |
| 37 | if (sp == (COND_EXPR_MAXDEPTH - 1)) |
| 38 | return -1; |
| 39 | sp++; |
| 40 | s[sp] = p->bool_val_to_struct[node->boolean - 1]->state; |
| 41 | break; |
| 42 | case COND_NOT: |
| 43 | if (sp < 0) |
| 44 | return -1; |
| 45 | s[sp] = !s[sp]; |
| 46 | break; |
| 47 | case COND_OR: |
| 48 | if (sp < 1) |
| 49 | return -1; |
| 50 | sp--; |
| 51 | s[sp] |= s[sp + 1]; |
| 52 | break; |
| 53 | case COND_AND: |
| 54 | if (sp < 1) |
| 55 | return -1; |
| 56 | sp--; |
| 57 | s[sp] &= s[sp + 1]; |
| 58 | break; |
| 59 | case COND_XOR: |
| 60 | if (sp < 1) |
| 61 | return -1; |
| 62 | sp--; |
| 63 | s[sp] ^= s[sp + 1]; |
| 64 | break; |
| 65 | case COND_EQ: |
| 66 | if (sp < 1) |
| 67 | return -1; |
| 68 | sp--; |
| 69 | s[sp] = (s[sp] == s[sp + 1]); |
| 70 | break; |
| 71 | case COND_NEQ: |
| 72 | if (sp < 1) |
| 73 | return -1; |
| 74 | sp--; |
| 75 | s[sp] = (s[sp] != s[sp + 1]); |
| 76 | break; |
| 77 | default: |
| 78 | return -1; |
| 79 | } |
| 80 | } |
| 81 | return s[0]; |
| 82 | } |
| 83 | |
| 84 | /* |
| 85 | * evaluate_cond_node evaluates the conditional stored in |
| 86 | * a struct cond_node and if the result is different than the |
| 87 | * current state of the node it sets the rules in the true/false |
| 88 | * list appropriately. If the result of the expression is undefined |
| 89 | * all of the rules are disabled for safety. |
| 90 | */ |
| 91 | static void evaluate_cond_node(struct policydb *p, struct cond_node *node) |
| 92 | { |
| 93 | struct avtab_node *avnode; |
| 94 | int new_state; |
| 95 | u32 i; |
| 96 | |
| 97 | new_state = cond_evaluate_expr(p, &node->expr); |
| 98 | if (new_state != node->cur_state) { |
| 99 | node->cur_state = new_state; |
| 100 | if (new_state == -1) |
| 101 | pr_err("SELinux: expression result was undefined - disabling all rules.\n"); |
| 102 | /* turn the rules on or off */ |
| 103 | for (i = 0; i < node->true_list.len; i++) { |
| 104 | avnode = node->true_list.nodes[i]; |
| 105 | if (new_state <= 0) |
| 106 | avnode->key.specified &= ~AVTAB_ENABLED; |
| 107 | else |
| 108 | avnode->key.specified |= AVTAB_ENABLED; |
| 109 | } |
| 110 | |
| 111 | for (i = 0; i < node->false_list.len; i++) { |
| 112 | avnode = node->false_list.nodes[i]; |
| 113 | /* -1 or 1 */ |
| 114 | if (new_state) |
| 115 | avnode->key.specified &= ~AVTAB_ENABLED; |
| 116 | else |
| 117 | avnode->key.specified |= AVTAB_ENABLED; |
| 118 | } |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | void evaluate_cond_nodes(struct policydb *p) |
| 123 | { |
| 124 | u32 i; |
| 125 | |
| 126 | for (i = 0; i < p->cond_list_len; i++) |
| 127 | evaluate_cond_node(p, &p->cond_list[i]); |
| 128 | } |
| 129 | |
| 130 | void cond_policydb_init(struct policydb *p) |
| 131 | { |
| 132 | p->bool_val_to_struct = NULL; |
| 133 | p->cond_list = NULL; |
| 134 | p->cond_list_len = 0; |
| 135 | |
| 136 | avtab_init(&p->te_cond_avtab); |
| 137 | } |
| 138 | |
| 139 | static void cond_node_destroy(struct cond_node *node) |
| 140 | { |
| 141 | kfree(node->expr.nodes); |
| 142 | /* the avtab_ptr_t nodes are destroyed by the avtab */ |
| 143 | kfree(node->true_list.nodes); |
| 144 | kfree(node->false_list.nodes); |
