| 1 | /* |
| 2 | * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. |
| 3 | * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. |
| 4 | * |
| 5 | * This software is available to you under a choice of one of two |
| 6 | * licenses. You may choose to be licensed under the terms of the GNU |
| 7 | * General Public License (GPL) Version 2, available from the file |
| 8 | * COPYING in the main directory of this source tree, or the |
| 9 | * OpenIB.org BSD license below: |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or |
| 12 | * without modification, are permitted provided that the following |
| 13 | * conditions are met: |
| 14 | * |
| 15 | * - Redistributions of source code must retain the above |
| 16 | * copyright notice, this list of conditions and the following |
| 17 | * disclaimer. |
| 18 | * |
| 19 | * - Redistributions in binary form must reproduce the above |
| 20 | * copyright notice, this list of conditions and the following |
| 21 | * disclaimer in the documentation and/or other materials |
| 22 | * provided with the distribution. |
| 23 | * |
| 24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 25 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 26 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 27 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 28 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 29 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 30 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 31 | * SOFTWARE. |
| 32 | */ |
| 33 | |
| 34 | #include <linux/module.h> |
| 35 | |
| 36 | #include <net/tcp.h> |
| 37 | #include <net/inet_common.h> |
| 38 | #include <linux/highmem.h> |
| 39 | #include <linux/netdevice.h> |
| 40 | #include <linux/sched/signal.h> |
| 41 | #include <linux/inetdevice.h> |
| 42 | #include <linux/inet_diag.h> |
| 43 | |
| 44 | #include <net/snmp.h> |
| 45 | #include <net/tls.h> |
| 46 | #include <net/tls_toe.h> |
| 47 | |
| 48 | #include "tls.h" |
| 49 | |
| 50 | MODULE_AUTHOR("Mellanox Technologies"); |
| 51 | MODULE_DESCRIPTION("Transport Layer Security Support"); |
| 52 | MODULE_LICENSE("Dual BSD/GPL"); |
| 53 | MODULE_ALIAS_TCP_ULP("tls"); |
| 54 | |
| 55 | enum { |
| 56 | TLSV4, |
| 57 | TLSV6, |
| 58 | TLS_NUM_PROTS, |
| 59 | }; |
| 60 | |
| 61 | #define CHECK_CIPHER_DESC(cipher,ci) \ |
| 62 | static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE); \ |
| 63 | static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE); \ |
| 64 | static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \ |
| 65 | static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE); \ |
| 66 | static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE); \ |
| 67 | static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE); \ |
| 68 | static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE); \ |
| 69 | static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE); |
| 70 | |
| 71 | #define __CIPHER_DESC(ci) \ |
| 72 | .iv_offset = offsetof(struct ci, iv), \ |
| 73 | .key_offset = offsetof(struct ci, key), \ |
| 74 | .salt_offset = offsetof(struct ci, salt), \ |
| 75 | .rec_seq_offset = offsetof(struct ci, rec_seq), \ |
| 76 | .crypto_info = sizeof(struct ci) |
| 77 | |
| 78 | #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \ |
| 79 | .nonce = cipher ## _IV_SIZE, \ |
| 80 | .iv = cipher ## _IV_SIZE, \ |
| 81 | .key = cipher ## _KEY_SIZE, \ |
| 82 | .salt = cipher ## _SALT_SIZE, \ |
| 83 | .tag = cipher ## _TAG_SIZE, \ |
| 84 | .rec_seq = cipher ## _REC_SEQ_SIZE, \ |
| 85 | .cipher_name = algname, \ |
| 86 | .offloadable = _offloadable, \ |
| 87 | __CIPHER_DESC(ci), \ |
| 88 | } |
| 89 | |
| 90 | #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \ |
| 91 | .nonce = 0, \ |
| 92 | .iv = cipher ## _IV_SIZE, \ |
| 93 | .key = cipher ## _KEY_SIZE, \ |
| 94 | .salt = cipher ## _SALT_SIZE, \ |
| 95 | .tag = cipher ## _TAG_SIZE, \ |
| 96 | .rec_seq = cipher ## _REC_SEQ_SIZE, \ |
| 97 | .cipher_name = algname, \ |
| 98 | .offloadable = _offloadable, \ |
| 99 | __CIPHER_DESC(ci), \ |
| 100 | } |
| 101 | |
| 102 | const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = { |
| 103 | CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true), |
| 104 | CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true), |
| 105 | CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false), |
| 106 | CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false), |
| 107 | CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false), |
| 108 | CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false), |
| 109 | CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false), |
| 110 | CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false), |
| 111 | }; |
| 112 | |
| 113 | CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128); |
| 114 | CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256); |
| 115 | CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128); |
| 116 | CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305); |
| 117 | CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm); |
