Merge tag 'mm-hotfixes-stable-2025-07-11-16-16' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / net / tls / tls_sw.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38#include <linux/bug.h>
39#include <linux/sched/signal.h>
40#include <linux/module.h>
41#include <linux/kernel.h>
42#include <linux/splice.h>
43#include <crypto/aead.h>
44
45#include <net/strparser.h>
46#include <net/tls.h>
47#include <trace/events/sock.h>
48
49#include "tls.h"
50
51struct tls_decrypt_arg {
52 struct_group(inargs,
53 bool zc;
54 bool async;
55 bool async_done;
56 u8 tail;
57 );
58
59 struct sk_buff *skb;
60};
61
62struct tls_decrypt_ctx {
63 struct sock *sk;
64 u8 iv[TLS_MAX_IV_SIZE];
65 u8 aad[TLS_MAX_AAD_SIZE];
66 u8 tail;
67 bool free_sgout;
68 struct scatterlist sg[];
69};
70
71noinline void tls_err_abort(struct sock *sk, int err)
72{
73 WARN_ON_ONCE(err >= 0);
74 /* sk->sk_err should contain a positive error code. */
75 WRITE_ONCE(sk->sk_err, -err);
76 /* Paired with smp_rmb() in tcp_poll() */
77 smp_wmb();
78 sk_error_report(sk);
79}
80
81static int __skb_nsg(struct sk_buff *skb, int offset, int len,
82 unsigned int recursion_level)
83{
84 int start = skb_headlen(skb);
85 int i, chunk = start - offset;
86 struct sk_buff *frag_iter;
87 int elt = 0;
88
89 if (unlikely(recursion_level >= 24))
90 return -EMSGSIZE;
91
92 if (chunk > 0) {
93 if (chunk > len)
94 chunk = len;
95 elt++;
96 len -= chunk;
97 if (len == 0)
98 return elt;
99 offset += chunk;
100 }
101
102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
103 int end;
104
105 WARN_ON(start > offset + len);
106
107 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
108 chunk = end - offset;
109 if (chunk > 0) {
110 if (chunk > len)
111 chunk = len;
112 elt++;
113 len -= chunk;
114 if (len == 0)
115 return elt;
116 offset += chunk;
117 }
118 start = end;
119 }
120
121 if (unlikely(skb_has_frag_list(skb))) {
122 skb_walk_frags(skb, frag_iter) {
123 int end, ret;
124
125 WARN_ON(start > offset + len);
126
127 end = start + frag_iter->len;
128 chunk = end - offset;
129 if (chunk > 0) {
130 if (chunk > len)
131 chunk = len;
132 ret = __skb_nsg(frag_iter, offset - start, chunk,
133 recursion_level + 1);
134 if (unlikely(ret < 0))
135 return ret;
136 elt += ret;
137 len -= chunk;
138 if (len == 0)
139 return elt;
140 offset += chunk;
141 }
142 start = end;
143 }
144 }
145 BUG_ON(len);
146 return elt;
147}
148
149/* Return the number of scatterlist elements required to completely map the
150 * skb, or -EMSGSIZE if the recursion depth is exceeded.
151 */
152static int skb_nsg(struct sk_buff *skb, int offset, int len)
153{
154 return __skb_nsg(skb, offset, len, 0);
155}
156
157static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
158 struct tls_decrypt_arg *darg)
159{
160 struct strp_msg *rxm = strp_msg(skb);
161 struct tls_msg *tlm = tls_msg(skb);
162 int sub = 0;
163
164 /* Determine zero-padding length */
165 if (prot->version == TLS_1_3_VERSION) {
166 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
167 char content_type = darg->zc ? darg->tail : 0;
168 int err;
169
170 while (content_type == 0) {
171 if (offset < prot->prepend_size)
172 return -EBADMSG;
173 err = skb_copy_bits(skb, rxm->offset + offset,
174 &content_type, 1);
175 if (err)
176 return err;
177 if (content_type)
178 break;
179 sub++;
180 offset--;
181 }
182 tlm->control = content_type;
183 }
184 return sub;
185}
186
187static void tls_decrypt_done(void *data, int err)
188{
189 struct aead_request *aead_req = data;
190 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
191 struct scatterlist *sgout = aead_req->dst;
192 struct tls_sw_context_rx *ctx;
193 struct tls_decrypt_ctx *dctx;
194 struct tls_context *tls_ctx;
195 struct scatterlist *sg;
196 unsigned int pages;
197 struct sock *sk;
198 int aead_size;
199
200 /* If requests get too backlogged crypto API returns -EBUSY and calls
201 * ->complete(-EINPROGRESS) immediately followed by ->complete(0)
202 * to make waiting for backlog to flush with crypto_wait_req() easier.
203 * First wait converts -EBUSY -> -EINPROGRESS, and the second one
204 * -EINPROGRESS -> 0.
205 * We have a single struct crypto_async_request per direction, this
206 * scheme doesn't help us, so just ignore the first ->complete().
207 */
208 if (err == -EINPROGRESS)
209 return;
210
211 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
212 aead_size = ALIGN(aead_size, __alignof__(*dctx));
213 dctx = (void *)((u8 *)aead_req + aead_size);
214
215 sk = dctx->sk;
216 tls_ctx = tls_get_ctx(sk);
217 ctx = tls_sw_ctx_rx(tls_ctx);
218
219 /* Propagate if there was an err */
220 if (err) {
221 if (err == -EBADMSG)
222 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
223 ctx->async_wait.err = err;
224 tls_err_abort(sk, err);
225 }
226
227 /* Free the destination pages if skb was not decrypted inplace */
228 if (dctx->free_sgout) {
229 /* Skip the first S/G entry as it points to AAD */
230 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
231 if (!sg)
232 break;
233 put_page(sg_page(sg));
234 }
235 }
236
237 kfree(aead_req);
238
239 if (atomic_dec_and_test(&ctx->decrypt_pending))
240 complete(&ctx->async_wait.completion);
241}
242
243static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx)
244{
245 if (!atomic_dec_and_test(&ctx->decrypt_pending))
246 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
247 atomic_inc(&ctx->decrypt_pending);
248
249 return ctx->async_wait.err;
250}
251
252static int tls_do_decryption(struct sock *sk,
253 struct scatterlist *sgin,
254 struct scatterlist *sgout,
255 char *iv_recv,
256 size_t data_len,
257 struct aead_request *aead_req,
258 struct tls_decrypt_arg *darg)
259{
260 struct tls_context *tls_ctx = tls_get_ctx(sk);
261 struct tls_prot_info *prot = &tls_ctx->prot_info;
262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
263 int ret;
264
265 aead_request_set_tfm(aead_req, ctx->aead_recv);
266 aead_request_set_ad(aead_req, prot->aad_size);
267 aead_request_set_crypt(aead_req, sgin, sgout,
268 data_len + prot->tag_size,
269 (u8 *)iv_recv);
270
271 if (darg->async) {
272 aead_request_set_callback(aead_req,
273 CRYPTO_TFM_REQ_MAY_BACKLOG,
274 tls_decrypt_done, aead_req);
275 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1);
276 atomic_inc(&ctx->decrypt_pending);
277 } else {
278 DECLARE_CRYPTO_WAIT(wait);
279
280 aead_request_set_callback(aead_req,
281 CRYPTO_TFM_REQ_MAY_BACKLOG,
282 crypto_req_done, &wait);
283 ret = crypto_aead_decrypt(aead_req);
284 if (ret == -EINPROGRESS || ret == -EBUSY)
285 ret = crypto_wait_req(ret, &wait);
286 return ret;
287 }
288
289 ret = crypto_aead_decrypt(aead_req);
290 if (ret == -EINPROGRESS)
291 return 0;
292
293 if (ret == -EBUSY) {
294 ret = tls_decrypt_async_wait(ctx);
295 darg->async_done = true;
296 /* all completions have run, we're not doing async anymore */
297 darg->async = false;
298 return ret;
299 }
300
301 atomic_dec(&ctx->decrypt_pending);
302 darg->async = false;
303
304 return ret;
305}
306
307static void tls_trim_both_msgs(struct sock *sk, int target_size)
308{
309 struct tls_context *tls_ctx = tls_get_ctx(sk);
310 struct tls_prot_info *prot = &tls_ctx->prot_info;
311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
312 struct tls_rec *rec = ctx->open_rec;
313
314 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
315 if (target_size > 0)
316 target_size += prot->overhead_size;
317 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
318}
319
320static int tls_alloc_encrypted_msg(struct sock *sk, int len)
321{
322 struct tls_context *tls_ctx = tls_get_ctx(sk);
323 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
324 struct tls_rec *rec = ctx->open_rec;
325 struct sk_msg *msg_en = &rec->msg_encrypted;
326
327 return sk_msg_alloc(sk, msg_en, len, 0);
328}
329
330static int tls_clone_plaintext_msg(struct sock *sk, int required)
331{
332 struct tls_context *tls_ctx = tls_get_ctx(sk);
333 struct tls_prot_info *prot = &tls_ctx->prot_info;
334 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
335 struct tls_rec *rec = ctx->open_rec;
336 struct sk_msg *msg_pl = &rec->msg_plaintext;
337 struct sk_msg *msg_en = &rec->msg_encrypted;
338 int skip, len;
339
340 /* We add page references worth len bytes from encrypted sg
341 * at the end of plaintext sg. It is guaranteed that msg_en
342 * has enough required room (ensured by caller).
343 */
344 len = required - msg_pl->sg.size;
345
346 /* Skip initial bytes in msg_en's data to be able to use
347 * same offset of both plain and encrypted data.
