| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * net/sched/sch_netem.c Network emulator |
| 4 | * |
| 5 | * Many of the algorithms and ideas for this came from |
| 6 | * NIST Net which is not copyrighted. |
| 7 | * |
| 8 | * Authors: Stephen Hemminger <shemminger@osdl.org> |
| 9 | * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro> |
| 10 | */ |
| 11 | |
| 12 | #include <linux/mm.h> |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/types.h> |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/errno.h> |
| 18 | #include <linux/skbuff.h> |
| 19 | #include <linux/vmalloc.h> |
| 20 | #include <linux/prandom.h> |
| 21 | #include <linux/rtnetlink.h> |
| 22 | #include <linux/reciprocal_div.h> |
| 23 | #include <linux/rbtree.h> |
| 24 | |
| 25 | #include <net/gso.h> |
| 26 | #include <net/netlink.h> |
| 27 | #include <net/pkt_sched.h> |
| 28 | #include <net/inet_ecn.h> |
| 29 | |
| 30 | #define VERSION "1.3" |
| 31 | |
| 32 | /* Network Emulation Queuing algorithm. |
| 33 | ==================================== |
| 34 | |
| 35 | Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based |
| 36 | Network Emulation Tool |
| 37 | [2] Luigi Rizzo, DummyNet for FreeBSD |
| 38 | |
| 39 | ---------------------------------------------------------------- |
| 40 | |
| 41 | This started out as a simple way to delay outgoing packets to |
| 42 | test TCP but has grown to include most of the functionality |
| 43 | of a full blown network emulator like NISTnet. It can delay |
| 44 | packets and add random jitter (and correlation). The random |
| 45 | distribution can be loaded from a table as well to provide |
| 46 | normal, Pareto, or experimental curves. Packet loss, |
| 47 | duplication, and reordering can also be emulated. |
| 48 | |
| 49 | This qdisc does not do classification that can be handled in |
| 50 | layering other disciplines. It does not need to do bandwidth |
| 51 | control either since that can be handled by using token |
| 52 | bucket or other rate control. |
| 53 | |
| 54 | Correlated Loss Generator models |
| 55 | |
| 56 | Added generation of correlated loss according to the |
| 57 | "Gilbert-Elliot" model, a 4-state markov model. |
| 58 | |
| 59 | References: |
| 60 | [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG |
| 61 | [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general |
| 62 | and intuitive loss model for packet networks and its implementation |
| 63 | in the Netem module in the Linux kernel", available in [1] |
| 64 | |
| 65 | Authors: Stefano Salsano <stefano.salsano at uniroma2.it |
| 66 | Fabio Ludovici <fabio.ludovici at yahoo.it> |
| 67 | */ |
| 68 | |
| 69 | struct disttable { |
| 70 | u32 size; |
| 71 | s16 table[] __counted_by(size); |
| 72 | }; |
| 73 | |
| 74 | struct netem_sched_data { |
| 75 | /* internal t(ime)fifo qdisc uses t_root and sch->limit */ |
| 76 | struct rb_root t_root; |
| 77 | |
| 78 | /* a linear queue; reduces rbtree rebalancing when jitter is low */ |
| 79 | struct sk_buff *t_head; |
| 80 | struct sk_buff *t_tail; |
| 81 | |
| 82 | u32 t_len; |
| 83 | |
| 84 | /* optional qdisc for classful handling (NULL at netem init) */ |
| 85 | struct Qdisc *qdisc; |
| 86 | |
| 87 | struct qdisc_watchdog watchdog; |
| 88 | |
| 89 | s64 latency; |
| 90 | s64 jitter; |
| 91 | |
| 92 | u32 loss; |
| 93 | u32 ecn; |
| 94 | u32 limit; |
| 95 | u32 counter; |
| 96 | u32 gap; |
| 97 | u32 duplicate; |
| 98 | u32 reorder; |