| 118 | CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm); |
| 119 | CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128); |
| 120 | CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256); |
| 121 | |
| 122 | static const struct proto *saved_tcpv6_prot; |
| 123 | static DEFINE_MUTEX(tcpv6_prot_mutex); |
| 124 | static const struct proto *saved_tcpv4_prot; |
| 125 | static DEFINE_MUTEX(tcpv4_prot_mutex); |
| 126 | static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; |
| 127 | static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; |
| 128 | static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], |
| 129 | const struct proto *base); |
| 130 | |
| 131 | void update_sk_prot(struct sock *sk, struct tls_context *ctx) |
| 132 | { |
| 133 | int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; |
| 134 | |
| 135 | WRITE_ONCE(sk->sk_prot, |
| 136 | &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); |
| 137 | WRITE_ONCE(sk->sk_socket->ops, |
| 138 | &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); |
| 139 | } |
| 140 | |
| 141 | int wait_on_pending_writer(struct sock *sk, long *timeo) |
| 142 | { |
| 143 | DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| 144 | int ret, rc = 0; |
| 145 | |
| 146 | add_wait_queue(sk_sleep(sk), &wait); |
| 147 | while (1) { |
| 148 | if (!*timeo) { |
| 149 | rc = -EAGAIN; |
| 150 | break; |
| 151 | } |
| 152 | |
| 153 | if (signal_pending(current)) { |
| 154 | rc = sock_intr_errno(*timeo); |
| 155 | break; |
| 156 | } |
| 157 | |
| 158 | ret = sk_wait_event(sk, timeo, |
| 159 | !READ_ONCE(sk->sk_write_pending), &wait); |
| 160 | if (ret) { |
| 161 | if (ret < 0) |
| 162 | rc = ret; |
| 163 | break; |
| 164 | } |
| 165 | } |
| 166 | remove_wait_queue(sk_sleep(sk), &wait); |
| 167 | return rc; |
| 168 | } |
| 169 | |
| 170 | int tls_push_sg(struct sock *sk, |
| 171 | struct tls_context *ctx, |
| 172 | struct scatterlist *sg, |
| 173 | u16 first_offset, |
| 174 | int flags) |
| 175 | { |
| 176 | struct bio_vec bvec; |
| 177 | struct msghdr msg = { |
| 178 | .msg_flags = MSG_SPLICE_PAGES | flags, |
| 179 | }; |
| 180 | int ret = 0; |
| 181 | struct page *p; |
| 182 | size_t size; |
| 183 | int offset = first_offset; |
| 184 | |
| 185 | size = sg->length - offset; |
| 186 | offset += sg->offset; |
| 187 | |
| 188 | ctx->splicing_pages = true; |
| 189 | while (1) { |
| 190 | /* is sending application-limited? */ |
| 191 | tcp_rate_check_app_limited(sk); |
| 192 | p = sg_page(sg); |
| 193 | retry: |
| 194 | bvec_set_page(&bvec, p, size, offset); |
| 195 | iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); |
| 196 | |
| 197 | ret = tcp_sendmsg_locked(sk, &msg, size); |
| 198 | |
| 199 | if (ret != size) { |
| 200 | if (ret > 0) { |
| 201 | offset += ret; |
| 202 | size -= ret; |
| 203 | goto retry; |
| 204 | } |
| 205 | |
| 206 | offset -= sg->offset; |
| 207 | ctx->partially_sent_offset = offset; |
| 208 | ctx->partially_sent_record = (void *)sg; |
| 209 | ctx->splicing_pages = false; |
| 210 | return ret; |
| 211 | } |
| 212 | |
| 213 | put_page(p); |
| 214 | sk_mem_uncharge(sk, sg->length); |
| 215 | sg = sg_next(sg); |
| 216 | if (!sg) |
| 217 | break; |
| 218 | |
| 219 | offset = sg->offset; |
| 220 | size = sg->length; |
| 221 | } |
| 222 | |
| 223 | ctx->splicing_pages = false; |
| 224 | |
| 225 | return 0; |
| 226 | } |
| 227 | |
| 228 | static int tls_handle_open_record(struct sock *sk, int flags) |
| 229 | { |
| 230 | struct tls_context *ctx = tls_get_ctx(sk); |
| 231 | |
| 232 | if (tls_is_pending_open_record(ctx)) |
| 233 | return ctx->push_pending_record(sk, flags); |
| 234 | |
| 235 | return 0; |
| 236 | } |
| 237 | |
| 238 | int tls_process_cmsg(struct sock *sk, struct msghdr *msg, |
| 239 | unsigned char *record_type) |
| 240 | { |
| 241 | struct cmsghdr *cmsg; |
| 242 | int rc = -EINVAL; |
| 243 | |
| 244 | for_each_cmsghdr(cmsg, msg) { |
| 245 | if (!CMSG_OK(msg, cmsg)) |
| 246 | return -EINVAL; |
| 247 | if (cmsg->cmsg_level != SOL_TLS) |
| 248 | continue; |
| 249 | |
| 250 | switch (cmsg->cmsg_type) { |
| 251 | case TLS_SET_RECORD_TYPE: |
| 252 | if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) |
| 253 | return -EINVAL; |
| 254 | |
| 255 | if (msg->msg_flags & MSG_MORE) |
| 256 | return -EINVAL; |
| 257 | |
| 258 | rc = tls_handle_open_record(sk, msg->msg_flags); |
| 259 | if (rc) |
| 260 | return rc; |
| 261 | |
| 262 | *record_type = *(unsigned char *)CMSG_DATA(cmsg); |
| 263 | rc = 0; |
| 264 | break; |
| 265 | default: |
| 266 | return -EINVAL; |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | return rc; |
| 271 | } |
| 272 | |
| 273 | int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, |
| 274 | int flags) |
| 275 | { |
| 276 | struct scatterlist *sg; |
| 277 | u16 offset; |
| 278 | |
| 279 | sg = ctx->partially_sent_record; |
| 280 | offset = ctx->partially_sent_offset; |
| 281 | |
| 282 | ctx->partially_sent_record = NULL; |
| 283 | return tls_push_sg(sk, ctx, sg, offset, flags); |
| 284 | } |
| 285 | |
| 286 | void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) |
| 287 | { |