348 */
349 skip = prot->prepend_size + msg_pl->sg.size;
350
351 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
352}
353
354static struct tls_rec *tls_get_rec(struct sock *sk)
355{
356 struct tls_context *tls_ctx = tls_get_ctx(sk);
357 struct tls_prot_info *prot = &tls_ctx->prot_info;
358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 struct sk_msg *msg_pl, *msg_en;
360 struct tls_rec *rec;
361 int mem_size;
362
363 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
364
365 rec = kzalloc(mem_size, sk->sk_allocation);
366 if (!rec)
367 return NULL;
368
369 msg_pl = &rec->msg_plaintext;
370 msg_en = &rec->msg_encrypted;
371
372 sk_msg_init(msg_pl);
373 sk_msg_init(msg_en);
374
375 sg_init_table(rec->sg_aead_in, 2);
376 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
377 sg_unmark_end(&rec->sg_aead_in[1]);
378
379 sg_init_table(rec->sg_aead_out, 2);
380 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
381 sg_unmark_end(&rec->sg_aead_out[1]);
382
383 rec->sk = sk;
384
385 return rec;
386}
387
388static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
389{
390 sk_msg_free(sk, &rec->msg_encrypted);
391 sk_msg_free(sk, &rec->msg_plaintext);
392 kfree(rec);
393}
394
395static void tls_free_open_rec(struct sock *sk)
396{
397 struct tls_context *tls_ctx = tls_get_ctx(sk);
398 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
399 struct tls_rec *rec = ctx->open_rec;
400
401 if (rec) {
402 tls_free_rec(sk, rec);
403 ctx->open_rec = NULL;
404 }
405}
406
407int tls_tx_records(struct sock *sk, int flags)
408{
409 struct tls_context *tls_ctx = tls_get_ctx(sk);
410 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
411 struct tls_rec *rec, *tmp;
412 struct sk_msg *msg_en;
413 int tx_flags, rc = 0;
414
415 if (tls_is_partially_sent_record(tls_ctx)) {
416 rec = list_first_entry(&ctx->tx_list,
417 struct tls_rec, list);
418
419 if (flags == -1)
420 tx_flags = rec->tx_flags;
421 else
422 tx_flags = flags;
423
424 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
425 if (rc)
426 goto tx_err;
427
428 /* Full record has been transmitted.
429 * Remove the head of tx_list
430 */
431 list_del(&rec->list);
432 sk_msg_free(sk, &rec->msg_plaintext);
433 kfree(rec);
434 }
435
436 /* Tx all ready records */
437 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
438 if (READ_ONCE(rec->tx_ready)) {
439 if (flags == -1)
440 tx_flags = rec->tx_flags;
441 else
442 tx_flags = flags;
443
444 msg_en = &rec->msg_encrypted;
445 rc = tls_push_sg(sk, tls_ctx,
446 &msg_en->sg.data[msg_en->sg.curr],
447 0, tx_flags);
448 if (rc)
449 goto tx_err;
450
451 list_del(&rec->list);
452 sk_msg_free(sk, &rec->msg_plaintext);
453 kfree(rec);
454 } else {
455 break;
456 }
457 }
458
459tx_err:
460 if (rc < 0 && rc != -EAGAIN)
461 tls_err_abort(sk, rc);
462
463 return rc;
464}
465
466static void tls_encrypt_done(void *data, int err)
467{
468 struct tls_sw_context_tx *ctx;
469 struct tls_context *tls_ctx;
470 struct tls_prot_info *prot;
471 struct tls_rec *rec = data;
472 struct scatterlist *sge;
473 struct sk_msg *msg_en;
474 struct sock *sk;
475
476 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */
477 return;
478
479 msg_en = &rec->msg_encrypted;
480
481 sk = rec->sk;
482 tls_ctx = tls_get_ctx(sk);
483 prot = &tls_ctx->prot_info;
484 ctx = tls_sw_ctx_tx(tls_ctx);
485
486 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
487 sge->offset -= prot->prepend_size;
488 sge->length += prot->prepend_size;
489
490 /* Check if error is previously set on socket */
491 if (err || sk->sk_err) {
492 rec = NULL;
493
494 /* If err is already set on socket, return the same code */
495 if (sk->sk_err) {
496 ctx->async_wait.err = -sk->sk_err;
497 } else {
498 ctx->async_wait.err = err;
499 tls_err_abort(sk, err);
500 }
501 }
502
503 if (rec) {
504 struct tls_rec *first_rec;
505
506 /* Mark the record as ready for transmission */
507 smp_store_mb(rec->tx_ready, true);
508
509 /* If received record is at head of tx_list, schedule tx */
510 first_rec = list_first_entry(&ctx->tx_list,
511 struct tls_rec, list);
512 if (rec == first_rec) {
513 /* Schedule the transmission */
514 if (!test_and_set_bit(BIT_TX_SCHEDULED,
515 &ctx->tx_bitmask))
516 schedule_delayed_work(&ctx->tx_work.work, 1);
517 }
518 }
519
520 if (atomic_dec_and_test(&ctx->encrypt_pending))
521 complete(&ctx->async_wait.completion);
522}
523
524static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx)
525{
526 if (!atomic_dec_and_test(&ctx->encrypt_pending))
527 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
528 atomic_inc(&ctx->encrypt_pending);
529
530 return ctx->async_wait.err;
531}
532
533static int tls_do_encryption(struct sock *sk,
534 struct tls_context *tls_ctx,
535 struct tls_sw_context_tx *ctx,
536 struct aead_request *aead_req,
537 size_t data_len, u32 start)
538{
539 struct tls_prot_info *prot = &tls_ctx->prot_info;
540 struct tls_rec *rec = ctx->open_rec;
541 struct sk_msg *msg_en = &rec->msg_encrypted;
542 struct scatterlist *sge = sk_msg_elem(msg_en, start);
543 int rc, iv_offset = 0;
544
545 /* For CCM based ciphers, first byte of IV is a constant */
546 switch (prot->cipher_type) {
547 case TLS_CIPHER_AES_CCM_128:
548 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
549 iv_offset = 1;
550 break;
551 case TLS_CIPHER_SM4_CCM:
552 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
553 iv_offset = 1;
554 break;
555 }
556
557 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
558 prot->iv_size + prot->salt_size);
559
560 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
561 tls_ctx->tx.rec_seq);
562
563 sge->offset += prot->prepend_size;
564 sge->length -= prot->prepend_size;
565
566 msg_en->sg.curr = start;
567
568 aead_request_set_tfm(aead_req, ctx->aead_send);
569 aead_request_set_ad(aead_req, prot->aad_size);
570 aead_request_set_crypt(aead_req, rec->sg_aead_in,
571 rec->sg_aead_out,
572 data_len, rec->iv_data);
573
574 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
575 tls_encrypt_done, rec);
576
577 /* Add the record in tx_list */
578 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
579 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1);
580 atomic_inc(&ctx->encrypt_pending);
581
582 rc = crypto_aead_encrypt(aead_req);
583 if (rc == -EBUSY) {
584 rc = tls_encrypt_async_wait(ctx);
585 rc = rc ?: -EINPROGRESS;
586 }
587 if (!rc || rc != -EINPROGRESS) {
588 atomic_dec(&ctx->encrypt_pending);
589 sge->offset -= prot->prepend_size;
590 sge->length += prot->prepend_size;
591 }
592
593 if (!rc) {
594 WRITE_ONCE(rec->tx_ready, true);
595 } else if (rc != -EINPROGRESS) {
596 list_del(&rec->list);
597 return rc;
598 }
599
600 /* Unhook the record from context if encryption is not failure */
601 ctx->open_rec = NULL;
602 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
603 return rc;
604}
605
606static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
607 struct tls_rec **to, struct sk_msg *msg_opl,
608 struct sk_msg *msg_oen, u32 split_point,
609 u32 tx_overhead_size, u32 *orig_end)
610{
611 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
612 struct scatterlist *sge, *osge, *nsge;
613 u32 orig_size = msg_opl->sg.size;
614 struct scatterlist tmp = { };
615 struct sk_msg *msg_npl;
616 struct tls_rec *new;
617 int ret;
618
619 new = tls_get_rec(sk);
620 if (!new)
621 return -ENOMEM;
622 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
623 tx_overhead_size, 0);
624 if (ret < 0) {
625 tls_free_rec(sk, new);
626 return ret;
627 }
628
629 *orig_end = msg_opl->sg.end;
630 i = msg_opl->sg.start;
631 sge = sk_msg_elem(msg_opl, i);
632 while (apply && sge->length) {
633 if (sge->length > apply) {
634 u32 len = sge->length - apply;
635
636 get_page(sg_page(sge));
637 sg_set_page(&tmp, sg_page(sge), len,
638 sge->offset + apply);
639 sge->length = apply;
640 bytes += apply;
641 apply = 0;
642 } else {
643 apply -= sge->length;
644 bytes += sge->length;
645 }
646
647 sk_msg_iter_var_next(i);
648 if (i == msg_opl->sg.end)
649 break;
650 sge = sk_msg_elem(msg_opl, i);
651 }
652
653 msg_opl->sg.end = i;
654 msg_opl->sg.curr = i;
655 msg_opl->sg.copybreak = 0;
656 msg_opl->apply_bytes = 0;
657 msg_opl->sg.size = bytes;
658
659 msg_npl = &new->msg_plaintext;
660 msg_npl->apply_bytes = apply;
661 msg_npl->sg.size = orig_size - bytes;
662
663 j = msg_npl->sg.start;
664 nsge = sk_msg_elem(msg_npl, j);
665 if (tmp.length) {
666 memcpy(nsge, &tmp, sizeof(*nsge));
667 sk_msg_iter_var_next(j);
668 nsge = sk_msg_elem(msg_npl, j);
669 }
670
671 osge = sk_msg_elem(msg_opl, i);
672 while (osge->length) {
673 memcpy(nsge, osge, sizeof(*nsge));
674 sg_unmark_end(nsge);
675 sk_msg_iter_var_next(i);
676 sk_msg_iter_var_next(j);
677 if (i == *orig_end)
678 break;
679 osge = sk_msg_elem(msg_opl, i);
680 nsge = sk_msg_elem(msg_npl, j);
681 }
682
683 msg_npl->sg.end = j;
684 msg_npl->sg.curr = j;
685 msg_npl->sg.copybreak = 0;
686
687 *to = new;
688 return 0;
689}
690
691static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
692 struct tls_rec *from, u32 orig_end)
693{
694 struct sk_msg *msg_npl = &from->msg_plaintext;
695 struct sk_msg *msg_opl = &to->msg_plaintext;
696 struct scatterlist *osge, *nsge;
697 u32 i, j;
698
699 i = msg_opl->sg.end;
700 sk_msg_iter_var_prev(i);
701 j = msg_npl->sg.start;
702
703 osge = sk_msg_elem(msg_opl, i);
704 nsge = sk_msg_elem(msg_npl, j);
705
706 if (sg_page(osge) == sg_page(nsge) &&
707 osge->offset + osge->length == nsge->offset) {
708 osge->length += nsge->length;
709 put_page(sg_page(nsge));
710 }
711
712 msg_opl->sg.end = orig_end;
713 msg_opl->sg.curr = orig_end;
714 msg_opl->sg.copybreak = 0;
715 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
716 msg_opl->sg.size += msg_npl->sg.size;
717
718 sk_msg_free(sk, &to->msg_encrypted);
719 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
720
721 kfree(from);
722}
723
724static int tls_push_record(struct sock *sk, int flags,
725 unsigned char record_type)
726{
727 struct tls_context *tls_ctx = tls_get_ctx(sk);
728 struct tls_prot_info *prot = &tls_ctx->prot_info;
729 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
730 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
731 u32 i, split_point, orig_end;
732 struct sk_msg *msg_pl, *msg_en;
733 struct aead_request *req;
734 bool split;
735 int rc;
736
737 if (!rec)
738 return 0;
739
740 msg_pl = &rec->msg_plaintext;
741 msg_en = &rec->msg_encrypted;
742
743 split_point = msg_pl->apply_bytes;
744 split = split_point && split_point < msg_pl->sg.size;
745 if (unlikely((!split &&
746 msg_pl->sg.size +
747 prot->overhead_size > msg_en->sg.size) ||
748 (split &&
749 split_point +
750 prot->overhead_size > msg_en->sg.size))) {
751 split = true;
752 split_point = msg_en->sg.size;
753 }
754 if (split) {
755 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
756 split_point, prot->overhead_size,
757 &orig_end);
758 if (rc < 0)
759 return rc;
760 /* This can happen if above tls_split_open_record allocates
761 * a single large encryption buffer instead of two smaller
762 * ones. In this case adjust pointers and continue without
763 * split.
