cfg80211: update missing fields in custom regulatory path
[linux-block.git] / net / wireless / reg.c
... / ...
CommitLineData
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22/**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48#include <linux/kernel.h>
49#include <linux/export.h>
50#include <linux/slab.h>
51#include <linux/list.h>
52#include <linux/ctype.h>
53#include <linux/nl80211.h>
54#include <linux/platform_device.h>
55#include <linux/moduleparam.h>
56#include <net/cfg80211.h>
57#include "core.h"
58#include "reg.h"
59#include "regdb.h"
60#include "nl80211.h"
61
62#ifdef CONFIG_CFG80211_REG_DEBUG
63#define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65#else
66#define REG_DBG_PRINT(args...)
67#endif
68
69/**
70 * enum reg_request_treatment - regulatory request treatment
71 *
72 * @REG_REQ_OK: continue processing the regulatory request
73 * @REG_REQ_IGNORE: ignore the regulatory request
74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75 * be intersected with the current one.
76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77 * regulatory settings, and no further processing is required.
78 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
79 * further processing is required, i.e., not need to update last_request
80 * etc. This should be used for user hints that do not provide an alpha2
81 * but some other type of regulatory hint, i.e., indoor operation.
82 */
83enum reg_request_treatment {
84 REG_REQ_OK,
85 REG_REQ_IGNORE,
86 REG_REQ_INTERSECT,
87 REG_REQ_ALREADY_SET,
88 REG_REQ_USER_HINT_HANDLED,
89};
90
91static struct regulatory_request core_request_world = {
92 .initiator = NL80211_REGDOM_SET_BY_CORE,
93 .alpha2[0] = '0',
94 .alpha2[1] = '0',
95 .intersect = false,
96 .processed = true,
97 .country_ie_env = ENVIRON_ANY,
98};
99
100/*
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
103 */
104static struct regulatory_request __rcu *last_request =
105 (void __rcu *)&core_request_world;
106
107/* To trigger userspace events */
108static struct platform_device *reg_pdev;
109
110/*
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
115 */
116const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118/*
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
122 */
123static int reg_num_devs_support_basehint;
124
125/*
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
129 * (protected by RTNL)
130 */
131static bool reg_is_indoor;
132
133static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134{
135 return rtnl_dereference(cfg80211_regdomain);
136}
137
138static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139{
140 return rtnl_dereference(wiphy->regd);
141}
142
143static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144{
145 switch (dfs_region) {
146 case NL80211_DFS_UNSET:
147 return "unset";
148 case NL80211_DFS_FCC:
149 return "FCC";
150 case NL80211_DFS_ETSI:
151 return "ETSI";
152 case NL80211_DFS_JP:
153 return "JP";
154 }
155 return "Unknown";
156}
157
158enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159{
160 const struct ieee80211_regdomain *regd = NULL;
161 const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163 regd = get_cfg80211_regdom();
164 if (!wiphy)
165 goto out;
166
167 wiphy_regd = get_wiphy_regdom(wiphy);
168 if (!wiphy_regd)
169 goto out;
170
171 if (wiphy_regd->dfs_region == regd->dfs_region)
172 goto out;
173
174 REG_DBG_PRINT("%s: device specific dfs_region "
175 "(%s) disagrees with cfg80211's "
176 "central dfs_region (%s)\n",
177 dev_name(&wiphy->dev),
178 reg_dfs_region_str(wiphy_regd->dfs_region),
179 reg_dfs_region_str(regd->dfs_region));
180
181out:
182 return regd->dfs_region;
183}
184
185static void rcu_free_regdom(const struct ieee80211_regdomain *r)
186{
187 if (!r)
188 return;
189 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
190}
191
192static struct regulatory_request *get_last_request(void)
193{
194 return rcu_dereference_rtnl(last_request);
195}
196
197/* Used to queue up regulatory hints */
198static LIST_HEAD(reg_requests_list);
199static spinlock_t reg_requests_lock;
200
201/* Used to queue up beacon hints for review */
202static LIST_HEAD(reg_pending_beacons);
203static spinlock_t reg_pending_beacons_lock;
204
205/* Used to keep track of processed beacon hints */
206static LIST_HEAD(reg_beacon_list);
207
208struct reg_beacon {
209 struct list_head list;
210 struct ieee80211_channel chan;
211};
212
213static void reg_todo(struct work_struct *work);
214static DECLARE_WORK(reg_work, reg_todo);
215
216static void reg_timeout_work(struct work_struct *work);
217static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
218
219/* We keep a static world regulatory domain in case of the absence of CRDA */
220static const struct ieee80211_regdomain world_regdom = {
221 .n_reg_rules = 6,
222 .alpha2 = "00",
223 .reg_rules = {
224 /* IEEE 802.11b/g, channels 1..11 */
225 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
226 /* IEEE 802.11b/g, channels 12..13. */
227 REG_RULE(2467-10, 2472+10, 40, 6, 20,
228 NL80211_RRF_NO_IR),
229 /* IEEE 802.11 channel 14 - Only JP enables
230 * this and for 802.11b only */
231 REG_RULE(2484-10, 2484+10, 20, 6, 20,
232 NL80211_RRF_NO_IR |
233 NL80211_RRF_NO_OFDM),
234 /* IEEE 802.11a, channel 36..48 */
235 REG_RULE(5180-10, 5240+10, 160, 6, 20,
236 NL80211_RRF_NO_IR),
237
238 /* IEEE 802.11a, channel 52..64 - DFS required */
239 REG_RULE(5260-10, 5320+10, 160, 6, 20,
240 NL80211_RRF_NO_IR |
241 NL80211_RRF_DFS),
242
243 /* IEEE 802.11a, channel 100..144 - DFS required */
244 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_DFS),
247
248 /* IEEE 802.11a, channel 149..165 */
249 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250 NL80211_RRF_NO_IR),
251
252 /* IEEE 802.11ad (60gHz), channels 1..3 */
253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254 }
255};
256
257/* protected by RTNL */
258static const struct ieee80211_regdomain *cfg80211_world_regdom =
259 &world_regdom;
260
261static char *ieee80211_regdom = "00";
262static char user_alpha2[2];
263
264module_param(ieee80211_regdom, charp, 0444);
265MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266
267static void reg_free_request(struct regulatory_request *request)
268{
269 if (request != get_last_request())
270 kfree(request);
271}
272
273static void reg_free_last_request(void)
274{
275 struct regulatory_request *lr = get_last_request();
276
277 if (lr != &core_request_world && lr)
278 kfree_rcu(lr, rcu_head);
279}
280
281static void reg_update_last_request(struct regulatory_request *request)
282{
283 struct regulatory_request *lr;
284
285 lr = get_last_request();
286 if (lr == request)
287 return;
288
289 reg_free_last_request();
290 rcu_assign_pointer(last_request, request);
291}
292
293static void reset_regdomains(bool full_reset,
294 const struct ieee80211_regdomain *new_regdom)
295{
296 const struct ieee80211_regdomain *r;
297
298 ASSERT_RTNL();
299
300 r = get_cfg80211_regdom();
301
302 /* avoid freeing static information or freeing something twice */
303 if (r == cfg80211_world_regdom)
304 r = NULL;
305 if (cfg80211_world_regdom == &world_regdom)
306 cfg80211_world_regdom = NULL;
307 if (r == &world_regdom)
308 r = NULL;
309
310 rcu_free_regdom(r);
311 rcu_free_regdom(cfg80211_world_regdom);
312
313 cfg80211_world_regdom = &world_regdom;
314 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
315
316 if (!full_reset)
317 return;
318
319 reg_update_last_request(&core_request_world);
320}
321
322/*
323 * Dynamic world regulatory domain requested by the wireless
324 * core upon initialization
325 */
326static void update_world_regdomain(const struct ieee80211_regdomain *rd)
327{
328 struct regulatory_request *lr;
329
330 lr = get_last_request();
331
332 WARN_ON(!lr);
333
334 reset_regdomains(false, rd);
335
336 cfg80211_world_regdom = rd;
337}
338
339bool is_world_regdom(const char *alpha2)
340{
341 if (!alpha2)
342 return false;
343 return alpha2[0] == '0' && alpha2[1] == '0';
344}
345
346static bool is_alpha2_set(const char *alpha2)
347{
348 if (!alpha2)
349 return false;
350 return alpha2[0] && alpha2[1];
351}
352
353static bool is_unknown_alpha2(const char *alpha2)
354{
355 if (!alpha2)
356 return false;
357 /*
358 * Special case where regulatory domain was built by driver
359 * but a specific alpha2 cannot be determined
360 */
361 return alpha2[0] == '9' && alpha2[1] == '9';
362}
363
364static bool is_intersected_alpha2(const char *alpha2)
365{
366 if (!alpha2)
367 return false;
368 /*
369 * Special case where regulatory domain is the
370 * result of an intersection between two regulatory domain
371 * structures
372 */
373 return alpha2[0] == '9' && alpha2[1] == '8';
374}
375
376static bool is_an_alpha2(const char *alpha2)
377{
378 if (!alpha2)
379 return false;
380 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
381}
382
383static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
384{
385 if (!alpha2_x || !alpha2_y)
386 return false;
387 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
388}
389
390static bool regdom_changes(const char *alpha2)
391{
392 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
393
394 if (!r)
395 return true;
396 return !alpha2_equal(r->alpha2, alpha2);
397}
398
399/*
400 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
401 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
402 * has ever been issued.
