strparser: pad sk_skb_cb to avoid straddling cachelines
[linux-block.git] / net / tls / tls_sw.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38#include <linux/bug.h>
39#include <linux/sched/signal.h>
40#include <linux/module.h>
41#include <linux/splice.h>
42#include <crypto/aead.h>
43
44#include <net/strparser.h>
45#include <net/tls.h>
46
47struct tls_decrypt_arg {
48 bool zc;
49 bool async;
50 u8 tail;
51};
52
53noinline void tls_err_abort(struct sock *sk, int err)
54{
55 WARN_ON_ONCE(err >= 0);
56 /* sk->sk_err should contain a positive error code. */
57 sk->sk_err = -err;
58 sk_error_report(sk);
59}
60
61static int __skb_nsg(struct sk_buff *skb, int offset, int len,
62 unsigned int recursion_level)
63{
64 int start = skb_headlen(skb);
65 int i, chunk = start - offset;
66 struct sk_buff *frag_iter;
67 int elt = 0;
68
69 if (unlikely(recursion_level >= 24))
70 return -EMSGSIZE;
71
72 if (chunk > 0) {
73 if (chunk > len)
74 chunk = len;
75 elt++;
76 len -= chunk;
77 if (len == 0)
78 return elt;
79 offset += chunk;
80 }
81
82 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
83 int end;
84
85 WARN_ON(start > offset + len);
86
87 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
88 chunk = end - offset;
89 if (chunk > 0) {
90 if (chunk > len)
91 chunk = len;
92 elt++;
93 len -= chunk;
94 if (len == 0)
95 return elt;
96 offset += chunk;
97 }
98 start = end;
99 }
100
101 if (unlikely(skb_has_frag_list(skb))) {
102 skb_walk_frags(skb, frag_iter) {
103 int end, ret;
104
105 WARN_ON(start > offset + len);
106
107 end = start + frag_iter->len;
108 chunk = end - offset;
109 if (chunk > 0) {
110 if (chunk > len)
111 chunk = len;
112 ret = __skb_nsg(frag_iter, offset - start, chunk,
113 recursion_level + 1);
114 if (unlikely(ret < 0))
115 return ret;
116 elt += ret;
117 len -= chunk;
118 if (len == 0)
119 return elt;
120 offset += chunk;
121 }
122 start = end;
123 }
124 }
125 BUG_ON(len);
126 return elt;
127}
128
129/* Return the number of scatterlist elements required to completely map the
130 * skb, or -EMSGSIZE if the recursion depth is exceeded.
131 */
132static int skb_nsg(struct sk_buff *skb, int offset, int len)
133{
134 return __skb_nsg(skb, offset, len, 0);
135}
136
137static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
138 struct tls_decrypt_arg *darg)
139{
140 struct strp_msg *rxm = strp_msg(skb);
141 struct tls_msg *tlm = tls_msg(skb);
142 int sub = 0;
143
144 /* Determine zero-padding length */
145 if (prot->version == TLS_1_3_VERSION) {
146 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
147 char content_type = darg->zc ? darg->tail : 0;
148 int err;
149
150 while (content_type == 0) {
151 if (offset < prot->prepend_size)
152 return -EBADMSG;
153 err = skb_copy_bits(skb, rxm->offset + offset,
154 &content_type, 1);
155 if (err)
156 return err;
157 if (content_type)
158 break;
159 sub++;
160 offset--;
161 }
162 tlm->control = content_type;
163 }
164 return sub;
165}
166
167static void tls_decrypt_done(struct crypto_async_request *req, int err)
168{
169 struct aead_request *aead_req = (struct aead_request *)req;
170 struct scatterlist *sgout = aead_req->dst;
171 struct scatterlist *sgin = aead_req->src;
172 struct tls_sw_context_rx *ctx;
173 struct tls_context *tls_ctx;
174 struct tls_prot_info *prot;
175 struct scatterlist *sg;
176 struct sk_buff *skb;
177 unsigned int pages;
178
179 skb = (struct sk_buff *)req->data;
180 tls_ctx = tls_get_ctx(skb->sk);
181 ctx = tls_sw_ctx_rx(tls_ctx);
182 prot = &tls_ctx->prot_info;
183
184 /* Propagate if there was an err */
185 if (err) {
186 if (err == -EBADMSG)
187 TLS_INC_STATS(sock_net(skb->sk),
188 LINUX_MIB_TLSDECRYPTERROR);
189 ctx->async_wait.err = err;
190 tls_err_abort(skb->sk, err);
191 } else {
192 struct strp_msg *rxm = strp_msg(skb);
193
194 /* No TLS 1.3 support with async crypto */
195 WARN_ON(prot->tail_size);
196
197 rxm->offset += prot->prepend_size;
198 rxm->full_len -= prot->overhead_size;
199 }
200
201 /* After using skb->sk to propagate sk through crypto async callback
202 * we need to NULL it again.
203 */
204 skb->sk = NULL;
205
206
207 /* Free the destination pages if skb was not decrypted inplace */
208 if (sgout != sgin) {
209 /* Skip the first S/G entry as it points to AAD */
210 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
211 if (!sg)
212 break;
213 put_page(sg_page(sg));
214 }
215 }
216
217 kfree(aead_req);
218
219 spin_lock_bh(&ctx->decrypt_compl_lock);
220 if (!atomic_dec_return(&ctx->decrypt_pending))
221 complete(&ctx->async_wait.completion);
222 spin_unlock_bh(&ctx->decrypt_compl_lock);
223}
224
225static int tls_do_decryption(struct sock *sk,
226 struct sk_buff *skb,
227 struct scatterlist *sgin,
228 struct scatterlist *sgout,
229 char *iv_recv,
230 size_t data_len,
231 struct aead_request *aead_req,
232 struct tls_decrypt_arg *darg)
233{
234 struct tls_context *tls_ctx = tls_get_ctx(sk);
235 struct tls_prot_info *prot = &tls_ctx->prot_info;
236 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
237 int ret;
238
239 aead_request_set_tfm(aead_req, ctx->aead_recv);
240 aead_request_set_ad(aead_req, prot->aad_size);
241 aead_request_set_crypt(aead_req, sgin, sgout,
242 data_len + prot->tag_size,
243 (u8 *)iv_recv);
244
245 if (darg->async) {
246 /* Using skb->sk to push sk through to crypto async callback
247 * handler. This allows propagating errors up to the socket
248 * if needed. It _must_ be cleared in the async handler
249 * before consume_skb is called. We _know_ skb->sk is NULL
250 * because it is a clone from strparser.
251 */
252 skb->sk = sk;
253 aead_request_set_callback(aead_req,
254 CRYPTO_TFM_REQ_MAY_BACKLOG,
255 tls_decrypt_done, skb);
256 atomic_inc(&ctx->decrypt_pending);
257 } else {
258 aead_request_set_callback(aead_req,
259 CRYPTO_TFM_REQ_MAY_BACKLOG,
260 crypto_req_done, &ctx->async_wait);
261 }
262
263 ret = crypto_aead_decrypt(aead_req);
264 if (ret == -EINPROGRESS) {
265 if (darg->async)
266 return 0;
267
268 ret = crypto_wait_req(ret, &ctx->async_wait);
269 }
270 darg->async = false;
271
272 return ret;
273}
274
275static void tls_trim_both_msgs(struct sock *sk, int target_size)
276{
277 struct tls_context *tls_ctx = tls_get_ctx(sk);
278 struct tls_prot_info *prot = &tls_ctx->prot_info;
279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 struct tls_rec *rec = ctx->open_rec;
281
282 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
283 if (target_size > 0)
284 target_size += prot->overhead_size;
285 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
286}
287
288static int tls_alloc_encrypted_msg(struct sock *sk, int len)
289{
290 struct tls_context *tls_ctx = tls_get_ctx(sk);
291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 struct tls_rec *rec = ctx->open_rec;
293 struct sk_msg *msg_en = &rec->msg_encrypted;
294
295 return sk_msg_alloc(sk, msg_en, len, 0);
296}
297
298static int tls_clone_plaintext_msg(struct sock *sk, int required)
299{
300 struct tls_context *tls_ctx = tls_get_ctx(sk);
301 struct tls_prot_info *prot = &tls_ctx->prot_info;
302 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303 struct tls_rec *rec = ctx->open_rec;
304 struct sk_msg *msg_pl = &rec->msg_plaintext;
305 struct sk_msg *msg_en = &rec->msg_encrypted;
306 int skip, len;
307
308 /* We add page references worth len bytes from encrypted sg
309 * at the end of plaintext sg. It is guaranteed that msg_en
310 * has enough required room (ensured by caller).
311 */
312 len = required - msg_pl->sg.size;
313
314 /* Skip initial bytes in msg_en's data to be able to use
315 * same offset of both plain and encrypted data.