764 */
765 if (!msg_pl->sg.size) {
766 tls_merge_open_record(sk, rec, tmp, orig_end);
767 msg_pl = &rec->msg_plaintext;
768 msg_en = &rec->msg_encrypted;
769 split = false;
770 }
771 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
772 prot->overhead_size);
773 }
774
775 rec->tx_flags = flags;
776 req = &rec->aead_req;
777
778 i = msg_pl->sg.end;
779 sk_msg_iter_var_prev(i);
780
781 rec->content_type = record_type;
782 if (prot->version == TLS_1_3_VERSION) {
783 /* Add content type to end of message. No padding added */
784 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
785 sg_mark_end(&rec->sg_content_type);
786 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
787 &rec->sg_content_type);
788 } else {
789 sg_mark_end(sk_msg_elem(msg_pl, i));
790 }
791
792 if (msg_pl->sg.end < msg_pl->sg.start) {
793 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
794 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
795 msg_pl->sg.data);
796 }
797
798 i = msg_pl->sg.start;
799 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
800
801 i = msg_en->sg.end;
802 sk_msg_iter_var_prev(i);
803 sg_mark_end(sk_msg_elem(msg_en, i));
804
805 i = msg_en->sg.start;
806 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
807
808 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
809 tls_ctx->tx.rec_seq, record_type, prot);
810
811 tls_fill_prepend(tls_ctx,
812 page_address(sg_page(&msg_en->sg.data[i])) +
813 msg_en->sg.data[i].offset,
814 msg_pl->sg.size + prot->tail_size,
815 record_type);
816
817 tls_ctx->pending_open_record_frags = false;
818
819 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
820 msg_pl->sg.size + prot->tail_size, i);
821 if (rc < 0) {
822 if (rc != -EINPROGRESS) {
823 tls_err_abort(sk, -EBADMSG);
824 if (split) {
825 tls_ctx->pending_open_record_frags = true;
826 tls_merge_open_record(sk, rec, tmp, orig_end);
827 }
828 }
829 ctx->async_capable = 1;
830 return rc;
831 } else if (split) {
832 msg_pl = &tmp->msg_plaintext;
833 msg_en = &tmp->msg_encrypted;
834 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
835 tls_ctx->pending_open_record_frags = true;
836 ctx->open_rec = tmp;
837 }
838
839 return tls_tx_records(sk, flags);
840}
841
842static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
843 bool full_record, u8 record_type,
844 ssize_t *copied, int flags)
845{
846 struct tls_context *tls_ctx = tls_get_ctx(sk);
847 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
848 struct sk_msg msg_redir = { };
849 struct sk_psock *psock;
850 struct sock *sk_redir;
851 struct tls_rec *rec;
852 bool enospc, policy, redir_ingress;
853 int err = 0, send;
854 u32 delta = 0;
855
856 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
857 psock = sk_psock_get(sk);
858 if (!psock || !policy) {
859 err = tls_push_record(sk, flags, record_type);
860 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
861 *copied -= sk_msg_free(sk, msg);
862 tls_free_open_rec(sk);
863 err = -sk->sk_err;
864 }
865 if (psock)
866 sk_psock_put(sk, psock);
867 return err;
868 }
869more_data:
870 enospc = sk_msg_full(msg);
871 if (psock->eval == __SK_NONE) {
872 delta = msg->sg.size;
873 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
874 delta -= msg->sg.size;
875 }
876 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
877 !enospc && !full_record) {
878 err = -ENOSPC;
879 goto out_err;
880 }
881 msg->cork_bytes = 0;
882 send = msg->sg.size;
883 if (msg->apply_bytes && msg->apply_bytes < send)
884 send = msg->apply_bytes;
885
886 switch (psock->eval) {
887 case __SK_PASS:
888 err = tls_push_record(sk, flags, record_type);
889 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
890 *copied -= sk_msg_free(sk, msg);
891 tls_free_open_rec(sk);
892 err = -sk->sk_err;
893 goto out_err;
894 }
895 break;
896 case __SK_REDIRECT:
897 redir_ingress = psock->redir_ingress;
898 sk_redir = psock->sk_redir;
899 memcpy(&msg_redir, msg, sizeof(*msg));
900 if (msg->apply_bytes < send)
901 msg->apply_bytes = 0;
902 else
903 msg->apply_bytes -= send;
904 sk_msg_return_zero(sk, msg, send);
905 msg->sg.size -= send;
906 release_sock(sk);
907 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
908 &msg_redir, send, flags);
909 lock_sock(sk);
910 if (err < 0) {
911 /* Regardless of whether the data represented by
912 * msg_redir is sent successfully, we have already
913 * uncharged it via sk_msg_return_zero(). The
914 * msg->sg.size represents the remaining unprocessed
915 * data, which needs to be uncharged here.
916 */
917 sk_mem_uncharge(sk, msg->sg.size);
918 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
919 msg->sg.size = 0;
920 }
921 if (msg->sg.size == 0)
922 tls_free_open_rec(sk);
923 break;
924 case __SK_DROP:
925 default:
926 sk_msg_free_partial(sk, msg, send);
927 if (msg->apply_bytes < send)
928 msg->apply_bytes = 0;
929 else
930 msg->apply_bytes -= send;
931 if (msg->sg.size == 0)
932 tls_free_open_rec(sk);
933 *copied -= (send + delta);
934 err = -EACCES;
935 }
936
937 if (likely(!err)) {
938 bool reset_eval = !ctx->open_rec;
939
940 rec = ctx->open_rec;
941 if (rec) {
942 msg = &rec->msg_plaintext;
943 if (!msg->apply_bytes)
944 reset_eval = true;
945 }
946 if (reset_eval) {
947 psock->eval = __SK_NONE;
948 if (psock->sk_redir) {
949 sock_put(psock->sk_redir);
950 psock->sk_redir = NULL;
951 }
952 }
953 if (rec)
954 goto more_data;
955 }
956 out_err:
957 sk_psock_put(sk, psock);
958 return err;
959}
960
961static int tls_sw_push_pending_record(struct sock *sk, int flags)
962{
963 struct tls_context *tls_ctx = tls_get_ctx(sk);
964 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
965 struct tls_rec *rec = ctx->open_rec;
966 struct sk_msg *msg_pl;
967 size_t copied;
968
969 if (!rec)
970 return 0;
971
972 msg_pl = &rec->msg_plaintext;
973 copied = msg_pl->sg.size;
974 if (!copied)
975 return 0;
976
977 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
978 &copied, flags);
979}
980
981static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
982 struct sk_msg *msg_pl, size_t try_to_copy,
983 ssize_t *copied)
984{
985 struct page *page = NULL, **pages = &page;
986
987 do {
988 ssize_t part;
989 size_t off;
990
991 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
992 try_to_copy, 1, 0, &off);
993 if (part <= 0)
994 return part ?: -EIO;
995
996 if (WARN_ON_ONCE(!sendpage_ok(page))) {
997 iov_iter_revert(&msg->msg_iter, part);
998 return -EIO;
999 }
1000
1001 sk_msg_page_add(msg_pl, page, part, off);
1002 msg_pl->sg.copybreak = 0;
1003 msg_pl->sg.curr = msg_pl->sg.end;
1004 sk_mem_charge(sk, part);
1005 *copied += part;
1006 try_to_copy -= part;
1007 } while (try_to_copy && !sk_msg_full(msg_pl));
1008
1009 return 0;
1010}
1011
1012static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
1013 size_t size)
1014{
1015 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1016 struct tls_context *tls_ctx = tls_get_ctx(sk);
1017 struct tls_prot_info *prot = &tls_ctx->prot_info;
1018 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1019 bool async_capable = ctx->async_capable;
1020 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1021 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1022 bool eor = !(msg->msg_flags & MSG_MORE);
1023 size_t try_to_copy;
1024 ssize_t copied = 0;
1025 struct sk_msg *msg_pl, *msg_en;
1026 struct tls_rec *rec;
1027 int required_size;
1028 int num_async = 0;
1029 bool full_record;
1030 int record_room;
1031 int num_zc = 0;
1032 int orig_size;
1033 int ret = 0;
1034
1035 if (!eor && (msg->msg_flags & MSG_EOR))
1036 return -EINVAL;
1037
1038 if (unlikely(msg->msg_controllen)) {
1039 ret = tls_process_cmsg(sk, msg, &record_type);
1040 if (ret) {
1041 if (ret == -EINPROGRESS)
1042 num_async++;
1043 else if (ret != -EAGAIN)
1044 goto send_end;
1045 }
1046 }
1047
1048 while (msg_data_left(msg)) {
1049 if (sk->sk_err) {
1050 ret = -sk->sk_err;
1051 goto send_end;
1052 }
1053
1054 if (ctx->open_rec)
1055 rec = ctx->open_rec;
1056 else
1057 rec = ctx->open_rec = tls_get_rec(sk);
1058 if (!rec) {
1059 ret = -ENOMEM;
1060 goto send_end;
1061 }
1062
1063 msg_pl = &rec->msg_plaintext;
1064 msg_en = &rec->msg_encrypted;
1065
1066 orig_size = msg_pl->sg.size;
1067 full_record = false;
1068 try_to_copy = msg_data_left(msg);
1069 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1070 if (try_to_copy >= record_room) {
1071 try_to_copy = record_room;
1072 full_record = true;
1073 }
1074
1075 required_size = msg_pl->sg.size + try_to_copy +
1076 prot->overhead_size;
1077
1078 if (!sk_stream_memory_free(sk))
1079 goto wait_for_sndbuf;
1080
1081alloc_encrypted:
1082 ret = tls_alloc_encrypted_msg(sk, required_size);
1083 if (ret) {
1084 if (ret != -ENOSPC)
1085 goto wait_for_memory;
1086
1087 /* Adjust try_to_copy according to the amount that was
1088 * actually allocated. The difference is due
1089 * to max sg elements limit
1090 */
1091 try_to_copy -= required_size - msg_en->sg.size;
1092 full_record = true;
1093 }
1094
1095 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1096 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1097 try_to_copy, &copied);
1098 if (ret < 0)
1099 goto send_end;
1100 tls_ctx->pending_open_record_frags = true;
1101
1102 if (sk_msg_full(msg_pl))
1103 full_record = true;
1104
1105 if (full_record || eor)
1106 goto copied;
1107 continue;
1108 }
1109
1110 if (!is_kvec && (full_record || eor) && !async_capable) {
1111 u32 first = msg_pl->sg.end;
1112
1113 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1114 msg_pl, try_to_copy);
1115 if (ret)
1116 goto fallback_to_reg_send;
1117
1118 num_zc++;
1119 copied += try_to_copy;
1120
1121 sk_msg_sg_copy_set(msg_pl, first);
1122 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1123 record_type, &copied,
1124 msg->msg_flags);
1125 if (ret) {
1126 if (ret == -EINPROGRESS)
1127 num_async++;
1128 else if (ret == -ENOMEM)
1129 goto wait_for_memory;
1130 else if (ctx->open_rec && ret == -ENOSPC) {
1131 if (msg_pl->cork_bytes) {
1132 ret = 0;
1133 goto send_end;
1134 }
1135 goto rollback_iter;
1136 } else if (ret != -EAGAIN)
1137 goto send_end;
1138 }
1139 continue;
1140rollback_iter:
1141 copied -= try_to_copy;
1142 sk_msg_sg_copy_clear(msg_pl, first);
1143 iov_iter_revert(&msg->msg_iter,
1144 msg_pl->sg.size - orig_size);
1145fallback_to_reg_send:
1146 sk_msg_trim(sk, msg_pl, orig_size);
1147 }
1148
1149 required_size = msg_pl->sg.size + try_to_copy;
1150
1151 ret = tls_clone_plaintext_msg(sk, required_size);
1152 if (ret) {
1153 if (ret != -ENOSPC)
1154 goto send_end;
1155
1156 /* Adjust try_to_copy according to the amount that was
1157 * actually allocated. The difference is due
1158 * to max sg elements limit
1159 */
1160 try_to_copy -= required_size - msg_pl->sg.size;
1161 full_record = true;
1162 sk_msg_trim(sk, msg_en,
1163 msg_pl->sg.size + prot->overhead_size);
1164 }
1165
1166 if (try_to_copy) {
1167 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1168 msg_pl, try_to_copy);
1169 if (ret < 0)
1170 goto trim_sgl;
1171 }
1172
1173 /* Open records defined only if successfully copied, otherwise
1174 * we would trim the sg but not reset the open record frags.