| 145 | } |
| 146 | |
| 147 | static void cond_list_destroy(struct policydb *p) |
| 148 | { |
| 149 | u32 i; |
| 150 | |
| 151 | for (i = 0; i < p->cond_list_len; i++) |
| 152 | cond_node_destroy(&p->cond_list[i]); |
| 153 | kfree(p->cond_list); |
| 154 | p->cond_list = NULL; |
| 155 | p->cond_list_len = 0; |
| 156 | } |
| 157 | |
| 158 | void cond_policydb_destroy(struct policydb *p) |
| 159 | { |
| 160 | kfree(p->bool_val_to_struct); |
| 161 | avtab_destroy(&p->te_cond_avtab); |
| 162 | cond_list_destroy(p); |
| 163 | } |
| 164 | |
| 165 | int cond_init_bool_indexes(struct policydb *p) |
| 166 | { |
| 167 | kfree(p->bool_val_to_struct); |
| 168 | p->bool_val_to_struct = kmalloc_array( |
| 169 | p->p_bools.nprim, sizeof(*p->bool_val_to_struct), GFP_KERNEL); |
| 170 | if (!p->bool_val_to_struct) |
| 171 | return -ENOMEM; |
| 172 | |
| 173 | avtab_hash_eval(&p->te_cond_avtab, "conditional_rules"); |
| 174 | |
| 175 | return 0; |
| 176 | } |
| 177 | |
| 178 | int cond_destroy_bool(void *key, void *datum, void *p) |
| 179 | { |
| 180 | kfree(key); |
| 181 | kfree(datum); |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | int cond_index_bool(void *key, void *datum, void *datap) |
| 186 | { |
| 187 | struct policydb *p; |
| 188 | struct cond_bool_datum *booldatum; |
| 189 | |
| 190 | booldatum = datum; |
| 191 | p = datap; |
| 192 | |
| 193 | if (!booldatum->value || booldatum->value > p->p_bools.nprim) |
| 194 | return -EINVAL; |
| 195 | |
| 196 | p->sym_val_to_name[SYM_BOOLS][booldatum->value - 1] = key; |
| 197 | p->bool_val_to_struct[booldatum->value - 1] = booldatum; |
| 198 | |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | static int bool_isvalid(struct cond_bool_datum *b) |
| 203 | { |
| 204 | if (!(b->state == 0 || b->state == 1)) |
| 205 | return 0; |
| 206 | return 1; |
| 207 | } |
| 208 | |
| 209 | int cond_read_bool(struct policydb *p, struct symtab *s, struct policy_file *fp) |
| 210 | { |
| 211 | char *key = NULL; |
| 212 | struct cond_bool_datum *booldatum; |
| 213 | __le32 buf[3]; |
| 214 | u32 len; |
| 215 | int rc; |
| 216 | |
| 217 | booldatum = kzalloc(sizeof(*booldatum), GFP_KERNEL); |
| 218 | if (!booldatum) |
| 219 | return -ENOMEM; |
| 220 | |
| 221 | rc = next_entry(buf, fp, sizeof(buf)); |
| 222 | if (rc) |
| 223 | goto err; |
| 224 | |
| 225 | booldatum->value = le32_to_cpu(buf[0]); |
| 226 | booldatum->state = le32_to_cpu(buf[1]); |
| 227 | |
| 228 | rc = -EINVAL; |
| 229 | if (!bool_isvalid(booldatum)) |
| 230 | goto err; |
| 231 | |
| 232 | len = le32_to_cpu(buf[2]); |
| 233 | |
| 234 | rc = str_read(&key, GFP_KERNEL, fp, len); |
| 235 | if (rc) |
| 236 | goto err; |
| 237 | |
| 238 | rc = symtab_insert(s, key, booldatum); |
| 239 | if (rc) |
| 240 | goto err; |
| 241 | |
| 242 | return 0; |
| 243 | err: |
| 244 | cond_destroy_bool(key, booldatum, NULL); |
| 245 | return rc; |
| 246 | } |
| 247 | |
| 248 | struct cond_insertf_data { |
| 249 | struct policydb *p; |
| 250 | struct avtab_node **dst; |
| 251 | struct cond_av_list *other; |
| 252 | }; |
| 253 | |
| 254 | static int cond_insertf(struct avtab *a, const struct avtab_key *k, |
| 255 | const struct avtab_datum *d, void *ptr) |