403 */
404static bool is_user_regdom_saved(void)
405{
406 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
407 return false;
408
409 /* This would indicate a mistake on the design */
410 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
411 "Unexpected user alpha2: %c%c\n",
412 user_alpha2[0], user_alpha2[1]))
413 return false;
414
415 return true;
416}
417
418static const struct ieee80211_regdomain *
419reg_copy_regd(const struct ieee80211_regdomain *src_regd)
420{
421 struct ieee80211_regdomain *regd;
422 int size_of_regd;
423 unsigned int i;
424
425 size_of_regd =
426 sizeof(struct ieee80211_regdomain) +
427 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
428
429 regd = kzalloc(size_of_regd, GFP_KERNEL);
430 if (!regd)
431 return ERR_PTR(-ENOMEM);
432
433 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
434
435 for (i = 0; i < src_regd->n_reg_rules; i++)
436 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
437 sizeof(struct ieee80211_reg_rule));
438
439 return regd;
440}
441
442#ifdef CONFIG_CFG80211_INTERNAL_REGDB
443struct reg_regdb_search_request {
444 char alpha2[2];
445 struct list_head list;
446};
447
448static LIST_HEAD(reg_regdb_search_list);
449static DEFINE_MUTEX(reg_regdb_search_mutex);
450
451static void reg_regdb_search(struct work_struct *work)
452{
453 struct reg_regdb_search_request *request;
454 const struct ieee80211_regdomain *curdom, *regdom = NULL;
455 int i;
456
457 rtnl_lock();
458
459 mutex_lock(&reg_regdb_search_mutex);
460 while (!list_empty(&reg_regdb_search_list)) {
461 request = list_first_entry(&reg_regdb_search_list,
462 struct reg_regdb_search_request,
463 list);
464 list_del(&request->list);
465
466 for (i = 0; i < reg_regdb_size; i++) {
467 curdom = reg_regdb[i];
468
469 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
470 regdom = reg_copy_regd(curdom);
471 break;
472 }
473 }
474
475 kfree(request);
476 }
477 mutex_unlock(&reg_regdb_search_mutex);
478
479 if (!IS_ERR_OR_NULL(regdom))
480 set_regdom(regdom);
481
482 rtnl_unlock();
483}
484
485static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
486
487static void reg_regdb_query(const char *alpha2)
488{
489 struct reg_regdb_search_request *request;
490
491 if (!alpha2)
492 return;
493
494 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
495 if (!request)
496 return;
497
498 memcpy(request->alpha2, alpha2, 2);
499
500 mutex_lock(&reg_regdb_search_mutex);
501 list_add_tail(&request->list, &reg_regdb_search_list);
502 mutex_unlock(&reg_regdb_search_mutex);
503
504 schedule_work(&reg_regdb_work);
505}
506
507/* Feel free to add any other sanity checks here */
508static void reg_regdb_size_check(void)
509{
510 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
511 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
512}
513#else
514static inline void reg_regdb_size_check(void) {}
515static inline void reg_regdb_query(const char *alpha2) {}
516#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
517
518/*
519 * This lets us keep regulatory code which is updated on a regulatory
520 * basis in userspace.
521 */
522static int call_crda(const char *alpha2)
523{
524 char country[12];
525 char *env[] = { country, NULL };
526
527 snprintf(country, sizeof(country), "COUNTRY=%c%c",
528 alpha2[0], alpha2[1]);
529
530 if (!is_world_regdom((char *) alpha2))
531 pr_info("Calling CRDA for country: %c%c\n",
532 alpha2[0], alpha2[1]);
533 else
534 pr_info("Calling CRDA to update world regulatory domain\n");
535
536 /* query internal regulatory database (if it exists) */
537 reg_regdb_query(alpha2);
538
539 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
540}
541
542static enum reg_request_treatment
543reg_call_crda(struct regulatory_request *request)
544{
545 if (call_crda(request->alpha2))
546 return REG_REQ_IGNORE;
547 return REG_REQ_OK;
548}
549
550bool reg_is_valid_request(const char *alpha2)
551{
552 struct regulatory_request *lr = get_last_request();
553
554 if (!lr || lr->processed)
555 return false;
556
557 return alpha2_equal(lr->alpha2, alpha2);
558}
559
560static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
561{
562 struct regulatory_request *lr = get_last_request();
563
564 /*
565 * Follow the driver's regulatory domain, if present, unless a country
566 * IE has been processed or a user wants to help complaince further
567 */
568 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
569 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
570 wiphy->regd)
571 return get_wiphy_regdom(wiphy);
572
573 return get_cfg80211_regdom();
574}
575
576static unsigned int
577reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
578 const struct ieee80211_reg_rule *rule)
579{
580 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
581 const struct ieee80211_freq_range *freq_range_tmp;
582 const struct ieee80211_reg_rule *tmp;
583 u32 start_freq, end_freq, idx, no;
584
585 for (idx = 0; idx < rd->n_reg_rules; idx++)
586 if (rule == &rd->reg_rules[idx])
587 break;
588
589 if (idx == rd->n_reg_rules)
590 return 0;
591
592 /* get start_freq */
593 no = idx;
594
595 while (no) {
596 tmp = &rd->reg_rules[--no];
597 freq_range_tmp = &tmp->freq_range;
598
599 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
600 break;
601
602 freq_range = freq_range_tmp;
603 }
604
605 start_freq = freq_range->start_freq_khz;
606
607 /* get end_freq */
608 freq_range = &rule->freq_range;
609 no = idx;
610
611 while (no < rd->n_reg_rules - 1) {
612 tmp = &rd->reg_rules[++no];
613 freq_range_tmp = &tmp->freq_range;
614
615 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
616 break;
617
618 freq_range = freq_range_tmp;
619 }
620
621 end_freq = freq_range->end_freq_khz;
622
623 return end_freq - start_freq;
624}
625
626unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
627 const struct ieee80211_reg_rule *rule)
628{
629 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
630
631 if (rule->flags & NL80211_RRF_NO_160MHZ)
632 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
633 if (rule->flags & NL80211_RRF_NO_80MHZ)
634 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
635
636 /*
637 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
638 * are not allowed.
639 */
640 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
641 rule->flags & NL80211_RRF_NO_HT40PLUS)
642 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
643
644 return bw;
645}
646
647/* Sanity check on a regulatory rule */
648static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
649{
650 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
651 u32 freq_diff;
652
653 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
654 return false;
655
656 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
657 return false;
658
659 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
660
661 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
662 freq_range->max_bandwidth_khz > freq_diff)
663 return false;
664
665 return true;
666}
667
668static bool is_valid_rd(const struct ieee80211_regdomain *rd)
669{
670 const struct ieee80211_reg_rule *reg_rule = NULL;
671 unsigned int i;
672
673 if (!rd->n_reg_rules)
674 return false;
675
676 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
677 return false;
678
679 for (i = 0; i < rd->n_reg_rules; i++) {
680 reg_rule = &rd->reg_rules[i];
681 if (!is_valid_reg_rule(reg_rule))
682 return false;
683 }
684
685 return true;
686}
687
688static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
689 u32 center_freq_khz, u32 bw_khz)
690{
691 u32 start_freq_khz, end_freq_khz;
692
693 start_freq_khz = center_freq_khz - (bw_khz/2);
694 end_freq_khz = center_freq_khz + (bw_khz/2);
695
696 if (start_freq_khz >= freq_range->start_freq_khz &&
697 end_freq_khz <= freq_range->end_freq_khz)
698 return true;
699
700 return false;
701}
702
703/**
704 * freq_in_rule_band - tells us if a frequency is in a frequency band
705 * @freq_range: frequency rule we want to query
706 * @freq_khz: frequency we are inquiring about
707 *
708 * This lets us know if a specific frequency rule is or is not relevant to
709 * a specific frequency's band. Bands are device specific and artificial
710 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
711 * however it is safe for now to assume that a frequency rule should not be
712 * part of a frequency's band if the start freq or end freq are off by more
713 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
714 * 60 GHz band.
715 * This resolution can be lowered and should be considered as we add
716 * regulatory rule support for other "bands".
717 **/
718static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
719 u32 freq_khz)
720{
721#define ONE_GHZ_IN_KHZ 1000000
722 /*
723 * From 802.11ad: directional multi-gigabit (DMG):
724 * Pertaining to operation in a frequency band containing a channel
725 * with the Channel starting frequency above 45 GHz.
726 */
727 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
728 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
729 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
730 return true;
731 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
732 return true;
733 return false;
734#undef ONE_GHZ_IN_KHZ
735}
736
737/*
738 * Later on we can perhaps use the more restrictive DFS
739 * region but we don't have information for that yet so
740 * for now simply disallow conflicts.
741 */
742static enum nl80211_dfs_regions
743reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
744 const enum nl80211_dfs_regions dfs_region2)
745{
746 if (dfs_region1 != dfs_region2)
747 return NL80211_DFS_UNSET;
748 return dfs_region1;
749}
750
751/*
752 * Helper for regdom_intersect(), this does the real
753 * mathematical intersection fun
754 */
755static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
756 const struct ieee80211_regdomain *rd2,
757 const struct ieee80211_reg_rule *rule1,
758 const struct ieee80211_reg_rule *rule2,
759 struct ieee80211_reg_rule *intersected_rule)
760{
761 const struct ieee80211_freq_range *freq_range1, *freq_range2;
762 struct ieee80211_freq_range *freq_range;
763 const struct ieee80211_power_rule *power_rule1, *power_rule2;
764 struct ieee80211_power_rule *power_rule;
765 u32 freq_diff, max_bandwidth1, max_bandwidth2;
766
767 freq_range1 = &rule1->freq_range;
768 freq_range2 = &rule2->freq_range;
769 freq_range = &intersected_rule->freq_range;
770
771 power_rule1 = &rule1->power_rule;
772 power_rule2 = &rule2->power_rule;
773 power_rule = &intersected_rule->power_rule;
774
775 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
776 freq_range2->start_freq_khz);
777 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
778 freq_range2->end_freq_khz);
779
780 max_bandwidth1 = freq_range1->max_bandwidth_khz;
781 max_bandwidth2 = freq_range2->max_bandwidth_khz;
782
783 if (rule1->flags & NL80211_RRF_AUTO_BW)
784 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
785 if (rule2->flags & NL80211_RRF_AUTO_BW)
786 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
787
788 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
789
790 intersected_rule->flags = rule1->flags | rule2->flags;
791
792 /*
793 * In case NL80211_RRF_AUTO_BW requested for both rules
794 * set AUTO_BW in intersected rule also. Next we will
795 * calculate BW correctly in handle_channel function.
796 * In other case remove AUTO_BW flag while we calculate
797 * maximum bandwidth correctly and auto calculation is
798 * not required.