1175 */
1176 tls_ctx->pending_open_record_frags = true;
1177 copied += try_to_copy;
1178copied:
1179 if (full_record || eor) {
1180 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1181 record_type, &copied,
1182 msg->msg_flags);
1183 if (ret) {
1184 if (ret == -EINPROGRESS)
1185 num_async++;
1186 else if (ret == -ENOMEM)
1187 goto wait_for_memory;
1188 else if (ret != -EAGAIN) {
1189 if (ret == -ENOSPC)
1190 ret = 0;
1191 goto send_end;
1192 }
1193 }
1194 }
1195
1196 continue;
1197
1198wait_for_sndbuf:
1199 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1200wait_for_memory:
1201 ret = sk_stream_wait_memory(sk, &timeo);
1202 if (ret) {
1203trim_sgl:
1204 if (ctx->open_rec)
1205 tls_trim_both_msgs(sk, orig_size);
1206 goto send_end;
1207 }
1208
1209 if (ctx->open_rec && msg_en->sg.size < required_size)
1210 goto alloc_encrypted;
1211 }
1212
1213 if (!num_async) {
1214 goto send_end;
1215 } else if (num_zc || eor) {
1216 int err;
1217
1218 /* Wait for pending encryptions to get completed */
1219 err = tls_encrypt_async_wait(ctx);
1220 if (err) {
1221 ret = err;
1222 copied = 0;
1223 }
1224 }
1225
1226 /* Transmit if any encryptions have completed */
1227 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1228 cancel_delayed_work(&ctx->tx_work.work);
1229 tls_tx_records(sk, msg->msg_flags);
1230 }
1231
1232send_end:
1233 ret = sk_stream_error(sk, msg->msg_flags, ret);
1234 return copied > 0 ? copied : ret;
1235}
1236
1237int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1238{
1239 struct tls_context *tls_ctx = tls_get_ctx(sk);
1240 int ret;
1241
1242 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1243 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1244 MSG_SENDPAGE_NOPOLICY))
1245 return -EOPNOTSUPP;
1246
1247 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1248 if (ret)
1249 return ret;
1250 lock_sock(sk);
1251 ret = tls_sw_sendmsg_locked(sk, msg, size);
1252 release_sock(sk);
1253 mutex_unlock(&tls_ctx->tx_lock);
1254 return ret;
1255}
1256
1257/*
1258 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1259 */
1260void tls_sw_splice_eof(struct socket *sock)
1261{
1262 struct sock *sk = sock->sk;
1263 struct tls_context *tls_ctx = tls_get_ctx(sk);
1264 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1265 struct tls_rec *rec;
1266 struct sk_msg *msg_pl;
1267 ssize_t copied = 0;
1268 bool retrying = false;
1269 int ret = 0;
1270
1271 if (!ctx->open_rec)
1272 return;
1273
1274 mutex_lock(&tls_ctx->tx_lock);
1275 lock_sock(sk);
1276
1277retry:
1278 /* same checks as in tls_sw_push_pending_record() */
1279 rec = ctx->open_rec;
1280 if (!rec)
1281 goto unlock;
1282
1283 msg_pl = &rec->msg_plaintext;
1284 if (msg_pl->sg.size == 0)
1285 goto unlock;
1286
1287 /* Check the BPF advisor and perform transmission. */
1288 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1289 &copied, 0);
1290 switch (ret) {
1291 case 0:
1292 case -EAGAIN:
1293 if (retrying)
1294 goto unlock;
1295 retrying = true;
1296 goto retry;
1297 case -EINPROGRESS:
1298 break;
1299 default:
1300 goto unlock;
1301 }
1302
1303 /* Wait for pending encryptions to get completed */
1304 if (tls_encrypt_async_wait(ctx))
1305 goto unlock;
1306
1307 /* Transmit if any encryptions have completed */
1308 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1309 cancel_delayed_work(&ctx->tx_work.work);
1310 tls_tx_records(sk, 0);
1311 }
1312
1313unlock:
1314 release_sock(sk);
1315 mutex_unlock(&tls_ctx->tx_lock);
1316}
1317
1318static int
1319tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1320 bool released)
1321{
1322 struct tls_context *tls_ctx = tls_get_ctx(sk);
1323 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1324 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1325 int ret = 0;
1326 long timeo;
1327
1328 /* a rekey is pending, let userspace deal with it */
1329 if (unlikely(ctx->key_update_pending))
1330 return -EKEYEXPIRED;
1331
1332 timeo = sock_rcvtimeo(sk, nonblock);
1333
1334 while (!tls_strp_msg_ready(ctx)) {
1335 if (!sk_psock_queue_empty(psock))
1336 return 0;
1337
1338 if (sk->sk_err)
1339 return sock_error(sk);
1340
1341 if (ret < 0)
1342 return ret;
1343
1344 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1345 tls_strp_check_rcv(&ctx->strp);
1346 if (tls_strp_msg_ready(ctx))
1347 break;
1348 }
1349
1350 if (sk->sk_shutdown & RCV_SHUTDOWN)
1351 return 0;
1352
1353 if (sock_flag(sk, SOCK_DONE))
1354 return 0;
1355
1356 if (!timeo)
1357 return -EAGAIN;
1358
1359 released = true;
1360 add_wait_queue(sk_sleep(sk), &wait);
1361 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1362 ret = sk_wait_event(sk, &timeo,
1363 tls_strp_msg_ready(ctx) ||
1364 !sk_psock_queue_empty(psock),
1365 &wait);
1366 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1367 remove_wait_queue(sk_sleep(sk), &wait);
1368
1369 /* Handle signals */
1370 if (signal_pending(current))
1371 return sock_intr_errno(timeo);
1372 }
1373
1374 tls_strp_msg_load(&ctx->strp, released);
1375
1376 return 1;
1377}
1378
1379static int tls_setup_from_iter(struct iov_iter *from,
1380 int length, int *pages_used,
1381 struct scatterlist *to,
1382 int to_max_pages)
1383{
1384 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1385 struct page *pages[MAX_SKB_FRAGS];
1386 unsigned int size = 0;
1387 ssize_t copied, use;
1388 size_t offset;
1389
1390 while (length > 0) {
1391 i = 0;
1392 maxpages = to_max_pages - num_elem;
1393 if (maxpages == 0) {
1394 rc = -EFAULT;
1395 goto out;
1396 }
1397 copied = iov_iter_get_pages2(from, pages,
1398 length,
1399 maxpages, &offset);
1400 if (copied <= 0) {
1401 rc = -EFAULT;
1402 goto out;
1403 }
1404
1405 length -= copied;
1406 size += copied;
1407 while (copied) {
1408 use = min_t(int, copied, PAGE_SIZE - offset);
1409
1410 sg_set_page(&to[num_elem],
1411 pages[i], use, offset);
1412 sg_unmark_end(&to[num_elem]);
1413 /* We do not uncharge memory from this API */
1414
1415 offset = 0;
1416 copied -= use;
1417
1418 i++;
1419 num_elem++;
1420 }
1421 }
1422 /* Mark the end in the last sg entry if newly added */
1423 if (num_elem > *pages_used)
1424 sg_mark_end(&to[num_elem - 1]);
1425out:
1426 if (rc)
1427 iov_iter_revert(from, size);
1428 *pages_used = num_elem;
1429
1430 return rc;
1431}
1432
1433static struct sk_buff *
1434tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1435 unsigned int full_len)
1436{
1437 struct strp_msg *clr_rxm;
1438 struct sk_buff *clr_skb;
1439 int err;
1440
1441 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1442 &err, sk->sk_allocation);
1443 if (!clr_skb)
1444 return NULL;
1445
1446 skb_copy_header(clr_skb, skb);
1447 clr_skb->len = full_len;
1448 clr_skb->data_len = full_len;
1449
1450 clr_rxm = strp_msg(clr_skb);
1451 clr_rxm->offset = 0;
1452
1453 return clr_skb;
1454}
1455
1456/* Decrypt handlers
1457 *
1458 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1459 * They must transform the darg in/out argument are as follows:
1460 * | Input | Output
1461 * -------------------------------------------------------------------
1462 * zc | Zero-copy decrypt allowed | Zero-copy performed
1463 * async | Async decrypt allowed | Async crypto used / in progress
1464 * skb | * | Output skb
1465 *
1466 * If ZC decryption was performed darg.skb will point to the input skb.