316 */
317 skip = prot->prepend_size + msg_pl->sg.size;
318
319 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
320}
321
322static struct tls_rec *tls_get_rec(struct sock *sk)
323{
324 struct tls_context *tls_ctx = tls_get_ctx(sk);
325 struct tls_prot_info *prot = &tls_ctx->prot_info;
326 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327 struct sk_msg *msg_pl, *msg_en;
328 struct tls_rec *rec;
329 int mem_size;
330
331 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
332
333 rec = kzalloc(mem_size, sk->sk_allocation);
334 if (!rec)
335 return NULL;
336
337 msg_pl = &rec->msg_plaintext;
338 msg_en = &rec->msg_encrypted;
339
340 sk_msg_init(msg_pl);
341 sk_msg_init(msg_en);
342
343 sg_init_table(rec->sg_aead_in, 2);
344 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345 sg_unmark_end(&rec->sg_aead_in[1]);
346
347 sg_init_table(rec->sg_aead_out, 2);
348 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349 sg_unmark_end(&rec->sg_aead_out[1]);
350
351 return rec;
352}
353
354static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
355{
356 sk_msg_free(sk, &rec->msg_encrypted);
357 sk_msg_free(sk, &rec->msg_plaintext);
358 kfree(rec);
359}
360
361static void tls_free_open_rec(struct sock *sk)
362{
363 struct tls_context *tls_ctx = tls_get_ctx(sk);
364 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
365 struct tls_rec *rec = ctx->open_rec;
366
367 if (rec) {
368 tls_free_rec(sk, rec);
369 ctx->open_rec = NULL;
370 }
371}
372
373int tls_tx_records(struct sock *sk, int flags)
374{
375 struct tls_context *tls_ctx = tls_get_ctx(sk);
376 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
377 struct tls_rec *rec, *tmp;
378 struct sk_msg *msg_en;
379 int tx_flags, rc = 0;
380
381 if (tls_is_partially_sent_record(tls_ctx)) {
382 rec = list_first_entry(&ctx->tx_list,
383 struct tls_rec, list);
384
385 if (flags == -1)
386 tx_flags = rec->tx_flags;
387 else
388 tx_flags = flags;
389
390 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
391 if (rc)
392 goto tx_err;
393
394 /* Full record has been transmitted.
395 * Remove the head of tx_list
396 */
397 list_del(&rec->list);
398 sk_msg_free(sk, &rec->msg_plaintext);
399 kfree(rec);
400 }
401
402 /* Tx all ready records */
403 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
404 if (READ_ONCE(rec->tx_ready)) {
405 if (flags == -1)
406 tx_flags = rec->tx_flags;
407 else
408 tx_flags = flags;
409
410 msg_en = &rec->msg_encrypted;
411 rc = tls_push_sg(sk, tls_ctx,
412 &msg_en->sg.data[msg_en->sg.curr],
413 0, tx_flags);
414 if (rc)
415 goto tx_err;
416
417 list_del(&rec->list);
418 sk_msg_free(sk, &rec->msg_plaintext);
419 kfree(rec);
420 } else {
421 break;
422 }
423 }
424
425tx_err:
426 if (rc < 0 && rc != -EAGAIN)
427 tls_err_abort(sk, -EBADMSG);
428
429 return rc;
430}
431
432static void tls_encrypt_done(struct crypto_async_request *req, int err)
433{
434 struct aead_request *aead_req = (struct aead_request *)req;
435 struct sock *sk = req->data;
436 struct tls_context *tls_ctx = tls_get_ctx(sk);
437 struct tls_prot_info *prot = &tls_ctx->prot_info;
438 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
439 struct scatterlist *sge;
440 struct sk_msg *msg_en;
441 struct tls_rec *rec;
442 bool ready = false;
443 int pending;
444
445 rec = container_of(aead_req, struct tls_rec, aead_req);
446 msg_en = &rec->msg_encrypted;
447
448 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
449 sge->offset -= prot->prepend_size;
450 sge->length += prot->prepend_size;
451
452 /* Check if error is previously set on socket */
453 if (err || sk->sk_err) {
454 rec = NULL;
455
456 /* If err is already set on socket, return the same code */
457 if (sk->sk_err) {
458 ctx->async_wait.err = -sk->sk_err;
459 } else {
460 ctx->async_wait.err = err;
461 tls_err_abort(sk, err);
462 }
463 }
464
465 if (rec) {
466 struct tls_rec *first_rec;
467
468 /* Mark the record as ready for transmission */
469 smp_store_mb(rec->tx_ready, true);
470
471 /* If received record is at head of tx_list, schedule tx */
472 first_rec = list_first_entry(&ctx->tx_list,
473 struct tls_rec, list);
474 if (rec == first_rec)
475 ready = true;
476 }
477
478 spin_lock_bh(&ctx->encrypt_compl_lock);
479 pending = atomic_dec_return(&ctx->encrypt_pending);
480
481 if (!pending && ctx->async_notify)
482 complete(&ctx->async_wait.completion);
483 spin_unlock_bh(&ctx->encrypt_compl_lock);
484
485 if (!ready)
486 return;
487
488 /* Schedule the transmission */
489 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
490 schedule_delayed_work(&ctx->tx_work.work, 1);
491}
492
493static int tls_do_encryption(struct sock *sk,
494 struct tls_context *tls_ctx,
495 struct tls_sw_context_tx *ctx,
496 struct aead_request *aead_req,
497 size_t data_len, u32 start)
498{
499 struct tls_prot_info *prot = &tls_ctx->prot_info;
500 struct tls_rec *rec = ctx->open_rec;
501 struct sk_msg *msg_en = &rec->msg_encrypted;
502 struct scatterlist *sge = sk_msg_elem(msg_en, start);
503 int rc, iv_offset = 0;
504
505 /* For CCM based ciphers, first byte of IV is a constant */
506 switch (prot->cipher_type) {
507 case TLS_CIPHER_AES_CCM_128:
508 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
509 iv_offset = 1;
510 break;
511 case TLS_CIPHER_SM4_CCM:
512 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
513 iv_offset = 1;
514 break;
515 }
516
517 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
518 prot->iv_size + prot->salt_size);
519
520 xor_iv_with_seq(prot, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
521
522 sge->offset += prot->prepend_size;
523 sge->length -= prot->prepend_size;
524
525 msg_en->sg.curr = start;
526
527 aead_request_set_tfm(aead_req, ctx->aead_send);
528 aead_request_set_ad(aead_req, prot->aad_size);
529 aead_request_set_crypt(aead_req, rec->sg_aead_in,
530 rec->sg_aead_out,
531 data_len, rec->iv_data);
532
533 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
534 tls_encrypt_done, sk);
535
536 /* Add the record in tx_list */
537 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
538 atomic_inc(&ctx->encrypt_pending);
539
540 rc = crypto_aead_encrypt(aead_req);
541 if (!rc || rc != -EINPROGRESS) {
542 atomic_dec(&ctx->encrypt_pending);
543 sge->offset -= prot->prepend_size;
544 sge->length += prot->prepend_size;
545 }
546
547 if (!rc) {
548 WRITE_ONCE(rec->tx_ready, true);
549 } else if (rc != -EINPROGRESS) {
550 list_del(&rec->list);
551 return rc;
552 }
553
554 /* Unhook the record from context if encryption is not failure */
555 ctx->open_rec = NULL;
556 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
557 return rc;
558}
559
560static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
561 struct tls_rec **to, struct sk_msg *msg_opl,
562 struct sk_msg *msg_oen, u32 split_point,
563 u32 tx_overhead_size, u32 *orig_end)
564{
565 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
566 struct scatterlist *sge, *osge, *nsge;
567 u32 orig_size = msg_opl->sg.size;
568 struct scatterlist tmp = { };
569 struct sk_msg *msg_npl;
570 struct tls_rec *new;
571 int ret;
572
573 new = tls_get_rec(sk);
574 if (!new)
575 return -ENOMEM;
576 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
577 tx_overhead_size, 0);
578 if (ret < 0) {
579 tls_free_rec(sk, new);
580 return ret;
581 }
582
583 *orig_end = msg_opl->sg.end;
584 i = msg_opl->sg.start;
585 sge = sk_msg_elem(msg_opl, i);
586 while (apply && sge->length) {
587 if (sge->length > apply) {
588 u32 len = sge->length - apply;
589
590 get_page(sg_page(sge));
591 sg_set_page(&tmp, sg_page(sge), len,
592 sge->offset + apply);
593 sge->length = apply;
594 bytes += apply;
595 apply = 0;
596 } else {
597 apply -= sge->length;
598 bytes += sge->length;
599 }
600
601 sk_msg_iter_var_next(i);
602 if (i == msg_opl->sg.end)
603 break;
604 sge = sk_msg_elem(msg_opl, i);
605 }
606
607 msg_opl->sg.end = i;
608 msg_opl->sg.curr = i;
609 msg_opl->sg.copybreak = 0;
610 msg_opl->apply_bytes = 0;
611 msg_opl->sg.size = bytes;
612
613 msg_npl = &new->msg_plaintext;
614 msg_npl->apply_bytes = apply;
615 msg_npl->sg.size = orig_size - bytes;
616
617 j = msg_npl->sg.start;
618 nsge = sk_msg_elem(msg_npl, j);
619 if (tmp.length) {
620 memcpy(nsge, &tmp, sizeof(*nsge));
621 sk_msg_iter_var_next(j);
622 nsge = sk_msg_elem(msg_npl, j);
623 }
624
625 osge = sk_msg_elem(msg_opl, i);
626 while (osge->length) {
627 memcpy(nsge, osge, sizeof(*nsge));
628 sg_unmark_end(nsge);
629 sk_msg_iter_var_next(i);
630 sk_msg_iter_var_next(j);
631 if (i == *orig_end)
632 break;
633 osge = sk_msg_elem(msg_opl, i);
634 nsge = sk_msg_elem(msg_npl, j);
635 }
636
637 msg_npl->sg.end = j;
638 msg_npl->sg.curr = j;
639 msg_npl->sg.copybreak = 0;
640
641 *to = new;
642 return 0;
643}
644
645static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
646 struct tls_rec *from, u32 orig_end)
647{
648 struct sk_msg *msg_npl = &from->msg_plaintext;
649 struct sk_msg *msg_opl = &to->msg_plaintext;
650 struct scatterlist *osge, *nsge;
651 u32 i, j;
652
653 i = msg_opl->sg.end;
654 sk_msg_iter_var_prev(i);
655 j = msg_npl->sg.start;
656
657 osge = sk_msg_elem(msg_opl, i);
658 nsge = sk_msg_elem(msg_npl, j);
659
660 if (sg_page(osge) == sg_page(nsge) &&
661 osge->offset + osge->length == nsge->offset) {
662 osge->length += nsge->length;
663 put_page(sg_page(nsge));
664 }
665
666 msg_opl->sg.end = orig_end;
667 msg_opl->sg.curr = orig_end;
668 msg_opl->sg.copybreak = 0;
669 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
670 msg_opl->sg.size += msg_npl->sg.size;
671
672 sk_msg_free(sk, &to->msg_encrypted);
673 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
674
675 kfree(from);
676}
677
678static int tls_push_record(struct sock *sk, int flags,
679 unsigned char record_type)
680{
681 struct tls_context *tls_ctx = tls_get_ctx(sk);
682 struct tls_prot_info *prot = &tls_ctx->prot_info;
683 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
684 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
685 u32 i, split_point, orig_end;
686 struct sk_msg *msg_pl, *msg_en;
687 struct aead_request *req;
688 bool split;
689 int rc;
690
691 if (!rec)
692 return 0;
693
694 msg_pl = &rec->msg_plaintext;
695 msg_en = &rec->msg_encrypted;
696
697 split_point = msg_pl->apply_bytes;
698 split = split_point && split_point < msg_pl->sg.size;
699 if (unlikely((!split &&
700 msg_pl->sg.size +
701 prot->overhead_size > msg_en->sg.size) ||
702 (split &&
703 split_point +
704 prot->overhead_size > msg_en->sg.size))) {
705 split = true;
706 split_point = msg_en->sg.size;
707 }
708 if (split) {
709 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
710 split_point, prot->overhead_size,
711 &orig_end);
712 if (rc < 0)
713 return rc;
714 /* This can happen if above tls_split_open_record allocates
715 * a single large encryption buffer instead of two smaller
716 * ones. In this case adjust pointers and continue without
717 * split.