| 288 | struct scatterlist *sg; |
| 289 | |
| 290 | for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { |
| 291 | put_page(sg_page(sg)); |
| 292 | sk_mem_uncharge(sk, sg->length); |
| 293 | } |
| 294 | ctx->partially_sent_record = NULL; |
| 295 | } |
| 296 | |
| 297 | static void tls_write_space(struct sock *sk) |
| 298 | { |
| 299 | struct tls_context *ctx = tls_get_ctx(sk); |
| 300 | |
| 301 | /* If splicing_pages call lower protocol write space handler |
| 302 | * to ensure we wake up any waiting operations there. For example |
| 303 | * if splicing pages where to call sk_wait_event. |
| 304 | */ |
| 305 | if (ctx->splicing_pages) { |
| 306 | ctx->sk_write_space(sk); |
| 307 | return; |
| 308 | } |
| 309 | |
| 310 | #ifdef CONFIG_TLS_DEVICE |
| 311 | if (ctx->tx_conf == TLS_HW) |
| 312 | tls_device_write_space(sk, ctx); |
| 313 | else |
| 314 | #endif |
| 315 | tls_sw_write_space(sk, ctx); |
| 316 | |
| 317 | ctx->sk_write_space(sk); |
| 318 | } |
| 319 | |
| 320 | /** |
| 321 | * tls_ctx_free() - free TLS ULP context |
| 322 | * @sk: socket to with @ctx is attached |
| 323 | * @ctx: TLS context structure |
| 324 | * |
| 325 | * Free TLS context. If @sk is %NULL caller guarantees that the socket |
| 326 | * to which @ctx was attached has no outstanding references. |
| 327 | */ |
| 328 | void tls_ctx_free(struct sock *sk, struct tls_context *ctx) |
| 329 | { |
| 330 | if (!ctx) |
| 331 | return; |
| 332 | |
| 333 | memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); |
| 334 | memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); |
| 335 | mutex_destroy(&ctx->tx_lock); |
| 336 | |
| 337 | if (sk) |
| 338 | kfree_rcu(ctx, rcu); |
| 339 | else |
| 340 | kfree(ctx); |
| 341 | } |
| 342 | |
| 343 | static void tls_sk_proto_cleanup(struct sock *sk, |
| 344 | struct tls_context *ctx, long timeo) |
| 345 | { |
| 346 | if (unlikely(sk->sk_write_pending) && |
| 347 | !wait_on_pending_writer(sk, &timeo)) |
| 348 | tls_handle_open_record(sk, 0); |
| 349 | |
| 350 | /* We need these for tls_sw_fallback handling of other packets */ |
| 351 | if (ctx->tx_conf == TLS_SW) { |
| 352 | tls_sw_release_resources_tx(sk); |
| 353 | TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); |
| 354 | } else if (ctx->tx_conf == TLS_HW) { |
| 355 | tls_device_free_resources_tx(sk); |
| 356 | TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); |
| 357 | } |
| 358 | |
| 359 | if (ctx->rx_conf == TLS_SW) { |
| 360 | tls_sw_release_resources_rx(sk); |
| 361 | TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); |
| 362 | } else if (ctx->rx_conf == TLS_HW) { |
| 363 | tls_device_offload_cleanup_rx(sk); |
| 364 | TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | static void tls_sk_proto_close(struct sock *sk, long timeout) |
| 369 | { |
| 370 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 371 | struct tls_context *ctx = tls_get_ctx(sk); |
| 372 | long timeo = sock_sndtimeo(sk, 0); |
| 373 | bool free_ctx; |
| 374 | |
| 375 | if (ctx->tx_conf == TLS_SW) |
| 376 | tls_sw_cancel_work_tx(ctx); |
| 377 | |
| 378 | lock_sock(sk); |
| 379 | free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; |
| 380 | |
| 381 | if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) |
| 382 | tls_sk_proto_cleanup(sk, ctx, timeo); |
| 383 | |
| 384 | write_lock_bh(&sk->sk_callback_lock); |
| 385 | if (free_ctx) |
| 386 | rcu_assign_pointer(icsk->icsk_ulp_data, NULL); |
| 387 | WRITE_ONCE(sk->sk_prot, ctx->sk_proto); |
| 388 | if (sk->sk_write_space == tls_write_space) |
| 389 | sk->sk_write_space = ctx->sk_write_space; |
| 390 | write_unlock_bh(&sk->sk_callback_lock); |
| 391 | release_sock(sk); |
| 392 | if (ctx->tx_conf == TLS_SW) |
| 393 | tls_sw_free_ctx_tx(ctx); |
| 394 | if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) |
| 395 | tls_sw_strparser_done(ctx); |
| 396 | if (ctx->rx_conf == TLS_SW) |
| 397 | tls_sw_free_ctx_rx(ctx); |
| 398 | ctx->sk_proto->close(sk, timeout); |
| 399 | |
| 400 | if (free_ctx) |
| 401 | tls_ctx_free(sk, ctx); |
| 402 | } |
| 403 | |
| 404 | static __poll_t tls_sk_poll(struct file *file, struct socket *sock, |
| 405 | struct poll_table_struct *wait) |
| 406 | { |
| 407 | struct tls_sw_context_rx *ctx; |
| 408 | struct tls_context *tls_ctx; |
| 409 | struct sock *sk = sock->sk; |
| 410 | struct sk_psock *psock; |
| 411 | __poll_t mask = 0; |
| 412 | u8 shutdown; |
| 413 | int state; |
| 414 | |
| 415 | mask = tcp_poll(file, sock, wait); |
| 416 | |
| 417 | state = inet_sk_state_load(sk); |
| 418 | shutdown = READ_ONCE(sk->sk_shutdown); |
| 419 | if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN)) |
| 420 | return mask; |
| 421 | |
| 422 | tls_ctx = tls_get_ctx(sk); |
| 423 | ctx = tls_sw_ctx_rx(tls_ctx); |
| 424 | psock = sk_psock_get(sk); |
| 425 | |
| 426 | if ((skb_queue_empty_lockless(&ctx->rx_list) && |
| 427 | !tls_strp_msg_ready(ctx) && |
| 428 | sk_psock_queue_empty(psock)) || |
| 429 | READ_ONCE(ctx->key_update_pending)) |
| 430 | mask &= ~(EPOLLIN | EPOLLRDNORM); |
| 431 | |
| 432 | if (psock) |
| 433 | sk_psock_put(sk, psock); |
| 434 | |
| 435 | return mask; |