| 99 | u32 corrupt; |
| 100 | u64 rate; |
| 101 | s32 packet_overhead; |
| 102 | u32 cell_size; |
| 103 | struct reciprocal_value cell_size_reciprocal; |
| 104 | s32 cell_overhead; |
| 105 | |
| 106 | struct crndstate { |
| 107 | u32 last; |
| 108 | u32 rho; |
| 109 | } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor; |
| 110 | |
| 111 | struct prng { |
| 112 | u64 seed; |
| 113 | struct rnd_state prng_state; |
| 114 | } prng; |
| 115 | |
| 116 | struct disttable *delay_dist; |
| 117 | |
| 118 | enum { |
| 119 | CLG_RANDOM, |
| 120 | CLG_4_STATES, |
| 121 | CLG_GILB_ELL, |
| 122 | } loss_model; |
| 123 | |
| 124 | enum { |
| 125 | TX_IN_GAP_PERIOD = 1, |
| 126 | TX_IN_BURST_PERIOD, |
| 127 | LOST_IN_GAP_PERIOD, |
| 128 | LOST_IN_BURST_PERIOD, |
| 129 | } _4_state_model; |
| 130 | |
| 131 | enum { |
| 132 | GOOD_STATE = 1, |
| 133 | BAD_STATE, |
| 134 | } GE_state_model; |
| 135 | |
| 136 | /* Correlated Loss Generation models */ |
| 137 | struct clgstate { |
| 138 | /* state of the Markov chain */ |
| 139 | u8 state; |
| 140 | |
| 141 | /* 4-states and Gilbert-Elliot models */ |
| 142 | u32 a1; /* p13 for 4-states or p for GE */ |
| 143 | u32 a2; /* p31 for 4-states or r for GE */ |
| 144 | u32 a3; /* p32 for 4-states or h for GE */ |
| 145 | u32 a4; /* p14 for 4-states or 1-k for GE */ |
| 146 | u32 a5; /* p23 used only in 4-states */ |
| 147 | } clg; |
| 148 | |
| 149 | struct tc_netem_slot slot_config; |
| 150 | struct slotstate { |
| 151 | u64 slot_next; |
| 152 | s32 packets_left; |
| 153 | s32 bytes_left; |
| 154 | } slot; |
| 155 | |
| 156 | struct disttable *slot_dist; |
| 157 | }; |
| 158 | |
| 159 | /* Time stamp put into socket buffer control block |
| 160 | * Only valid when skbs are in our internal t(ime)fifo queue. |
| 161 | * |
| 162 | * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp, |
| 163 | * and skb->next & skb->prev are scratch space for a qdisc, |
| 164 | * we save skb->tstamp value in skb->cb[] before destroying it. |
| 165 | */ |
| 166 | struct netem_skb_cb { |
| 167 | u64 time_to_send; |
| 168 | }; |
| 169 | |
| 170 | static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb) |
| 171 | { |
| 172 | /* we assume we can use skb next/prev/tstamp as storage for rb_node */ |
| 173 | qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb)); |
| 174 | return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data; |
| 175 | } |
| 176 | |
| 177 | /* init_crandom - initialize correlated random number generator |
| 178 | * Use entropy source for initial seed. |
| 179 | */ |
| 180 | static void init_crandom(struct crndstate *state, unsigned long rho) |
| 181 | { |
| 182 | state->rho = rho; |
| 183 | state->last = get_random_u32(); |
| 184 | } |
| 185 | |
| 186 | /* get_crandom - correlated random number generator |
| 187 | * Next number depends on last value. |
| 188 | * rho is scaled to avoid floating point. |
| 189 | */ |
| 190 | static u32 get_crandom(struct crndstate *state, struct prng *p) |
| 191 | { |
| 192 | u64 value, rho; |
| 193 | unsigned long answer; |
| 194 | struct rnd_state *s = &p->prng_state; |
| 195 | |
| 196 | if (!state || state->rho == 0) /* no correlation */ |
| 197 | return prandom_u32_state(s); |
| 198 | |
| 199 | value = prandom_u32_state(s); |
| 200 | rho = (u64)state->rho + 1; |
| 201 | answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32; |
| 202 | state->last = answer; |
| 203 | return answer; |
| 204 | } |
| 205 | |