799 */
800 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
801 (rule2->flags & NL80211_RRF_AUTO_BW))
802 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
803 else
804 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
805
806 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
807 if (freq_range->max_bandwidth_khz > freq_diff)
808 freq_range->max_bandwidth_khz = freq_diff;
809
810 power_rule->max_eirp = min(power_rule1->max_eirp,
811 power_rule2->max_eirp);
812 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
813 power_rule2->max_antenna_gain);
814
815 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
816 rule2->dfs_cac_ms);
817
818 if (!is_valid_reg_rule(intersected_rule))
819 return -EINVAL;
820
821 return 0;
822}
823
824/* check whether old rule contains new rule */
825static bool rule_contains(struct ieee80211_reg_rule *r1,
826 struct ieee80211_reg_rule *r2)
827{
828 /* for simplicity, currently consider only same flags */
829 if (r1->flags != r2->flags)
830 return false;
831
832 /* verify r1 is more restrictive */
833 if ((r1->power_rule.max_antenna_gain >
834 r2->power_rule.max_antenna_gain) ||
835 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
836 return false;
837
838 /* make sure r2's range is contained within r1 */
839 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
840 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
841 return false;
842
843 /* and finally verify that r1.max_bw >= r2.max_bw */
844 if (r1->freq_range.max_bandwidth_khz <
845 r2->freq_range.max_bandwidth_khz)
846 return false;
847
848 return true;
849}
850
851/* add or extend current rules. do nothing if rule is already contained */
852static void add_rule(struct ieee80211_reg_rule *rule,
853 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
854{
855 struct ieee80211_reg_rule *tmp_rule;
856 int i;
857
858 for (i = 0; i < *n_rules; i++) {
859 tmp_rule = &reg_rules[i];
860 /* rule is already contained - do nothing */
861 if (rule_contains(tmp_rule, rule))
862 return;
863
864 /* extend rule if possible */
865 if (rule_contains(rule, tmp_rule)) {
866 memcpy(tmp_rule, rule, sizeof(*rule));
867 return;
868 }
869 }
870
871 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
872 (*n_rules)++;
873}
874
875/**
876 * regdom_intersect - do the intersection between two regulatory domains
877 * @rd1: first regulatory domain
878 * @rd2: second regulatory domain
879 *
880 * Use this function to get the intersection between two regulatory domains.
881 * Once completed we will mark the alpha2 for the rd as intersected, "98",
882 * as no one single alpha2 can represent this regulatory domain.
883 *
884 * Returns a pointer to the regulatory domain structure which will hold the
885 * resulting intersection of rules between rd1 and rd2. We will
886 * kzalloc() this structure for you.
887 */
888static struct ieee80211_regdomain *
889regdom_intersect(const struct ieee80211_regdomain *rd1,
890 const struct ieee80211_regdomain *rd2)
891{
892 int r, size_of_regd;
893 unsigned int x, y;
894 unsigned int num_rules = 0;
895 const struct ieee80211_reg_rule *rule1, *rule2;
896 struct ieee80211_reg_rule intersected_rule;
897 struct ieee80211_regdomain *rd;
898
899 if (!rd1 || !rd2)
900 return NULL;
901
902 /*
903 * First we get a count of the rules we'll need, then we actually
904 * build them. This is to so we can malloc() and free() a
905 * regdomain once. The reason we use reg_rules_intersect() here
906 * is it will return -EINVAL if the rule computed makes no sense.
907 * All rules that do check out OK are valid.
908 */
909
910 for (x = 0; x < rd1->n_reg_rules; x++) {
911 rule1 = &rd1->reg_rules[x];
912 for (y = 0; y < rd2->n_reg_rules; y++) {
913 rule2 = &rd2->reg_rules[y];
914 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
915 &intersected_rule))
916 num_rules++;
917 }
918 }
919
920 if (!num_rules)
921 return NULL;
922
923 size_of_regd = sizeof(struct ieee80211_regdomain) +
924 num_rules * sizeof(struct ieee80211_reg_rule);
925
926 rd = kzalloc(size_of_regd, GFP_KERNEL);
927 if (!rd)
928 return NULL;
929
930 for (x = 0; x < rd1->n_reg_rules; x++) {
931 rule1 = &rd1->reg_rules[x];
932 for (y = 0; y < rd2->n_reg_rules; y++) {
933 rule2 = &rd2->reg_rules[y];
934 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
935 &intersected_rule);
936 /*
937 * No need to memset here the intersected rule here as
938 * we're not using the stack anymore
939 */
940 if (r)
941 continue;
942
943 add_rule(&intersected_rule, rd->reg_rules,
944 &rd->n_reg_rules);
945 }
946 }
947
948 rd->alpha2[0] = '9';
949 rd->alpha2[1] = '8';
950 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
951 rd2->dfs_region);
952
953 return rd;
954}
955
956/*
957 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
958 * want to just have the channel structure use these
959 */
960static u32 map_regdom_flags(u32 rd_flags)
961{
962 u32 channel_flags = 0;
963 if (rd_flags & NL80211_RRF_NO_IR_ALL)
964 channel_flags |= IEEE80211_CHAN_NO_IR;
965 if (rd_flags & NL80211_RRF_DFS)
966 channel_flags |= IEEE80211_CHAN_RADAR;
967 if (rd_flags & NL80211_RRF_NO_OFDM)
968 channel_flags |= IEEE80211_CHAN_NO_OFDM;
969 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
970 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
971 if (rd_flags & NL80211_RRF_GO_CONCURRENT)
972 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
973 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
974 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
975 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
976 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
977 if (rd_flags & NL80211_RRF_NO_80MHZ)
978 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
979 if (rd_flags & NL80211_RRF_NO_160MHZ)
980 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
981 return channel_flags;
982}
983
984static const struct ieee80211_reg_rule *
985freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
986 const struct ieee80211_regdomain *regd)
987{
988 int i;
989 bool band_rule_found = false;
990 bool bw_fits = false;
991
992 if (!regd)
993 return ERR_PTR(-EINVAL);
994
995 for (i = 0; i < regd->n_reg_rules; i++) {
996 const struct ieee80211_reg_rule *rr;
997 const struct ieee80211_freq_range *fr = NULL;
998
999 rr = &regd->reg_rules[i];
1000 fr = &rr->freq_range;
1001
1002 /*
1003 * We only need to know if one frequency rule was
1004 * was in center_freq's band, that's enough, so lets
1005 * not overwrite it once found
1006 */
1007 if (!band_rule_found)
1008 band_rule_found = freq_in_rule_band(fr, center_freq);
1009
1010 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1011
1012 if (band_rule_found && bw_fits)
1013 return rr;
1014 }
1015
1016 if (!band_rule_found)
1017 return ERR_PTR(-ERANGE);
1018
1019 return ERR_PTR(-EINVAL);
1020}
1021
1022const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1023 u32 center_freq)
1024{
1025 const struct ieee80211_regdomain *regd;
1026
1027 regd = reg_get_regdomain(wiphy);
1028
1029 return freq_reg_info_regd(wiphy, center_freq, regd);
1030}
1031EXPORT_SYMBOL(freq_reg_info);
1032
1033const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1034{
1035 switch (initiator) {
1036 case NL80211_REGDOM_SET_BY_CORE:
1037 return "core";
1038 case NL80211_REGDOM_SET_BY_USER:
1039 return "user";
1040 case NL80211_REGDOM_SET_BY_DRIVER:
1041 return "driver";
1042 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1043 return "country IE";
1044 default:
1045 WARN_ON(1);
1046 return "bug";
1047 }
1048}
1049EXPORT_SYMBOL(reg_initiator_name);
1050
1051#ifdef CONFIG_CFG80211_REG_DEBUG
1052static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1053 struct ieee80211_channel *chan,
1054 const struct ieee80211_reg_rule *reg_rule)
1055{
1056 const struct ieee80211_power_rule *power_rule;
1057 const struct ieee80211_freq_range *freq_range;
1058 char max_antenna_gain[32], bw[32];
1059
1060 power_rule = &reg_rule->power_rule;
1061 freq_range = &reg_rule->freq_range;
1062
1063 if (!power_rule->max_antenna_gain)
1064 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1065 else
1066 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1067 power_rule->max_antenna_gain);
1068
1069 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1070 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1071 freq_range->max_bandwidth_khz,
1072 reg_get_max_bandwidth(regd, reg_rule));
1073 else
1074 snprintf(bw, sizeof(bw), "%d KHz",
1075 freq_range->max_bandwidth_khz);
1076
1077 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1078 chan->center_freq);
1079
1080 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1081 freq_range->start_freq_khz, freq_range->end_freq_khz,
1082 bw, max_antenna_gain,
1083 power_rule->max_eirp);
1084}
1085#else
1086static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1087 struct ieee80211_channel *chan,
1088 const struct ieee80211_reg_rule *reg_rule)
1089{
1090 return;
1091}
1092#endif
1093
1094/*
1095 * Note that right now we assume the desired channel bandwidth
1096 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1097 * per channel, the primary and the extension channel).
1098 */
1099static void handle_channel(struct wiphy *wiphy,
1100 enum nl80211_reg_initiator initiator,
1101 struct ieee80211_channel *chan)
1102{
1103 u32 flags, bw_flags = 0;
1104 const struct ieee80211_reg_rule *reg_rule = NULL;
1105 const struct ieee80211_power_rule *power_rule = NULL;
1106 const struct ieee80211_freq_range *freq_range = NULL;
1107 struct wiphy *request_wiphy = NULL;
1108 struct regulatory_request *lr = get_last_request();
1109 const struct ieee80211_regdomain *regd;
1110 u32 max_bandwidth_khz;
1111
1112 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1113
1114 flags = chan->orig_flags;
1115
1116 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1117 if (IS_ERR(reg_rule)) {
1118 /*
1119 * We will disable all channels that do not match our
1120 * received regulatory rule unless the hint is coming
1121 * from a Country IE and the Country IE had no information
1122 * about a band. The IEEE 802.11 spec allows for an AP
1123 * to send only a subset of the regulatory rules allowed,
1124 * so an AP in the US that only supports 2.4 GHz may only send
1125 * a country IE with information for the 2.4 GHz band
1126 * while 5 GHz is still supported.
