| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Implementation of the kernel access vector cache (AVC). |
| 4 | * |
| 5 | * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com> |
| 6 | * James Morris <jmorris@redhat.com> |
| 7 | * |
| 8 | * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> |
| 9 | * Replaced the avc_lock spinlock by RCU. |
| 10 | * |
| 11 | * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> |
| 12 | */ |
| 13 | #include <linux/types.h> |
| 14 | #include <linux/stddef.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/fs.h> |
| 18 | #include <linux/dcache.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/skbuff.h> |
| 21 | #include <linux/percpu.h> |
| 22 | #include <linux/list.h> |
| 23 | #include <net/sock.h> |
| 24 | #include <linux/un.h> |
| 25 | #include <net/af_unix.h> |
| 26 | #include <linux/ip.h> |
| 27 | #include <linux/audit.h> |
| 28 | #include <linux/ipv6.h> |
| 29 | #include <net/ipv6.h> |
| 30 | #include "avc.h" |
| 31 | #include "avc_ss.h" |
| 32 | #include "classmap.h" |
| 33 | |
| 34 | #define CREATE_TRACE_POINTS |
| 35 | #include <trace/events/avc.h> |
| 36 | |
| 37 | #define AVC_CACHE_SLOTS 512 |
| 38 | #define AVC_DEF_CACHE_THRESHOLD 512 |
| 39 | #define AVC_CACHE_RECLAIM 16 |
| 40 | |
| 41 | #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS |
| 42 | #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) |
| 43 | #else |
| 44 | #define avc_cache_stats_incr(field) do {} while (0) |
| 45 | #endif |
| 46 | |
| 47 | struct avc_entry { |
| 48 | u32 ssid; |
| 49 | u32 tsid; |
| 50 | u16 tclass; |
| 51 | struct av_decision avd; |
| 52 | struct avc_xperms_node *xp_node; |
| 53 | }; |
| 54 | |
| 55 | struct avc_node { |
| 56 | struct avc_entry ae; |
| 57 | struct hlist_node list; /* anchored in avc_cache->slots[i] */ |
| 58 | struct rcu_head rhead; |
| 59 | }; |
| 60 | |
| 61 | struct avc_xperms_decision_node { |
| 62 | struct extended_perms_decision xpd; |
| 63 | struct list_head xpd_list; /* list of extended_perms_decision */ |
| 64 | }; |
| 65 | |
| 66 | struct avc_xperms_node { |
| 67 | struct extended_perms xp; |
| 68 | struct list_head xpd_head; /* list head of extended_perms_decision */ |
| 69 | }; |
| 70 | |
| 71 | struct avc_cache { |
| 72 | struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ |
| 73 | spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ |
| 74 | atomic_t lru_hint; /* LRU hint for reclaim scan */ |
| 75 | atomic_t active_nodes; |
| 76 | u32 latest_notif; /* latest revocation notification */ |
| 77 | }; |
| 78 | |
| 79 | struct avc_callback_node { |
| 80 | int (*callback) (u32 event); |
| 81 | u32 events; |
| 82 | struct avc_callback_node *next; |
| 83 | }; |
| 84 | |
| 85 | #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS |
| 86 | DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; |
| 87 | #endif |
| 88 | |
| 89 | struct selinux_avc { |
| 90 | unsigned int avc_cache_threshold; |
| 91 | struct avc_cache avc_cache; |
| 92 | }; |
| 93 | |
| 94 | static struct selinux_avc selinux_avc; |
| 95 | |
| 96 | void selinux_avc_init(void) |
| 97 | { |
| 98 | int i; |
| 99 | |
| 100 | selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; |
| 101 | for (i = 0; i < AVC_CACHE_SLOTS; i++) { |
| 102 | INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); |
| 103 | spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); |
| 104 | } |
| 105 | atomic_set(&selinux_avc.avc_cache.active_nodes, 0); |
| 106 | atomic_set(&selinux_avc.avc_cache.lru_hint, 0); |
| 107 | } |
| 108 | |
| 109 | unsigned int avc_get_cache_threshold(void) |
| 110 | { |
| 111 | return selinux_avc.avc_cache_threshold; |
| 112 | } |
| 113 | |
| 114 | void avc_set_cache_threshold(unsigned int cache_threshold) |
| 115 | { |
| 116 | selinux_avc.avc_cache_threshold = cache_threshold; |
| 117 | } |
| 118 | |
| 119 | static struct avc_callback_node *avc_callbacks __ro_after_init; |
| 120 | static struct kmem_cache *avc_node_cachep __ro_after_init; |
| 121 | static struct kmem_cache *avc_xperms_data_cachep __ro_after_init; |
| 122 | static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init; |
| 123 | static struct kmem_cache *avc_xperms_cachep __ro_after_init; |
| 124 | |
| 125 | static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass) |
| 126 | { |
| 127 | return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); |
| 128 | } |
| 129 | |
| 130 | /** |
| 131 | * avc_init - Initialize the AVC. |
| 132 | * |
| 133 | * Initialize the access vector cache. |
| 134 | */ |
| 135 | void __init avc_init(void) |
| 136 | { |
| 137 | avc_node_cachep = KMEM_CACHE(avc_node, SLAB_PANIC); |
| 138 | avc_xperms_cachep = KMEM_CACHE(avc_xperms_node, SLAB_PANIC); |
| 139 | avc_xperms_decision_cachep = KMEM_CACHE(avc_xperms_decision_node, SLAB_PANIC); |
| 140 | avc_xperms_data_cachep = KMEM_CACHE(extended_perms_data, SLAB_PANIC); |
| 141 | } |
| 142 | |
| 143 | int avc_get_hash_stats(char *page) |
| 144 | { |
| 145 | int i, chain_len, max_chain_len, slots_used; |
| 146 | struct avc_node *node; |
| 147 | struct hlist_head *head; |
| 148 | |
| 149 | rcu_read_lock(); |
| 150 | |
| 151 | slots_used = 0; |
| 152 | max_chain_len = 0; |
| 153 | for (i = 0; i < AVC_CACHE_SLOTS; i++) { |
| 154 | head = &selinux_avc.avc_cache.slots[i]; |