1467 */
1468
1469/* This function decrypts the input skb into either out_iov or in out_sg
1470 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1471 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1472 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1473 * NULL, then the decryption happens inside skb buffers itself, i.e.
1474 * zero-copy gets disabled and 'darg->zc' is updated.
1475 */
1476static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1477 struct scatterlist *out_sg,
1478 struct tls_decrypt_arg *darg)
1479{
1480 struct tls_context *tls_ctx = tls_get_ctx(sk);
1481 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1482 struct tls_prot_info *prot = &tls_ctx->prot_info;
1483 int n_sgin, n_sgout, aead_size, err, pages = 0;
1484 struct sk_buff *skb = tls_strp_msg(ctx);
1485 const struct strp_msg *rxm = strp_msg(skb);
1486 const struct tls_msg *tlm = tls_msg(skb);
1487 struct aead_request *aead_req;
1488 struct scatterlist *sgin = NULL;
1489 struct scatterlist *sgout = NULL;
1490 const int data_len = rxm->full_len - prot->overhead_size;
1491 int tail_pages = !!prot->tail_size;
1492 struct tls_decrypt_ctx *dctx;
1493 struct sk_buff *clear_skb;
1494 int iv_offset = 0;
1495 u8 *mem;
1496
1497 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1498 rxm->full_len - prot->prepend_size);
1499 if (n_sgin < 1)
1500 return n_sgin ?: -EBADMSG;
1501
1502 if (darg->zc && (out_iov || out_sg)) {
1503 clear_skb = NULL;
1504
1505 if (out_iov)
1506 n_sgout = 1 + tail_pages +
1507 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1508 else
1509 n_sgout = sg_nents(out_sg);
1510 } else {
1511 darg->zc = false;
1512
1513 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1514 if (!clear_skb)
1515 return -ENOMEM;
1516
1517 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1518 }
1519
1520 /* Increment to accommodate AAD */
1521 n_sgin = n_sgin + 1;
1522
1523 /* Allocate a single block of memory which contains
1524 * aead_req || tls_decrypt_ctx.
1525 * Both structs are variable length.
1526 */
1527 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1528 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1529 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1530 sk->sk_allocation);
1531 if (!mem) {
1532 err = -ENOMEM;
1533 goto exit_free_skb;
1534 }
1535
1536 /* Segment the allocated memory */
1537 aead_req = (struct aead_request *)mem;
1538 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1539 dctx->sk = sk;
1540 sgin = &dctx->sg[0];
1541 sgout = &dctx->sg[n_sgin];
1542
1543 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1544 switch (prot->cipher_type) {
1545 case TLS_CIPHER_AES_CCM_128:
1546 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1547 iv_offset = 1;
1548 break;
1549 case TLS_CIPHER_SM4_CCM:
1550 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1551 iv_offset = 1;
1552 break;
1553 }
1554
1555 /* Prepare IV */
1556 if (prot->version == TLS_1_3_VERSION ||
1557 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1558 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1559 prot->iv_size + prot->salt_size);
1560 } else {
1561 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1562 &dctx->iv[iv_offset] + prot->salt_size,
1563 prot->iv_size);
1564 if (err < 0)
1565 goto exit_free;
1566 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1567 }
1568 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1569
1570 /* Prepare AAD */
1571 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1572 prot->tail_size,
1573 tls_ctx->rx.rec_seq, tlm->control, prot);
1574
1575 /* Prepare sgin */
1576 sg_init_table(sgin, n_sgin);
1577 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1578 err = skb_to_sgvec(skb, &sgin[1],
1579 rxm->offset + prot->prepend_size,
1580 rxm->full_len - prot->prepend_size);
1581 if (err < 0)
1582 goto exit_free;
1583
1584 if (clear_skb) {
1585 sg_init_table(sgout, n_sgout);
1586 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1587
1588 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1589 data_len + prot->tail_size);
1590 if (err < 0)
1591 goto exit_free;
1592 } else if (out_iov) {
1593 sg_init_table(sgout, n_sgout);
1594 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1595
1596 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1597 (n_sgout - 1 - tail_pages));
1598 if (err < 0)
1599 goto exit_free_pages;
1600
1601 if (prot->tail_size) {
1602 sg_unmark_end(&sgout[pages]);
1603 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1604 prot->tail_size);
1605 sg_mark_end(&sgout[pages + 1]);
1606 }
1607 } else if (out_sg) {
1608 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1609 }
1610 dctx->free_sgout = !!pages;
1611
1612 /* Prepare and submit AEAD request */
1613 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1614 data_len + prot->tail_size, aead_req, darg);
1615 if (err) {
1616 if (darg->async_done)
1617 goto exit_free_skb;
1618 goto exit_free_pages;
1619 }
1620
1621 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1622 clear_skb = NULL;
1623
1624 if (unlikely(darg->async)) {
1625 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1626 if (err)
1627 __skb_queue_tail(&ctx->async_hold, darg->skb);
1628 return err;
1629 }
1630
1631 if (unlikely(darg->async_done))
1632 return 0;
1633
1634 if (prot->tail_size)
1635 darg->tail = dctx->tail;
1636
1637exit_free_pages:
1638 /* Release the pages in case iov was mapped to pages */
1639 for (; pages > 0; pages--)
1640 put_page(sg_page(&sgout[pages]));
1641exit_free:
1642 kfree(mem);
1643exit_free_skb:
1644 consume_skb(clear_skb);
1645 return err;
1646}
1647
1648static int
1649tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1650 struct msghdr *msg, struct tls_decrypt_arg *darg)
1651{
1652 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1653 struct tls_prot_info *prot = &tls_ctx->prot_info;
1654 struct strp_msg *rxm;
1655 int pad, err;
1656
1657 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1658 if (err < 0) {
1659 if (err == -EBADMSG)
1660 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1661 return err;
1662 }
1663 /* keep going even for ->async, the code below is TLS 1.3 */
1664
1665 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1666 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1667 darg->tail != TLS_RECORD_TYPE_DATA)) {
1668 darg->zc = false;
1669 if (!darg->tail)
1670 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1671 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1672 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1673 }
1674
1675 pad = tls_padding_length(prot, darg->skb, darg);
1676 if (pad < 0) {
1677 if (darg->skb != tls_strp_msg(ctx))
1678 consume_skb(darg->skb);
1679 return pad;
1680 }
1681
1682 rxm = strp_msg(darg->skb);
1683 rxm->full_len -= pad;
1684
1685 return 0;
1686}
1687
1688static int
1689tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1690 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1691{
1692 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1693 struct tls_prot_info *prot = &tls_ctx->prot_info;
1694 struct strp_msg *rxm;
1695 int pad, err;
1696
1697 if (tls_ctx->rx_conf != TLS_HW)
1698 return 0;
1699
1700 err = tls_device_decrypted(sk, tls_ctx);
1701 if (err <= 0)
1702 return err;
1703
1704 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1705 if (pad < 0)
1706 return pad;
1707
1708 darg->async = false;
1709 darg->skb = tls_strp_msg(ctx);
1710 /* ->zc downgrade check, in case TLS 1.3 gets here */
1711 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1712 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1713
1714 rxm = strp_msg(darg->skb);
1715 rxm->full_len -= pad;
1716
1717 if (!darg->zc) {
1718 /* Non-ZC case needs a real skb */
1719 darg->skb = tls_strp_msg_detach(ctx);
1720 if (!darg->skb)
1721 return -ENOMEM;
1722 } else {
1723 unsigned int off, len;
1724
1725 /* In ZC case nobody cares about the output skb.
1726 * Just copy the data here. Note the skb is not fully trimmed.
1727 */
1728 off = rxm->offset + prot->prepend_size;
1729 len = rxm->full_len - prot->overhead_size;
1730
1731 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1732 if (err)
1733 return err;
1734 }
1735 return 1;
1736}
1737
1738static int tls_check_pending_rekey(struct sock *sk, struct tls_context *ctx,
1739 struct sk_buff *skb)
1740{
1741 const struct strp_msg *rxm = strp_msg(skb);
1742 const struct tls_msg *tlm = tls_msg(skb);
1743 char hs_type;
1744 int err;
1745
1746 if (likely(tlm->control != TLS_RECORD_TYPE_HANDSHAKE))
1747 return 0;
1748
1749 if (rxm->full_len < 1)
1750 return 0;
1751
1752 err = skb_copy_bits(skb, rxm->offset, &hs_type, 1);
1753 if (err < 0) {
1754 DEBUG_NET_WARN_ON_ONCE(1);
1755 return err;
1756 }
1757
1758 if (hs_type == TLS_HANDSHAKE_KEYUPDATE) {
1759 struct tls_sw_context_rx *rx_ctx = ctx->priv_ctx_rx;
1760
1761 WRITE_ONCE(rx_ctx->key_update_pending, true);
1762 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYRECEIVED);
1763 }
1764
1765 return 0;
1766}
1767
1768static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1769 struct tls_decrypt_arg *darg)
1770{
1771 struct tls_context *tls_ctx = tls_get_ctx(sk);
1772 struct tls_prot_info *prot = &tls_ctx->prot_info;
1773 struct strp_msg *rxm;
1774 int err;
1775
1776 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1777 if (!err)
1778 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1779 if (err < 0)
1780 return err;
1781
1782 rxm = strp_msg(darg->skb);
1783 rxm->offset += prot->prepend_size;
1784 rxm->full_len -= prot->overhead_size;
1785 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1786
1787 return tls_check_pending_rekey(sk, tls_ctx, darg->skb);
1788}
1789
1790int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1791{
1792 struct tls_decrypt_arg darg = { .zc = true, };
1793
1794 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1795}
1796
1797static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1798 u8 *control)
1799{
1800 int err;
1801
1802 if (!*control) {
1803 *control = tlm->control;
1804 if (!*control)
1805 return -EBADMSG;
1806
1807 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1808 sizeof(*control), control);
1809 if (*control != TLS_RECORD_TYPE_DATA) {
1810 if (err || msg->msg_flags & MSG_CTRUNC)
1811 return -EIO;
1812 }
1813 } else if (*control != tlm->control) {
1814 return 0;
1815 }
1816
1817 return 1;
1818}
1819
1820static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1821{
1822 tls_strp_msg_done(&ctx->strp);
1823}
1824
1825/* This function traverses the rx_list in tls receive context to copies the
1826 * decrypted records into the buffer provided by caller zero copy is not
1827 * true. Further, the records are removed from the rx_list if it is not a peek
1828 * case and the record has been consumed completely.