718 */
719 if (!msg_pl->sg.size) {
720 tls_merge_open_record(sk, rec, tmp, orig_end);
721 msg_pl = &rec->msg_plaintext;
722 msg_en = &rec->msg_encrypted;
723 split = false;
724 }
725 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
726 prot->overhead_size);
727 }
728
729 rec->tx_flags = flags;
730 req = &rec->aead_req;
731
732 i = msg_pl->sg.end;
733 sk_msg_iter_var_prev(i);
734
735 rec->content_type = record_type;
736 if (prot->version == TLS_1_3_VERSION) {
737 /* Add content type to end of message. No padding added */
738 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
739 sg_mark_end(&rec->sg_content_type);
740 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
741 &rec->sg_content_type);
742 } else {
743 sg_mark_end(sk_msg_elem(msg_pl, i));
744 }
745
746 if (msg_pl->sg.end < msg_pl->sg.start) {
747 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
748 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
749 msg_pl->sg.data);
750 }
751
752 i = msg_pl->sg.start;
753 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
754
755 i = msg_en->sg.end;
756 sk_msg_iter_var_prev(i);
757 sg_mark_end(sk_msg_elem(msg_en, i));
758
759 i = msg_en->sg.start;
760 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
761
762 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
763 tls_ctx->tx.rec_seq, record_type, prot);
764
765 tls_fill_prepend(tls_ctx,
766 page_address(sg_page(&msg_en->sg.data[i])) +
767 msg_en->sg.data[i].offset,
768 msg_pl->sg.size + prot->tail_size,
769 record_type);
770
771 tls_ctx->pending_open_record_frags = false;
772
773 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
774 msg_pl->sg.size + prot->tail_size, i);
775 if (rc < 0) {
776 if (rc != -EINPROGRESS) {
777 tls_err_abort(sk, -EBADMSG);
778 if (split) {
779 tls_ctx->pending_open_record_frags = true;
780 tls_merge_open_record(sk, rec, tmp, orig_end);
781 }
782 }
783 ctx->async_capable = 1;
784 return rc;
785 } else if (split) {
786 msg_pl = &tmp->msg_plaintext;
787 msg_en = &tmp->msg_encrypted;
788 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
789 tls_ctx->pending_open_record_frags = true;
790 ctx->open_rec = tmp;
791 }
792
793 return tls_tx_records(sk, flags);
794}
795
796static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
797 bool full_record, u8 record_type,
798 ssize_t *copied, int flags)
799{
800 struct tls_context *tls_ctx = tls_get_ctx(sk);
801 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
802 struct sk_msg msg_redir = { };
803 struct sk_psock *psock;
804 struct sock *sk_redir;
805 struct tls_rec *rec;
806 bool enospc, policy;
807 int err = 0, send;
808 u32 delta = 0;
809
810 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
811 psock = sk_psock_get(sk);
812 if (!psock || !policy) {
813 err = tls_push_record(sk, flags, record_type);
814 if (err && sk->sk_err == EBADMSG) {
815 *copied -= sk_msg_free(sk, msg);
816 tls_free_open_rec(sk);
817 err = -sk->sk_err;
818 }
819 if (psock)
820 sk_psock_put(sk, psock);
821 return err;
822 }
823more_data:
824 enospc = sk_msg_full(msg);
825 if (psock->eval == __SK_NONE) {
826 delta = msg->sg.size;
827 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
828 delta -= msg->sg.size;
829 }
830 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
831 !enospc && !full_record) {
832 err = -ENOSPC;
833 goto out_err;
834 }
835 msg->cork_bytes = 0;
836 send = msg->sg.size;
837 if (msg->apply_bytes && msg->apply_bytes < send)
838 send = msg->apply_bytes;
839
840 switch (psock->eval) {
841 case __SK_PASS:
842 err = tls_push_record(sk, flags, record_type);
843 if (err && sk->sk_err == EBADMSG) {
844 *copied -= sk_msg_free(sk, msg);
845 tls_free_open_rec(sk);
846 err = -sk->sk_err;
847 goto out_err;
848 }
849 break;
850 case __SK_REDIRECT:
851 sk_redir = psock->sk_redir;
852 memcpy(&msg_redir, msg, sizeof(*msg));
853 if (msg->apply_bytes < send)
854 msg->apply_bytes = 0;
855 else
856 msg->apply_bytes -= send;
857 sk_msg_return_zero(sk, msg, send);
858 msg->sg.size -= send;
859 release_sock(sk);
860 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
861 lock_sock(sk);
862 if (err < 0) {
863 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
864 msg->sg.size = 0;
865 }
866 if (msg->sg.size == 0)
867 tls_free_open_rec(sk);
868 break;
869 case __SK_DROP:
870 default:
871 sk_msg_free_partial(sk, msg, send);
872 if (msg->apply_bytes < send)
873 msg->apply_bytes = 0;
874 else
875 msg->apply_bytes -= send;
876 if (msg->sg.size == 0)
877 tls_free_open_rec(sk);
878 *copied -= (send + delta);
879 err = -EACCES;
880 }
881
882 if (likely(!err)) {
883 bool reset_eval = !ctx->open_rec;
884
885 rec = ctx->open_rec;
886 if (rec) {
887 msg = &rec->msg_plaintext;
888 if (!msg->apply_bytes)
889 reset_eval = true;
890 }
891 if (reset_eval) {
892 psock->eval = __SK_NONE;
893 if (psock->sk_redir) {
894 sock_put(psock->sk_redir);
895 psock->sk_redir = NULL;
896 }
897 }
898 if (rec)
899 goto more_data;
900 }
901 out_err:
902 sk_psock_put(sk, psock);
903 return err;
904}
905
906static int tls_sw_push_pending_record(struct sock *sk, int flags)
907{
908 struct tls_context *tls_ctx = tls_get_ctx(sk);
909 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
910 struct tls_rec *rec = ctx->open_rec;
911 struct sk_msg *msg_pl;
912 size_t copied;
913
914 if (!rec)
915 return 0;
916
917 msg_pl = &rec->msg_plaintext;
918 copied = msg_pl->sg.size;
919 if (!copied)
920 return 0;
921
922 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
923 &copied, flags);
924}
925
926int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
927{
928 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
929 struct tls_context *tls_ctx = tls_get_ctx(sk);
930 struct tls_prot_info *prot = &tls_ctx->prot_info;
931 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
932 bool async_capable = ctx->async_capable;
933 unsigned char record_type = TLS_RECORD_TYPE_DATA;
934 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
935 bool eor = !(msg->msg_flags & MSG_MORE);
936 size_t try_to_copy;
937 ssize_t copied = 0;
938 struct sk_msg *msg_pl, *msg_en;
939 struct tls_rec *rec;
940 int required_size;
941 int num_async = 0;
942 bool full_record;
943 int record_room;
944 int num_zc = 0;
945 int orig_size;
946 int ret = 0;
947 int pending;
948
949 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
950 MSG_CMSG_COMPAT))
951 return -EOPNOTSUPP;
952
953 mutex_lock(&tls_ctx->tx_lock);
954 lock_sock(sk);
955
956 if (unlikely(msg->msg_controllen)) {
957 ret = tls_proccess_cmsg(sk, msg, &record_type);
958 if (ret) {
959 if (ret == -EINPROGRESS)
960 num_async++;
961 else if (ret != -EAGAIN)
962 goto send_end;
963 }
964 }
965
966 while (msg_data_left(msg)) {
967 if (sk->sk_err) {
968 ret = -sk->sk_err;
969 goto send_end;
970 }
971
972 if (ctx->open_rec)
973 rec = ctx->open_rec;
974 else
975 rec = ctx->open_rec = tls_get_rec(sk);
976 if (!rec) {
977 ret = -ENOMEM;
978 goto send_end;
979 }
980
981 msg_pl = &rec->msg_plaintext;
982 msg_en = &rec->msg_encrypted;
983
984 orig_size = msg_pl->sg.size;
985 full_record = false;
986 try_to_copy = msg_data_left(msg);
987 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
988 if (try_to_copy >= record_room) {
989 try_to_copy = record_room;
990 full_record = true;
991 }
992
993 required_size = msg_pl->sg.size + try_to_copy +
994 prot->overhead_size;
995
996 if (!sk_stream_memory_free(sk))
997 goto wait_for_sndbuf;
998
999alloc_encrypted:
1000 ret = tls_alloc_encrypted_msg(sk, required_size);
1001 if (ret) {
1002 if (ret != -ENOSPC)
1003 goto wait_for_memory;
1004
1005 /* Adjust try_to_copy according to the amount that was
1006 * actually allocated. The difference is due
1007 * to max sg elements limit
1008 */
1009 try_to_copy -= required_size - msg_en->sg.size;
1010 full_record = true;
1011 }
1012
1013 if (!is_kvec && (full_record || eor) && !async_capable) {
1014 u32 first = msg_pl->sg.end;
1015
1016 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1017 msg_pl, try_to_copy);
1018 if (ret)
1019 goto fallback_to_reg_send;
1020
1021 num_zc++;
1022 copied += try_to_copy;
1023
1024 sk_msg_sg_copy_set(msg_pl, first);
1025 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1026 record_type, &copied,
1027 msg->msg_flags);
1028 if (ret) {
1029 if (ret == -EINPROGRESS)
1030 num_async++;
1031 else if (ret == -ENOMEM)
1032 goto wait_for_memory;
1033 else if (ctx->open_rec && ret == -ENOSPC)
1034 goto rollback_iter;
1035 else if (ret != -EAGAIN)
1036 goto send_end;
1037 }
1038 continue;
1039rollback_iter:
1040 copied -= try_to_copy;
1041 sk_msg_sg_copy_clear(msg_pl, first);