| 155 | if (!hlist_empty(head)) { |
| 156 | slots_used++; |
| 157 | chain_len = 0; |
| 158 | hlist_for_each_entry_rcu(node, head, list) |
| 159 | chain_len++; |
| 160 | if (chain_len > max_chain_len) |
| 161 | max_chain_len = chain_len; |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | rcu_read_unlock(); |
| 166 | |
| 167 | return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" |
| 168 | "longest chain: %d\n", |
| 169 | atomic_read(&selinux_avc.avc_cache.active_nodes), |
| 170 | slots_used, AVC_CACHE_SLOTS, max_chain_len); |
| 171 | } |
| 172 | |
| 173 | /* |
| 174 | * using a linked list for extended_perms_decision lookup because the list is |
| 175 | * always small. i.e. less than 5, typically 1 |
| 176 | */ |
| 177 | static struct extended_perms_decision * |
| 178 | avc_xperms_decision_lookup(u8 driver, u8 base_perm, |
| 179 | struct avc_xperms_node *xp_node) |
| 180 | { |
| 181 | struct avc_xperms_decision_node *xpd_node; |
| 182 | |
| 183 | list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { |
| 184 | if (xpd_node->xpd.driver == driver && |
| 185 | xpd_node->xpd.base_perm == base_perm) |
| 186 | return &xpd_node->xpd; |
| 187 | } |
| 188 | return NULL; |
| 189 | } |
| 190 | |
| 191 | static inline unsigned int |
| 192 | avc_xperms_has_perm(struct extended_perms_decision *xpd, |
| 193 | u8 perm, u8 which) |
| 194 | { |
| 195 | unsigned int rc = 0; |
| 196 | |
| 197 | if ((which == XPERMS_ALLOWED) && |
| 198 | (xpd->used & XPERMS_ALLOWED)) |
| 199 | rc = security_xperm_test(xpd->allowed->p, perm); |
| 200 | else if ((which == XPERMS_AUDITALLOW) && |
| 201 | (xpd->used & XPERMS_AUDITALLOW)) |
| 202 | rc = security_xperm_test(xpd->auditallow->p, perm); |
| 203 | else if ((which == XPERMS_DONTAUDIT) && |
| 204 | (xpd->used & XPERMS_DONTAUDIT)) |
| 205 | rc = security_xperm_test(xpd->dontaudit->p, perm); |
| 206 | return rc; |
| 207 | } |
| 208 | |
| 209 | static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, |
| 210 | u8 driver, u8 base_perm, u8 perm) |
| 211 | { |
| 212 | struct extended_perms_decision *xpd; |
| 213 | security_xperm_set(xp_node->xp.drivers.p, driver); |
| 214 | xp_node->xp.base_perms |= base_perm; |
| 215 | xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node); |
| 216 | if (xpd && xpd->allowed) |
| 217 | security_xperm_set(xpd->allowed->p, perm); |
| 218 | } |
| 219 | |
| 220 | static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) |
| 221 | { |
| 222 | struct extended_perms_decision *xpd; |
| 223 | |
| 224 | xpd = &xpd_node->xpd; |
| 225 | if (xpd->allowed) |
| 226 | kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); |
| 227 | if (xpd->auditallow) |
| 228 | kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); |
| 229 | if (xpd->dontaudit) |
| 230 | kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); |
| 231 | kmem_cache_free(avc_xperms_decision_cachep, xpd_node); |
| 232 | } |
| 233 | |
| 234 | static void avc_xperms_free(struct avc_xperms_node *xp_node) |
| 235 | { |
| 236 | struct avc_xperms_decision_node *xpd_node, *tmp; |
| 237 | |
| 238 | if (!xp_node) |
| 239 | return; |
| 240 | |
| 241 | list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { |
| 242 | list_del(&xpd_node->xpd_list); |
| 243 | avc_xperms_decision_free(xpd_node); |
| 244 | } |
| 245 | kmem_cache_free(avc_xperms_cachep, xp_node); |
| 246 | } |
| 247 | |
| 248 | static void avc_copy_xperms_decision(struct extended_perms_decision *dest, |
| 249 | struct extended_perms_decision *src) |
| 250 | { |
| 251 | dest->base_perm = src->base_perm; |
| 252 | dest->driver = src->driver; |
| 253 | dest->used = src->used; |
| 254 | if (dest->used & XPERMS_ALLOWED) |
| 255 | memcpy(dest->allowed->p, src->allowed->p, |
| 256 | sizeof(src->allowed->p)); |
| 257 | if (dest->used & XPERMS_AUDITALLOW) |
| 258 | memcpy(dest->auditallow->p, src->auditallow->p, |
| 259 | sizeof(src->auditallow->p)); |
| 260 | if (dest->used & XPERMS_DONTAUDIT) |
| 261 | memcpy(dest->dontaudit->p, src->dontaudit->p, |
| 262 | sizeof(src->dontaudit->p)); |
| 263 | } |
| 264 | |
| 265 | /* |
| 266 | * similar to avc_copy_xperms_decision, but only copy decision |
| 267 | * information relevant to this perm |
| 268 | */ |
| 269 | static inline void avc_quick_copy_xperms_decision(u8 perm, |
| 270 | struct extended_perms_decision *dest, |
| 271 | struct extended_perms_decision *src) |
| 272 | { |
| 273 | /* |
| 274 | * compute index of the u32 of the 256 bits (8 u32s) that contain this |
| 275 | * command permission |
| 276 | */ |
| 277 | u8 i = perm >> 5; |
| 278 | |
| 279 | dest->base_perm = src->base_perm; |
| 280 | dest->used = src->used; |
| 281 | if (dest->used & XPERMS_ALLOWED) |
| 282 | dest->allowed->p[i] = src->allowed->p[i]; |
| 283 | if (dest->used & XPERMS_AUDITALLOW) |
| 284 | dest->auditallow->p[i] = src->auditallow->p[i]; |
| 285 | if (dest->used & XPERMS_DONTAUDIT) |
| 286 | dest->dontaudit->p[i] = src->dontaudit->p[i]; |
| 287 | } |
| 288 | |
| 289 | static struct avc_xperms_decision_node |
| 290 | *avc_xperms_decision_alloc(u8 which) |
| 291 | { |
| 292 | struct avc_xperms_decision_node *xpd_node; |
| 293 | struct extended_perms_decision *xpd; |
| 294 | |
| 295 | xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, |
| 296 | GFP_NOWAIT | __GFP_NOWARN); |
| 297 | if (!xpd_node) |