| 256 | { |
| 257 | struct cond_insertf_data *data = ptr; |
| 258 | struct policydb *p = data->p; |
| 259 | struct cond_av_list *other = data->other; |
| 260 | struct avtab_node *node_ptr; |
| 261 | u32 i; |
| 262 | bool found; |
| 263 | |
| 264 | /* |
| 265 | * For type rules we have to make certain there aren't any |
| 266 | * conflicting rules by searching the te_avtab and the |
| 267 | * cond_te_avtab. |
| 268 | */ |
| 269 | if (k->specified & AVTAB_TYPE) { |
| 270 | if (avtab_search_node(&p->te_avtab, k)) { |
| 271 | pr_err("SELinux: type rule already exists outside of a conditional.\n"); |
| 272 | return -EINVAL; |
| 273 | } |
| 274 | /* |
| 275 | * If we are reading the false list other will be a pointer to |
| 276 | * the true list. We can have duplicate entries if there is only |
| 277 | * 1 other entry and it is in our true list. |
| 278 | * |
| 279 | * If we are reading the true list (other == NULL) there shouldn't |
| 280 | * be any other entries. |
| 281 | */ |
| 282 | if (other) { |
| 283 | node_ptr = avtab_search_node(&p->te_cond_avtab, k); |
| 284 | if (node_ptr) { |
| 285 | if (avtab_search_node_next(node_ptr, |
| 286 | k->specified)) { |
| 287 | pr_err("SELinux: too many conflicting type rules.\n"); |
| 288 | return -EINVAL; |
| 289 | } |
| 290 | found = false; |
| 291 | for (i = 0; i < other->len; i++) { |
| 292 | if (other->nodes[i] == node_ptr) { |
| 293 | found = true; |
| 294 | break; |
| 295 | } |
| 296 | } |
| 297 | if (!found) { |
| 298 | pr_err("SELinux: conflicting type rules.\n"); |
| 299 | return -EINVAL; |
| 300 | } |
| 301 | } |
| 302 | } else { |
| 303 | if (avtab_search_node(&p->te_cond_avtab, k)) { |
| 304 | pr_err("SELinux: conflicting type rules when adding type rule for true.\n"); |
| 305 | return -EINVAL; |
| 306 | } |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d); |
| 311 | if (!node_ptr) { |
| 312 | pr_err("SELinux: could not insert rule.\n"); |
| 313 | return -ENOMEM; |
| 314 | } |
| 315 | |
| 316 | *data->dst = node_ptr; |
| 317 | return 0; |
| 318 | } |
| 319 | |
| 320 | static int cond_read_av_list(struct policydb *p, struct policy_file *fp, |
| 321 | struct cond_av_list *list, |
| 322 | struct cond_av_list *other) |
| 323 | { |
| 324 | int rc; |
| 325 | __le32 buf[1]; |
| 326 | u32 i, len; |
| 327 | struct cond_insertf_data data; |
| 328 | |
| 329 | rc = next_entry(buf, fp, sizeof(u32)); |
| 330 | if (rc) |
| 331 | return rc; |
| 332 | |
| 333 | len = le32_to_cpu(buf[0]); |
| 334 | if (len == 0) |
| 335 | return 0; |
| 336 | |
| 337 | list->nodes = kcalloc(len, sizeof(*list->nodes), GFP_KERNEL); |
| 338 | if (!list->nodes) |
| 339 | return -ENOMEM; |
| 340 | |
| 341 | data.p = p; |
| 342 | data.other = other; |
| 343 | for (i = 0; i < len; i++) { |
| 344 | data.dst = &list->nodes[i]; |
| 345 | rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf, |
| 346 | &data, true); |
| 347 | if (rc) { |
| 348 | kfree(list->nodes); |
| 349 | list->nodes = NULL; |
| 350 | return rc; |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | list->len = len; |
| 355 | return 0; |
| 356 | } |
| 357 | |
| 358 | static int expr_node_isvalid(struct policydb *p, struct cond_expr_node *expr) |