1829 */
1830static int process_rx_list(struct tls_sw_context_rx *ctx,
1831 struct msghdr *msg,
1832 u8 *control,
1833 size_t skip,
1834 size_t len,
1835 bool is_peek,
1836 bool *more)
1837{
1838 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1839 struct tls_msg *tlm;
1840 ssize_t copied = 0;
1841 int err;
1842
1843 while (skip && skb) {
1844 struct strp_msg *rxm = strp_msg(skb);
1845 tlm = tls_msg(skb);
1846
1847 err = tls_record_content_type(msg, tlm, control);
1848 if (err <= 0)
1849 goto more;
1850
1851 if (skip < rxm->full_len)
1852 break;
1853
1854 skip = skip - rxm->full_len;
1855 skb = skb_peek_next(skb, &ctx->rx_list);
1856 }
1857
1858 while (len && skb) {
1859 struct sk_buff *next_skb;
1860 struct strp_msg *rxm = strp_msg(skb);
1861 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1862
1863 tlm = tls_msg(skb);
1864
1865 err = tls_record_content_type(msg, tlm, control);
1866 if (err <= 0)
1867 goto more;
1868
1869 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1870 msg, chunk);
1871 if (err < 0)
1872 goto more;
1873
1874 len = len - chunk;
1875 copied = copied + chunk;
1876
1877 /* Consume the data from record if it is non-peek case*/
1878 if (!is_peek) {
1879 rxm->offset = rxm->offset + chunk;
1880 rxm->full_len = rxm->full_len - chunk;
1881
1882 /* Return if there is unconsumed data in the record */
1883 if (rxm->full_len - skip)
1884 break;
1885 }
1886
1887 /* The remaining skip-bytes must lie in 1st record in rx_list.
1888 * So from the 2nd record, 'skip' should be 0.
1889 */
1890 skip = 0;
1891
1892 if (msg)
1893 msg->msg_flags |= MSG_EOR;
1894
1895 next_skb = skb_peek_next(skb, &ctx->rx_list);
1896
1897 if (!is_peek) {
1898 __skb_unlink(skb, &ctx->rx_list);
1899 consume_skb(skb);
1900 }
1901
1902 skb = next_skb;
1903 }
1904 err = 0;
1905
1906out:
1907 return copied ? : err;
1908more:
1909 if (more)
1910 *more = true;
1911 goto out;
1912}
1913
1914static bool
1915tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1916 size_t len_left, size_t decrypted, ssize_t done,
1917 size_t *flushed_at)
1918{
1919 size_t max_rec;
1920
1921 if (len_left <= decrypted)
1922 return false;
1923
1924 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1925 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1926 return false;
1927
1928 *flushed_at = done;
1929 return sk_flush_backlog(sk);
1930}
1931
1932static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1933 bool nonblock)
1934{
1935 long timeo;
1936 int ret;
1937
1938 timeo = sock_rcvtimeo(sk, nonblock);
1939
1940 while (unlikely(ctx->reader_present)) {
1941 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1942
1943 ctx->reader_contended = 1;
1944
1945 add_wait_queue(&ctx->wq, &wait);
1946 ret = sk_wait_event(sk, &timeo,
1947 !READ_ONCE(ctx->reader_present), &wait);
1948 remove_wait_queue(&ctx->wq, &wait);
1949
1950 if (timeo <= 0)
1951 return -EAGAIN;
1952 if (signal_pending(current))
1953 return sock_intr_errno(timeo);
1954 if (ret < 0)
1955 return ret;
1956 }
1957
1958 WRITE_ONCE(ctx->reader_present, 1);
1959
1960 return 0;
1961}
1962
1963static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1964 bool nonblock)
1965{
1966 int err;
1967
1968 lock_sock(sk);
1969 err = tls_rx_reader_acquire(sk, ctx, nonblock);
1970 if (err)
1971 release_sock(sk);
1972 return err;
1973}
1974
1975static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1976{
1977 if (unlikely(ctx->reader_contended)) {
1978 if (wq_has_sleeper(&ctx->wq))
1979 wake_up(&ctx->wq);
1980 else
1981 ctx->reader_contended = 0;
1982
1983 WARN_ON_ONCE(!ctx->reader_present);
1984 }
1985
1986 WRITE_ONCE(ctx->reader_present, 0);
1987}
1988
1989static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1990{
1991 tls_rx_reader_release(sk, ctx);
1992 release_sock(sk);
1993}
1994
1995int tls_sw_recvmsg(struct sock *sk,
1996 struct msghdr *msg,
1997 size_t len,
1998 int flags,
1999 int *addr_len)
2000{
2001 struct tls_context *tls_ctx = tls_get_ctx(sk);
2002 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2003 struct tls_prot_info *prot = &tls_ctx->prot_info;
2004 ssize_t decrypted = 0, async_copy_bytes = 0;
2005 struct sk_psock *psock;
2006 unsigned char control = 0;
2007 size_t flushed_at = 0;
2008 struct strp_msg *rxm;
2009 struct tls_msg *tlm;
2010 ssize_t copied = 0;
2011 ssize_t peeked = 0;
2012 bool async = false;
2013 int target, err;
2014 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
2015 bool is_peek = flags & MSG_PEEK;
2016 bool rx_more = false;
2017 bool released = true;
2018 bool bpf_strp_enabled;
2019 bool zc_capable;
2020
2021 if (unlikely(flags & MSG_ERRQUEUE))
2022 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
2023
2024 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
2025 if (err < 0)
2026 return err;
2027 psock = sk_psock_get(sk);
2028 bpf_strp_enabled = sk_psock_strp_enabled(psock);
2029
2030 /* If crypto failed the connection is broken */
2031 err = ctx->async_wait.err;
2032 if (err)
2033 goto end;
2034
2035 /* Process pending decrypted records. It must be non-zero-copy */
2036 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more);
2037 if (err < 0)
2038 goto end;
2039
2040 copied = err;
2041 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more)
2042 goto end;
2043
2044 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2045 len = len - copied;
2046
2047 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
2048 ctx->zc_capable;
2049 decrypted = 0;
2050 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
2051 struct tls_decrypt_arg darg;
2052 int to_decrypt, chunk;
2053
2054 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
2055 released);
2056 if (err <= 0) {
2057 if (psock) {
2058 chunk = sk_msg_recvmsg(sk, psock, msg, len,
2059 flags);
2060 if (chunk > 0) {
2061 decrypted += chunk;
2062 len -= chunk;
2063 continue;
2064 }
2065 }
2066 goto recv_end;
2067 }
2068
2069 memset(&darg.inargs, 0, sizeof(darg.inargs));
2070
2071 rxm = strp_msg(tls_strp_msg(ctx));
2072 tlm = tls_msg(tls_strp_msg(ctx));
2073
2074 to_decrypt = rxm->full_len - prot->overhead_size;
2075
2076 if (zc_capable && to_decrypt <= len &&
2077 tlm->control == TLS_RECORD_TYPE_DATA)
2078 darg.zc = true;
2079
2080 /* Do not use async mode if record is non-data */
2081 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2082 darg.async = ctx->async_capable;
2083 else
2084 darg.async = false;
2085
2086 err = tls_rx_one_record(sk, msg, &darg);
2087 if (err < 0) {
2088 tls_err_abort(sk, -EBADMSG);
2089 goto recv_end;
2090 }
2091
2092 async |= darg.async;
2093
2094 /* If the type of records being processed is not known yet,
2095 * set it to record type just dequeued. If it is already known,
2096 * but does not match the record type just dequeued, go to end.
2097 * We always get record type here since for tls1.2, record type
2098 * is known just after record is dequeued from stream parser.
2099 * For tls1.3, we disable async.