1127 */
1128 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1129 PTR_ERR(reg_rule) == -ERANGE)
1130 return;
1131
1132 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1133 request_wiphy && request_wiphy == wiphy &&
1134 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1135 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1136 chan->center_freq);
1137 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1138 chan->flags = chan->orig_flags;
1139 } else {
1140 REG_DBG_PRINT("Disabling freq %d MHz\n",
1141 chan->center_freq);
1142 chan->flags |= IEEE80211_CHAN_DISABLED;
1143 }
1144 return;
1145 }
1146
1147 regd = reg_get_regdomain(wiphy);
1148 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1149
1150 power_rule = &reg_rule->power_rule;
1151 freq_range = &reg_rule->freq_range;
1152
1153 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1154 /* Check if auto calculation requested */
1155 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1156 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1157
1158 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1159 bw_flags = IEEE80211_CHAN_NO_HT40;
1160 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1161 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1162 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1163 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1164
1165 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1166 request_wiphy && request_wiphy == wiphy &&
1167 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1168 /*
1169 * This guarantees the driver's requested regulatory domain
1170 * will always be used as a base for further regulatory
1171 * settings
1172 */
1173 chan->flags = chan->orig_flags =
1174 map_regdom_flags(reg_rule->flags) | bw_flags;
1175 chan->max_antenna_gain = chan->orig_mag =
1176 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1177 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1178 (int) MBM_TO_DBM(power_rule->max_eirp);
1179
1180 if (chan->flags & IEEE80211_CHAN_RADAR) {
1181 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1182 if (reg_rule->dfs_cac_ms)
1183 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1184 }
1185
1186 return;
1187 }
1188
1189 chan->dfs_state = NL80211_DFS_USABLE;
1190 chan->dfs_state_entered = jiffies;
1191
1192 chan->beacon_found = false;
1193 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1194 chan->max_antenna_gain =
1195 min_t(int, chan->orig_mag,
1196 MBI_TO_DBI(power_rule->max_antenna_gain));
1197 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1198
1199 if (chan->flags & IEEE80211_CHAN_RADAR) {
1200 if (reg_rule->dfs_cac_ms)
1201 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1202 else
1203 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1204 }
1205
1206 if (chan->orig_mpwr) {
1207 /*
1208 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1209 * will always follow the passed country IE power settings.
1210 */
1211 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1212 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1213 chan->max_power = chan->max_reg_power;
1214 else
1215 chan->max_power = min(chan->orig_mpwr,
1216 chan->max_reg_power);
1217 } else
1218 chan->max_power = chan->max_reg_power;
1219}
1220
1221static void handle_band(struct wiphy *wiphy,
1222 enum nl80211_reg_initiator initiator,
1223 struct ieee80211_supported_band *sband)
1224{
1225 unsigned int i;
1226
1227 if (!sband)
1228 return;
1229
1230 for (i = 0; i < sband->n_channels; i++)
1231 handle_channel(wiphy, initiator, &sband->channels[i]);
1232}
1233
1234static bool reg_request_cell_base(struct regulatory_request *request)
1235{
1236 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1237 return false;
1238 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1239}
1240
1241static bool reg_request_indoor(struct regulatory_request *request)
1242{
1243 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1244 return false;
1245 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1246}
1247
1248bool reg_last_request_cell_base(void)
1249{
1250 return reg_request_cell_base(get_last_request());
1251}
1252
1253#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1254/* Core specific check */
1255static enum reg_request_treatment
1256reg_ignore_cell_hint(struct regulatory_request *pending_request)
1257{
1258 struct regulatory_request *lr = get_last_request();
1259
1260 if (!reg_num_devs_support_basehint)
1261 return REG_REQ_IGNORE;
1262
1263 if (reg_request_cell_base(lr) &&
1264 !regdom_changes(pending_request->alpha2))
1265 return REG_REQ_ALREADY_SET;
1266
1267 return REG_REQ_OK;
1268}
1269
1270/* Device specific check */
1271static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1272{
1273 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1274}
1275#else
1276static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1277{
1278 return REG_REQ_IGNORE;
1279}
1280
1281static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282{
1283 return true;
1284}
1285#endif
1286
1287static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1288{
1289 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1290 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1291 return true;
1292 return false;
1293}
1294
1295static bool ignore_reg_update(struct wiphy *wiphy,
1296 enum nl80211_reg_initiator initiator)
1297{
1298 struct regulatory_request *lr = get_last_request();
1299
1300 if (!lr) {
1301 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1302 "since last_request is not set\n",
1303 reg_initiator_name(initiator));
1304 return true;
1305 }
1306
1307 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1308 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1309 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1310 "since the driver uses its own custom "
1311 "regulatory domain\n",
1312 reg_initiator_name(initiator));
1313 return true;
1314 }
1315
1316 /*
1317 * wiphy->regd will be set once the device has its own
1318 * desired regulatory domain set
1319 */
1320 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1321 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1322 !is_world_regdom(lr->alpha2)) {
1323 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1324 "since the driver requires its own regulatory "
1325 "domain to be set first\n",
1326 reg_initiator_name(initiator));
1327 return true;
1328 }
1329
1330 if (reg_request_cell_base(lr))
1331 return reg_dev_ignore_cell_hint(wiphy);
1332
1333 return false;
1334}
1335
1336static bool reg_is_world_roaming(struct wiphy *wiphy)
1337{
1338 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1339 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1340 struct regulatory_request *lr = get_last_request();
1341
1342 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1343 return true;
1344
1345 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1346 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1347 return true;
1348
1349 return false;
1350}
1351
1352static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1353 struct reg_beacon *reg_beacon)
1354{
1355 struct ieee80211_supported_band *sband;
1356 struct ieee80211_channel *chan;
1357 bool channel_changed = false;
1358 struct ieee80211_channel chan_before;
1359
1360 sband = wiphy->bands[reg_beacon->chan.band];
1361 chan = &sband->channels[chan_idx];
1362
1363 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1364 return;
1365
1366 if (chan->beacon_found)
1367 return;
1368
1369 chan->beacon_found = true;
1370
1371 if (!reg_is_world_roaming(wiphy))
1372 return;
1373
1374 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1375 return;
1376
1377 chan_before.center_freq = chan->center_freq;
1378 chan_before.flags = chan->flags;
1379
1380 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1381 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1382 channel_changed = true;
1383 }
1384
1385 if (channel_changed)
1386 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1387}
1388
1389/*
1390 * Called when a scan on a wiphy finds a beacon on
1391 * new channel
1392 */
1393static void wiphy_update_new_beacon(struct wiphy *wiphy,
1394 struct reg_beacon *reg_beacon)
1395{
1396 unsigned int i;
1397 struct ieee80211_supported_band *sband;
1398
1399 if (!wiphy->bands[reg_beacon->chan.band])
1400 return;
1401
1402 sband = wiphy->bands[reg_beacon->chan.band];
1403
1404 for (i = 0; i < sband->n_channels; i++)
1405 handle_reg_beacon(wiphy, i, reg_beacon);
1406}
1407
1408/*
1409 * Called upon reg changes or a new wiphy is added
1410 */
1411static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1412{
1413 unsigned int i;
1414 struct ieee80211_supported_band *sband;
1415 struct reg_beacon *reg_beacon;
1416
1417 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1418 if (!wiphy->bands[reg_beacon->chan.band])
1419 continue;
1420 sband = wiphy->bands[reg_beacon->chan.band];
1421 for (i = 0; i < sband->n_channels; i++)
1422 handle_reg_beacon(wiphy, i, reg_beacon);
1423 }
1424}
1425
1426/* Reap the advantages of previously found beacons */
1427static void reg_process_beacons(struct wiphy *wiphy)
1428{
1429 /*
1430 * Means we are just firing up cfg80211, so no beacons would
1431 * have been processed yet.
1432 */
1433 if (!last_request)
1434 return;
1435 wiphy_update_beacon_reg(wiphy);
1436}
1437
1438static bool is_ht40_allowed(struct ieee80211_channel *chan)
1439{
1440 if (!chan)
1441 return false;
1442 if (chan->flags & IEEE80211_CHAN_DISABLED)
1443 return false;
1444 /* This would happen when regulatory rules disallow HT40 completely */
1445 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1446 return false;
1447 return true;
1448}
1449
1450static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1451 struct ieee80211_channel *channel)
1452{
1453 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1454 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1455 unsigned int i;
1456
1457 if (!is_ht40_allowed(channel)) {
1458 channel->flags |= IEEE80211_CHAN_NO_HT40;
1459 return;
1460 }
1461
1462 /*
1463 * We need to ensure the extension channels exist to
1464 * be able to use HT40- or HT40+, this finds them (or not)
1465 */
1466 for (i = 0; i < sband->n_channels; i++) {
1467 struct ieee80211_channel *c = &sband->channels[i];
1468
1469 if (c->center_freq == (channel->center_freq - 20))
1470 channel_before = c;
1471 if (c->center_freq == (channel->center_freq + 20))
1472 channel_after = c;
1473 }
1474
1475 /*
1476 * Please note that this assumes target bandwidth is 20 MHz,
1477 * if that ever changes we also need to change the below logic
1478 * to include that as well.
1479 */
1480 if (!is_ht40_allowed(channel_before))
1481 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1482 else
1483 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1484
1485 if (!is_ht40_allowed(channel_after))
1486 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1487 else
1488 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1489}
1490
1491static void reg_process_ht_flags_band(struct wiphy *wiphy,
1492 struct ieee80211_supported_band *sband)
1493{
1494 unsigned int i;
1495
1496 if (!sband)
1497 return;
1498
1499 for (i = 0; i < sband->n_channels; i++)
1500 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1501}
1502
1503static void reg_process_ht_flags(struct wiphy *wiphy)
1504{
1505 enum ieee80211_band band;
1506
1507 if (!wiphy)
1508 return;
1509
1510 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1511 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1512}
1513
1514static void reg_call_notifier(struct wiphy *wiphy,
1515 struct regulatory_request *request)
1516{
1517 if (wiphy->reg_notifier)
1518 wiphy->reg_notifier(wiphy, request);
1519}
1520
1521static void wiphy_update_regulatory(struct wiphy *wiphy,
1522 enum nl80211_reg_initiator initiator)
1523{
1524 enum ieee80211_band band;
1525 struct regulatory_request *lr = get_last_request();
1526
1527 if (ignore_reg_update(wiphy, initiator)) {
1528 /*
1529 * Regulatory updates set by CORE are ignored for custom
1530 * regulatory cards. Let us notify the changes to the driver,
1531 * as some drivers used this to restore its orig_* reg domain.