| 298 | return NULL; |
| 299 | |
| 300 | xpd = &xpd_node->xpd; |
| 301 | if (which & XPERMS_ALLOWED) { |
| 302 | xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, |
| 303 | GFP_NOWAIT | __GFP_NOWARN); |
| 304 | if (!xpd->allowed) |
| 305 | goto error; |
| 306 | } |
| 307 | if (which & XPERMS_AUDITALLOW) { |
| 308 | xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, |
| 309 | GFP_NOWAIT | __GFP_NOWARN); |
| 310 | if (!xpd->auditallow) |
| 311 | goto error; |
| 312 | } |
| 313 | if (which & XPERMS_DONTAUDIT) { |
| 314 | xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, |
| 315 | GFP_NOWAIT | __GFP_NOWARN); |
| 316 | if (!xpd->dontaudit) |
| 317 | goto error; |
| 318 | } |
| 319 | return xpd_node; |
| 320 | error: |
| 321 | avc_xperms_decision_free(xpd_node); |
| 322 | return NULL; |
| 323 | } |
| 324 | |
| 325 | static int avc_add_xperms_decision(struct avc_node *node, |
| 326 | struct extended_perms_decision *src) |
| 327 | { |
| 328 | struct avc_xperms_decision_node *dest_xpd; |
| 329 | |
| 330 | dest_xpd = avc_xperms_decision_alloc(src->used); |
| 331 | if (!dest_xpd) |
| 332 | return -ENOMEM; |
| 333 | avc_copy_xperms_decision(&dest_xpd->xpd, src); |
| 334 | list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); |
| 335 | node->ae.xp_node->xp.len++; |
| 336 | return 0; |
| 337 | } |
| 338 | |
| 339 | static struct avc_xperms_node *avc_xperms_alloc(void) |
| 340 | { |
| 341 | struct avc_xperms_node *xp_node; |
| 342 | |
| 343 | xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN); |
| 344 | if (!xp_node) |
| 345 | return xp_node; |
| 346 | INIT_LIST_HEAD(&xp_node->xpd_head); |
| 347 | return xp_node; |
| 348 | } |
| 349 | |
| 350 | static int avc_xperms_populate(struct avc_node *node, |
| 351 | struct avc_xperms_node *src) |
| 352 | { |
| 353 | struct avc_xperms_node *dest; |
| 354 | struct avc_xperms_decision_node *dest_xpd; |
| 355 | struct avc_xperms_decision_node *src_xpd; |
| 356 | |
| 357 | if (src->xp.len == 0) |
| 358 | return 0; |
| 359 | dest = avc_xperms_alloc(); |
| 360 | if (!dest) |
| 361 | return -ENOMEM; |
| 362 | |
| 363 | memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); |
| 364 | dest->xp.len = src->xp.len; |
| 365 | dest->xp.base_perms = src->xp.base_perms; |
| 366 | |
| 367 | /* for each source xpd allocate a destination xpd and copy */ |
| 368 | list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { |
| 369 | dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); |
| 370 | if (!dest_xpd) |
| 371 | goto error; |
| 372 | avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); |
| 373 | list_add(&dest_xpd->xpd_list, &dest->xpd_head); |
| 374 | } |
| 375 | node->ae.xp_node = dest; |
| 376 | return 0; |
| 377 | error: |
| 378 | avc_xperms_free(dest); |
| 379 | return -ENOMEM; |
| 380 | |
| 381 | } |
| 382 | |
| 383 | static inline u32 avc_xperms_audit_required(u32 requested, |
| 384 | struct av_decision *avd, |
| 385 | struct extended_perms_decision *xpd, |
| 386 | u8 perm, |
| 387 | int result, |
| 388 | u32 *deniedp) |
| 389 | { |
| 390 | u32 denied, audited; |
| 391 | |
| 392 | denied = requested & ~avd->allowed; |
| 393 | if (unlikely(denied)) { |
| 394 | audited = denied & avd->auditdeny; |
| 395 | if (audited && xpd) { |
| 396 | if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) |
| 397 | audited = 0; |
| 398 | } |
| 399 | } else if (result) { |
| 400 | audited = denied = requested; |
| 401 | } else { |
| 402 | audited = requested & avd->auditallow; |
| 403 | if (audited && xpd) { |
| 404 | if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) |
| 405 | audited = 0; |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | *deniedp = denied; |
| 410 | return audited; |
| 411 | } |
| 412 | |
| 413 | static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass, |
| 414 | u32 requested, struct av_decision *avd, |
| 415 | struct extended_perms_decision *xpd, |
| 416 | u8 perm, int result, |
| 417 | struct common_audit_data *ad) |
| 418 | { |
| 419 | u32 audited, denied; |
| 420 | |
| 421 | audited = avc_xperms_audit_required( |
| 422 | requested, avd, xpd, perm, result, &denied); |
| 423 | if (likely(!audited)) |
| 424 | return 0; |
| 425 | return slow_avc_audit(ssid, tsid, tclass, requested, |
| 426 | audited, denied, result, ad); |
| 427 | } |
| 428 | |
| 429 | static void avc_node_free(struct rcu_head *rhead) |
| 430 | { |
| 431 | struct avc_node *node = container_of(rhead, struct avc_node, rhead); |
| 432 | avc_xperms_free(node->ae.xp_node); |
| 433 | kmem_cache_free(avc_node_cachep, node); |
| 434 | avc_cache_stats_incr(frees); |
| 435 | } |
| 436 | |
| 437 | static void avc_node_delete(struct avc_node *node) |
| 438 | { |
| 439 | hlist_del_rcu(&node->list); |
| 440 | call_rcu(&node->rhead, avc_node_free); |
| 441 | atomic_dec(&selinux_avc.avc_cache.active_nodes); |
| 442 | } |
| 443 | |
| 444 | static void avc_node_kill(struct avc_node *node) |
| 445 | { |
| 446 | avc_xperms_free(node->ae.xp_node); |
| 447 | kmem_cache_free(avc_node_cachep, node); |
| 448 | avc_cache_stats_incr(frees); |
| 449 | atomic_dec(&selinux_avc.avc_cache.active_nodes); |
| 450 | } |
| 451 | |
| 452 | static void avc_node_replace(struct avc_node *new, struct avc_node *old) |
| 453 | { |
| 454 | hlist_replace_rcu(&old->list, &new->list); |