2100 */
2101 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2102 if (err <= 0) {
2103 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2104 tls_rx_rec_done(ctx);
2105put_on_rx_list_err:
2106 __skb_queue_tail(&ctx->rx_list, darg.skb);
2107 goto recv_end;
2108 }
2109
2110 /* periodically flush backlog, and feed strparser */
2111 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2112 decrypted + copied,
2113 &flushed_at);
2114
2115 /* TLS 1.3 may have updated the length by more than overhead */
2116 rxm = strp_msg(darg.skb);
2117 chunk = rxm->full_len;
2118 tls_rx_rec_done(ctx);
2119
2120 if (!darg.zc) {
2121 bool partially_consumed = chunk > len;
2122 struct sk_buff *skb = darg.skb;
2123
2124 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2125
2126 if (async) {
2127 /* TLS 1.2-only, to_decrypt must be text len */
2128 chunk = min_t(int, to_decrypt, len);
2129 async_copy_bytes += chunk;
2130put_on_rx_list:
2131 decrypted += chunk;
2132 len -= chunk;
2133 __skb_queue_tail(&ctx->rx_list, skb);
2134 if (unlikely(control != TLS_RECORD_TYPE_DATA))
2135 break;
2136 continue;
2137 }
2138
2139 if (bpf_strp_enabled) {
2140 released = true;
2141 err = sk_psock_tls_strp_read(psock, skb);
2142 if (err != __SK_PASS) {
2143 rxm->offset = rxm->offset + rxm->full_len;
2144 rxm->full_len = 0;
2145 if (err == __SK_DROP)
2146 consume_skb(skb);
2147 continue;
2148 }
2149 }
2150
2151 if (partially_consumed)
2152 chunk = len;
2153
2154 err = skb_copy_datagram_msg(skb, rxm->offset,
2155 msg, chunk);
2156 if (err < 0)
2157 goto put_on_rx_list_err;
2158
2159 if (is_peek) {
2160 peeked += chunk;
2161 goto put_on_rx_list;
2162 }
2163
2164 if (partially_consumed) {
2165 rxm->offset += chunk;
2166 rxm->full_len -= chunk;
2167 goto put_on_rx_list;
2168 }
2169
2170 consume_skb(skb);
2171 }
2172
2173 decrypted += chunk;
2174 len -= chunk;
2175
2176 /* Return full control message to userspace before trying
2177 * to parse another message type
2178 */
2179 msg->msg_flags |= MSG_EOR;
2180 if (control != TLS_RECORD_TYPE_DATA)
2181 break;
2182 }
2183
2184recv_end:
2185 if (async) {
2186 int ret;
2187
2188 /* Wait for all previously submitted records to be decrypted */
2189 ret = tls_decrypt_async_wait(ctx);
2190 __skb_queue_purge(&ctx->async_hold);
2191
2192 if (ret) {
2193 if (err >= 0 || err == -EINPROGRESS)
2194 err = ret;
2195 goto end;
2196 }
2197
2198 /* Drain records from the rx_list & copy if required */
2199 if (is_peek)
2200 err = process_rx_list(ctx, msg, &control, copied + peeked,
2201 decrypted - peeked, is_peek, NULL);
2202 else
2203 err = process_rx_list(ctx, msg, &control, 0,
2204 async_copy_bytes, is_peek, NULL);
2205
2206 /* we could have copied less than we wanted, and possibly nothing */
2207 decrypted += max(err, 0) - async_copy_bytes;
2208 }
2209
2210 copied += decrypted;
2211
2212end:
2213 tls_rx_reader_unlock(sk, ctx);
2214 if (psock)
2215 sk_psock_put(sk, psock);
2216 return copied ? : err;
2217}
2218
2219ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2220 struct pipe_inode_info *pipe,
2221 size_t len, unsigned int flags)
2222{
2223 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2224 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2225 struct strp_msg *rxm = NULL;
2226 struct sock *sk = sock->sk;
2227 struct tls_msg *tlm;
2228 struct sk_buff *skb;
2229 ssize_t copied = 0;
2230 int chunk;
2231 int err;
2232
2233 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2234 if (err < 0)
2235 return err;
2236
2237 if (!skb_queue_empty(&ctx->rx_list)) {
2238 skb = __skb_dequeue(&ctx->rx_list);
2239 } else {
2240 struct tls_decrypt_arg darg;
2241
2242 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2243 true);
2244 if (err <= 0)
2245 goto splice_read_end;
2246
2247 memset(&darg.inargs, 0, sizeof(darg.inargs));
2248
2249 err = tls_rx_one_record(sk, NULL, &darg);
2250 if (err < 0) {
2251 tls_err_abort(sk, -EBADMSG);
2252 goto splice_read_end;
2253 }
2254
2255 tls_rx_rec_done(ctx);
2256 skb = darg.skb;
2257 }
2258
2259 rxm = strp_msg(skb);
2260 tlm = tls_msg(skb);
2261
2262 /* splice does not support reading control messages */
2263 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2264 err = -EINVAL;
2265 goto splice_requeue;
2266 }
2267
2268 chunk = min_t(unsigned int, rxm->full_len, len);
2269 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2270 if (copied < 0)
2271 goto splice_requeue;
2272
2273 if (chunk < rxm->full_len) {
2274 rxm->offset += len;
2275 rxm->full_len -= len;
2276 goto splice_requeue;
2277 }
2278
2279 consume_skb(skb);
2280
2281splice_read_end:
2282 tls_rx_reader_unlock(sk, ctx);
2283 return copied ? : err;
2284
2285splice_requeue:
2286 __skb_queue_head(&ctx->rx_list, skb);
2287 goto splice_read_end;
2288}
2289
2290int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2291 sk_read_actor_t read_actor)
2292{
2293 struct tls_context *tls_ctx = tls_get_ctx(sk);
2294 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2295 struct tls_prot_info *prot = &tls_ctx->prot_info;
2296 struct strp_msg *rxm = NULL;
2297 struct sk_buff *skb = NULL;
2298 struct sk_psock *psock;
2299 size_t flushed_at = 0;
2300 bool released = true;
2301 struct tls_msg *tlm;
2302 ssize_t copied = 0;
2303 ssize_t decrypted;
2304 int err, used;
2305
2306 psock = sk_psock_get(sk);
2307 if (psock) {
2308 sk_psock_put(sk, psock);
2309 return -EINVAL;
2310 }
2311 err = tls_rx_reader_acquire(sk, ctx, true);
2312 if (err < 0)
2313 return err;
2314
2315 /* If crypto failed the connection is broken */
2316 err = ctx->async_wait.err;
2317 if (err)
2318 goto read_sock_end;
2319
2320 decrypted = 0;
2321 do {
2322 if (!skb_queue_empty(&ctx->rx_list)) {
2323 skb = __skb_dequeue(&ctx->rx_list);
2324 rxm = strp_msg(skb);
2325 tlm = tls_msg(skb);
2326 } else {
2327 struct tls_decrypt_arg darg;
2328
2329 err = tls_rx_rec_wait(sk, NULL, true, released);
2330 if (err <= 0)
2331 goto read_sock_end;
2332
2333 memset(&darg.inargs, 0, sizeof(darg.inargs));
2334
2335 err = tls_rx_one_record(sk, NULL, &darg);
2336 if (err < 0) {
2337 tls_err_abort(sk, -EBADMSG);
2338 goto read_sock_end;
2339 }
2340
2341 released = tls_read_flush_backlog(sk, prot, INT_MAX,
2342 0, decrypted,
2343 &flushed_at);
2344 skb = darg.skb;
2345 rxm = strp_msg(skb);
2346 tlm = tls_msg(skb);
2347 decrypted += rxm->full_len;
2348
2349 tls_rx_rec_done(ctx);
2350 }
2351
2352 /* read_sock does not support reading control messages */
2353 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2354 err = -EINVAL;
2355 goto read_sock_requeue;
2356 }
2357
2358 used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2359 if (used <= 0) {
2360 if (!copied)
2361 err = used;
2362 goto read_sock_requeue;
2363 }
2364 copied += used;
2365 if (used < rxm->full_len) {
2366 rxm->offset += used;
2367 rxm->full_len -= used;
2368 if (!desc->count)
2369 goto read_sock_requeue;
2370 } else {
2371 consume_skb(skb);
2372 if (!desc->count)
2373 skb = NULL;
2374 }
2375 } while (skb);
2376
2377read_sock_end:
2378 tls_rx_reader_release(sk, ctx);
2379 return copied ? : err;
2380
2381read_sock_requeue:
2382 __skb_queue_head(&ctx->rx_list, skb);
2383 goto read_sock_end;
2384}
2385
2386bool tls_sw_sock_is_readable(struct sock *sk)
2387{
2388 struct tls_context *tls_ctx = tls_get_ctx(sk);
2389 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2390 bool ingress_empty = true;
2391 struct sk_psock *psock;
2392
2393 rcu_read_lock();
2394 psock = sk_psock(sk);
2395 if (psock)
2396 ingress_empty = list_empty(&psock->ingress_msg);
2397 rcu_read_unlock();
2398
2399 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2400 !skb_queue_empty(&ctx->rx_list);
2401}
2402
2403int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2404{
2405 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2406 struct tls_prot_info *prot = &tls_ctx->prot_info;
2407 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2408 size_t cipher_overhead;
2409 size_t data_len = 0;
2410 int ret;
2411
2412 /* Verify that we have a full TLS header, or wait for more data */
2413 if (strp->stm.offset + prot->prepend_size > skb->len)
2414 return 0;
2415
2416 /* Sanity-check size of on-stack buffer. */
2417 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2418 ret = -EINVAL;
2419 goto read_failure;
2420 }
2421
2422 /* Linearize header to local buffer */
2423 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2424 if (ret < 0)
2425 goto read_failure;
2426
2427 strp->mark = header[0];
2428
2429 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2430
2431 cipher_overhead = prot->tag_size;
2432 if (prot->version != TLS_1_3_VERSION &&
2433 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2434 cipher_overhead += prot->iv_size;
2435
2436 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2437 prot->tail_size) {
2438 ret = -EMSGSIZE;
2439 goto read_failure;
2440 }
2441 if (data_len < cipher_overhead) {
2442 ret = -EBADMSG;
2443 goto read_failure;
2444 }
2445
2446 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2447 if (header[1] != TLS_1_2_VERSION_MINOR ||
2448 header[2] != TLS_1_2_VERSION_MAJOR) {
2449 ret = -EINVAL;
2450 goto read_failure;
2451 }
2452
2453 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2454 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2455 return data_len + TLS_HEADER_SIZE;
2456
2457read_failure:
2458 tls_err_abort(strp->sk, ret);
2459
2460 return ret;
2461}
2462
2463void tls_rx_msg_ready(struct tls_strparser *strp)
2464{
2465 struct tls_sw_context_rx *ctx;
2466
2467 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2468 ctx->saved_data_ready(strp->sk);
2469}
2470
2471static void tls_data_ready(struct sock *sk)
2472{
2473 struct tls_context *tls_ctx = tls_get_ctx(sk);
2474 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2475 struct sk_psock *psock;
2476 gfp_t alloc_save;
2477
2478 trace_sk_data_ready(sk);
2479
2480 alloc_save = sk->sk_allocation;
2481 sk->sk_allocation = GFP_ATOMIC;
2482 tls_strp_data_ready(&ctx->strp);
2483 sk->sk_allocation = alloc_save;
2484
2485 psock = sk_psock_get(sk);
2486 if (psock) {
2487 if (!list_empty(&psock->ingress_msg))
2488 ctx->saved_data_ready(sk);
2489 sk_psock_put(sk, psock);
2490 }
2491}
2492
2493void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2494{
2495 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2496
2497 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2498 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2499 cancel_delayed_work_sync(&ctx->tx_work.work);
2500}
2501
2502void tls_sw_release_resources_tx(struct sock *sk)
2503{
2504 struct tls_context *tls_ctx = tls_get_ctx(sk);
2505 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2506 struct tls_rec *rec, *tmp;
2507
2508 /* Wait for any pending async encryptions to complete */
2509 tls_encrypt_async_wait(ctx);
2510
2511 tls_tx_records(sk, -1);
2512
2513 /* Free up un-sent records in tx_list. First, free
2514 * the partially sent record if any at head of tx_list.