1042 iov_iter_revert(&msg->msg_iter,
1043 msg_pl->sg.size - orig_size);
1044fallback_to_reg_send:
1045 sk_msg_trim(sk, msg_pl, orig_size);
1046 }
1047
1048 required_size = msg_pl->sg.size + try_to_copy;
1049
1050 ret = tls_clone_plaintext_msg(sk, required_size);
1051 if (ret) {
1052 if (ret != -ENOSPC)
1053 goto send_end;
1054
1055 /* Adjust try_to_copy according to the amount that was
1056 * actually allocated. The difference is due
1057 * to max sg elements limit
1058 */
1059 try_to_copy -= required_size - msg_pl->sg.size;
1060 full_record = true;
1061 sk_msg_trim(sk, msg_en,
1062 msg_pl->sg.size + prot->overhead_size);
1063 }
1064
1065 if (try_to_copy) {
1066 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1067 msg_pl, try_to_copy);
1068 if (ret < 0)
1069 goto trim_sgl;
1070 }
1071
1072 /* Open records defined only if successfully copied, otherwise
1073 * we would trim the sg but not reset the open record frags.
1074 */
1075 tls_ctx->pending_open_record_frags = true;
1076 copied += try_to_copy;
1077 if (full_record || eor) {
1078 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1079 record_type, &copied,
1080 msg->msg_flags);
1081 if (ret) {
1082 if (ret == -EINPROGRESS)
1083 num_async++;
1084 else if (ret == -ENOMEM)
1085 goto wait_for_memory;
1086 else if (ret != -EAGAIN) {
1087 if (ret == -ENOSPC)
1088 ret = 0;
1089 goto send_end;
1090 }
1091 }
1092 }
1093
1094 continue;
1095
1096wait_for_sndbuf:
1097 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1098wait_for_memory:
1099 ret = sk_stream_wait_memory(sk, &timeo);
1100 if (ret) {
1101trim_sgl:
1102 if (ctx->open_rec)
1103 tls_trim_both_msgs(sk, orig_size);
1104 goto send_end;
1105 }
1106
1107 if (ctx->open_rec && msg_en->sg.size < required_size)
1108 goto alloc_encrypted;
1109 }
1110
1111 if (!num_async) {
1112 goto send_end;
1113 } else if (num_zc) {
1114 /* Wait for pending encryptions to get completed */
1115 spin_lock_bh(&ctx->encrypt_compl_lock);
1116 ctx->async_notify = true;
1117
1118 pending = atomic_read(&ctx->encrypt_pending);
1119 spin_unlock_bh(&ctx->encrypt_compl_lock);
1120 if (pending)
1121 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1122 else
1123 reinit_completion(&ctx->async_wait.completion);
1124
1125 /* There can be no concurrent accesses, since we have no
1126 * pending encrypt operations
1127 */
1128 WRITE_ONCE(ctx->async_notify, false);
1129
1130 if (ctx->async_wait.err) {
1131 ret = ctx->async_wait.err;
1132 copied = 0;
1133 }
1134 }
1135
1136 /* Transmit if any encryptions have completed */
1137 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1138 cancel_delayed_work(&ctx->tx_work.work);
1139 tls_tx_records(sk, msg->msg_flags);
1140 }
1141
1142send_end:
1143 ret = sk_stream_error(sk, msg->msg_flags, ret);
1144
1145 release_sock(sk);
1146 mutex_unlock(&tls_ctx->tx_lock);
1147 return copied > 0 ? copied : ret;
1148}
1149
1150static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1151 int offset, size_t size, int flags)
1152{
1153 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1154 struct tls_context *tls_ctx = tls_get_ctx(sk);
1155 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1156 struct tls_prot_info *prot = &tls_ctx->prot_info;
1157 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1158 struct sk_msg *msg_pl;
1159 struct tls_rec *rec;
1160 int num_async = 0;
1161 ssize_t copied = 0;
1162 bool full_record;
1163 int record_room;
1164 int ret = 0;
1165 bool eor;
1166
1167 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1168 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1169
1170 /* Call the sk_stream functions to manage the sndbuf mem. */
1171 while (size > 0) {
1172 size_t copy, required_size;
1173
1174 if (sk->sk_err) {
1175 ret = -sk->sk_err;
1176 goto sendpage_end;
1177 }
1178
1179 if (ctx->open_rec)
1180 rec = ctx->open_rec;
1181 else
1182 rec = ctx->open_rec = tls_get_rec(sk);
1183 if (!rec) {
1184 ret = -ENOMEM;
1185 goto sendpage_end;
1186 }
1187
1188 msg_pl = &rec->msg_plaintext;
1189
1190 full_record = false;
1191 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1192 copy = size;
1193 if (copy >= record_room) {
1194 copy = record_room;
1195 full_record = true;
1196 }
1197
1198 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1199
1200 if (!sk_stream_memory_free(sk))
1201 goto wait_for_sndbuf;
1202alloc_payload:
1203 ret = tls_alloc_encrypted_msg(sk, required_size);
1204 if (ret) {
1205 if (ret != -ENOSPC)
1206 goto wait_for_memory;
1207
1208 /* Adjust copy according to the amount that was
1209 * actually allocated. The difference is due
1210 * to max sg elements limit
1211 */
1212 copy -= required_size - msg_pl->sg.size;
1213 full_record = true;
1214 }
1215
1216 sk_msg_page_add(msg_pl, page, copy, offset);
1217 sk_mem_charge(sk, copy);
1218
1219 offset += copy;
1220 size -= copy;
1221 copied += copy;
1222
1223 tls_ctx->pending_open_record_frags = true;
1224 if (full_record || eor || sk_msg_full(msg_pl)) {
1225 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1226 record_type, &copied, flags);
1227 if (ret) {
1228 if (ret == -EINPROGRESS)
1229 num_async++;
1230 else if (ret == -ENOMEM)
1231 goto wait_for_memory;
1232 else if (ret != -EAGAIN) {
1233 if (ret == -ENOSPC)
1234 ret = 0;
1235 goto sendpage_end;
1236 }
1237 }
1238 }
1239 continue;
1240wait_for_sndbuf:
1241 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1242wait_for_memory:
1243 ret = sk_stream_wait_memory(sk, &timeo);
1244 if (ret) {
1245 if (ctx->open_rec)
1246 tls_trim_both_msgs(sk, msg_pl->sg.size);
1247 goto sendpage_end;
1248 }
1249
1250 if (ctx->open_rec)
1251 goto alloc_payload;
1252 }
1253
1254 if (num_async) {
1255 /* Transmit if any encryptions have completed */
1256 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1257 cancel_delayed_work(&ctx->tx_work.work);
1258 tls_tx_records(sk, flags);
1259 }
1260 }
1261sendpage_end:
1262 ret = sk_stream_error(sk, flags, ret);
1263 return copied > 0 ? copied : ret;
1264}
1265
1266int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1267 int offset, size_t size, int flags)
1268{
1269 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1270 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1271 MSG_NO_SHARED_FRAGS))
1272 return -EOPNOTSUPP;
1273
1274 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1275}
1276
1277int tls_sw_sendpage(struct sock *sk, struct page *page,
1278 int offset, size_t size, int flags)
1279{
1280 struct tls_context *tls_ctx = tls_get_ctx(sk);
1281 int ret;
1282
1283 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1284 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1285 return -EOPNOTSUPP;
1286
1287 mutex_lock(&tls_ctx->tx_lock);
1288 lock_sock(sk);
1289 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1290 release_sock(sk);
1291 mutex_unlock(&tls_ctx->tx_lock);
1292 return ret;
1293}
1294
1295static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1296 bool nonblock, long timeo, int *err)
1297{
1298 struct tls_context *tls_ctx = tls_get_ctx(sk);
1299 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1300 struct sk_buff *skb;
1301 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1302
1303 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1304 if (sk->sk_err) {
1305 *err = sock_error(sk);
1306 return NULL;
1307 }
1308
1309 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1310 __strp_unpause(&ctx->strp);
1311 if (ctx->recv_pkt)
1312 return ctx->recv_pkt;
1313 }
1314
1315 if (sk->sk_shutdown & RCV_SHUTDOWN)
1316 return NULL;
1317
1318 if (sock_flag(sk, SOCK_DONE))
1319 return NULL;
1320
1321 if (nonblock || !timeo) {
1322 *err = -EAGAIN;
1323 return NULL;
1324 }
1325
1326 add_wait_queue(sk_sleep(sk), &wait);
1327 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1328 sk_wait_event(sk, &timeo,
1329 ctx->recv_pkt != skb ||
1330 !sk_psock_queue_empty(psock),
1331 &wait);
1332 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1333 remove_wait_queue(sk_sleep(sk), &wait);
1334
1335 /* Handle signals */
1336 if (signal_pending(current)) {
1337 *err = sock_intr_errno(timeo);
1338 return NULL;
1339 }
1340 }
1341
1342 return skb;
1343}
1344
1345static int tls_setup_from_iter(struct iov_iter *from,
1346 int length, int *pages_used,
1347 struct scatterlist *to,
1348 int to_max_pages)
1349{
1350 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1351 struct page *pages[MAX_SKB_FRAGS];
1352 unsigned int size = 0;
1353 ssize_t copied, use;
1354 size_t offset;
1355
1356 while (length > 0) {
1357 i = 0;
1358 maxpages = to_max_pages - num_elem;