| 436 | } |
| 437 | |
| 438 | static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, |
| 439 | int __user *optlen, int tx) |
| 440 | { |
| 441 | int rc = 0; |
| 442 | const struct tls_cipher_desc *cipher_desc; |
| 443 | struct tls_context *ctx = tls_get_ctx(sk); |
| 444 | struct tls_crypto_info *crypto_info; |
| 445 | struct cipher_context *cctx; |
| 446 | int len; |
| 447 | |
| 448 | if (get_user(len, optlen)) |
| 449 | return -EFAULT; |
| 450 | |
| 451 | if (!optval || (len < sizeof(*crypto_info))) { |
| 452 | rc = -EINVAL; |
| 453 | goto out; |
| 454 | } |
| 455 | |
| 456 | if (!ctx) { |
| 457 | rc = -EBUSY; |
| 458 | goto out; |
| 459 | } |
| 460 | |
| 461 | /* get user crypto info */ |
| 462 | if (tx) { |
| 463 | crypto_info = &ctx->crypto_send.info; |
| 464 | cctx = &ctx->tx; |
| 465 | } else { |
| 466 | crypto_info = &ctx->crypto_recv.info; |
| 467 | cctx = &ctx->rx; |
| 468 | } |
| 469 | |
| 470 | if (!TLS_CRYPTO_INFO_READY(crypto_info)) { |
| 471 | rc = -EBUSY; |
| 472 | goto out; |
| 473 | } |
| 474 | |
| 475 | if (len == sizeof(*crypto_info)) { |
| 476 | if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) |
| 477 | rc = -EFAULT; |
| 478 | goto out; |
| 479 | } |
| 480 | |
| 481 | cipher_desc = get_cipher_desc(crypto_info->cipher_type); |
| 482 | if (!cipher_desc || len != cipher_desc->crypto_info) { |
| 483 | rc = -EINVAL; |
| 484 | goto out; |
| 485 | } |
| 486 | |
| 487 | memcpy(crypto_info_iv(crypto_info, cipher_desc), |
| 488 | cctx->iv + cipher_desc->salt, cipher_desc->iv); |
| 489 | memcpy(crypto_info_rec_seq(crypto_info, cipher_desc), |
| 490 | cctx->rec_seq, cipher_desc->rec_seq); |
| 491 | |
| 492 | if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info)) |
| 493 | rc = -EFAULT; |
| 494 | |
| 495 | out: |
| 496 | return rc; |
| 497 | } |
| 498 | |
| 499 | static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval, |
| 500 | int __user *optlen) |
| 501 | { |
| 502 | struct tls_context *ctx = tls_get_ctx(sk); |
| 503 | unsigned int value; |
| 504 | int len; |
| 505 | |
| 506 | if (get_user(len, optlen)) |
| 507 | return -EFAULT; |
| 508 | |
| 509 | if (len != sizeof(value)) |
| 510 | return -EINVAL; |
| 511 | |
| 512 | value = ctx->zerocopy_sendfile; |
| 513 | if (copy_to_user(optval, &value, sizeof(value))) |
| 514 | return -EFAULT; |
| 515 | |
| 516 | return 0; |
| 517 | } |
| 518 | |
| 519 | static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval, |
| 520 | int __user *optlen) |
| 521 | { |
| 522 | struct tls_context *ctx = tls_get_ctx(sk); |
| 523 | int value, len; |
| 524 | |
| 525 | if (ctx->prot_info.version != TLS_1_3_VERSION) |
| 526 | return -EINVAL; |
| 527 | |
| 528 | if (get_user(len, optlen)) |
| 529 | return -EFAULT; |
| 530 | if (len < sizeof(value)) |
| 531 | return -EINVAL; |
| 532 | |
| 533 | value = -EINVAL; |
| 534 | if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) |
| 535 | value = ctx->rx_no_pad; |
| 536 | if (value < 0) |
| 537 | return value; |
| 538 | |
| 539 | if (put_user(sizeof(value), optlen)) |
| 540 | return -EFAULT; |
| 541 | if (copy_to_user(optval, &value, sizeof(value))) |
| 542 | return -EFAULT; |
| 543 | |
| 544 | return 0; |
| 545 | } |
| 546 | |
| 547 | static int do_tls_getsockopt(struct sock *sk, int optname, |
| 548 | char __user *optval, int __user *optlen) |
| 549 | { |
| 550 | int rc = 0; |
| 551 | |
| 552 | lock_sock(sk); |
| 553 | |
| 554 | switch (optname) { |
| 555 | case TLS_TX: |
| 556 | case TLS_RX: |
| 557 | rc = do_tls_getsockopt_conf(sk, optval, optlen, |
| 558 | optname == TLS_TX); |
| 559 | break; |
| 560 | case TLS_TX_ZEROCOPY_RO: |
| 561 | rc = do_tls_getsockopt_tx_zc(sk, optval, optlen); |
| 562 | break; |
| 563 | case TLS_RX_EXPECT_NO_PAD: |
| 564 | rc = do_tls_getsockopt_no_pad(sk, optval, optlen); |
| 565 | break; |
| 566 | default: |
| 567 | rc = -ENOPROTOOPT; |
| 568 | break; |
| 569 | } |
| 570 | |
| 571 | release_sock(sk); |
| 572 | |
| 573 | return rc; |
| 574 | } |
| 575 | |
| 576 | static int tls_getsockopt(struct sock *sk, int level, int optname, |
| 577 | char __user *optval, int __user *optlen) |
| 578 | { |
| 579 | struct tls_context *ctx = tls_get_ctx(sk); |
| 580 | |
| 581 | if (level != SOL_TLS) |
| 582 | return ctx->sk_proto->getsockopt(sk, level, |
| 583 | optname, optval, optlen); |
| 584 | |
| 585 | return do_tls_getsockopt(sk, optname, optval, optlen); |
| 586 | } |
| 587 | |
| 588 | static int validate_crypto_info(const struct tls_crypto_info *crypto_info, |
| 589 | const struct tls_crypto_info *alt_crypto_info) |
| 590 | { |
| 591 | if (crypto_info->version != TLS_1_2_VERSION && |
| 592 | crypto_info->version != TLS_1_3_VERSION) |
| 593 | return -EINVAL; |
| 594 | |
| 595 | switch (crypto_info->cipher_type) { |
| 596 | case TLS_CIPHER_ARIA_GCM_128: |
| 597 | case TLS_CIPHER_ARIA_GCM_256: |
| 598 | if (crypto_info->version != TLS_1_2_VERSION) |
| 599 | return -EINVAL; |
| 600 | break; |
| 601 | } |
| 602 | |
| 603 | /* Ensure that TLS version and ciphers are same in both directions */ |
| 604 | if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { |
| 605 | if (alt_crypto_info->version != crypto_info->version || |
| 606 | alt_crypto_info->cipher_type != crypto_info->cipher_type) |
| 607 | return -EINVAL; |
| 608 | } |
| 609 | |
| 610 | return 0; |
| 611 | } |
| 612 | |
| 613 | static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, |
| 614 | unsigned int optlen, int tx) |
| 615 | { |
| 616 | struct tls_crypto_info *crypto_info, *alt_crypto_info; |
| 617 | struct tls_crypto_info *old_crypto_info = NULL; |
| 618 | struct tls_context *ctx = tls_get_ctx(sk); |
| 619 | const struct tls_cipher_desc *cipher_desc; |
| 620 | union tls_crypto_context *crypto_ctx; |
| 621 | union tls_crypto_context tmp = {}; |
| 622 | bool update = false; |
| 623 | int rc = 0; |
| 624 | int conf; |
| 625 | |
| 626 | if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) |
| 627 | return -EINVAL; |
| 628 | |
| 629 | if (tx) { |
| 630 | crypto_ctx = &ctx->crypto_send; |
| 631 | alt_crypto_info = &ctx->crypto_recv.info; |
| 632 | } else { |
| 633 | crypto_ctx = &ctx->crypto_recv; |
| 634 | alt_crypto_info = &ctx->crypto_send.info; |
| 635 | } |
| 636 | |
| 637 | crypto_info = &crypto_ctx->info; |
| 638 | |
| 639 | if (TLS_CRYPTO_INFO_READY(crypto_info)) { |
| 640 | /* Currently we only support setting crypto info more |
| 641 | * than one time for TLS 1.3 |
| 642 | */ |
| 643 | if (crypto_info->version != TLS_1_3_VERSION) { |
| 644 | TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR |
| 645 | : LINUX_MIB_TLSRXREKEYERROR); |
| 646 | return -EBUSY; |
| 647 | } |
| 648 | |
| 649 | update = true; |
| 650 | old_crypto_info = crypto_info; |
| 651 | crypto_info = &tmp.info; |
| 652 | crypto_ctx = &tmp; |
| 653 | } |
| 654 | |
| 655 | rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); |
| 656 | if (rc) { |
| 657 | rc = -EFAULT; |
| 658 | goto err_crypto_info; |
| 659 | } |
| 660 | |
| 661 | if (update) { |
| 662 | /* Ensure that TLS version and ciphers are not modified */ |
| 663 | if (crypto_info->version != old_crypto_info->version || |
| 664 | crypto_info->cipher_type != old_crypto_info->cipher_type) |
| 665 | rc = -EINVAL; |
| 666 | } else { |
| 667 | rc = validate_crypto_info(crypto_info, alt_crypto_info); |
| 668 | } |
| 669 | if (rc) |
| 670 | goto err_crypto_info; |
| 671 | |
| 672 | cipher_desc = get_cipher_desc(crypto_info->cipher_type); |
| 673 | if (!cipher_desc) { |
| 674 | rc = -EINVAL; |
| 675 | goto err_crypto_info; |
| 676 | } |
| 677 | |
| 678 | if (optlen != cipher_desc->crypto_info) { |
| 679 | rc = -EINVAL; |
| 680 | goto err_crypto_info; |
| 681 | } |
| 682 | |
| 683 | rc = copy_from_sockptr_offset(crypto_info + 1, optval, |
| 684 | sizeof(*crypto_info), |
| 685 | optlen - sizeof(*crypto_info)); |
| 686 | if (rc) { |
| 687 | rc = -EFAULT; |
| 688 | goto err_crypto_info; |
| 689 | } |
| 690 | |
| 691 | if (tx) { |
| 692 | rc = tls_set_device_offload(sk); |
| 693 | conf = TLS_HW; |
| 694 | if (!rc) { |
| 695 | TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); |
| 696 | TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); |
| 697 | } else { |
| 698 | rc = tls_set_sw_offload(sk, 1, |
| 699 | update ? crypto_info : NULL); |
| 700 | if (rc) |
| 701 | goto err_crypto_info; |
| 702 | |
| 703 | if (update) { |
| 704 | TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXREKEYOK); |
| 705 | } else { |
| 706 | TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); |
| 707 | TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); |
| 708 | } |
| 709 | conf = TLS_SW; |
| 710 | } |
| 711 | } else { |
| 712 | rc = tls_set_device_offload_rx(sk, ctx); |
| 713 | conf = TLS_HW; |
| 714 | if (!rc) { |
| 715 | TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); |
| 716 | TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); |
| 717 | } else { |
| 718 | rc = tls_set_sw_offload(sk, 0, |
| 719 | update ? crypto_info : NULL); |
| 720 | if (rc) |
| 721 | goto err_crypto_info; |
| 722 | |
| 723 | if (update) { |
| 724 | TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYOK); |
| 725 | } else { |
| 726 | TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); |
| 727 | TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); |
| 728 | } |
| 729 | conf = TLS_SW; |
| 730 | } |
| 731 | if (!update) |
| 732 | tls_sw_strparser_arm(sk, ctx); |
| 733 | } |
| 734 | |
| 735 | if (tx) |
| 736 | ctx->tx_conf = conf; |
| 737 | else |
| 738 | ctx->rx_conf = conf; |
| 739 | update_sk_prot(sk, ctx); |
| 740 | |
| 741 | if (update) |
| 742 | return 0; |
| 743 | |
| 744 | if (tx) { |
| 745 | ctx->sk_write_space = sk->sk_write_space; |
| 746 | sk->sk_write_space = tls_write_space; |
| 747 | } else { |
| 748 | struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx); |
| 749 | |
| 750 | tls_strp_check_rcv(&rx_ctx->strp); |
| 751 | } |
| 752 | return 0; |
| 753 | |
| 754 | err_crypto_info: |
| 755 | if (update) { |
| 756 | TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR |
| 757 | : LINUX_MIB_TLSRXREKEYERROR); |
| 758 | } |
| 759 | memzero_explicit(crypto_ctx, sizeof(*crypto_ctx)); |
| 760 | return rc; |
| 761 | } |
| 762 | |
| 763 | static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval, |