| 359 | { |
| 360 | if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) { |
| 361 | pr_err("SELinux: conditional expressions uses unknown operator.\n"); |
| 362 | return 0; |
| 363 | } |
| 364 | |
| 365 | if (expr->boolean > p->p_bools.nprim) { |
| 366 | pr_err("SELinux: conditional expressions uses unknown bool.\n"); |
| 367 | return 0; |
| 368 | } |
| 369 | return 1; |
| 370 | } |
| 371 | |
| 372 | static int cond_read_node(struct policydb *p, struct cond_node *node, struct policy_file *fp) |
| 373 | { |
| 374 | __le32 buf[2]; |
| 375 | u32 i, len; |
| 376 | int rc; |
| 377 | |
| 378 | rc = next_entry(buf, fp, sizeof(u32) * 2); |
| 379 | if (rc) |
| 380 | return rc; |
| 381 | |
| 382 | node->cur_state = le32_to_cpu(buf[0]); |
| 383 | |
| 384 | /* expr */ |
| 385 | len = le32_to_cpu(buf[1]); |
| 386 | node->expr.nodes = kcalloc(len, sizeof(*node->expr.nodes), GFP_KERNEL); |
| 387 | if (!node->expr.nodes) |
| 388 | return -ENOMEM; |
| 389 | |
| 390 | node->expr.len = len; |
| 391 | |
| 392 | for (i = 0; i < len; i++) { |
| 393 | struct cond_expr_node *expr = &node->expr.nodes[i]; |
| 394 | |
| 395 | rc = next_entry(buf, fp, sizeof(u32) * 2); |
| 396 | if (rc) |
| 397 | return rc; |
| 398 | |
| 399 | expr->expr_type = le32_to_cpu(buf[0]); |
| 400 | expr->boolean = le32_to_cpu(buf[1]); |
| 401 | |
| 402 | if (!expr_node_isvalid(p, expr)) |
| 403 | return -EINVAL; |
| 404 | } |
| 405 | |
| 406 | rc = cond_read_av_list(p, fp, &node->true_list, NULL); |
| 407 | if (rc) |
| 408 | return rc; |
| 409 | return cond_read_av_list(p, fp, &node->false_list, &node->true_list); |
| 410 | } |
| 411 | |
| 412 | int cond_read_list(struct policydb *p, struct policy_file *fp) |
| 413 | { |
| 414 | __le32 buf[1]; |
| 415 | u32 i, len; |
| 416 | int rc; |
| 417 | |
| 418 | rc = next_entry(buf, fp, sizeof(buf)); |
| 419 | if (rc) |
| 420 | return rc; |
| 421 | |
| 422 | len = le32_to_cpu(buf[0]); |
| 423 | |
| 424 | p->cond_list = kcalloc(len, sizeof(*p->cond_list), GFP_KERNEL); |
| 425 | if (!p->cond_list) |
| 426 | return -ENOMEM; |
| 427 | |
| 428 | rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel); |
| 429 | if (rc) |
| 430 | goto err; |
| 431 | |
| 432 | p->cond_list_len = len; |
| 433 | |
| 434 | for (i = 0; i < len; i++) { |
| 435 | rc = cond_read_node(p, &p->cond_list[i], fp); |
| 436 | if (rc) |
| 437 | goto err; |
| 438 | } |
| 439 | return 0; |
| 440 | err: |
| 441 | cond_list_destroy(p); |
| 442 | return rc; |
| 443 | } |
| 444 | |
| 445 | int cond_write_bool(void *vkey, void *datum, void *ptr) |
| 446 | { |
| 447 | char *key = vkey; |
| 448 | struct cond_bool_datum *booldatum = datum; |
| 449 | struct policy_data *pd = ptr; |
| 450 | struct policy_file *fp = pd->fp; |
| 451 | __le32 buf[3]; |
| 452 | u32 len; |
| 453 | int rc; |
| 454 | |
| 455 | len = strlen(key); |
| 456 | buf[0] = cpu_to_le32(booldatum->value); |
| 457 | buf[1] = cpu_to_le32(booldatum->state); |
| 458 | buf[2] = cpu_to_le32(len); |
| 459 | rc = put_entry(buf, sizeof(u32), 3, fp); |
| 460 | if (rc) |
| 461 | return rc; |
| 462 | rc = put_entry(key, 1, len, fp); |
| 463 | if (rc) |
| 464 | return rc; |