1359 if (maxpages == 0) {
1360 rc = -EFAULT;
1361 goto out;
1362 }
1363 copied = iov_iter_get_pages(from, pages,
1364 length,
1365 maxpages, &offset);
1366 if (copied <= 0) {
1367 rc = -EFAULT;
1368 goto out;
1369 }
1370
1371 iov_iter_advance(from, copied);
1372
1373 length -= copied;
1374 size += copied;
1375 while (copied) {
1376 use = min_t(int, copied, PAGE_SIZE - offset);
1377
1378 sg_set_page(&to[num_elem],
1379 pages[i], use, offset);
1380 sg_unmark_end(&to[num_elem]);
1381 /* We do not uncharge memory from this API */
1382
1383 offset = 0;
1384 copied -= use;
1385
1386 i++;
1387 num_elem++;
1388 }
1389 }
1390 /* Mark the end in the last sg entry if newly added */
1391 if (num_elem > *pages_used)
1392 sg_mark_end(&to[num_elem - 1]);
1393out:
1394 if (rc)
1395 iov_iter_revert(from, size);
1396 *pages_used = num_elem;
1397
1398 return rc;
1399}
1400
1401/* This function decrypts the input skb into either out_iov or in out_sg
1402 * or in skb buffers itself. The input parameter 'zc' indicates if
1403 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1404 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1405 * NULL, then the decryption happens inside skb buffers itself, i.e.
1406 * zero-copy gets disabled and 'zc' is updated.
1407 */
1408
1409static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1410 struct iov_iter *out_iov,
1411 struct scatterlist *out_sg,
1412 struct tls_decrypt_arg *darg)
1413{
1414 struct tls_context *tls_ctx = tls_get_ctx(sk);
1415 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1416 struct tls_prot_info *prot = &tls_ctx->prot_info;
1417 struct strp_msg *rxm = strp_msg(skb);
1418 struct tls_msg *tlm = tls_msg(skb);
1419 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1420 u8 *aad, *iv, *tail, *mem = NULL;
1421 struct aead_request *aead_req;
1422 struct sk_buff *unused;
1423 struct scatterlist *sgin = NULL;
1424 struct scatterlist *sgout = NULL;
1425 const int data_len = rxm->full_len - prot->overhead_size;
1426 int tail_pages = !!prot->tail_size;
1427 int iv_offset = 0;
1428
1429 if (darg->zc && (out_iov || out_sg)) {
1430 if (out_iov)
1431 n_sgout = 1 + tail_pages +
1432 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1433 else
1434 n_sgout = sg_nents(out_sg);
1435 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1436 rxm->full_len - prot->prepend_size);
1437 } else {
1438 n_sgout = 0;
1439 darg->zc = false;
1440 n_sgin = skb_cow_data(skb, 0, &unused);
1441 }
1442
1443 if (n_sgin < 1)
1444 return -EBADMSG;
1445
1446 /* Increment to accommodate AAD */
1447 n_sgin = n_sgin + 1;
1448
1449 nsg = n_sgin + n_sgout;
1450
1451 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1452 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1453 mem_size = mem_size + prot->aad_size;
1454 mem_size = mem_size + MAX_IV_SIZE;
1455 mem_size = mem_size + prot->tail_size;
1456
1457 /* Allocate a single block of memory which contains
1458 * aead_req || sgin[] || sgout[] || aad || iv || tail.
1459 * This order achieves correct alignment for aead_req, sgin, sgout.
1460 */
1461 mem = kmalloc(mem_size, sk->sk_allocation);
1462 if (!mem)
1463 return -ENOMEM;
1464
1465 /* Segment the allocated memory */
1466 aead_req = (struct aead_request *)mem;
1467 sgin = (struct scatterlist *)(mem + aead_size);
1468 sgout = sgin + n_sgin;
1469 aad = (u8 *)(sgout + n_sgout);
1470 iv = aad + prot->aad_size;
1471 tail = iv + MAX_IV_SIZE;
1472
1473 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1474 switch (prot->cipher_type) {
1475 case TLS_CIPHER_AES_CCM_128:
1476 iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1477 iv_offset = 1;
1478 break;
1479 case TLS_CIPHER_SM4_CCM:
1480 iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1481 iv_offset = 1;
1482 break;
1483 }
1484
1485 /* Prepare IV */
1486 if (prot->version == TLS_1_3_VERSION ||
1487 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1488 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1489 prot->iv_size + prot->salt_size);
1490 } else {
1491 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1492 iv + iv_offset + prot->salt_size,
1493 prot->iv_size);
1494 if (err < 0) {
1495 kfree(mem);
1496 return err;
1497 }
1498 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1499 }
1500 xor_iv_with_seq(prot, iv + iv_offset, tls_ctx->rx.rec_seq);
1501
1502 /* Prepare AAD */
1503 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1504 prot->tail_size,
1505 tls_ctx->rx.rec_seq, tlm->control, prot);
1506
1507 /* Prepare sgin */
1508 sg_init_table(sgin, n_sgin);
1509 sg_set_buf(&sgin[0], aad, prot->aad_size);
1510 err = skb_to_sgvec(skb, &sgin[1],
1511 rxm->offset + prot->prepend_size,
1512 rxm->full_len - prot->prepend_size);
1513 if (err < 0) {
1514 kfree(mem);
1515 return err;
1516 }
1517
1518 if (n_sgout) {
1519 if (out_iov) {
1520 sg_init_table(sgout, n_sgout);
1521 sg_set_buf(&sgout[0], aad, prot->aad_size);
1522
1523 err = tls_setup_from_iter(out_iov, data_len,
1524 &pages, &sgout[1],
1525 (n_sgout - 1 - tail_pages));
1526 if (err < 0)
1527 goto fallback_to_reg_recv;
1528
1529 if (prot->tail_size) {
1530 sg_unmark_end(&sgout[pages]);
1531 sg_set_buf(&sgout[pages + 1], tail,
1532 prot->tail_size);
1533 sg_mark_end(&sgout[pages + 1]);
1534 }
1535 } else if (out_sg) {
1536 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1537 } else {
1538 goto fallback_to_reg_recv;
1539 }
1540 } else {
1541fallback_to_reg_recv:
1542 sgout = sgin;
1543 pages = 0;
1544 darg->zc = false;
1545 }
1546
1547 /* Prepare and submit AEAD request */
1548 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1549 data_len + prot->tail_size, aead_req, darg);
1550 if (darg->async)
1551 return 0;
1552
1553 if (prot->tail_size)
1554 darg->tail = *tail;
1555
1556 /* Release the pages in case iov was mapped to pages */
1557 for (; pages > 0; pages--)
1558 put_page(sg_page(&sgout[pages]));
1559
1560 kfree(mem);
1561 return err;
1562}
1563
1564static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1565 struct iov_iter *dest,
1566 struct tls_decrypt_arg *darg)
1567{
1568 struct tls_context *tls_ctx = tls_get_ctx(sk);
1569 struct tls_prot_info *prot = &tls_ctx->prot_info;
1570 struct strp_msg *rxm = strp_msg(skb);
1571 struct tls_msg *tlm = tls_msg(skb);
1572 int pad, err;
1573
1574 if (tlm->decrypted) {
1575 darg->zc = false;
1576 darg->async = false;
1577 return 0;
1578 }
1579
1580 if (tls_ctx->rx_conf == TLS_HW) {
1581 err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1582 if (err < 0)
1583 return err;
1584 if (err > 0) {
1585 tlm->decrypted = 1;
1586 darg->zc = false;
1587 darg->async = false;
1588 goto decrypt_done;
1589 }
1590 }
1591
1592 err = decrypt_internal(sk, skb, dest, NULL, darg);
1593 if (err < 0) {
1594 if (err == -EBADMSG)
1595 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1596 return err;
1597 }
1598 if (darg->async)
1599 goto decrypt_next;
1600 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1601 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1602 darg->tail != TLS_RECORD_TYPE_DATA)) {
1603 darg->zc = false;
1604 TLS_INC_STATS(sock_net(sk), LINUX_MIN_TLSDECRYPTRETRY);
1605 return decrypt_skb_update(sk, skb, dest, darg);
1606 }
1607
1608decrypt_done:
1609 pad = tls_padding_length(prot, skb, darg);
1610 if (pad < 0)
1611 return pad;
1612
1613 rxm->full_len -= pad;
1614 rxm->offset += prot->prepend_size;
1615 rxm->full_len -= prot->overhead_size;
1616 tlm->decrypted = 1;
1617decrypt_next:
1618 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1619
1620 return 0;
1621}
1622
1623int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1624 struct scatterlist *sgout)
1625{
1626 struct tls_decrypt_arg darg = { .zc = true, };
1627
1628 return decrypt_internal(sk, skb, NULL, sgout, &darg);
1629}
1630
1631static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1632 u8 *control)
1633{
1634 int err;
1635
1636 if (!*control) {
1637 *control = tlm->control;
1638 if (!*control)
1639 return -EBADMSG;
1640
1641 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1642 sizeof(*control), control);
1643 if (*control != TLS_RECORD_TYPE_DATA) {
1644 if (err || msg->msg_flags & MSG_CTRUNC)
1645 return -EIO;
1646 }
1647 } else if (*control != tlm->control) {
1648 return 0;
1649 }
1650
1651 return 1;
1652}
1653
1654/* This function traverses the rx_list in tls receive context to copies the
1655 * decrypted records into the buffer provided by caller zero copy is not
1656 * true. Further, the records are removed from the rx_list if it is not a peek
1657 * case and the record has been consumed completely.