| 455 | call_rcu(&old->rhead, avc_node_free); |
| 456 | atomic_dec(&selinux_avc.avc_cache.active_nodes); |
| 457 | } |
| 458 | |
| 459 | static inline int avc_reclaim_node(void) |
| 460 | { |
| 461 | struct avc_node *node; |
| 462 | int hvalue, try, ecx; |
| 463 | unsigned long flags; |
| 464 | struct hlist_head *head; |
| 465 | spinlock_t *lock; |
| 466 | |
| 467 | for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { |
| 468 | hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) & |
| 469 | (AVC_CACHE_SLOTS - 1); |
| 470 | head = &selinux_avc.avc_cache.slots[hvalue]; |
| 471 | lock = &selinux_avc.avc_cache.slots_lock[hvalue]; |
| 472 | |
| 473 | if (!spin_trylock_irqsave(lock, flags)) |
| 474 | continue; |
| 475 | |
| 476 | rcu_read_lock(); |
| 477 | hlist_for_each_entry(node, head, list) { |
| 478 | avc_node_delete(node); |
| 479 | avc_cache_stats_incr(reclaims); |
| 480 | ecx++; |
| 481 | if (ecx >= AVC_CACHE_RECLAIM) { |
| 482 | rcu_read_unlock(); |
| 483 | spin_unlock_irqrestore(lock, flags); |
| 484 | goto out; |
| 485 | } |
| 486 | } |
| 487 | rcu_read_unlock(); |
| 488 | spin_unlock_irqrestore(lock, flags); |
| 489 | } |
| 490 | out: |
| 491 | return ecx; |
| 492 | } |
| 493 | |
| 494 | static struct avc_node *avc_alloc_node(void) |
| 495 | { |
| 496 | struct avc_node *node; |
| 497 | |
| 498 | node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN); |
| 499 | if (!node) |
| 500 | goto out; |
| 501 | |
| 502 | INIT_HLIST_NODE(&node->list); |
| 503 | avc_cache_stats_incr(allocations); |
| 504 | |
| 505 | if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) > |
| 506 | selinux_avc.avc_cache_threshold) |
| 507 | avc_reclaim_node(); |
| 508 | |
| 509 | out: |
| 510 | return node; |
| 511 | } |
| 512 | |
| 513 | static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) |
| 514 | { |
| 515 | node->ae.ssid = ssid; |
| 516 | node->ae.tsid = tsid; |
| 517 | node->ae.tclass = tclass; |
| 518 | memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); |
| 519 | } |
| 520 | |
| 521 | static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) |
| 522 | { |
| 523 | struct avc_node *node, *ret = NULL; |
| 524 | u32 hvalue; |
| 525 | struct hlist_head *head; |
| 526 | |
| 527 | hvalue = avc_hash(ssid, tsid, tclass); |
| 528 | head = &selinux_avc.avc_cache.slots[hvalue]; |
| 529 | hlist_for_each_entry_rcu(node, head, list) { |
| 530 | if (ssid == node->ae.ssid && |
| 531 | tclass == node->ae.tclass && |
| 532 | tsid == node->ae.tsid) { |
| 533 | ret = node; |
| 534 | break; |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | return ret; |
| 539 | } |
| 540 | |
| 541 | /** |
| 542 | * avc_lookup - Look up an AVC entry. |
| 543 | * @ssid: source security identifier |
| 544 | * @tsid: target security identifier |
| 545 | * @tclass: target security class |
| 546 | * |
| 547 | * Look up an AVC entry that is valid for the |
| 548 | * (@ssid, @tsid), interpreting the permissions |
| 549 | * based on @tclass. If a valid AVC entry exists, |
| 550 | * then this function returns the avc_node. |
| 551 | * Otherwise, this function returns NULL. |
| 552 | */ |
| 553 | static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) |
| 554 | { |
| 555 | struct avc_node *node; |
| 556 | |
| 557 | avc_cache_stats_incr(lookups); |
| 558 | node = avc_search_node(ssid, tsid, tclass); |
| 559 | |
| 560 | if (node) |
| 561 | return node; |
| 562 | |
| 563 | avc_cache_stats_incr(misses); |
| 564 | return NULL; |
| 565 | } |
| 566 | |
| 567 | static int avc_latest_notif_update(u32 seqno, int is_insert) |
| 568 | { |
| 569 | int ret = 0; |
| 570 | static DEFINE_SPINLOCK(notif_lock); |
| 571 | unsigned long flag; |
| 572 | |
| 573 | spin_lock_irqsave(¬if_lock, flag); |
| 574 | if (is_insert) { |
| 575 | if (seqno < selinux_avc.avc_cache.latest_notif) { |
| 576 | pr_warn("SELinux: avc: seqno %d < latest_notif %d\n", |
| 577 | seqno, selinux_avc.avc_cache.latest_notif); |
| 578 | ret = -EAGAIN; |
| 579 | } |
| 580 | } else { |
| 581 | if (seqno > selinux_avc.avc_cache.latest_notif) |
| 582 | selinux_avc.avc_cache.latest_notif = seqno; |
| 583 | } |
| 584 | spin_unlock_irqrestore(¬if_lock, flag); |
| 585 | |
| 586 | return ret; |
| 587 | } |
| 588 | |
| 589 | /** |
| 590 | * avc_insert - Insert an AVC entry. |
| 591 | * @ssid: source security identifier |
| 592 | * @tsid: target security identifier |
| 593 | * @tclass: target security class |
| 594 | * @avd: resulting av decision |
| 595 | * @xp_node: resulting extended permissions |
| 596 | * |
| 597 | * Insert an AVC entry for the SID pair |
| 598 | * (@ssid, @tsid) and class @tclass. |
| 599 | * The access vectors and the sequence number are |
| 600 | * normally provided by the security server in |
| 601 | * response to a security_compute_av() call. If the |
| 602 | * sequence number @avd->seqno is not less than the latest |
| 603 | * revocation notification, then the function copies |
| 604 | * the access vectors into a cache entry. |
| 605 | */ |
| 606 | static void avc_insert(u32 ssid, u32 tsid, u16 tclass, |
| 607 | struct av_decision *avd, struct avc_xperms_node *xp_node) |
| 608 | { |
| 609 | struct avc_node *pos, *node = NULL; |
| 610 | u32 hvalue; |
| 611 | unsigned long flag; |
| 612 | spinlock_t *lock; |
| 613 | struct hlist_head *head; |
| 614 | |