2515 */
2516 if (tls_ctx->partially_sent_record) {
2517 tls_free_partial_record(sk, tls_ctx);
2518 rec = list_first_entry(&ctx->tx_list,
2519 struct tls_rec, list);
2520 list_del(&rec->list);
2521 sk_msg_free(sk, &rec->msg_plaintext);
2522 kfree(rec);
2523 }
2524
2525 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2526 list_del(&rec->list);
2527 sk_msg_free(sk, &rec->msg_encrypted);
2528 sk_msg_free(sk, &rec->msg_plaintext);
2529 kfree(rec);
2530 }
2531
2532 crypto_free_aead(ctx->aead_send);
2533 tls_free_open_rec(sk);
2534}
2535
2536void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2537{
2538 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2539
2540 kfree(ctx);
2541}
2542
2543void tls_sw_release_resources_rx(struct sock *sk)
2544{
2545 struct tls_context *tls_ctx = tls_get_ctx(sk);
2546 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2547
2548 if (ctx->aead_recv) {
2549 __skb_queue_purge(&ctx->rx_list);
2550 crypto_free_aead(ctx->aead_recv);
2551 tls_strp_stop(&ctx->strp);
2552 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2553 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2554 * never swapped.
2555 */
2556 if (ctx->saved_data_ready) {
2557 write_lock_bh(&sk->sk_callback_lock);
2558 sk->sk_data_ready = ctx->saved_data_ready;
2559 write_unlock_bh(&sk->sk_callback_lock);
2560 }
2561 }
2562}
2563
2564void tls_sw_strparser_done(struct tls_context *tls_ctx)
2565{
2566 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2567
2568 tls_strp_done(&ctx->strp);
2569}
2570
2571void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2572{
2573 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2574
2575 kfree(ctx);
2576}
2577
2578void tls_sw_free_resources_rx(struct sock *sk)
2579{
2580 struct tls_context *tls_ctx = tls_get_ctx(sk);
2581
2582 tls_sw_release_resources_rx(sk);
2583 tls_sw_free_ctx_rx(tls_ctx);
2584}
2585
2586/* The work handler to transmitt the encrypted records in tx_list */
2587static void tx_work_handler(struct work_struct *work)
2588{
2589 struct delayed_work *delayed_work = to_delayed_work(work);
2590 struct tx_work *tx_work = container_of(delayed_work,
2591 struct tx_work, work);
2592 struct sock *sk = tx_work->sk;
2593 struct tls_context *tls_ctx = tls_get_ctx(sk);
2594 struct tls_sw_context_tx *ctx;
2595
2596 if (unlikely(!tls_ctx))
2597 return;
2598
2599 ctx = tls_sw_ctx_tx(tls_ctx);
2600 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2601 return;
2602
2603 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2604 return;
2605
2606 if (mutex_trylock(&tls_ctx->tx_lock)) {
2607 lock_sock(sk);
2608 tls_tx_records(sk, -1);
2609 release_sock(sk);
2610 mutex_unlock(&tls_ctx->tx_lock);
2611 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2612 /* Someone is holding the tx_lock, they will likely run Tx
2613 * and cancel the work on their way out of the lock section.
2614 * Schedule a long delay just in case.
2615 */
2616 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2617 }
2618}
2619
2620static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2621{
2622 struct tls_rec *rec;
2623
2624 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2625 if (!rec)
2626 return false;
2627
2628 return READ_ONCE(rec->tx_ready);
2629}
2630
2631void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2632{
2633 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2634
2635 /* Schedule the transmission if tx list is ready */
2636 if (tls_is_tx_ready(tx_ctx) &&
2637 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2638 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2639}
2640
2641void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2642{
2643 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2644
2645 write_lock_bh(&sk->sk_callback_lock);
2646 rx_ctx->saved_data_ready = sk->sk_data_ready;
2647 sk->sk_data_ready = tls_data_ready;
2648 write_unlock_bh(&sk->sk_callback_lock);
2649}
2650
2651void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2652{
2653 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2654
2655 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2656 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2657}
2658
2659static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2660{
2661 struct tls_sw_context_tx *sw_ctx_tx;
2662
2663 if (!ctx->priv_ctx_tx) {
2664 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2665 if (!sw_ctx_tx)
2666 return NULL;
2667 } else {
2668 sw_ctx_tx = ctx->priv_ctx_tx;
2669 }
2670
2671 crypto_init_wait(&sw_ctx_tx->async_wait);
2672 atomic_set(&sw_ctx_tx->encrypt_pending, 1);
2673 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2674 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2675 sw_ctx_tx->tx_work.sk = sk;
2676
2677 return sw_ctx_tx;
2678}
2679
2680static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2681{
2682 struct tls_sw_context_rx *sw_ctx_rx;
2683
2684 if (!ctx->priv_ctx_rx) {
2685 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2686 if (!sw_ctx_rx)
2687 return NULL;
2688 } else {
2689 sw_ctx_rx = ctx->priv_ctx_rx;
2690 }
2691
2692 crypto_init_wait(&sw_ctx_rx->async_wait);
2693 atomic_set(&sw_ctx_rx->decrypt_pending, 1);
2694 init_waitqueue_head(&sw_ctx_rx->wq);
2695 skb_queue_head_init(&sw_ctx_rx->rx_list);
2696 skb_queue_head_init(&sw_ctx_rx->async_hold);
2697
2698 return sw_ctx_rx;
2699}
2700
2701int init_prot_info(struct tls_prot_info *prot,
2702 const struct tls_crypto_info *crypto_info,
2703 const struct tls_cipher_desc *cipher_desc)
2704{
2705 u16 nonce_size = cipher_desc->nonce;
2706
2707 if (crypto_info->version == TLS_1_3_VERSION) {
2708 nonce_size = 0;
2709 prot->aad_size = TLS_HEADER_SIZE;
2710 prot->tail_size = 1;
2711 } else {
2712 prot->aad_size = TLS_AAD_SPACE_SIZE;
2713 prot->tail_size = 0;
2714 }
2715
2716 /* Sanity-check the sizes for stack allocations. */
2717 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2718 return -EINVAL;
2719
2720 prot->version = crypto_info->version;
2721 prot->cipher_type = crypto_info->cipher_type;
2722 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2723 prot->tag_size = cipher_desc->tag;
2724 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2725 prot->iv_size = cipher_desc->iv;
2726 prot->salt_size = cipher_desc->salt;
2727 prot->rec_seq_size = cipher_desc->rec_seq;
2728
2729 return 0;
2730}
2731
2732static void tls_finish_key_update(struct sock *sk, struct tls_context *tls_ctx)
2733{
2734 struct tls_sw_context_rx *ctx = tls_ctx->priv_ctx_rx;
2735
2736 WRITE_ONCE(ctx->key_update_pending, false);
2737 /* wake-up pre-existing poll() */
2738 ctx->saved_data_ready(sk);
2739}
2740
2741int tls_set_sw_offload(struct sock *sk, int tx,
2742 struct tls_crypto_info *new_crypto_info)
2743{
2744 struct tls_crypto_info *crypto_info, *src_crypto_info;
2745 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2746 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2747 const struct tls_cipher_desc *cipher_desc;
2748 char *iv, *rec_seq, *key, *salt;
2749 struct cipher_context *cctx;
2750 struct tls_prot_info *prot;
2751 struct crypto_aead **aead;
2752 struct tls_context *ctx;
2753 struct crypto_tfm *tfm;
2754 int rc = 0;
2755
2756 ctx = tls_get_ctx(sk);
2757 prot = &ctx->prot_info;
2758
2759 /* new_crypto_info != NULL means rekey */
2760 if (!new_crypto_info) {
2761 if (tx) {
2762 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2763 if (!ctx->priv_ctx_tx)
2764 return -ENOMEM;
2765 } else {
2766 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2767 if (!ctx->priv_ctx_rx)
2768 return -ENOMEM;
2769 }
2770 }
2771
2772 if (tx) {
2773 sw_ctx_tx = ctx->priv_ctx_tx;
2774 crypto_info = &ctx->crypto_send.info;
2775 cctx = &ctx->tx;
2776 aead = &sw_ctx_tx->aead_send;
2777 } else {
2778 sw_ctx_rx = ctx->priv_ctx_rx;
2779 crypto_info = &ctx->crypto_recv.info;
2780 cctx = &ctx->rx;
2781 aead = &sw_ctx_rx->aead_recv;
2782 }
2783
2784 src_crypto_info = new_crypto_info ?: crypto_info;
2785
2786 cipher_desc = get_cipher_desc(src_crypto_info->cipher_type);
2787 if (!cipher_desc) {
2788 rc = -EINVAL;
2789 goto free_priv;
2790 }
2791
2792 rc = init_prot_info(prot, src_crypto_info, cipher_desc);
2793 if (rc)
2794 goto free_priv;
2795
2796 iv = crypto_info_iv(src_crypto_info, cipher_desc);
2797 key = crypto_info_key(src_crypto_info, cipher_desc);
2798 salt = crypto_info_salt(src_crypto_info, cipher_desc);
2799 rec_seq = crypto_info_rec_seq(src_crypto_info, cipher_desc);
2800
2801 if (!*aead) {
2802 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2803 if (IS_ERR(*aead)) {
2804 rc = PTR_ERR(*aead);
2805 *aead = NULL;
2806 goto free_priv;
2807 }
2808 }
2809
2810 ctx->push_pending_record = tls_sw_push_pending_record;
2811
2812 /* setkey is the last operation that could fail during a
2813 * rekey. if it succeeds, we can start modifying the
2814 * context.
2815 */
2816 rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2817 if (rc) {
2818 if (new_crypto_info)
2819 goto out;
2820 else
2821 goto free_aead;
2822 }
2823
2824 if (!new_crypto_info) {
2825 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2826 if (rc)
2827 goto free_aead;
2828 }
2829
2830 if (!tx && !new_crypto_info) {
2831 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2832
2833 tls_update_rx_zc_capable(ctx);
2834 sw_ctx_rx->async_capable =
2835 src_crypto_info->version != TLS_1_3_VERSION &&
2836 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2837
2838 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2839 if (rc)
2840 goto free_aead;
2841 }
2842
2843 memcpy(cctx->iv, salt, cipher_desc->salt);
2844 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2845 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2846
2847 if (new_crypto_info) {
2848 unsafe_memcpy(crypto_info, new_crypto_info,
2849 cipher_desc->crypto_info,
2850 /* size was checked in do_tls_setsockopt_conf */);
2851 memzero_explicit(new_crypto_info, cipher_desc->crypto_info);
2852 if (!tx)
2853 tls_finish_key_update(sk, ctx);
2854 }
2855
2856 goto out;
2857
2858free_aead:
2859 crypto_free_aead(*aead);
2860 *aead = NULL;
2861free_priv:
2862 if (!new_crypto_info) {
2863 if (tx) {
2864 kfree(ctx->priv_ctx_tx);
2865 ctx->priv_ctx_tx = NULL;
2866 } else {
2867 kfree(ctx->priv_ctx_rx);
2868 ctx->priv_ctx_rx = NULL;
2869 }
2870 }
2871out:
2872 return rc;
2873}