1658 */
1659static int process_rx_list(struct tls_sw_context_rx *ctx,
1660 struct msghdr *msg,
1661 u8 *control,
1662 size_t skip,
1663 size_t len,
1664 bool zc,
1665 bool is_peek)
1666{
1667 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1668 struct tls_msg *tlm;
1669 ssize_t copied = 0;
1670 int err;
1671
1672 while (skip && skb) {
1673 struct strp_msg *rxm = strp_msg(skb);
1674 tlm = tls_msg(skb);
1675
1676 err = tls_record_content_type(msg, tlm, control);
1677 if (err <= 0)
1678 goto out;
1679
1680 if (skip < rxm->full_len)
1681 break;
1682
1683 skip = skip - rxm->full_len;
1684 skb = skb_peek_next(skb, &ctx->rx_list);
1685 }
1686
1687 while (len && skb) {
1688 struct sk_buff *next_skb;
1689 struct strp_msg *rxm = strp_msg(skb);
1690 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1691
1692 tlm = tls_msg(skb);
1693
1694 err = tls_record_content_type(msg, tlm, control);
1695 if (err <= 0)
1696 goto out;
1697
1698 if (!zc || (rxm->full_len - skip) > len) {
1699 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1700 msg, chunk);
1701 if (err < 0)
1702 goto out;
1703 }
1704
1705 len = len - chunk;
1706 copied = copied + chunk;
1707
1708 /* Consume the data from record if it is non-peek case*/
1709 if (!is_peek) {
1710 rxm->offset = rxm->offset + chunk;
1711 rxm->full_len = rxm->full_len - chunk;
1712
1713 /* Return if there is unconsumed data in the record */
1714 if (rxm->full_len - skip)
1715 break;
1716 }
1717
1718 /* The remaining skip-bytes must lie in 1st record in rx_list.
1719 * So from the 2nd record, 'skip' should be 0.
1720 */
1721 skip = 0;
1722
1723 if (msg)
1724 msg->msg_flags |= MSG_EOR;
1725
1726 next_skb = skb_peek_next(skb, &ctx->rx_list);
1727
1728 if (!is_peek) {
1729 __skb_unlink(skb, &ctx->rx_list);
1730 consume_skb(skb);
1731 }
1732
1733 skb = next_skb;
1734 }
1735 err = 0;
1736
1737out:
1738 return copied ? : err;
1739}
1740
1741static void
1742tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1743 size_t len_left, size_t decrypted, ssize_t done,
1744 size_t *flushed_at)
1745{
1746 size_t max_rec;
1747
1748 if (len_left <= decrypted)
1749 return;
1750
1751 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1752 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1753 return;
1754
1755 *flushed_at = done;
1756 sk_flush_backlog(sk);
1757}
1758
1759int tls_sw_recvmsg(struct sock *sk,
1760 struct msghdr *msg,
1761 size_t len,
1762 int flags,
1763 int *addr_len)
1764{
1765 struct tls_context *tls_ctx = tls_get_ctx(sk);
1766 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1767 struct tls_prot_info *prot = &tls_ctx->prot_info;
1768 struct sk_psock *psock;
1769 unsigned char control = 0;
1770 ssize_t decrypted = 0;
1771 size_t flushed_at = 0;
1772 struct strp_msg *rxm;
1773 struct tls_msg *tlm;
1774 struct sk_buff *skb;
1775 ssize_t copied = 0;
1776 bool async = false;
1777 int target, err = 0;
1778 long timeo;
1779 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1780 bool is_peek = flags & MSG_PEEK;
1781 bool bpf_strp_enabled;
1782 bool zc_capable;
1783
1784 if (unlikely(flags & MSG_ERRQUEUE))
1785 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1786
1787 psock = sk_psock_get(sk);
1788 lock_sock(sk);
1789 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1790
1791 /* If crypto failed the connection is broken */
1792 err = ctx->async_wait.err;
1793 if (err)
1794 goto end;
1795
1796 /* Process pending decrypted records. It must be non-zero-copy */
1797 err = process_rx_list(ctx, msg, &control, 0, len, false, is_peek);
1798 if (err < 0)
1799 goto end;
1800
1801 copied = err;
1802 if (len <= copied)
1803 goto end;
1804
1805 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1806 len = len - copied;
1807 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1808
1809 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1810 ctx->zc_capable;
1811 decrypted = 0;
1812 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1813 struct tls_decrypt_arg darg = {};
1814 int to_decrypt, chunk;
1815
1816 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1817 if (!skb) {
1818 if (psock) {
1819 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1820 flags);
1821 if (chunk > 0)
1822 goto leave_on_list;
1823 }
1824 goto recv_end;
1825 }
1826
1827 rxm = strp_msg(skb);
1828 tlm = tls_msg(skb);
1829
1830 to_decrypt = rxm->full_len - prot->overhead_size;
1831
1832 if (zc_capable && to_decrypt <= len &&
1833 tlm->control == TLS_RECORD_TYPE_DATA)
1834 darg.zc = true;
1835
1836 /* Do not use async mode if record is non-data */
1837 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1838 darg.async = ctx->async_capable;
1839 else
1840 darg.async = false;
1841
1842 err = decrypt_skb_update(sk, skb, &msg->msg_iter, &darg);
1843 if (err < 0) {
1844 tls_err_abort(sk, -EBADMSG);
1845 goto recv_end;
1846 }
1847
1848 async |= darg.async;
1849
1850 /* If the type of records being processed is not known yet,
1851 * set it to record type just dequeued. If it is already known,
1852 * but does not match the record type just dequeued, go to end.
1853 * We always get record type here since for tls1.2, record type
1854 * is known just after record is dequeued from stream parser.
1855 * For tls1.3, we disable async.