1532 */
1533 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1534 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1535 reg_call_notifier(wiphy, lr);
1536 return;
1537 }
1538
1539 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1540
1541 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1542 handle_band(wiphy, initiator, wiphy->bands[band]);
1543
1544 reg_process_beacons(wiphy);
1545 reg_process_ht_flags(wiphy);
1546 reg_call_notifier(wiphy, lr);
1547}
1548
1549static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1550{
1551 struct cfg80211_registered_device *rdev;
1552 struct wiphy *wiphy;
1553
1554 ASSERT_RTNL();
1555
1556 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1557 wiphy = &rdev->wiphy;
1558 wiphy_update_regulatory(wiphy, initiator);
1559 }
1560}
1561
1562static void handle_channel_custom(struct wiphy *wiphy,
1563 struct ieee80211_channel *chan,
1564 const struct ieee80211_regdomain *regd)
1565{
1566 u32 bw_flags = 0;
1567 const struct ieee80211_reg_rule *reg_rule = NULL;
1568 const struct ieee80211_power_rule *power_rule = NULL;
1569 const struct ieee80211_freq_range *freq_range = NULL;
1570 u32 max_bandwidth_khz;
1571
1572 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1573 regd);
1574
1575 if (IS_ERR(reg_rule)) {
1576 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1577 chan->center_freq);
1578 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1579 chan->flags = chan->orig_flags;
1580 return;
1581 }
1582
1583 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1584
1585 power_rule = &reg_rule->power_rule;
1586 freq_range = &reg_rule->freq_range;
1587
1588 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1589 /* Check if auto calculation requested */
1590 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1591 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1592
1593 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1594 bw_flags = IEEE80211_CHAN_NO_HT40;
1595 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1596 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1597 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1598 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1599
1600 chan->dfs_state_entered = jiffies;
1601 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1602 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1603 chan->max_reg_power = chan->max_power =
1604 (int) MBM_TO_DBM(power_rule->max_eirp);
1605
1606 if (chan->flags & IEEE80211_CHAN_RADAR) {
1607 if (reg_rule->dfs_cac_ms)
1608 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1609 else
1610 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1611 }
1612
1613 chan->max_power = chan->max_reg_power;
1614}
1615
1616static void handle_band_custom(struct wiphy *wiphy,
1617 struct ieee80211_supported_band *sband,
1618 const struct ieee80211_regdomain *regd)
1619{
1620 unsigned int i;
1621
1622 if (!sband)
1623 return;
1624
1625 for (i = 0; i < sband->n_channels; i++)
1626 handle_channel_custom(wiphy, &sband->channels[i], regd);
1627}
1628
1629/* Used by drivers prior to wiphy registration */
1630void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1631 const struct ieee80211_regdomain *regd)
1632{
1633 enum ieee80211_band band;
1634 unsigned int bands_set = 0;
1635
1636 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1637 "wiphy should have REGULATORY_CUSTOM_REG\n");
1638 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1639
1640 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1641 if (!wiphy->bands[band])
1642 continue;
1643 handle_band_custom(wiphy, wiphy->bands[band], regd);
1644 bands_set++;
1645 }
1646
1647 /*
1648 * no point in calling this if it won't have any effect
1649 * on your device's supported bands.
1650 */
1651 WARN_ON(!bands_set);
1652}
1653EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1654
1655static void reg_set_request_processed(void)
1656{
1657 bool need_more_processing = false;
1658 struct regulatory_request *lr = get_last_request();
1659
1660 lr->processed = true;
1661
1662 spin_lock(&reg_requests_lock);
1663 if (!list_empty(&reg_requests_list))
1664 need_more_processing = true;
1665 spin_unlock(&reg_requests_lock);
1666
1667 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1668 cancel_delayed_work(&reg_timeout);
1669
1670 if (need_more_processing)
1671 schedule_work(&reg_work);
1672}
1673
1674/**
1675 * reg_process_hint_core - process core regulatory requests
1676 * @pending_request: a pending core regulatory request
1677 *
1678 * The wireless subsystem can use this function to process
1679 * a regulatory request issued by the regulatory core.
1680 *
1681 * Returns one of the different reg request treatment values.
1682 */
1683static enum reg_request_treatment
1684reg_process_hint_core(struct regulatory_request *core_request)
1685{
1686
1687 core_request->intersect = false;
1688 core_request->processed = false;
1689
1690 reg_update_last_request(core_request);
1691
1692 return reg_call_crda(core_request);
1693}
1694
1695static enum reg_request_treatment
1696__reg_process_hint_user(struct regulatory_request *user_request)
1697{
1698 struct regulatory_request *lr = get_last_request();
1699
1700 if (reg_request_indoor(user_request)) {
1701 reg_is_indoor = true;
1702 return REG_REQ_USER_HINT_HANDLED;
1703 }
1704
1705 if (reg_request_cell_base(user_request))
1706 return reg_ignore_cell_hint(user_request);
1707
1708 if (reg_request_cell_base(lr))
1709 return REG_REQ_IGNORE;
1710
1711 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1712 return REG_REQ_INTERSECT;
1713 /*
1714 * If the user knows better the user should set the regdom
1715 * to their country before the IE is picked up
1716 */
1717 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1718 lr->intersect)
1719 return REG_REQ_IGNORE;
1720 /*
1721 * Process user requests only after previous user/driver/core
1722 * requests have been processed
1723 */
1724 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1725 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1726 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1727 regdom_changes(lr->alpha2))
1728 return REG_REQ_IGNORE;
1729
1730 if (!regdom_changes(user_request->alpha2))
1731 return REG_REQ_ALREADY_SET;
1732
1733 return REG_REQ_OK;
1734}
1735
1736/**
1737 * reg_process_hint_user - process user regulatory requests
1738 * @user_request: a pending user regulatory request
1739 *
1740 * The wireless subsystem can use this function to process
1741 * a regulatory request initiated by userspace.
1742 *
1743 * Returns one of the different reg request treatment values.
1744 */
1745static enum reg_request_treatment
1746reg_process_hint_user(struct regulatory_request *user_request)
1747{
1748 enum reg_request_treatment treatment;
1749
1750 treatment = __reg_process_hint_user(user_request);
1751 if (treatment == REG_REQ_IGNORE ||
1752 treatment == REG_REQ_ALREADY_SET ||
1753 treatment == REG_REQ_USER_HINT_HANDLED) {
1754 reg_free_request(user_request);
1755 return treatment;
1756 }
1757
1758 user_request->intersect = treatment == REG_REQ_INTERSECT;
1759 user_request->processed = false;
1760
1761 reg_update_last_request(user_request);
1762
1763 user_alpha2[0] = user_request->alpha2[0];
1764 user_alpha2[1] = user_request->alpha2[1];
1765
1766 return reg_call_crda(user_request);
1767}
1768
1769static enum reg_request_treatment
1770__reg_process_hint_driver(struct regulatory_request *driver_request)
1771{
1772 struct regulatory_request *lr = get_last_request();
1773
1774 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1775 if (regdom_changes(driver_request->alpha2))
1776 return REG_REQ_OK;
1777 return REG_REQ_ALREADY_SET;
1778 }
1779
1780 /*
1781 * This would happen if you unplug and plug your card
1782 * back in or if you add a new device for which the previously
1783 * loaded card also agrees on the regulatory domain.
1784 */
1785 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1786 !regdom_changes(driver_request->alpha2))
1787 return REG_REQ_ALREADY_SET;
1788
1789 return REG_REQ_INTERSECT;
1790}
1791
1792/**
1793 * reg_process_hint_driver - process driver regulatory requests
1794 * @driver_request: a pending driver regulatory request
1795 *
1796 * The wireless subsystem can use this function to process
1797 * a regulatory request issued by an 802.11 driver.
1798 *
1799 * Returns one of the different reg request treatment values.
1800 */
1801static enum reg_request_treatment
1802reg_process_hint_driver(struct wiphy *wiphy,
1803 struct regulatory_request *driver_request)
1804{
1805 const struct ieee80211_regdomain *regd;
1806 enum reg_request_treatment treatment;
1807
1808 treatment = __reg_process_hint_driver(driver_request);
1809
1810 switch (treatment) {
1811 case REG_REQ_OK:
1812 break;
1813 case REG_REQ_IGNORE:
1814 case REG_REQ_USER_HINT_HANDLED:
1815 reg_free_request(driver_request);
1816 return treatment;
1817 case REG_REQ_INTERSECT:
1818 /* fall through */
1819 case REG_REQ_ALREADY_SET:
1820 regd = reg_copy_regd(get_cfg80211_regdom());
1821 if (IS_ERR(regd)) {
1822 reg_free_request(driver_request);
1823 return REG_REQ_IGNORE;
1824 }
1825 rcu_assign_pointer(wiphy->regd, regd);
1826 }
1827
1828
1829 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1830 driver_request->processed = false;
1831
1832 reg_update_last_request(driver_request);
1833
1834 /*
1835 * Since CRDA will not be called in this case as we already
1836 * have applied the requested regulatory domain before we just
1837 * inform userspace we have processed the request
1838 */
1839 if (treatment == REG_REQ_ALREADY_SET) {
1840 nl80211_send_reg_change_event(driver_request);
1841 reg_set_request_processed();
1842 return treatment;
1843 }
1844
1845 return reg_call_crda(driver_request);
1846}
1847
1848static enum reg_request_treatment
1849__reg_process_hint_country_ie(struct wiphy *wiphy,
1850 struct regulatory_request *country_ie_request)
1851{
1852 struct wiphy *last_wiphy = NULL;
1853 struct regulatory_request *lr = get_last_request();
1854
1855 if (reg_request_cell_base(lr)) {
1856 /* Trust a Cell base station over the AP's country IE */
1857 if (regdom_changes(country_ie_request->alpha2))
1858 return REG_REQ_IGNORE;
1859 return REG_REQ_ALREADY_SET;
1860 } else {
1861 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1862 return REG_REQ_IGNORE;
1863 }
1864
1865 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1866 return -EINVAL;
1867
1868 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1869 return REG_REQ_OK;
1870
1871 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1872
1873 if (last_wiphy != wiphy) {
1874 /*
1875 * Two cards with two APs claiming different
1876 * Country IE alpha2s. We could
1877 * intersect them, but that seems unlikely
1878 * to be correct. Reject second one for now.