| 465 | return 0; |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * cond_write_cond_av_list doesn't write out the av_list nodes. |
| 470 | * Instead it writes out the key/value pairs from the avtab. This |
| 471 | * is necessary because there is no way to uniquely identifying rules |
| 472 | * in the avtab so it is not possible to associate individual rules |
| 473 | * in the avtab with a conditional without saving them as part of |
| 474 | * the conditional. This means that the avtab with the conditional |
| 475 | * rules will not be saved but will be rebuilt on policy load. |
| 476 | */ |
| 477 | static int cond_write_av_list(struct policydb *p, struct cond_av_list *list, |
| 478 | struct policy_file *fp) |
| 479 | { |
| 480 | __le32 buf[1]; |
| 481 | u32 i; |
| 482 | int rc; |
| 483 | |
| 484 | buf[0] = cpu_to_le32(list->len); |
| 485 | rc = put_entry(buf, sizeof(u32), 1, fp); |
| 486 | if (rc) |
| 487 | return rc; |
| 488 | |
| 489 | for (i = 0; i < list->len; i++) { |
| 490 | rc = avtab_write_item(p, list->nodes[i], fp); |
| 491 | if (rc) |
| 492 | return rc; |
| 493 | } |
| 494 | |
| 495 | return 0; |
| 496 | } |
| 497 | |
| 498 | static int cond_write_node(struct policydb *p, struct cond_node *node, |
| 499 | struct policy_file *fp) |
| 500 | { |
| 501 | __le32 buf[2]; |
| 502 | int rc; |
| 503 | u32 i; |
| 504 | |
| 505 | buf[0] = cpu_to_le32(node->cur_state); |
| 506 | rc = put_entry(buf, sizeof(u32), 1, fp); |
| 507 | if (rc) |
| 508 | return rc; |
| 509 | |
| 510 | buf[0] = cpu_to_le32(node->expr.len); |
| 511 | rc = put_entry(buf, sizeof(u32), 1, fp); |
| 512 | if (rc) |
| 513 | return rc; |
| 514 | |
| 515 | for (i = 0; i < node->expr.len; i++) { |
| 516 | buf[0] = cpu_to_le32(node->expr.nodes[i].expr_type); |
| 517 | buf[1] = cpu_to_le32(node->expr.nodes[i].boolean); |
| 518 | rc = put_entry(buf, sizeof(u32), 2, fp); |
| 519 | if (rc) |
| 520 | return rc; |
| 521 | } |
| 522 | |
| 523 | rc = cond_write_av_list(p, &node->true_list, fp); |
| 524 | if (rc) |
| 525 | return rc; |
| 526 | rc = cond_write_av_list(p, &node->false_list, fp); |
| 527 | if (rc) |
| 528 | return rc; |
| 529 | |
| 530 | return 0; |
| 531 | } |
| 532 | |
| 533 | int cond_write_list(struct policydb *p, struct policy_file *fp) |
| 534 | { |
| 535 | u32 i; |
| 536 | __le32 buf[1]; |
| 537 | int rc; |
| 538 | |
| 539 | buf[0] = cpu_to_le32(p->cond_list_len); |
| 540 | rc = put_entry(buf, sizeof(u32), 1, fp); |
| 541 | if (rc) |
| 542 | return rc; |
| 543 | |
| 544 | for (i = 0; i < p->cond_list_len; i++) { |
| 545 | rc = cond_write_node(p, &p->cond_list[i], fp); |
| 546 | if (rc) |
| 547 | return rc; |
| 548 | } |
| 549 | |
| 550 | return 0; |
| 551 | } |
| 552 | |
| 553 | void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key, |
| 554 | struct extended_perms_decision *xpermd) |
| 555 | { |
| 556 | struct avtab_node *node; |
| 557 | |
| 558 | if (!ctab || !key || !xpermd) |
| 559 | return; |
| 560 | |
| 561 | for (node = avtab_search_node(ctab, key); node; |
| 562 | node = avtab_search_node_next(node, key->specified)) { |
| 563 | if (node->key.specified & AVTAB_ENABLED) |
| 564 | services_compute_xperms_decision(xpermd, node); |