1856 */
1857 err = tls_record_content_type(msg, tlm, &control);
1858 if (err <= 0)
1859 goto recv_end;
1860
1861 /* periodically flush backlog, and feed strparser */
1862 tls_read_flush_backlog(sk, prot, len, to_decrypt,
1863 decrypted + copied, &flushed_at);
1864
1865 ctx->recv_pkt = NULL;
1866 __strp_unpause(&ctx->strp);
1867 __skb_queue_tail(&ctx->rx_list, skb);
1868
1869 if (async) {
1870 /* TLS 1.2-only, to_decrypt must be text length */
1871 chunk = min_t(int, to_decrypt, len);
1872leave_on_list:
1873 decrypted += chunk;
1874 len -= chunk;
1875 continue;
1876 }
1877 /* TLS 1.3 may have updated the length by more than overhead */
1878 chunk = rxm->full_len;
1879
1880 if (!darg.zc) {
1881 bool partially_consumed = chunk > len;
1882
1883 if (bpf_strp_enabled) {
1884 /* BPF may try to queue the skb */
1885 __skb_unlink(skb, &ctx->rx_list);
1886 err = sk_psock_tls_strp_read(psock, skb);
1887 if (err != __SK_PASS) {
1888 rxm->offset = rxm->offset + rxm->full_len;
1889 rxm->full_len = 0;
1890 if (err == __SK_DROP)
1891 consume_skb(skb);
1892 continue;
1893 }
1894 __skb_queue_tail(&ctx->rx_list, skb);
1895 }
1896
1897 if (partially_consumed)
1898 chunk = len;
1899
1900 err = skb_copy_datagram_msg(skb, rxm->offset,
1901 msg, chunk);
1902 if (err < 0)
1903 goto recv_end;
1904
1905 if (is_peek)
1906 goto leave_on_list;
1907
1908 if (partially_consumed) {
1909 rxm->offset += chunk;
1910 rxm->full_len -= chunk;
1911 goto leave_on_list;
1912 }
1913 }
1914
1915 decrypted += chunk;
1916 len -= chunk;
1917
1918 __skb_unlink(skb, &ctx->rx_list);
1919 consume_skb(skb);
1920
1921 /* Return full control message to userspace before trying
1922 * to parse another message type
1923 */
1924 msg->msg_flags |= MSG_EOR;
1925 if (control != TLS_RECORD_TYPE_DATA)
1926 break;
1927 }
1928
1929recv_end:
1930 if (async) {
1931 int ret, pending;
1932
1933 /* Wait for all previously submitted records to be decrypted */
1934 spin_lock_bh(&ctx->decrypt_compl_lock);
1935 reinit_completion(&ctx->async_wait.completion);
1936 pending = atomic_read(&ctx->decrypt_pending);
1937 spin_unlock_bh(&ctx->decrypt_compl_lock);
1938 if (pending) {
1939 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1940 if (ret) {
1941 if (err >= 0 || err == -EINPROGRESS)
1942 err = ret;
1943 decrypted = 0;
1944 goto end;
1945 }
1946 }
1947
1948 /* Drain records from the rx_list & copy if required */
1949 if (is_peek || is_kvec)
1950 err = process_rx_list(ctx, msg, &control, copied,
1951 decrypted, false, is_peek);
1952 else
1953 err = process_rx_list(ctx, msg, &control, 0,
1954 decrypted, true, is_peek);
1955 decrypted = max(err, 0);
1956 }
1957
1958 copied += decrypted;
1959
1960end:
1961 release_sock(sk);
1962 if (psock)
1963 sk_psock_put(sk, psock);
1964 return copied ? : err;
1965}
1966
1967ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1968 struct pipe_inode_info *pipe,
1969 size_t len, unsigned int flags)
1970{
1971 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1972 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1973 struct strp_msg *rxm = NULL;
1974 struct sock *sk = sock->sk;
1975 struct tls_msg *tlm;
1976 struct sk_buff *skb;
1977 ssize_t copied = 0;
1978 bool from_queue;
1979 int err = 0;
1980 long timeo;
1981 int chunk;
1982
1983 lock_sock(sk);
1984
1985 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
1986
1987 from_queue = !skb_queue_empty(&ctx->rx_list);
1988 if (from_queue) {
1989 skb = __skb_dequeue(&ctx->rx_list);
1990 } else {
1991 struct tls_decrypt_arg darg = {};
1992
1993 skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo,
1994 &err);
1995 if (!skb)
1996 goto splice_read_end;
1997
1998 err = decrypt_skb_update(sk, skb, NULL, &darg);
1999 if (err < 0) {
2000 tls_err_abort(sk, -EBADMSG);
2001 goto splice_read_end;
2002 }
2003 }
2004
2005 rxm = strp_msg(skb);
2006 tlm = tls_msg(skb);
2007
2008 /* splice does not support reading control messages */
2009 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2010 err = -EINVAL;
2011 goto splice_read_end;
2012 }
2013
2014 chunk = min_t(unsigned int, rxm->full_len, len);
2015 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2016 if (copied < 0)
2017 goto splice_read_end;
2018
2019 if (!from_queue) {
2020 ctx->recv_pkt = NULL;
2021 __strp_unpause(&ctx->strp);
2022 }
2023 if (chunk < rxm->full_len) {
2024 __skb_queue_head(&ctx->rx_list, skb);
2025 rxm->offset += len;
2026 rxm->full_len -= len;
2027 } else {
2028 consume_skb(skb);
2029 }
2030
2031splice_read_end:
2032 release_sock(sk);
2033 return copied ? : err;
2034}
2035
2036bool tls_sw_sock_is_readable(struct sock *sk)
2037{
2038 struct tls_context *tls_ctx = tls_get_ctx(sk);
2039 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2040 bool ingress_empty = true;
2041 struct sk_psock *psock;
2042
2043 rcu_read_lock();
2044 psock = sk_psock(sk);
2045 if (psock)
2046 ingress_empty = list_empty(&psock->ingress_msg);
2047 rcu_read_unlock();
2048
2049 return !ingress_empty || ctx->recv_pkt ||
2050 !skb_queue_empty(&ctx->rx_list);
2051}
2052
2053static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2054{
2055 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2056 struct tls_prot_info *prot = &tls_ctx->prot_info;
2057 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2058 struct strp_msg *rxm = strp_msg(skb);
2059 struct tls_msg *tlm = tls_msg(skb);
2060 size_t cipher_overhead;
2061 size_t data_len = 0;
2062 int ret;
2063
2064 /* Verify that we have a full TLS header, or wait for more data */
2065 if (rxm->offset + prot->prepend_size > skb->len)
2066 return 0;
2067
2068 /* Sanity-check size of on-stack buffer. */
2069 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2070 ret = -EINVAL;
2071 goto read_failure;
2072 }
2073
2074 /* Linearize header to local buffer */
2075 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2076 if (ret < 0)
2077 goto read_failure;
2078
2079 tlm->decrypted = 0;
2080 tlm->control = header[0];
2081
2082 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2083
2084 cipher_overhead = prot->tag_size;
2085 if (prot->version != TLS_1_3_VERSION &&
2086 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2087 cipher_overhead += prot->iv_size;
2088
2089 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2090 prot->tail_size) {
2091 ret = -EMSGSIZE;
2092 goto read_failure;
2093 }
2094 if (data_len < cipher_overhead) {
2095 ret = -EBADMSG;
2096 goto read_failure;
2097 }
2098
2099 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2100 if (header[1] != TLS_1_2_VERSION_MINOR ||
2101 header[2] != TLS_1_2_VERSION_MAJOR) {
2102 ret = -EINVAL;
2103 goto read_failure;
2104 }
2105
2106 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2107 TCP_SKB_CB(skb)->seq + rxm->offset);
2108 return data_len + TLS_HEADER_SIZE;
2109
2110read_failure:
2111 tls_err_abort(strp->sk, ret);
2112
2113 return ret;
2114}
2115
2116static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2117{
2118 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2119 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2120
2121 ctx->recv_pkt = skb;
2122 strp_pause(strp);
2123
2124 ctx->saved_data_ready(strp->sk);
2125}
2126
2127static void tls_data_ready(struct sock *sk)
2128{
2129 struct tls_context *tls_ctx = tls_get_ctx(sk);
2130 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2131 struct sk_psock *psock;
2132
2133 strp_data_ready(&ctx->strp);
2134
2135 psock = sk_psock_get(sk);
2136 if (psock) {
2137 if (!list_empty(&psock->ingress_msg))
2138 ctx->saved_data_ready(sk);
2139 sk_psock_put(sk, psock);
2140 }
2141}
2142
2143void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2144{
2145 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2146
2147 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2148 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2149 cancel_delayed_work_sync(&ctx->tx_work.work);
2150}
2151
2152void tls_sw_release_resources_tx(struct sock *sk)
2153{
2154 struct tls_context *tls_ctx = tls_get_ctx(sk);
2155 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2156 struct tls_rec *rec, *tmp;
2157 int pending;
2158
2159 /* Wait for any pending async encryptions to complete */
2160 spin_lock_bh(&ctx->encrypt_compl_lock);
2161 ctx->async_notify = true;
2162 pending = atomic_read(&ctx->encrypt_pending);
2163 spin_unlock_bh(&ctx->encrypt_compl_lock);
2164
2165 if (pending)
2166 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2167
2168 tls_tx_records(sk, -1);
2169
2170 /* Free up un-sent records in tx_list. First, free
2171 * the partially sent record if any at head of tx_list.
2172 */
2173 if (tls_ctx->partially_sent_record) {
2174 tls_free_partial_record(sk, tls_ctx);
2175 rec = list_first_entry(&ctx->tx_list,
2176 struct tls_rec, list);
2177 list_del(&rec->list);
2178 sk_msg_free(sk, &rec->msg_plaintext);
2179 kfree(rec);
2180 }
2181
2182 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2183 list_del(&rec->list);
2184 sk_msg_free(sk, &rec->msg_encrypted);
2185 sk_msg_free(sk, &rec->msg_plaintext);
2186 kfree(rec);
2187 }
2188
2189 crypto_free_aead(ctx->aead_send);
2190 tls_free_open_rec(sk);
2191}
2192
2193void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2194{
2195 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2196
2197 kfree(ctx);
2198}
2199
2200void tls_sw_release_resources_rx(struct sock *sk)
2201{
2202 struct tls_context *tls_ctx = tls_get_ctx(sk);
2203 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2204
2205 kfree(tls_ctx->rx.rec_seq);
2206 kfree(tls_ctx->rx.iv);
2207
2208 if (ctx->aead_recv) {
2209 kfree_skb(ctx->recv_pkt);
2210 ctx->recv_pkt = NULL;
2211 __skb_queue_purge(&ctx->rx_list);
2212 crypto_free_aead(ctx->aead_recv);
2213 strp_stop(&ctx->strp);
2214 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2215 * we still want to strp_stop(), but sk->sk_data_ready was
2216 * never swapped.