| 764 | unsigned int optlen) |
| 765 | { |
| 766 | struct tls_context *ctx = tls_get_ctx(sk); |
| 767 | unsigned int value; |
| 768 | |
| 769 | if (sockptr_is_null(optval) || optlen != sizeof(value)) |
| 770 | return -EINVAL; |
| 771 | |
| 772 | if (copy_from_sockptr(&value, optval, sizeof(value))) |
| 773 | return -EFAULT; |
| 774 | |
| 775 | if (value > 1) |
| 776 | return -EINVAL; |
| 777 | |
| 778 | ctx->zerocopy_sendfile = value; |
| 779 | |
| 780 | return 0; |
| 781 | } |
| 782 | |
| 783 | static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval, |
| 784 | unsigned int optlen) |
| 785 | { |
| 786 | struct tls_context *ctx = tls_get_ctx(sk); |
| 787 | u32 val; |
| 788 | int rc; |
| 789 | |
| 790 | if (ctx->prot_info.version != TLS_1_3_VERSION || |
| 791 | sockptr_is_null(optval) || optlen < sizeof(val)) |
| 792 | return -EINVAL; |
| 793 | |
| 794 | rc = copy_from_sockptr(&val, optval, sizeof(val)); |
| 795 | if (rc) |
| 796 | return -EFAULT; |
| 797 | if (val > 1) |
| 798 | return -EINVAL; |
| 799 | rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val)); |
| 800 | if (rc < 1) |
| 801 | return rc == 0 ? -EINVAL : rc; |
| 802 | |
| 803 | lock_sock(sk); |
| 804 | rc = -EINVAL; |
| 805 | if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) { |
| 806 | ctx->rx_no_pad = val; |
| 807 | tls_update_rx_zc_capable(ctx); |
| 808 | rc = 0; |
| 809 | } |
| 810 | release_sock(sk); |
| 811 | |
| 812 | return rc; |
| 813 | } |
| 814 | |
| 815 | static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, |
| 816 | unsigned int optlen) |
| 817 | { |
| 818 | int rc = 0; |
| 819 | |
| 820 | switch (optname) { |
| 821 | case TLS_TX: |
| 822 | case TLS_RX: |
| 823 | lock_sock(sk); |
| 824 | rc = do_tls_setsockopt_conf(sk, optval, optlen, |
| 825 | optname == TLS_TX); |
| 826 | release_sock(sk); |
| 827 | break; |
| 828 | case TLS_TX_ZEROCOPY_RO: |
| 829 | lock_sock(sk); |
| 830 | rc = do_tls_setsockopt_tx_zc(sk, optval, optlen); |
| 831 | release_sock(sk); |
| 832 | break; |
| 833 | case TLS_RX_EXPECT_NO_PAD: |
| 834 | rc = do_tls_setsockopt_no_pad(sk, optval, optlen); |
| 835 | break; |
| 836 | default: |
| 837 | rc = -ENOPROTOOPT; |
| 838 | break; |
| 839 | } |
| 840 | return rc; |
| 841 | } |
| 842 | |
| 843 | static int tls_setsockopt(struct sock *sk, int level, int optname, |
| 844 | sockptr_t optval, unsigned int optlen) |
| 845 | { |
| 846 | struct tls_context *ctx = tls_get_ctx(sk); |
| 847 | |
| 848 | if (level != SOL_TLS) |
| 849 | return ctx->sk_proto->setsockopt(sk, level, optname, optval, |
| 850 | optlen); |
| 851 | |
| 852 | return do_tls_setsockopt(sk, optname, optval, optlen); |
| 853 | } |
| 854 | |
| 855 | static int tls_disconnect(struct sock *sk, int flags) |
| 856 | { |
| 857 | return -EOPNOTSUPP; |
| 858 | } |
| 859 | |
| 860 | struct tls_context *tls_ctx_create(struct sock *sk) |
| 861 | { |
| 862 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 863 | struct tls_context *ctx; |
| 864 | |
| 865 | ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); |
| 866 | if (!ctx) |
| 867 | return NULL; |
| 868 | |
| 869 | mutex_init(&ctx->tx_lock); |
| 870 | ctx->sk_proto = READ_ONCE(sk->sk_prot); |
| 871 | ctx->sk = sk; |
| 872 | /* Release semantic of rcu_assign_pointer() ensures that |
| 873 | * ctx->sk_proto is visible before changing sk->sk_prot in |
| 874 | * update_sk_prot(), and prevents reading uninitialized value in |
| 875 | * tls_{getsockopt, setsockopt}. Note that we do not need a |
| 876 | * read barrier in tls_{getsockopt,setsockopt} as there is an |
| 877 | * address dependency between sk->sk_proto->{getsockopt,setsockopt} |
| 878 | * and ctx->sk_proto. |
| 879 | */ |
| 880 | rcu_assign_pointer(icsk->icsk_ulp_data, ctx); |
| 881 | return ctx; |
| 882 | } |
| 883 | |
| 884 | static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], |
| 885 | const struct proto_ops *base) |
| 886 | { |
| 887 | ops[TLS_BASE][TLS_BASE] = *base; |
| 888 | |
| 889 | ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; |
| 890 | ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof; |
| 891 | |
| 892 | ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; |
| 893 | ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; |
| 894 | ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll; |
| 895 | ops[TLS_BASE][TLS_SW ].read_sock = tls_sw_read_sock; |
| 896 | |
| 897 | ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; |
| 898 | ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; |
| 899 | ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll; |
| 900 | ops[TLS_SW ][TLS_SW ].read_sock = tls_sw_read_sock; |
| 901 | |
| 902 | #ifdef CONFIG_TLS_DEVICE |
| 903 | ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; |
| 904 | |
| 905 | ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; |
| 906 | |
| 907 | ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; |
| 908 | |
| 909 | ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; |
| 910 | |
| 911 | ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; |
| 912 | #endif |
| 913 | #ifdef CONFIG_TLS_TOE |