1879 */
1880 if (regdom_changes(country_ie_request->alpha2))
1881 return REG_REQ_IGNORE;
1882 return REG_REQ_ALREADY_SET;
1883 }
1884 /*
1885 * Two consecutive Country IE hints on the same wiphy.
1886 * This should be picked up early by the driver/stack
1887 */
1888 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1889 return REG_REQ_OK;
1890 return REG_REQ_ALREADY_SET;
1891}
1892
1893/**
1894 * reg_process_hint_country_ie - process regulatory requests from country IEs
1895 * @country_ie_request: a regulatory request from a country IE
1896 *
1897 * The wireless subsystem can use this function to process
1898 * a regulatory request issued by a country Information Element.
1899 *
1900 * Returns one of the different reg request treatment values.
1901 */
1902static enum reg_request_treatment
1903reg_process_hint_country_ie(struct wiphy *wiphy,
1904 struct regulatory_request *country_ie_request)
1905{
1906 enum reg_request_treatment treatment;
1907
1908 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1909
1910 switch (treatment) {
1911 case REG_REQ_OK:
1912 break;
1913 case REG_REQ_IGNORE:
1914 case REG_REQ_USER_HINT_HANDLED:
1915 /* fall through */
1916 case REG_REQ_ALREADY_SET:
1917 reg_free_request(country_ie_request);
1918 return treatment;
1919 case REG_REQ_INTERSECT:
1920 reg_free_request(country_ie_request);
1921 /*
1922 * This doesn't happen yet, not sure we
1923 * ever want to support it for this case.
1924 */
1925 WARN_ONCE(1, "Unexpected intersection for country IEs");
1926 return REG_REQ_IGNORE;
1927 }
1928
1929 country_ie_request->intersect = false;
1930 country_ie_request->processed = false;
1931
1932 reg_update_last_request(country_ie_request);
1933
1934 return reg_call_crda(country_ie_request);
1935}
1936
1937/* This processes *all* regulatory hints */
1938static void reg_process_hint(struct regulatory_request *reg_request)
1939{
1940 struct wiphy *wiphy = NULL;
1941 enum reg_request_treatment treatment;
1942
1943 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1944 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1945
1946 switch (reg_request->initiator) {
1947 case NL80211_REGDOM_SET_BY_CORE:
1948 reg_process_hint_core(reg_request);
1949 return;
1950 case NL80211_REGDOM_SET_BY_USER:
1951 treatment = reg_process_hint_user(reg_request);
1952 if (treatment == REG_REQ_IGNORE ||
1953 treatment == REG_REQ_ALREADY_SET ||
1954 treatment == REG_REQ_USER_HINT_HANDLED)
1955 return;
1956 queue_delayed_work(system_power_efficient_wq,
1957 &reg_timeout, msecs_to_jiffies(3142));
1958 return;
1959 case NL80211_REGDOM_SET_BY_DRIVER:
1960 if (!wiphy)
1961 goto out_free;
1962 treatment = reg_process_hint_driver(wiphy, reg_request);
1963 break;
1964 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1965 if (!wiphy)
1966 goto out_free;
1967 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1968 break;
1969 default:
1970 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1971 goto out_free;
1972 }
1973
1974 /* This is required so that the orig_* parameters are saved */
1975 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1976 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1977 wiphy_update_regulatory(wiphy, reg_request->initiator);
1978
1979 return;
1980
1981out_free:
1982 reg_free_request(reg_request);
1983}
1984
1985/*
1986 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1987 * Regulatory hints come on a first come first serve basis and we
1988 * must process each one atomically.
1989 */
1990static void reg_process_pending_hints(void)
1991{
1992 struct regulatory_request *reg_request, *lr;
1993
1994 lr = get_last_request();
1995
1996 /* When last_request->processed becomes true this will be rescheduled */
1997 if (lr && !lr->processed) {
1998 reg_process_hint(lr);
1999 return;
2000 }
2001
2002 spin_lock(&reg_requests_lock);
2003
2004 if (list_empty(&reg_requests_list)) {
2005 spin_unlock(&reg_requests_lock);
2006 return;
2007 }
2008
2009 reg_request = list_first_entry(&reg_requests_list,
2010 struct regulatory_request,
2011 list);
2012 list_del_init(&reg_request->list);
2013
2014 spin_unlock(&reg_requests_lock);
2015
2016 reg_process_hint(reg_request);
2017}
2018
2019/* Processes beacon hints -- this has nothing to do with country IEs */
2020static void reg_process_pending_beacon_hints(void)
2021{
2022 struct cfg80211_registered_device *rdev;
2023 struct reg_beacon *pending_beacon, *tmp;
2024
2025 /* This goes through the _pending_ beacon list */
2026 spin_lock_bh(&reg_pending_beacons_lock);
2027
2028 list_for_each_entry_safe(pending_beacon, tmp,
2029 &reg_pending_beacons, list) {
2030 list_del_init(&pending_beacon->list);
2031
2032 /* Applies the beacon hint to current wiphys */
2033 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2034 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2035
2036 /* Remembers the beacon hint for new wiphys or reg changes */
2037 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2038 }
2039
2040 spin_unlock_bh(&reg_pending_beacons_lock);
2041}
2042
2043static void reg_todo(struct work_struct *work)
2044{
2045 rtnl_lock();
2046 reg_process_pending_hints();
2047 reg_process_pending_beacon_hints();
2048 rtnl_unlock();
2049}
2050
2051static void queue_regulatory_request(struct regulatory_request *request)
2052{
2053 request->alpha2[0] = toupper(request->alpha2[0]);
2054 request->alpha2[1] = toupper(request->alpha2[1]);
2055
2056 spin_lock(&reg_requests_lock);
2057 list_add_tail(&request->list, &reg_requests_list);
2058 spin_unlock(&reg_requests_lock);
2059
2060 schedule_work(&reg_work);
2061}
2062
2063/*
2064 * Core regulatory hint -- happens during cfg80211_init()
2065 * and when we restore regulatory settings.
2066 */
2067static int regulatory_hint_core(const char *alpha2)
2068{
2069 struct regulatory_request *request;
2070
2071 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2072 if (!request)
2073 return -ENOMEM;
2074
2075 request->alpha2[0] = alpha2[0];
2076 request->alpha2[1] = alpha2[1];
2077 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2078
2079 queue_regulatory_request(request);
2080
2081 return 0;
2082}
2083
2084/* User hints */
2085int regulatory_hint_user(const char *alpha2,
2086 enum nl80211_user_reg_hint_type user_reg_hint_type)
2087{
2088 struct regulatory_request *request;
2089
2090 if (WARN_ON(!alpha2))
2091 return -EINVAL;
2092
2093 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2094 if (!request)
2095 return -ENOMEM;
2096
2097 request->wiphy_idx = WIPHY_IDX_INVALID;
2098 request->alpha2[0] = alpha2[0];
2099 request->alpha2[1] = alpha2[1];
2100 request->initiator = NL80211_REGDOM_SET_BY_USER;
2101 request->user_reg_hint_type = user_reg_hint_type;
2102
2103 queue_regulatory_request(request);
2104
2105 return 0;
2106}
2107
2108int regulatory_hint_indoor_user(void)
2109{
2110 struct regulatory_request *request;
2111
2112 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2113 if (!request)
2114 return -ENOMEM;
2115
2116 request->wiphy_idx = WIPHY_IDX_INVALID;
2117 request->initiator = NL80211_REGDOM_SET_BY_USER;
2118 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2119 queue_regulatory_request(request);
2120
2121 return 0;
2122}
2123
2124/* Driver hints */
2125int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2126{
2127 struct regulatory_request *request;
2128
2129 if (WARN_ON(!alpha2 || !wiphy))
2130 return -EINVAL;
2131
2132 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2133
2134 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2135 if (!request)
2136 return -ENOMEM;
2137
2138 request->wiphy_idx = get_wiphy_idx(wiphy);
2139
2140 request->alpha2[0] = alpha2[0];
2141 request->alpha2[1] = alpha2[1];
2142 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2143
2144 queue_regulatory_request(request);
2145
2146 return 0;
2147}
2148EXPORT_SYMBOL(regulatory_hint);
2149
2150void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2151 const u8 *country_ie, u8 country_ie_len)
2152{
2153 char alpha2[2];
2154 enum environment_cap env = ENVIRON_ANY;
2155 struct regulatory_request *request = NULL, *lr;
2156
2157 /* IE len must be evenly divisible by 2 */
2158 if (country_ie_len & 0x01)
2159 return;
2160
2161 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2162 return;
2163
2164 request = kzalloc(sizeof(*request), GFP_KERNEL);
2165 if (!request)
2166 return;
2167
2168 alpha2[0] = country_ie[0];
2169 alpha2[1] = country_ie[1];
2170
2171 if (country_ie[2] == 'I')
2172 env = ENVIRON_INDOOR;
2173 else if (country_ie[2] == 'O')
2174 env = ENVIRON_OUTDOOR;
2175
2176 rcu_read_lock();
2177 lr = get_last_request();
2178
2179 if (unlikely(!lr))
2180 goto out;
2181
2182 /*
2183 * We will run this only upon a successful connection on cfg80211.
2184 * We leave conflict resolution to the workqueue, where can hold
2185 * the RTNL.