2217 */
2218 if (ctx->saved_data_ready) {
2219 write_lock_bh(&sk->sk_callback_lock);
2220 sk->sk_data_ready = ctx->saved_data_ready;
2221 write_unlock_bh(&sk->sk_callback_lock);
2222 }
2223 }
2224}
2225
2226void tls_sw_strparser_done(struct tls_context *tls_ctx)
2227{
2228 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2229
2230 strp_done(&ctx->strp);
2231}
2232
2233void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2234{
2235 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2236
2237 kfree(ctx);
2238}
2239
2240void tls_sw_free_resources_rx(struct sock *sk)
2241{
2242 struct tls_context *tls_ctx = tls_get_ctx(sk);
2243
2244 tls_sw_release_resources_rx(sk);
2245 tls_sw_free_ctx_rx(tls_ctx);
2246}
2247
2248/* The work handler to transmitt the encrypted records in tx_list */
2249static void tx_work_handler(struct work_struct *work)
2250{
2251 struct delayed_work *delayed_work = to_delayed_work(work);
2252 struct tx_work *tx_work = container_of(delayed_work,
2253 struct tx_work, work);
2254 struct sock *sk = tx_work->sk;
2255 struct tls_context *tls_ctx = tls_get_ctx(sk);
2256 struct tls_sw_context_tx *ctx;
2257
2258 if (unlikely(!tls_ctx))
2259 return;
2260
2261 ctx = tls_sw_ctx_tx(tls_ctx);
2262 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2263 return;
2264
2265 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2266 return;
2267 mutex_lock(&tls_ctx->tx_lock);
2268 lock_sock(sk);
2269 tls_tx_records(sk, -1);
2270 release_sock(sk);
2271 mutex_unlock(&tls_ctx->tx_lock);
2272}
2273
2274void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2275{
2276 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2277
2278 /* Schedule the transmission if tx list is ready */
2279 if (is_tx_ready(tx_ctx) &&
2280 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2281 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2282}
2283
2284void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2285{
2286 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2287
2288 write_lock_bh(&sk->sk_callback_lock);
2289 rx_ctx->saved_data_ready = sk->sk_data_ready;
2290 sk->sk_data_ready = tls_data_ready;
2291 write_unlock_bh(&sk->sk_callback_lock);
2292
2293 strp_check_rcv(&rx_ctx->strp);
2294}
2295
2296void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2297{
2298 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2299
2300 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2301 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2302}
2303
2304int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2305{
2306 struct tls_context *tls_ctx = tls_get_ctx(sk);
2307 struct tls_prot_info *prot = &tls_ctx->prot_info;
2308 struct tls_crypto_info *crypto_info;
2309 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2310 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2311 struct cipher_context *cctx;
2312 struct crypto_aead **aead;
2313 struct strp_callbacks cb;
2314 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2315 struct crypto_tfm *tfm;
2316 char *iv, *rec_seq, *key, *salt, *cipher_name;
2317 size_t keysize;
2318 int rc = 0;
2319
2320 if (!ctx) {
2321 rc = -EINVAL;
2322 goto out;
2323 }
2324
2325 if (tx) {
2326 if (!ctx->priv_ctx_tx) {
2327 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2328 if (!sw_ctx_tx) {
2329 rc = -ENOMEM;
2330 goto out;
2331 }
2332 ctx->priv_ctx_tx = sw_ctx_tx;
2333 } else {
2334 sw_ctx_tx =
2335 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2336 }
2337 } else {
2338 if (!ctx->priv_ctx_rx) {
2339 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2340 if (!sw_ctx_rx) {
2341 rc = -ENOMEM;
2342 goto out;
2343 }
2344 ctx->priv_ctx_rx = sw_ctx_rx;
2345 } else {
2346 sw_ctx_rx =
2347 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2348 }
2349 }
2350
2351 if (tx) {
2352 crypto_init_wait(&sw_ctx_tx->async_wait);
2353 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2354 crypto_info = &ctx->crypto_send.info;
2355 cctx = &ctx->tx;
2356 aead = &sw_ctx_tx->aead_send;
2357 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2358 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2359 sw_ctx_tx->tx_work.sk = sk;
2360 } else {
2361 crypto_init_wait(&sw_ctx_rx->async_wait);
2362 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2363 crypto_info = &ctx->crypto_recv.info;
2364 cctx = &ctx->rx;
2365 skb_queue_head_init(&sw_ctx_rx->rx_list);
2366 aead = &sw_ctx_rx->aead_recv;
2367 }
2368
2369 switch (crypto_info->cipher_type) {
2370 case TLS_CIPHER_AES_GCM_128: {
2371 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2372
2373 gcm_128_info = (void *)crypto_info;
2374 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2375 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2376 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2377 iv = gcm_128_info->iv;
2378 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2379 rec_seq = gcm_128_info->rec_seq;
2380 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2381 key = gcm_128_info->key;
2382 salt = gcm_128_info->salt;
2383 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2384 cipher_name = "gcm(aes)";
2385 break;
2386 }
2387 case TLS_CIPHER_AES_GCM_256: {
2388 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2389
2390 gcm_256_info = (void *)crypto_info;
2391 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2392 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2393 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2394 iv = gcm_256_info->iv;
2395 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2396 rec_seq = gcm_256_info->rec_seq;
2397 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2398 key = gcm_256_info->key;
2399 salt = gcm_256_info->salt;
2400 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2401 cipher_name = "gcm(aes)";
2402 break;
2403 }
2404 case TLS_CIPHER_AES_CCM_128: {
2405 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2406
2407 ccm_128_info = (void *)crypto_info;
2408 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2409 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2410 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2411 iv = ccm_128_info->iv;
2412 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2413 rec_seq = ccm_128_info->rec_seq;
2414 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2415 key = ccm_128_info->key;
2416 salt = ccm_128_info->salt;
2417 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2418 cipher_name = "ccm(aes)";
2419 break;
2420 }
2421 case TLS_CIPHER_CHACHA20_POLY1305: {
2422 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2423
2424 chacha20_poly1305_info = (void *)crypto_info;
2425 nonce_size = 0;
2426 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2427 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2428 iv = chacha20_poly1305_info->iv;
2429 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2430 rec_seq = chacha20_poly1305_info->rec_seq;
2431 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2432 key = chacha20_poly1305_info->key;
2433 salt = chacha20_poly1305_info->salt;
2434 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2435 cipher_name = "rfc7539(chacha20,poly1305)";
2436 break;
2437 }
2438 case TLS_CIPHER_SM4_GCM: {
2439 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2440
2441 sm4_gcm_info = (void *)crypto_info;
2442 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2443 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2444 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2445 iv = sm4_gcm_info->iv;
2446 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2447 rec_seq = sm4_gcm_info->rec_seq;
2448 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2449 key = sm4_gcm_info->key;
2450 salt = sm4_gcm_info->salt;
2451 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2452 cipher_name = "gcm(sm4)";
2453 break;
2454 }
2455 case TLS_CIPHER_SM4_CCM: {
2456 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2457
2458 sm4_ccm_info = (void *)crypto_info;
2459 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2460 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2461 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2462 iv = sm4_ccm_info->iv;
2463 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2464 rec_seq = sm4_ccm_info->rec_seq;
2465 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2466 key = sm4_ccm_info->key;
2467 salt = sm4_ccm_info->salt;
2468 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2469 cipher_name = "ccm(sm4)";
2470 break;
2471 }
2472 default:
2473 rc = -EINVAL;
2474 goto free_priv;
2475 }
2476
2477 /* Sanity-check the sizes for stack allocations. */
2478 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2479 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE) {
2480 rc = -EINVAL;
2481 goto free_priv;
2482 }
2483
2484 if (crypto_info->version == TLS_1_3_VERSION) {
2485 nonce_size = 0;
2486 prot->aad_size = TLS_HEADER_SIZE;
2487 prot->tail_size = 1;
2488 } else {
2489 prot->aad_size = TLS_AAD_SPACE_SIZE;
2490 prot->tail_size = 0;
2491 }
2492
2493 prot->version = crypto_info->version;
2494 prot->cipher_type = crypto_info->cipher_type;
2495 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2496 prot->tag_size = tag_size;
2497 prot->overhead_size = prot->prepend_size +
2498 prot->tag_size + prot->tail_size;
2499 prot->iv_size = iv_size;
2500 prot->salt_size = salt_size;
2501 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2502 if (!cctx->iv) {
2503 rc = -ENOMEM;
2504 goto free_priv;
2505 }
2506 /* Note: 128 & 256 bit salt are the same size */
2507 prot->rec_seq_size = rec_seq_size;
2508 memcpy(cctx->iv, salt, salt_size);
2509 memcpy(cctx->iv + salt_size, iv, iv_size);
2510 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2511 if (!cctx->rec_seq) {
2512 rc = -ENOMEM;
2513 goto free_iv;
2514 }
2515
2516 if (!*aead) {
2517 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2518 if (IS_ERR(*aead)) {
2519 rc = PTR_ERR(*aead);
2520 *aead = NULL;
2521 goto free_rec_seq;
2522 }
2523 }
2524
2525 ctx->push_pending_record = tls_sw_push_pending_record;
2526
2527 rc = crypto_aead_setkey(*aead, key, keysize);
2528
2529 if (rc)
2530 goto free_aead;
2531
2532 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2533 if (rc)
2534 goto free_aead;
2535
2536 if (sw_ctx_rx) {
2537 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2538
2539 tls_update_rx_zc_capable(ctx);
2540 sw_ctx_rx->async_capable =
2541 crypto_info->version != TLS_1_3_VERSION &&
2542 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2543
2544 /* Set up strparser */
2545 memset(&cb, 0, sizeof(cb));
2546 cb.rcv_msg = tls_queue;
2547 cb.parse_msg = tls_read_size;
2548
2549 strp_init(&sw_ctx_rx->strp, sk, &cb);
2550 }
2551
2552 goto out;
2553
2554free_aead:
2555 crypto_free_aead(*aead);
2556 *aead = NULL;
2557free_rec_seq:
2558 kfree(cctx->rec_seq);
2559 cctx->rec_seq = NULL;
2560free_iv:
2561 kfree(cctx->iv);
2562 cctx->iv = NULL;
2563free_priv:
2564 if (tx) {
2565 kfree(ctx->priv_ctx_tx);
2566 ctx->priv_ctx_tx = NULL;
2567 } else {
2568 kfree(ctx->priv_ctx_rx);
2569 ctx->priv_ctx_rx = NULL;
2570 }
2571out:
2572 return rc;
2573}