| 914 | ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; |
| 915 | #endif |
| 916 | } |
| 917 | |
| 918 | static void tls_build_proto(struct sock *sk) |
| 919 | { |
| 920 | int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; |
| 921 | struct proto *prot = READ_ONCE(sk->sk_prot); |
| 922 | |
| 923 | /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ |
| 924 | if (ip_ver == TLSV6 && |
| 925 | unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { |
| 926 | mutex_lock(&tcpv6_prot_mutex); |
| 927 | if (likely(prot != saved_tcpv6_prot)) { |
| 928 | build_protos(tls_prots[TLSV6], prot); |
| 929 | build_proto_ops(tls_proto_ops[TLSV6], |
| 930 | sk->sk_socket->ops); |
| 931 | smp_store_release(&saved_tcpv6_prot, prot); |
| 932 | } |
| 933 | mutex_unlock(&tcpv6_prot_mutex); |
| 934 | } |
| 935 | |
| 936 | if (ip_ver == TLSV4 && |
| 937 | unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { |
| 938 | mutex_lock(&tcpv4_prot_mutex); |
| 939 | if (likely(prot != saved_tcpv4_prot)) { |
| 940 | build_protos(tls_prots[TLSV4], prot); |
| 941 | build_proto_ops(tls_proto_ops[TLSV4], |
| 942 | sk->sk_socket->ops); |
| 943 | smp_store_release(&saved_tcpv4_prot, prot); |
| 944 | } |
| 945 | mutex_unlock(&tcpv4_prot_mutex); |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], |
| 950 | const struct proto *base) |
| 951 | { |
| 952 | prot[TLS_BASE][TLS_BASE] = *base; |
| 953 | prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; |
| 954 | prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; |
| 955 | prot[TLS_BASE][TLS_BASE].disconnect = tls_disconnect; |
| 956 | prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; |
| 957 | |
| 958 | prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; |
| 959 | prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; |
| 960 | prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof; |
| 961 | |
| 962 | prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; |
| 963 | prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; |
| 964 | prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; |
| 965 | prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; |
| 966 | |
| 967 | prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; |
| 968 | prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; |
| 969 | prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; |
| 970 | prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; |
| 971 | |
| 972 | #ifdef CONFIG_TLS_DEVICE |
| 973 | prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; |
| 974 | prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; |
| 975 | prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof; |
| 976 | |
| 977 | prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; |
| 978 | prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; |
| 979 | prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof; |
| 980 | |
| 981 | prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; |
| 982 | |
| 983 | prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; |
| 984 | |
| 985 | prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; |
| 986 | #endif |
| 987 | #ifdef CONFIG_TLS_TOE |
| 988 | prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; |
| 989 | prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; |
| 990 | prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; |
| 991 | #endif |
| 992 | } |
| 993 | |
| 994 | static int tls_init(struct sock *sk) |
| 995 | { |
| 996 | struct tls_context *ctx; |
| 997 | int rc = 0; |
| 998 | |
| 999 | tls_build_proto(sk); |
| 1000 | |
| 1001 | #ifdef CONFIG_TLS_TOE |
| 1002 | if (tls_toe_bypass(sk)) |
| 1003 | return 0; |
| 1004 | #endif |
| 1005 | |
| 1006 | /* The TLS ulp is currently supported only for TCP sockets |
| 1007 | * in ESTABLISHED state. |
| 1008 | * Supporting sockets in LISTEN state will require us |
| 1009 | * to modify the accept implementation to clone rather then |
| 1010 | * share the ulp context. |
| 1011 | */ |
| 1012 | if (sk->sk_state != TCP_ESTABLISHED) |
| 1013 | return -ENOTCONN; |
| 1014 | |
| 1015 | /* allocate tls context */ |
| 1016 | write_lock_bh(&sk->sk_callback_lock); |
| 1017 | ctx = tls_ctx_create(sk); |
| 1018 | if (!ctx) { |
| 1019 | rc = -ENOMEM; |
| 1020 | goto out; |
| 1021 | } |
| 1022 | |
| 1023 | ctx->tx_conf = TLS_BASE; |
| 1024 | ctx->rx_conf = TLS_BASE; |
| 1025 | update_sk_prot(sk, ctx); |
| 1026 | out: |
| 1027 | write_unlock_bh(&sk->sk_callback_lock); |
| 1028 | return rc; |
| 1029 | } |
| 1030 | |
| 1031 | static void tls_update(struct sock *sk, struct proto *p, |
| 1032 | void (*write_space)(struct sock *sk)) |
| 1033 | { |
| 1034 | struct tls_context *ctx; |
| 1035 | |
| 1036 | WARN_ON_ONCE(sk->sk_prot == p); |
| 1037 | |
| 1038 | ctx = tls_get_ctx(sk); |
| 1039 | if (likely(ctx)) { |
| 1040 | ctx->sk_write_space = write_space; |
| 1041 | ctx->sk_proto = p; |
| 1042 | } else { |
| 1043 | /* Pairs with lockless read in sk_clone_lock(). */ |
| 1044 | WRITE_ONCE(sk->sk_prot, p); |
| 1045 | sk->sk_write_space = write_space; |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | static u16 tls_user_config(struct tls_context *ctx, bool tx) |