| 565 | } |
| 566 | } |
| 567 | /* Determine whether additional permissions are granted by the conditional |
| 568 | * av table, and if so, add them to the result |
| 569 | */ |
| 570 | void cond_compute_av(struct avtab *ctab, struct avtab_key *key, |
| 571 | struct av_decision *avd, struct extended_perms *xperms) |
| 572 | { |
| 573 | struct avtab_node *node; |
| 574 | |
| 575 | if (!ctab || !key || !avd) |
| 576 | return; |
| 577 | |
| 578 | for (node = avtab_search_node(ctab, key); node; |
| 579 | node = avtab_search_node_next(node, key->specified)) { |
| 580 | if ((u16)(AVTAB_ALLOWED | AVTAB_ENABLED) == |
| 581 | (node->key.specified & (AVTAB_ALLOWED | AVTAB_ENABLED))) |
| 582 | avd->allowed |= node->datum.u.data; |
| 583 | if ((u16)(AVTAB_AUDITDENY | AVTAB_ENABLED) == |
| 584 | (node->key.specified & (AVTAB_AUDITDENY | AVTAB_ENABLED))) |
| 585 | /* Since a '0' in an auditdeny mask represents a |
| 586 | * permission we do NOT want to audit (dontaudit), we use |
| 587 | * the '&' operand to ensure that all '0's in the mask |
| 588 | * are retained (much unlike the allow and auditallow cases). |
| 589 | */ |
| 590 | avd->auditdeny &= node->datum.u.data; |
| 591 | if ((u16)(AVTAB_AUDITALLOW | AVTAB_ENABLED) == |
| 592 | (node->key.specified & (AVTAB_AUDITALLOW | AVTAB_ENABLED))) |
| 593 | avd->auditallow |= node->datum.u.data; |
| 594 | if (xperms && (node->key.specified & AVTAB_ENABLED) && |
| 595 | (node->key.specified & AVTAB_XPERMS)) |
| 596 | services_compute_xperms_drivers(xperms, node); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | static int cond_dup_av_list(struct cond_av_list *new, |
| 601 | const struct cond_av_list *orig, |
| 602 | struct avtab *avtab) |
| 603 | { |
| 604 | u32 i; |
| 605 | |
| 606 | memset(new, 0, sizeof(*new)); |
| 607 | |
| 608 | new->nodes = kcalloc(orig->len, sizeof(*new->nodes), GFP_KERNEL); |
| 609 | if (!new->nodes) |
| 610 | return -ENOMEM; |
| 611 | |
| 612 | for (i = 0; i < orig->len; i++) { |
| 613 | new->nodes[i] = avtab_insert_nonunique( |
| 614 | avtab, &orig->nodes[i]->key, &orig->nodes[i]->datum); |
| 615 | if (!new->nodes[i]) |
| 616 | return -ENOMEM; |
| 617 | new->len++; |
| 618 | } |
| 619 | |
| 620 | return 0; |
| 621 | } |
| 622 | |
| 623 | static int duplicate_policydb_cond_list(struct policydb *newp, |
| 624 | const struct policydb *origp) |
| 625 | { |
| 626 | int rc; |
| 627 | u32 i; |
| 628 | |
| 629 | rc = avtab_alloc_dup(&newp->te_cond_avtab, &origp->te_cond_avtab); |
| 630 | if (rc) |
| 631 | return rc; |
| 632 | |
| 633 | newp->cond_list_len = 0; |
| 634 | newp->cond_list = kcalloc(origp->cond_list_len, |
| 635 | sizeof(*newp->cond_list), GFP_KERNEL); |
| 636 | if (!newp->cond_list) |
| 637 | goto error; |
| 638 | |
| 639 | for (i = 0; i < origp->cond_list_len; i++) { |
| 640 | struct cond_node *newn = &newp->cond_list[i]; |
| 641 | const struct cond_node *orign = &origp->cond_list[i]; |
| 642 | |
| 643 | newp->cond_list_len++; |
| 644 | |
| 645 | newn->cur_state = orign->cur_state; |
| 646 | newn->expr.nodes = |
| 647 | kmemdup(orign->expr.nodes, |
| 648 | orign->expr.len * sizeof(*orign->expr.nodes), |
| 649 | GFP_KERNEL); |