| 615 | if (avc_latest_notif_update(avd->seqno, 1)) |
| 616 | return; |
| 617 | |
| 618 | node = avc_alloc_node(); |
| 619 | if (!node) |
| 620 | return; |
| 621 | |
| 622 | avc_node_populate(node, ssid, tsid, tclass, avd); |
| 623 | if (avc_xperms_populate(node, xp_node)) { |
| 624 | avc_node_kill(node); |
| 625 | return; |
| 626 | } |
| 627 | |
| 628 | hvalue = avc_hash(ssid, tsid, tclass); |
| 629 | head = &selinux_avc.avc_cache.slots[hvalue]; |
| 630 | lock = &selinux_avc.avc_cache.slots_lock[hvalue]; |
| 631 | spin_lock_irqsave(lock, flag); |
| 632 | hlist_for_each_entry(pos, head, list) { |
| 633 | if (pos->ae.ssid == ssid && |
| 634 | pos->ae.tsid == tsid && |
| 635 | pos->ae.tclass == tclass) { |
| 636 | avc_node_replace(node, pos); |
| 637 | goto found; |
| 638 | } |
| 639 | } |
| 640 | hlist_add_head_rcu(&node->list, head); |
| 641 | found: |
| 642 | spin_unlock_irqrestore(lock, flag); |
| 643 | } |
| 644 | |
| 645 | /** |
| 646 | * avc_audit_pre_callback - SELinux specific information |
| 647 | * will be called by generic audit code |
| 648 | * @ab: the audit buffer |
| 649 | * @a: audit_data |
| 650 | */ |
| 651 | static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) |
| 652 | { |
| 653 | struct common_audit_data *ad = a; |
| 654 | struct selinux_audit_data *sad = ad->selinux_audit_data; |
| 655 | u32 av = sad->audited, perm; |
| 656 | const char *const *perms; |
| 657 | u32 i; |
| 658 | |
| 659 | audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted"); |
| 660 | |
| 661 | if (av == 0) { |
| 662 | audit_log_format(ab, " null"); |
| 663 | return; |
| 664 | } |
| 665 | |
| 666 | perms = secclass_map[sad->tclass-1].perms; |
| 667 | |
| 668 | audit_log_format(ab, " {"); |
| 669 | i = 0; |
| 670 | perm = 1; |
| 671 | while (i < (sizeof(av) * 8)) { |
| 672 | if ((perm & av) && perms[i]) { |
| 673 | audit_log_format(ab, " %s", perms[i]); |
| 674 | av &= ~perm; |
| 675 | } |
| 676 | i++; |
| 677 | perm <<= 1; |
| 678 | } |
| 679 | |
| 680 | if (av) |
| 681 | audit_log_format(ab, " 0x%x", av); |
| 682 | |
| 683 | audit_log_format(ab, " } for "); |
| 684 | } |
| 685 | |
| 686 | /** |
| 687 | * avc_audit_post_callback - SELinux specific information |
| 688 | * will be called by generic audit code |
| 689 | * @ab: the audit buffer |
| 690 | * @a: audit_data |
| 691 | */ |
| 692 | static void avc_audit_post_callback(struct audit_buffer *ab, void *a) |
| 693 | { |
| 694 | struct common_audit_data *ad = a; |
| 695 | struct selinux_audit_data *sad = ad->selinux_audit_data; |
| 696 | char *scontext = NULL; |
| 697 | char *tcontext = NULL; |
| 698 | const char *tclass = NULL; |
| 699 | u32 scontext_len; |
| 700 | u32 tcontext_len; |
| 701 | int rc; |
| 702 | |
| 703 | rc = security_sid_to_context(sad->ssid, &scontext, |
| 704 | &scontext_len); |
| 705 | if (rc) |
| 706 | audit_log_format(ab, " ssid=%d", sad->ssid); |
| 707 | else |
| 708 | audit_log_format(ab, " scontext=%s", scontext); |
| 709 | |
| 710 | rc = security_sid_to_context(sad->tsid, &tcontext, |
| 711 | &tcontext_len); |
| 712 | if (rc) |
| 713 | audit_log_format(ab, " tsid=%d", sad->tsid); |
| 714 | else |
| 715 | audit_log_format(ab, " tcontext=%s", tcontext); |
| 716 | |
| 717 | tclass = secclass_map[sad->tclass-1].name; |
| 718 | audit_log_format(ab, " tclass=%s", tclass); |
| 719 | |
| 720 | if (sad->denied) |
| 721 | audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1); |
| 722 | |
| 723 | trace_selinux_audited(sad, scontext, tcontext, tclass); |
| 724 | kfree(tcontext); |
| 725 | kfree(scontext); |
| 726 | |
| 727 | /* in case of invalid context report also the actual context string */ |
| 728 | rc = security_sid_to_context_inval(sad->ssid, &scontext, |
| 729 | &scontext_len); |
| 730 | if (!rc && scontext) { |
| 731 | if (scontext_len && scontext[scontext_len - 1] == '\0') |
| 732 | scontext_len--; |
| 733 | audit_log_format(ab, " srawcon="); |
| 734 | audit_log_n_untrustedstring(ab, scontext, scontext_len); |
| 735 | kfree(scontext); |
| 736 | } |
| 737 | |
| 738 | rc = security_sid_to_context_inval(sad->tsid, &scontext, |
| 739 | &scontext_len); |
| 740 | if (!rc && scontext) { |
| 741 | if (scontext_len && scontext[scontext_len - 1] == '\0') |
| 742 | scontext_len--; |
| 743 | audit_log_format(ab, " trawcon="); |
| 744 | audit_log_n_untrustedstring(ab, scontext, scontext_len); |
| 745 | kfree(scontext); |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | /* |
| 750 | * This is the slow part of avc audit with big stack footprint. |
| 751 | * Note that it is non-blocking and can be called from under |
| 752 | * rcu_read_lock(). |
| 753 | */ |
| 754 | noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass, |
| 755 | u32 requested, u32 audited, u32 denied, int result, |
| 756 | struct common_audit_data *a) |
| 757 | { |
| 758 | struct common_audit_data stack_data; |
| 759 | struct selinux_audit_data sad; |
| 760 | |
| 761 | if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map))) |
| 762 | return -EINVAL; |
| 763 | |
| 764 | if (!a) { |
| 765 | a = &stack_data; |
| 766 | a->type = LSM_AUDIT_DATA_NONE; |
| 767 | } |
| 768 | |
| 769 | sad.tclass = tclass; |
| 770 | sad.requested = requested; |
| 771 | sad.ssid = ssid; |
| 772 | sad.tsid = tsid; |
| 773 | sad.audited = audited; |
| 774 | sad.denied = denied; |