2186 */
2187 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2188 lr->wiphy_idx != WIPHY_IDX_INVALID)
2189 goto out;
2190
2191 request->wiphy_idx = get_wiphy_idx(wiphy);
2192 request->alpha2[0] = alpha2[0];
2193 request->alpha2[1] = alpha2[1];
2194 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2195 request->country_ie_env = env;
2196
2197 queue_regulatory_request(request);
2198 request = NULL;
2199out:
2200 kfree(request);
2201 rcu_read_unlock();
2202}
2203
2204static void restore_alpha2(char *alpha2, bool reset_user)
2205{
2206 /* indicates there is no alpha2 to consider for restoration */
2207 alpha2[0] = '9';
2208 alpha2[1] = '7';
2209
2210 /* The user setting has precedence over the module parameter */
2211 if (is_user_regdom_saved()) {
2212 /* Unless we're asked to ignore it and reset it */
2213 if (reset_user) {
2214 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2215 user_alpha2[0] = '9';
2216 user_alpha2[1] = '7';
2217
2218 /*
2219 * If we're ignoring user settings, we still need to
2220 * check the module parameter to ensure we put things
2221 * back as they were for a full restore.
2222 */
2223 if (!is_world_regdom(ieee80211_regdom)) {
2224 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2225 ieee80211_regdom[0], ieee80211_regdom[1]);
2226 alpha2[0] = ieee80211_regdom[0];
2227 alpha2[1] = ieee80211_regdom[1];
2228 }
2229 } else {
2230 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2231 user_alpha2[0], user_alpha2[1]);
2232 alpha2[0] = user_alpha2[0];
2233 alpha2[1] = user_alpha2[1];
2234 }
2235 } else if (!is_world_regdom(ieee80211_regdom)) {
2236 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2237 ieee80211_regdom[0], ieee80211_regdom[1]);
2238 alpha2[0] = ieee80211_regdom[0];
2239 alpha2[1] = ieee80211_regdom[1];
2240 } else
2241 REG_DBG_PRINT("Restoring regulatory settings\n");
2242}
2243
2244static void restore_custom_reg_settings(struct wiphy *wiphy)
2245{
2246 struct ieee80211_supported_band *sband;
2247 enum ieee80211_band band;
2248 struct ieee80211_channel *chan;
2249 int i;
2250
2251 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2252 sband = wiphy->bands[band];
2253 if (!sband)
2254 continue;
2255 for (i = 0; i < sband->n_channels; i++) {
2256 chan = &sband->channels[i];
2257 chan->flags = chan->orig_flags;
2258 chan->max_antenna_gain = chan->orig_mag;
2259 chan->max_power = chan->orig_mpwr;
2260 chan->beacon_found = false;
2261 }
2262 }
2263}
2264
2265/*
2266 * Restoring regulatory settings involves ingoring any
2267 * possibly stale country IE information and user regulatory
2268 * settings if so desired, this includes any beacon hints
2269 * learned as we could have traveled outside to another country
2270 * after disconnection. To restore regulatory settings we do
2271 * exactly what we did at bootup:
2272 *
2273 * - send a core regulatory hint
2274 * - send a user regulatory hint if applicable
2275 *
2276 * Device drivers that send a regulatory hint for a specific country
2277 * keep their own regulatory domain on wiphy->regd so that does does
2278 * not need to be remembered.
2279 */
2280static void restore_regulatory_settings(bool reset_user)
2281{
2282 char alpha2[2];
2283 char world_alpha2[2];
2284 struct reg_beacon *reg_beacon, *btmp;
2285 struct regulatory_request *reg_request, *tmp;
2286 LIST_HEAD(tmp_reg_req_list);
2287 struct cfg80211_registered_device *rdev;
2288
2289 ASSERT_RTNL();
2290
2291 reg_is_indoor = false;
2292
2293 reset_regdomains(true, &world_regdom);
2294 restore_alpha2(alpha2, reset_user);
2295
2296 /*
2297 * If there's any pending requests we simply
2298 * stash them to a temporary pending queue and
2299 * add then after we've restored regulatory
2300 * settings.
2301 */
2302 spin_lock(&reg_requests_lock);
2303 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2304 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2305 continue;
2306 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2307 }
2308 spin_unlock(&reg_requests_lock);
2309
2310 /* Clear beacon hints */
2311 spin_lock_bh(&reg_pending_beacons_lock);
2312 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2313 list_del(&reg_beacon->list);
2314 kfree(reg_beacon);
2315 }
2316 spin_unlock_bh(&reg_pending_beacons_lock);
2317
2318 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2319 list_del(&reg_beacon->list);
2320 kfree(reg_beacon);
2321 }
2322
2323 /* First restore to the basic regulatory settings */
2324 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2325 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2326
2327 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2328 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2329 restore_custom_reg_settings(&rdev->wiphy);
2330 }
2331
2332 regulatory_hint_core(world_alpha2);
2333
2334 /*
2335 * This restores the ieee80211_regdom module parameter
2336 * preference or the last user requested regulatory
2337 * settings, user regulatory settings takes precedence.
2338 */
2339 if (is_an_alpha2(alpha2))
2340 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2341
2342 spin_lock(&reg_requests_lock);
2343 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2344 spin_unlock(&reg_requests_lock);
2345
2346 REG_DBG_PRINT("Kicking the queue\n");
2347
2348 schedule_work(&reg_work);
2349}
2350
2351void regulatory_hint_disconnect(void)
2352{
2353 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2354 restore_regulatory_settings(false);
2355}
2356
2357static bool freq_is_chan_12_13_14(u16 freq)
2358{
2359 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2360 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2361 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2362 return true;
2363 return false;
2364}
2365
2366static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2367{
2368 struct reg_beacon *pending_beacon;
2369
2370 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2371 if (beacon_chan->center_freq ==
2372 pending_beacon->chan.center_freq)
2373 return true;
2374 return false;
2375}
2376
2377int regulatory_hint_found_beacon(struct wiphy *wiphy,
2378 struct ieee80211_channel *beacon_chan,
2379 gfp_t gfp)
2380{
2381 struct reg_beacon *reg_beacon;
2382 bool processing;
2383
2384 if (beacon_chan->beacon_found ||
2385 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2386 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2387 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2388 return 0;
2389
2390 spin_lock_bh(&reg_pending_beacons_lock);
2391 processing = pending_reg_beacon(beacon_chan);
2392 spin_unlock_bh(&reg_pending_beacons_lock);
2393
2394 if (processing)
2395 return 0;
2396
2397 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2398 if (!reg_beacon)
2399 return -ENOMEM;
2400
2401 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2402 beacon_chan->center_freq,
2403 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2404 wiphy_name(wiphy));
2405
2406 memcpy(&reg_beacon->chan, beacon_chan,
2407 sizeof(struct ieee80211_channel));
2408
2409 /*
2410 * Since we can be called from BH or and non-BH context
2411 * we must use spin_lock_bh()
2412 */
2413 spin_lock_bh(&reg_pending_beacons_lock);
2414 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2415 spin_unlock_bh(&reg_pending_beacons_lock);
2416
2417 schedule_work(&reg_work);
2418
2419 return 0;
2420}
2421
2422static void print_rd_rules(const struct ieee80211_regdomain *rd)
2423{
2424 unsigned int i;
2425 const struct ieee80211_reg_rule *reg_rule = NULL;
2426 const struct ieee80211_freq_range *freq_range = NULL;
2427 const struct ieee80211_power_rule *power_rule = NULL;
2428 char bw[32], cac_time[32];
2429
2430 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2431
2432 for (i = 0; i < rd->n_reg_rules; i++) {
2433 reg_rule = &rd->reg_rules[i];
2434 freq_range = &reg_rule->freq_range;
2435 power_rule = &reg_rule->power_rule;
2436
2437 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2438 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2439 freq_range->max_bandwidth_khz,
2440 reg_get_max_bandwidth(rd, reg_rule));
2441 else
2442 snprintf(bw, sizeof(bw), "%d KHz",
2443 freq_range->max_bandwidth_khz);
2444
2445 if (reg_rule->flags & NL80211_RRF_DFS)
2446 scnprintf(cac_time, sizeof(cac_time), "%u s",
2447 reg_rule->dfs_cac_ms/1000);
2448 else
2449 scnprintf(cac_time, sizeof(cac_time), "N/A");
2450
2451
2452 /*
2453 * There may not be documentation for max antenna gain
2454 * in certain regions
2455 */
2456 if (power_rule->max_antenna_gain)
2457 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2458 freq_range->start_freq_khz,
2459 freq_range->end_freq_khz,
2460 bw,
2461 power_rule->max_antenna_gain,
2462 power_rule->max_eirp,
2463 cac_time);
2464 else
2465 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2466 freq_range->start_freq_khz,
2467 freq_range->end_freq_khz,
2468 bw,
2469 power_rule->max_eirp,
2470 cac_time);
2471 }
2472}
2473
2474bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2475{
2476 switch (dfs_region) {
2477 case NL80211_DFS_UNSET:
2478 case NL80211_DFS_FCC:
2479 case NL80211_DFS_ETSI:
2480 case NL80211_DFS_JP:
2481 return true;
2482 default:
2483 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2484 dfs_region);
2485 return false;
2486 }
2487}
2488
2489static void print_regdomain(const struct ieee80211_regdomain *rd)
2490{
2491 struct regulatory_request *lr = get_last_request();
2492
2493 if (is_intersected_alpha2(rd->alpha2)) {
2494 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2495 struct cfg80211_registered_device *rdev;
2496 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2497 if (rdev) {
2498 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2499 rdev->country_ie_alpha2[0],
2500 rdev->country_ie_alpha2[1]);
2501 } else
2502 pr_info("Current regulatory domain intersected:\n");
2503 } else
2504 pr_info("Current regulatory domain intersected:\n");
2505 } else if (is_world_regdom(rd->alpha2)) {
2506 pr_info("World regulatory domain updated:\n");
2507 } else {
2508 if (is_unknown_alpha2(rd->alpha2))
2509 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2510 else {
2511 if (reg_request_cell_base(lr))
2512 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2513 rd->alpha2[0], rd->alpha2[1]);
2514 else
2515 pr_info("Regulatory domain changed to country: %c%c\n",
2516 rd->alpha2[0], rd->alpha2[1]);
2517 }
2518 }
2519
2520 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2521 print_rd_rules(rd);
2522}
2523
2524static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2525{
2526 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2527 print_rd_rules(rd);
2528}
2529
2530static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2531{
2532 if (!is_world_regdom(rd->alpha2))
2533 return -EINVAL;
2534 update_world_regdomain(rd);
2535 return 0;
2536}
2537
2538static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2539 struct regulatory_request *user_request)
2540{
2541 const struct ieee80211_regdomain *intersected_rd = NULL;
2542
2543 if (!regdom_changes(rd->alpha2))
2544 return -EALREADY;
2545
2546 if (!is_valid_rd(rd)) {
2547 pr_err("Invalid regulatory domain detected:\n");
2548 print_regdomain_info(rd);
2549 return -EINVAL;
2550 }
2551
2552 if (!user_request->intersect) {
2553 reset_regdomains(false, rd);
2554 return 0;
2555 }
2556
2557 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2558 if (!intersected_rd)
2559 return -EINVAL;
2560
2561 kfree(rd);
2562 rd = NULL;
2563 reset_regdomains(false, intersected_rd);
2564
2565 return 0;
2566}
2567
2568static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2569 struct regulatory_request *driver_request)
2570{
2571 const struct ieee80211_regdomain *regd;
2572 const struct ieee80211_regdomain *intersected_rd = NULL;
2573 const struct ieee80211_regdomain *tmp;
2574 struct wiphy *request_wiphy;
2575
2576 if (is_world_regdom(rd->alpha2))
2577 return -EINVAL;
2578
2579 if (!regdom_changes(rd->alpha2))
2580 return -EALREADY;
2581
2582 if (!is_valid_rd(rd)) {
2583 pr_err("Invalid regulatory domain detected:\n");
2584 print_regdomain_info(rd);
2585 return -EINVAL;
2586 }
2587
2588 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2589 if (!request_wiphy) {
2590 queue_delayed_work(system_power_efficient_wq,
2591 &reg_timeout, 0);
2592 return -ENODEV;
2593 }
2594
2595 if (!driver_request->intersect) {
2596 if (request_wiphy->regd)
2597 return -EALREADY;
2598
2599 regd = reg_copy_regd(rd);
2600 if (IS_ERR(regd))
2601 return PTR_ERR(regd);
2602
2603 rcu_assign_pointer(request_wiphy->regd, regd);
2604 reset_regdomains(false, rd);
2605 return 0;
2606 }
2607
2608 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2609 if (!intersected_rd)
2610 return -EINVAL;
2611
2612 /*
2613 * We can trash what CRDA provided now.