| 650 | if (!newn->expr.nodes) |
| 651 | goto error; |
| 652 | |
| 653 | newn->expr.len = orign->expr.len; |
| 654 | |
| 655 | rc = cond_dup_av_list(&newn->true_list, &orign->true_list, |
| 656 | &newp->te_cond_avtab); |
| 657 | if (rc) |
| 658 | goto error; |
| 659 | |
| 660 | rc = cond_dup_av_list(&newn->false_list, &orign->false_list, |
| 661 | &newp->te_cond_avtab); |
| 662 | if (rc) |
| 663 | goto error; |
| 664 | } |
| 665 | |
| 666 | return 0; |
| 667 | |
| 668 | error: |
| 669 | avtab_destroy(&newp->te_cond_avtab); |
| 670 | cond_list_destroy(newp); |
| 671 | return -ENOMEM; |
| 672 | } |
| 673 | |
| 674 | static int cond_bools_destroy(void *key, void *datum, void *args) |
| 675 | { |
| 676 | /* key was not copied so no need to free here */ |
| 677 | kfree(datum); |
| 678 | return 0; |
| 679 | } |
| 680 | |
| 681 | static int cond_bools_copy(struct hashtab_node *new, |
| 682 | const struct hashtab_node *orig, void *args) |
| 683 | { |
| 684 | struct cond_bool_datum *datum; |
| 685 | |
| 686 | datum = kmemdup(orig->datum, sizeof(struct cond_bool_datum), |
| 687 | GFP_KERNEL); |
| 688 | if (!datum) |
| 689 | return -ENOMEM; |
| 690 | |
| 691 | new->key = orig->key; /* No need to copy, never modified */ |
| 692 | new->datum = datum; |
| 693 | return 0; |
| 694 | } |
| 695 | |
| 696 | static int cond_bools_index(void *key, void *datum, void *args) |
| 697 | { |
| 698 | struct cond_bool_datum *booldatum, **cond_bool_array; |
| 699 | |
| 700 | booldatum = datum; |
| 701 | cond_bool_array = args; |
| 702 | cond_bool_array[booldatum->value - 1] = booldatum; |
| 703 | |
| 704 | return 0; |
| 705 | } |
| 706 | |
| 707 | static int duplicate_policydb_bools(struct policydb *newdb, |
| 708 | const struct policydb *orig) |
| 709 | { |
| 710 | struct cond_bool_datum **cond_bool_array; |
| 711 | int rc; |
| 712 | |
| 713 | cond_bool_array = kmalloc_array(orig->p_bools.nprim, |
| 714 | sizeof(*orig->bool_val_to_struct), |
| 715 | GFP_KERNEL); |
| 716 | if (!cond_bool_array) |
| 717 | return -ENOMEM; |
| 718 | |
| 719 | rc = hashtab_duplicate(&newdb->p_bools.table, &orig->p_bools.table, |
| 720 | cond_bools_copy, cond_bools_destroy, NULL); |
| 721 | if (rc) { |
| 722 | kfree(cond_bool_array); |
| 723 | return -ENOMEM; |
| 724 | } |
| 725 | |
| 726 | hashtab_map(&newdb->p_bools.table, cond_bools_index, cond_bool_array); |
| 727 | newdb->bool_val_to_struct = cond_bool_array; |
| 728 | |
| 729 | newdb->p_bools.nprim = orig->p_bools.nprim; |
| 730 | |
| 731 | return 0; |
| 732 | } |
| 733 | |
| 734 | void cond_policydb_destroy_dup(struct policydb *p) |
| 735 | { |
| 736 | hashtab_map(&p->p_bools.table, cond_bools_destroy, NULL); |
| 737 | hashtab_destroy(&p->p_bools.table); |
| 738 | cond_policydb_destroy(p); |
| 739 | } |
| 740 | |
| 741 | int cond_policydb_dup(struct policydb *new, const struct policydb *orig) |
| 742 | { |
| 743 | cond_policydb_init(new); |
| 744 | |
| 745 | if (duplicate_policydb_bools(new, orig)) |
| 746 | return -ENOMEM; |
| 747 | |
| 748 | if (duplicate_policydb_cond_list(new, orig)) { |
| 749 | cond_policydb_destroy_dup(new); |
| 750 | return -ENOMEM; |
| 751 | } |
| 752 | |
| 753 | return 0; |
| 754 | } |