| 775 | sad.result = result; |
| 776 | |
| 777 | a->selinux_audit_data = &sad; |
| 778 | |
| 779 | common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); |
| 780 | return 0; |
| 781 | } |
| 782 | |
| 783 | /** |
| 784 | * avc_add_callback - Register a callback for security events. |
| 785 | * @callback: callback function |
| 786 | * @events: security events |
| 787 | * |
| 788 | * Register a callback function for events in the set @events. |
| 789 | * Returns %0 on success or -%ENOMEM if insufficient memory |
| 790 | * exists to add the callback. |
| 791 | */ |
| 792 | int __init avc_add_callback(int (*callback)(u32 event), u32 events) |
| 793 | { |
| 794 | struct avc_callback_node *c; |
| 795 | int rc = 0; |
| 796 | |
| 797 | c = kmalloc(sizeof(*c), GFP_KERNEL); |
| 798 | if (!c) { |
| 799 | rc = -ENOMEM; |
| 800 | goto out; |
| 801 | } |
| 802 | |
| 803 | c->callback = callback; |
| 804 | c->events = events; |
| 805 | c->next = avc_callbacks; |
| 806 | avc_callbacks = c; |
| 807 | out: |
| 808 | return rc; |
| 809 | } |
| 810 | |
| 811 | /** |
| 812 | * avc_update_node - Update an AVC entry |
| 813 | * @event : Updating event |
| 814 | * @perms : Permission mask bits |
| 815 | * @driver: xperm driver information |
| 816 | * @base_perm: the base permission associated with the extended permission |
| 817 | * @xperm: xperm permissions |
| 818 | * @ssid: AVC entry source sid |
| 819 | * @tsid: AVC entry target sid |
| 820 | * @tclass : AVC entry target object class |
| 821 | * @seqno : sequence number when decision was made |
| 822 | * @xpd: extended_perms_decision to be added to the node |
| 823 | * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0. |
| 824 | * |
| 825 | * if a valid AVC entry doesn't exist,this function returns -ENOENT. |
| 826 | * if kmalloc() called internal returns NULL, this function returns -ENOMEM. |
| 827 | * otherwise, this function updates the AVC entry. The original AVC-entry object |
| 828 | * will release later by RCU. |
| 829 | */ |
| 830 | static int avc_update_node(u32 event, u32 perms, u8 driver, u8 base_perm, |
| 831 | u8 xperm, u32 ssid, u32 tsid, u16 tclass, u32 seqno, |
| 832 | struct extended_perms_decision *xpd, u32 flags) |
| 833 | { |
| 834 | u32 hvalue; |
| 835 | int rc = 0; |
| 836 | unsigned long flag; |
| 837 | struct avc_node *pos, *node, *orig = NULL; |
| 838 | struct hlist_head *head; |
| 839 | spinlock_t *lock; |
| 840 | |
| 841 | node = avc_alloc_node(); |
| 842 | if (!node) { |
| 843 | rc = -ENOMEM; |
| 844 | goto out; |
| 845 | } |
| 846 | |
| 847 | /* Lock the target slot */ |
| 848 | hvalue = avc_hash(ssid, tsid, tclass); |
| 849 | |
| 850 | head = &selinux_avc.avc_cache.slots[hvalue]; |
| 851 | lock = &selinux_avc.avc_cache.slots_lock[hvalue]; |
| 852 | |
| 853 | spin_lock_irqsave(lock, flag); |
| 854 | |
| 855 | hlist_for_each_entry(pos, head, list) { |
| 856 | if (ssid == pos->ae.ssid && |
| 857 | tsid == pos->ae.tsid && |
| 858 | tclass == pos->ae.tclass && |
| 859 | seqno == pos->ae.avd.seqno){ |
| 860 | orig = pos; |
| 861 | break; |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | if (!orig) { |
| 866 | rc = -ENOENT; |
| 867 | avc_node_kill(node); |
| 868 | goto out_unlock; |
| 869 | } |
| 870 | |
| 871 | /* |
| 872 | * Copy and replace original node. |
| 873 | */ |
| 874 | |
| 875 | avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); |
| 876 | |
| 877 | if (orig->ae.xp_node) { |
| 878 | rc = avc_xperms_populate(node, orig->ae.xp_node); |
| 879 | if (rc) { |
| 880 | avc_node_kill(node); |
| 881 | goto out_unlock; |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | switch (event) { |
| 886 | case AVC_CALLBACK_GRANT: |
| 887 | node->ae.avd.allowed |= perms; |
| 888 | if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) |
| 889 | avc_xperms_allow_perm(node->ae.xp_node, driver, base_perm, xperm); |
| 890 | break; |
| 891 | case AVC_CALLBACK_TRY_REVOKE: |
| 892 | case AVC_CALLBACK_REVOKE: |
| 893 | node->ae.avd.allowed &= ~perms; |
| 894 | break; |
| 895 | case AVC_CALLBACK_AUDITALLOW_ENABLE: |
| 896 | node->ae.avd.auditallow |= perms; |
| 897 | break; |
| 898 | case AVC_CALLBACK_AUDITALLOW_DISABLE: |
| 899 | node->ae.avd.auditallow &= ~perms; |
| 900 | break; |
| 901 | case AVC_CALLBACK_AUDITDENY_ENABLE: |
| 902 | node->ae.avd.auditdeny |= perms; |
| 903 | break; |
| 904 | case AVC_CALLBACK_AUDITDENY_DISABLE: |
| 905 | node->ae.avd.auditdeny &= ~perms; |
| 906 | break; |
| 907 | case AVC_CALLBACK_ADD_XPERMS: |
| 908 | rc = avc_add_xperms_decision(node, xpd); |
| 909 | if (rc) { |
| 910 | avc_node_kill(node); |
| 911 | goto out_unlock; |
| 912 | } |
| 913 | break; |
| 914 | } |
| 915 | avc_node_replace(node, orig); |
| 916 | out_unlock: |
| 917 | spin_unlock_irqrestore(lock, flag); |
| 918 | out: |
| 919 | return rc; |
| 920 | } |
| 921 | |
| 922 | /** |
| 923 | * avc_flush - Flush the cache |
| 924 | */ |
| 925 | static void avc_flush(void) |
| 926 | { |
| 927 | struct hlist_head *head; |
| 928 | struct avc_node *node; |
| 929 | spinlock_t *lock; |
| 930 | unsigned long flag; |
| 931 | int i; |
| 932 | |
| 933 | for (i = 0; i < AVC_CACHE_SLOTS; i++) { |
| 934 | head = &selinux_avc.avc_cache.slots[i]; |
| 935 | lock = &selinux_avc.avc_cache.slots_lock[i]; |
| 936 | |
| 937 | spin_lock_irqsave(lock, flag); |