| 1050 | { |
| 1051 | u16 config = tx ? ctx->tx_conf : ctx->rx_conf; |
| 1052 | |
| 1053 | switch (config) { |
| 1054 | case TLS_BASE: |
| 1055 | return TLS_CONF_BASE; |
| 1056 | case TLS_SW: |
| 1057 | return TLS_CONF_SW; |
| 1058 | case TLS_HW: |
| 1059 | return TLS_CONF_HW; |
| 1060 | case TLS_HW_RECORD: |
| 1061 | return TLS_CONF_HW_RECORD; |
| 1062 | } |
| 1063 | return 0; |
| 1064 | } |
| 1065 | |
| 1066 | static int tls_get_info(struct sock *sk, struct sk_buff *skb, bool net_admin) |
| 1067 | { |
| 1068 | u16 version, cipher_type; |
| 1069 | struct tls_context *ctx; |
| 1070 | struct nlattr *start; |
| 1071 | int err; |
| 1072 | |
| 1073 | start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); |
| 1074 | if (!start) |
| 1075 | return -EMSGSIZE; |
| 1076 | |
| 1077 | rcu_read_lock(); |
| 1078 | ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); |
| 1079 | if (!ctx) { |
| 1080 | err = 0; |
| 1081 | goto nla_failure; |
| 1082 | } |
| 1083 | version = ctx->prot_info.version; |
| 1084 | if (version) { |
| 1085 | err = nla_put_u16(skb, TLS_INFO_VERSION, version); |
| 1086 | if (err) |
| 1087 | goto nla_failure; |
| 1088 | } |
| 1089 | cipher_type = ctx->prot_info.cipher_type; |
| 1090 | if (cipher_type) { |
| 1091 | err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); |
| 1092 | if (err) |
| 1093 | goto nla_failure; |
| 1094 | } |
| 1095 | err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); |
| 1096 | if (err) |
| 1097 | goto nla_failure; |
| 1098 | |
| 1099 | err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); |
| 1100 | if (err) |
| 1101 | goto nla_failure; |
| 1102 | |
| 1103 | if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) { |
| 1104 | err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX); |
| 1105 | if (err) |
| 1106 | goto nla_failure; |
| 1107 | } |
| 1108 | if (ctx->rx_no_pad) { |
| 1109 | err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD); |
| 1110 | if (err) |
| 1111 | goto nla_failure; |
| 1112 | } |
| 1113 | |
| 1114 | rcu_read_unlock(); |
| 1115 | nla_nest_end(skb, start); |
| 1116 | return 0; |
| 1117 | |
| 1118 | nla_failure: |
| 1119 | rcu_read_unlock(); |
| 1120 | nla_nest_cancel(skb, start); |
| 1121 | return err; |
| 1122 | } |
| 1123 | |
| 1124 | static size_t tls_get_info_size(const struct sock *sk, bool net_admin) |
| 1125 | { |
| 1126 | size_t size = 0; |
| 1127 | |
| 1128 | size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ |
| 1129 | nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ |
| 1130 | nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ |
| 1131 | nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ |
| 1132 | nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ |
| 1133 | nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */ |
| 1134 | nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */ |
| 1135 | 0; |
| 1136 | |
| 1137 | return size; |
| 1138 | } |
| 1139 | |
| 1140 | static int __net_init tls_init_net(struct net *net) |
| 1141 | { |
| 1142 | int err; |
| 1143 | |
| 1144 | net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); |
| 1145 | if (!net->mib.tls_statistics) |
| 1146 | return -ENOMEM; |
| 1147 | |
| 1148 | err = tls_proc_init(net); |
| 1149 | if (err) |
| 1150 | goto err_free_stats; |
| 1151 | |
| 1152 | return 0; |
| 1153 | err_free_stats: |
| 1154 | free_percpu(net->mib.tls_statistics); |
| 1155 | return err; |
| 1156 | } |
| 1157 | |
| 1158 | static void __net_exit tls_exit_net(struct net *net) |
| 1159 | { |
| 1160 | tls_proc_fini(net); |
| 1161 | free_percpu(net->mib.tls_statistics); |
| 1162 | } |
| 1163 | |
| 1164 | static struct pernet_operations tls_proc_ops = { |
| 1165 | .init = tls_init_net, |
| 1166 | .exit = tls_exit_net, |
| 1167 | }; |
| 1168 | |
| 1169 | static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { |
| 1170 | .name = "tls", |
| 1171 | .owner = THIS_MODULE, |
| 1172 | .init = tls_init, |
| 1173 | .update = tls_update, |
| 1174 | .get_info = tls_get_info, |
| 1175 | .get_info_size = tls_get_info_size, |
| 1176 | }; |
| 1177 | |
| 1178 | static int __init tls_register(void) |
| 1179 | { |
| 1180 | int err; |
| 1181 | |
| 1182 | err = register_pernet_subsys(&tls_proc_ops); |
| 1183 | if (err) |
| 1184 | return err; |
| 1185 | |
| 1186 | err = tls_strp_dev_init(); |
| 1187 | if (err) |
| 1188 | goto err_pernet; |
| 1189 | |
| 1190 | err = tls_device_init(); |
| 1191 | if (err) |
| 1192 | goto err_strp; |
| 1193 | |
| 1194 | tcp_register_ulp(&tcp_tls_ulp_ops); |
| 1195 | |
| 1196 | return 0; |
| 1197 | err_strp: |
| 1198 | tls_strp_dev_exit(); |
| 1199 | err_pernet: |
| 1200 | unregister_pernet_subsys(&tls_proc_ops); |
| 1201 | return err; |
| 1202 | } |
| 1203 | |
| 1204 | static void __exit tls_unregister(void) |
| 1205 | { |
| 1206 | tcp_unregister_ulp(&tcp_tls_ulp_ops); |
| 1207 | tls_strp_dev_exit(); |
| 1208 | tls_device_cleanup(); |
| 1209 | unregister_pernet_subsys(&tls_proc_ops); |
| 1210 | } |
| 1211 | |
| 1212 | module_init(tls_register); |
| 1213 | module_exit(tls_unregister); |