2614 * However if a driver requested this specific regulatory
2615 * domain we keep it for its private use
2616 */
2617 tmp = get_wiphy_regdom(request_wiphy);
2618 rcu_assign_pointer(request_wiphy->regd, rd);
2619 rcu_free_regdom(tmp);
2620
2621 rd = NULL;
2622
2623 reset_regdomains(false, intersected_rd);
2624
2625 return 0;
2626}
2627
2628static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2629 struct regulatory_request *country_ie_request)
2630{
2631 struct wiphy *request_wiphy;
2632
2633 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2634 !is_unknown_alpha2(rd->alpha2))
2635 return -EINVAL;
2636
2637 /*
2638 * Lets only bother proceeding on the same alpha2 if the current
2639 * rd is non static (it means CRDA was present and was used last)
2640 * and the pending request came in from a country IE
2641 */
2642
2643 if (!is_valid_rd(rd)) {
2644 pr_err("Invalid regulatory domain detected:\n");
2645 print_regdomain_info(rd);
2646 return -EINVAL;
2647 }
2648
2649 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2650 if (!request_wiphy) {
2651 queue_delayed_work(system_power_efficient_wq,
2652 &reg_timeout, 0);
2653 return -ENODEV;
2654 }
2655
2656 if (country_ie_request->intersect)
2657 return -EINVAL;
2658
2659 reset_regdomains(false, rd);
2660 return 0;
2661}
2662
2663/*
2664 * Use this call to set the current regulatory domain. Conflicts with
2665 * multiple drivers can be ironed out later. Caller must've already
2666 * kmalloc'd the rd structure.
2667 */
2668int set_regdom(const struct ieee80211_regdomain *rd)
2669{
2670 struct regulatory_request *lr;
2671 bool user_reset = false;
2672 int r;
2673
2674 if (!reg_is_valid_request(rd->alpha2)) {
2675 kfree(rd);
2676 return -EINVAL;
2677 }
2678
2679 lr = get_last_request();
2680
2681 /* Note that this doesn't update the wiphys, this is done below */
2682 switch (lr->initiator) {
2683 case NL80211_REGDOM_SET_BY_CORE:
2684 r = reg_set_rd_core(rd);
2685 break;
2686 case NL80211_REGDOM_SET_BY_USER:
2687 r = reg_set_rd_user(rd, lr);
2688 user_reset = true;
2689 break;
2690 case NL80211_REGDOM_SET_BY_DRIVER:
2691 r = reg_set_rd_driver(rd, lr);
2692 break;
2693 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2694 r = reg_set_rd_country_ie(rd, lr);
2695 break;
2696 default:
2697 WARN(1, "invalid initiator %d\n", lr->initiator);
2698 return -EINVAL;
2699 }
2700
2701 if (r) {
2702 switch (r) {
2703 case -EALREADY:
2704 reg_set_request_processed();
2705 break;
2706 default:
2707 /* Back to world regulatory in case of errors */
2708 restore_regulatory_settings(user_reset);
2709 }
2710
2711 kfree(rd);
2712 return r;
2713 }
2714
2715 /* This would make this whole thing pointless */
2716 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2717 return -EINVAL;
2718
2719 /* update all wiphys now with the new established regulatory domain */
2720 update_all_wiphy_regulatory(lr->initiator);
2721
2722 print_regdomain(get_cfg80211_regdom());
2723
2724 nl80211_send_reg_change_event(lr);
2725
2726 reg_set_request_processed();
2727
2728 return 0;
2729}
2730
2731void wiphy_regulatory_register(struct wiphy *wiphy)
2732{
2733 struct regulatory_request *lr;
2734
2735 if (!reg_dev_ignore_cell_hint(wiphy))
2736 reg_num_devs_support_basehint++;
2737
2738 lr = get_last_request();
2739 wiphy_update_regulatory(wiphy, lr->initiator);
2740}
2741
2742void wiphy_regulatory_deregister(struct wiphy *wiphy)
2743{
2744 struct wiphy *request_wiphy = NULL;
2745 struct regulatory_request *lr;
2746
2747 lr = get_last_request();
2748
2749 if (!reg_dev_ignore_cell_hint(wiphy))
2750 reg_num_devs_support_basehint--;
2751
2752 rcu_free_regdom(get_wiphy_regdom(wiphy));
2753 RCU_INIT_POINTER(wiphy->regd, NULL);
2754
2755 if (lr)
2756 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2757
2758 if (!request_wiphy || request_wiphy != wiphy)
2759 return;
2760
2761 lr->wiphy_idx = WIPHY_IDX_INVALID;
2762 lr->country_ie_env = ENVIRON_ANY;
2763}
2764
2765static void reg_timeout_work(struct work_struct *work)
2766{
2767 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2768 rtnl_lock();
2769 restore_regulatory_settings(true);
2770 rtnl_unlock();
2771}
2772
2773/*
2774 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2775 * UNII band definitions
2776 */
2777int cfg80211_get_unii(int freq)
2778{
2779 /* UNII-1 */
2780 if (freq >= 5150 && freq <= 5250)
2781 return 0;
2782
2783 /* UNII-2A */
2784 if (freq > 5250 && freq <= 5350)
2785 return 1;
2786
2787 /* UNII-2B */
2788 if (freq > 5350 && freq <= 5470)
2789 return 2;
2790
2791 /* UNII-2C */
2792 if (freq > 5470 && freq <= 5725)
2793 return 3;
2794
2795 /* UNII-3 */
2796 if (freq > 5725 && freq <= 5825)
2797 return 4;
2798
2799 return -EINVAL;
2800}
2801
2802bool regulatory_indoor_allowed(void)
2803{
2804 return reg_is_indoor;
2805}
2806
2807int __init regulatory_init(void)
2808{
2809 int err = 0;
2810
2811 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2812 if (IS_ERR(reg_pdev))
2813 return PTR_ERR(reg_pdev);
2814
2815 spin_lock_init(&reg_requests_lock);
2816 spin_lock_init(&reg_pending_beacons_lock);
2817
2818 reg_regdb_size_check();
2819
2820 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2821
2822 user_alpha2[0] = '9';
2823 user_alpha2[1] = '7';
2824
2825 /* We always try to get an update for the static regdomain */
2826 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2827 if (err) {
2828 if (err == -ENOMEM)
2829 return err;
2830 /*
2831 * N.B. kobject_uevent_env() can fail mainly for when we're out
2832 * memory which is handled and propagated appropriately above
2833 * but it can also fail during a netlink_broadcast() or during
2834 * early boot for call_usermodehelper(). For now treat these
2835 * errors as non-fatal.
2836 */
2837 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2838 }
2839
2840 /*
2841 * Finally, if the user set the module parameter treat it
2842 * as a user hint.
2843 */
2844 if (!is_world_regdom(ieee80211_regdom))
2845 regulatory_hint_user(ieee80211_regdom,
2846 NL80211_USER_REG_HINT_USER);
2847
2848 return 0;
2849}
2850
2851void regulatory_exit(void)
2852{
2853 struct regulatory_request *reg_request, *tmp;
2854 struct reg_beacon *reg_beacon, *btmp;
2855
2856 cancel_work_sync(&reg_work);
2857 cancel_delayed_work_sync(&reg_timeout);
2858
2859 /* Lock to suppress warnings */
2860 rtnl_lock();
2861 reset_regdomains(true, NULL);
2862 rtnl_unlock();
2863
2864 dev_set_uevent_suppress(&reg_pdev->dev, true);
2865
2866 platform_device_unregister(reg_pdev);
2867
2868 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2869 list_del(&reg_beacon->list);
2870 kfree(reg_beacon);
2871 }
2872
2873 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2874 list_del(&reg_beacon->list);
2875 kfree(reg_beacon);
2876 }
2877
2878 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2879 list_del(&reg_request->list);
2880 kfree(reg_request);
2881 }
2882}