| 938 | /* |
| 939 | * With preemptible RCU, the outer spinlock does not |
| 940 | * prevent RCU grace periods from ending. |
| 941 | */ |
| 942 | rcu_read_lock(); |
| 943 | hlist_for_each_entry(node, head, list) |
| 944 | avc_node_delete(node); |
| 945 | rcu_read_unlock(); |
| 946 | spin_unlock_irqrestore(lock, flag); |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | /** |
| 951 | * avc_ss_reset - Flush the cache and revalidate migrated permissions. |
| 952 | * @seqno: policy sequence number |
| 953 | */ |
| 954 | int avc_ss_reset(u32 seqno) |
| 955 | { |
| 956 | struct avc_callback_node *c; |
| 957 | int rc = 0, tmprc; |
| 958 | |
| 959 | avc_flush(); |
| 960 | |
| 961 | for (c = avc_callbacks; c; c = c->next) { |
| 962 | if (c->events & AVC_CALLBACK_RESET) { |
| 963 | tmprc = c->callback(AVC_CALLBACK_RESET); |
| 964 | /* save the first error encountered for the return |
| 965 | value and continue processing the callbacks */ |
| 966 | if (!rc) |
| 967 | rc = tmprc; |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | avc_latest_notif_update(seqno, 0); |
| 972 | return rc; |
| 973 | } |
| 974 | |
| 975 | /** |
| 976 | * avc_compute_av - Add an entry to the AVC based on the security policy |
| 977 | * @ssid: subject |
| 978 | * @tsid: object/target |
| 979 | * @tclass: object class |
| 980 | * @avd: access vector decision |
| 981 | * @xp_node: AVC extended permissions node |
| 982 | * |
| 983 | * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup |
| 984 | * fails. Don't inline this, since it's the slow-path and just results in a |
| 985 | * bigger stack frame. |
| 986 | */ |
| 987 | static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass, |
| 988 | struct av_decision *avd, |
| 989 | struct avc_xperms_node *xp_node) |
| 990 | { |
| 991 | INIT_LIST_HEAD(&xp_node->xpd_head); |
| 992 | security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp); |
| 993 | avc_insert(ssid, tsid, tclass, avd, xp_node); |
| 994 | } |
| 995 | |
| 996 | static noinline int avc_denied(u32 ssid, u32 tsid, u16 tclass, u32 requested, |
| 997 | u8 driver, u8 base_perm, u8 xperm, |
| 998 | unsigned int flags, struct av_decision *avd) |
| 999 | { |
| 1000 | if (flags & AVC_STRICT) |
| 1001 | return -EACCES; |
| 1002 | |
| 1003 | if (enforcing_enabled() && |
| 1004 | !(avd->flags & AVD_FLAGS_PERMISSIVE)) |
| 1005 | return -EACCES; |
| 1006 | |
| 1007 | avc_update_node(AVC_CALLBACK_GRANT, requested, driver, base_perm, |
| 1008 | xperm, ssid, tsid, tclass, avd->seqno, NULL, flags); |
| 1009 | return 0; |
| 1010 | } |
| 1011 | |
| 1012 | /* |
| 1013 | * The avc extended permissions logic adds an additional 256 bits of |
| 1014 | * permissions to an avc node when extended permissions for that node are |
| 1015 | * specified in the avtab. If the additional 256 permissions is not adequate, |
| 1016 | * as-is the case with ioctls, then multiple may be chained together and the |
| 1017 | * driver field is used to specify which set contains the permission. |
| 1018 | */ |
| 1019 | int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested, |
| 1020 | u8 driver, u8 base_perm, u8 xperm, |
| 1021 | struct common_audit_data *ad) |
| 1022 | { |
| 1023 | struct avc_node *node; |
| 1024 | struct av_decision avd; |
| 1025 | u32 denied; |
| 1026 | struct extended_perms_decision local_xpd; |
| 1027 | struct extended_perms_decision *xpd = NULL; |
| 1028 | struct extended_perms_data allowed; |
| 1029 | struct extended_perms_data auditallow; |
| 1030 | struct extended_perms_data dontaudit; |
| 1031 | struct avc_xperms_node local_xp_node; |
| 1032 | struct avc_xperms_node *xp_node; |
| 1033 | int rc = 0, rc2; |
| 1034 | |
| 1035 | xp_node = &local_xp_node; |
| 1036 | if (WARN_ON(!requested)) |
| 1037 | return -EACCES; |
| 1038 | |
| 1039 | rcu_read_lock(); |
| 1040 | |
| 1041 | node = avc_lookup(ssid, tsid, tclass); |
| 1042 | if (unlikely(!node)) { |
| 1043 | avc_compute_av(ssid, tsid, tclass, &avd, xp_node); |
| 1044 | } else { |
| 1045 | memcpy(&avd, &node->ae.avd, sizeof(avd)); |
| 1046 | xp_node = node->ae.xp_node; |
| 1047 | } |
| 1048 | /* if extended permissions are not defined, only consider av_decision */ |
| 1049 | if (!xp_node || !xp_node->xp.len) |
| 1050 | goto decision; |
| 1051 | |
| 1052 | local_xpd.allowed = &allowed; |
| 1053 | local_xpd.auditallow = &auditallow; |
| 1054 | local_xpd.dontaudit = &dontaudit; |
| 1055 | |
| 1056 | xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node); |
| 1057 | if (unlikely(!xpd)) { |
| 1058 | /* |
| 1059 | * Compute the extended_perms_decision only if the driver |
| 1060 | * is flagged and the base permission is known. |
| 1061 | */ |
| 1062 | if (!security_xperm_test(xp_node->xp.drivers.p, driver) || |
| 1063 | !(xp_node->xp.base_perms & base_perm)) { |
| 1064 | avd.allowed &= ~requested; |
| 1065 | goto decision; |
| 1066 | } |
| 1067 | rcu_read_unlock(); |
| 1068 | security_compute_xperms_decision(ssid, tsid, tclass, driver, |
| 1069 | base_perm, &local_xpd); |
| 1070 | rcu_read_lock(); |
| 1071 | avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, |
| 1072 | base_perm, xperm, ssid, tsid, tclass, avd.seqno, |
| 1073 | &local_xpd, 0); |
| 1074 | } else { |
| 1075 | avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); |
| 1076 | } |
| 1077 | xpd = &local_xpd; |
| 1078 | |
| 1079 | if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) |
| 1080 | avd.allowed &= ~requested; |
| 1081 | |
| 1082 | decision: |
| 1083 | denied = requested & ~(avd.allowed); |
| 1084 | if (unlikely(denied)) |
| 1085 | rc = avc_denied(ssid, tsid, tclass, requested, driver, |
| 1086 | base_perm, xperm, AVC_EXTENDED_PERMS, &avd); |
| 1087 | |
| 1088 | rcu_read_unlock(); |
| 1089 | |
| 1090 | rc2 = avc_xperms_audit(ssid, tsid, tclass, requested, |
| 1091 | &avd, xpd, xperm, rc, ad); |
| 1092 | if (rc2) |
| 1093 | return rc2; |
| 1094 | return rc; |
| 1095 | } |
| 1096 | |
| 1097 | /** |
| 1098 | * avc_perm_nonode - Add an entry to the AVC |
| 1099 | * @ssid: subject |
| 1100 | * @tsid: object/target |
| 1101 | * @tclass: object class |
| 1102 | * @requested: requested permissions |
| 1103 | * @flags: AVC flags |
| 1104 | * @avd: access vector decision |
| 1105 | * |
| 1106 | * This is the "we have no node" part of avc_has_perm_noaudit(), which is |
| 1107 | * unlikely and needs extra stack space for the new node that we generate, so |
| 1108 | * don't inline it. |
| 1109 | */ |
| 1110 | static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass, |
| 1111 | u32 requested, unsigned int flags, |
| 1112 | struct av_decision *avd) |
| 1113 | { |
| 1114 | u32 denied; |
| 1115 | struct avc_xperms_node xp_node; |
| 1116 | |
| 1117 | avc_compute_av(ssid, tsid, tclass, avd, &xp_node); |
| 1118 | denied = requested & ~(avd->allowed); |
| 1119 | if (unlikely(denied)) |
| 1120 | return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0, |
| 1121 | flags, avd); |
| 1122 | return 0; |
| 1123 | } |
| 1124 | |
| 1125 | /** |
| 1126 | * avc_has_perm_noaudit - Check permissions but perform no auditing. |
| 1127 | * @ssid: source security identifier |
| 1128 | * @tsid: target security identifier |
| 1129 | * @tclass: target security class |
| 1130 | * @requested: requested permissions, interpreted based on @tclass |
| 1131 | * @flags: AVC_STRICT or 0 |
| 1132 | * @avd: access vector decisions |
| 1133 | * |
| 1134 | * Check the AVC to determine whether the @requested permissions are granted |
| 1135 | * for the SID pair (@ssid, @tsid), interpreting the permissions |
| 1136 | * based on @tclass, and call the security server on a cache miss to obtain |
| 1137 | * a new decision and add it to the cache. Return a copy of the decisions |
| 1138 | * in @avd. Return %0 if all @requested permissions are granted, |
| 1139 | * -%EACCES if any permissions are denied, or another -errno upon |
| 1140 | * other errors. This function is typically called by avc_has_perm(), |
| 1141 | * but may also be called directly to separate permission checking from |
| 1142 | * auditing, e.g. in cases where a lock must be held for the check but |
| 1143 | * should be released for the auditing. |
| 1144 | */ |
| 1145 | inline int avc_has_perm_noaudit(u32 ssid, u32 tsid, |
| 1146 | u16 tclass, u32 requested, |
| 1147 | unsigned int flags, |
| 1148 | struct av_decision *avd) |
| 1149 | { |
| 1150 | u32 denied; |
| 1151 | struct avc_node *node; |
| 1152 | |
| 1153 | if (WARN_ON(!requested)) |
| 1154 | return -EACCES; |
| 1155 | |
| 1156 | rcu_read_lock(); |
| 1157 | node = avc_lookup(ssid, tsid, tclass); |
| 1158 | if (unlikely(!node)) { |
| 1159 | rcu_read_unlock(); |
| 1160 | return avc_perm_nonode(ssid, tsid, tclass, requested, |
| 1161 | flags, avd); |
| 1162 | } |
| 1163 | denied = requested & ~node->ae.avd.allowed; |
| 1164 | memcpy(avd, &node->ae.avd, sizeof(*avd)); |
| 1165 | rcu_read_unlock(); |
| 1166 | |
| 1167 | if (unlikely(denied)) |
| 1168 | return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0, |
| 1169 | flags, avd); |
| 1170 | return 0; |
| 1171 | } |
| 1172 | |
| 1173 | /** |
| 1174 | * avc_has_perm - Check permissions and perform any appropriate auditing. |
| 1175 | * @ssid: source security identifier |
| 1176 | * @tsid: target security identifier |
| 1177 | * @tclass: target security class |
| 1178 | * @requested: requested permissions, interpreted based on @tclass |
| 1179 | * @auditdata: auxiliary audit data |
| 1180 | * |
| 1181 | * Check the AVC to determine whether the @requested permissions are granted |
| 1182 | * for the SID pair (@ssid, @tsid), interpreting the permissions |
| 1183 | * based on @tclass, and call the security server on a cache miss to obtain |
| 1184 | * a new decision and add it to the cache. Audit the granting or denial of |
| 1185 | * permissions in accordance with the policy. Return %0 if all @requested |
| 1186 | * permissions are granted, -%EACCES if any permissions are denied, or |
| 1187 | * another -errno upon other errors. |
| 1188 | */ |
| 1189 | int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, |
| 1190 | u32 requested, struct common_audit_data *auditdata) |
| 1191 | { |
| 1192 | struct av_decision avd; |
| 1193 | int rc, rc2; |
| 1194 | |
| 1195 | rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, |
| 1196 | &avd); |
| 1197 | |
| 1198 | rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, |
| 1199 | auditdata); |
| 1200 | if (rc2) |
| 1201 | return rc2; |
| 1202 | return rc; |
| 1203 | } |
| 1204 | |
| 1205 | u32 avc_policy_seqno(void) |
| 1206 | { |
| 1207 | return selinux_avc.avc_cache.latest_notif; |
| 1208 | } |