| 206 | /* loss_4state - 4-state model loss generator |
| 207 | * Generates losses according to the 4-state Markov chain adopted in |
| 208 | * the GI (General and Intuitive) loss model. |
| 209 | */ |
| 210 | static bool loss_4state(struct netem_sched_data *q) |
| 211 | { |
| 212 | struct clgstate *clg = &q->clg; |
| 213 | u32 rnd = prandom_u32_state(&q->prng.prng_state); |
| 214 | |
| 215 | /* |
| 216 | * Makes a comparison between rnd and the transition |
| 217 | * probabilities outgoing from the current state, then decides the |
| 218 | * next state and if the next packet has to be transmitted or lost. |
| 219 | * The four states correspond to: |
| 220 | * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period |
| 221 | * LOST_IN_GAP_PERIOD => isolated losses within a gap period |
| 222 | * LOST_IN_BURST_PERIOD => lost packets within a burst period |
| 223 | * TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period |
| 224 | */ |
| 225 | switch (clg->state) { |
| 226 | case TX_IN_GAP_PERIOD: |
| 227 | if (rnd < clg->a4) { |
| 228 | clg->state = LOST_IN_GAP_PERIOD; |
| 229 | return true; |
| 230 | } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) { |
| 231 | clg->state = LOST_IN_BURST_PERIOD; |
| 232 | return true; |
| 233 | } else if (clg->a1 + clg->a4 < rnd) { |
| 234 | clg->state = TX_IN_GAP_PERIOD; |
| 235 | } |
| 236 | |
| 237 | break; |
| 238 | case TX_IN_BURST_PERIOD: |
| 239 | if (rnd < clg->a5) { |
| 240 | clg->state = LOST_IN_BURST_PERIOD; |
| 241 | return true; |
| 242 | } else { |
| 243 | clg->state = TX_IN_BURST_PERIOD; |
| 244 | } |
| 245 | |
| 246 | break; |
| 247 | case LOST_IN_BURST_PERIOD: |
| 248 | if (rnd < clg->a3) |
| 249 | clg->state = TX_IN_BURST_PERIOD; |
| 250 | else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) { |
| 251 | clg->state = TX_IN_GAP_PERIOD; |
| 252 | } else if (clg->a2 + clg->a3 < rnd) { |
| 253 | clg->state = LOST_IN_BURST_PERIOD; |
| 254 | return true; |
| 255 | } |
| 256 | break; |
| 257 | case LOST_IN_GAP_PERIOD: |
| 258 | clg->state = TX_IN_GAP_PERIOD; |
| 259 | break; |
| 260 | } |
| 261 | |
| 262 | return false; |
| 263 | } |
| 264 | |
| 265 | /* loss_gilb_ell - Gilbert-Elliot model loss generator |
| 266 | * Generates losses according to the Gilbert-Elliot loss model or |
| 267 | * its special cases (Gilbert or Simple Gilbert) |
| 268 | * |
| 269 | * Makes a comparison between random number and the transition |
| 270 | * probabilities outgoing from the current state, then decides the |
| 271 | * next state. A second random number is extracted and the comparison |
| 272 | * with the loss probability of the current state decides if the next |
| 273 | * packet will be transmitted or lost. |
| 274 | */ |
| 275 | static bool loss_gilb_ell(struct netem_sched_data *q) |
| 276 | { |
| 277 | struct clgstate *clg = &q->clg; |
| 278 | struct rnd_state *s = &q->prng.prng_state; |
| 279 | |
| 280 | switch (clg->state) { |
| 281 | case GOOD_STATE: |
| 282 | if (prandom_u32_state(s) < clg->a1) |
| 283 | clg->state = BAD_STATE; |
| 284 | if (prandom_u32_state(s) < clg->a4) |
| 285 | return true; |
| 286 | break; |
| 287 | case BAD_STATE: |
| 288 | if (prandom_u32_state(s) < clg->a2) |
| 289 | clg->state = GOOD_STATE; |
| 290 | if (prandom_u32_state(s) > clg->a3) |
| 291 | return true; |
| 292 | } |
| 293 | |
| 294 | return false; |
| 295 | } |
| 296 | |
| 297 | static bool loss_event(struct netem_sched_data *q) |
| 298 | { |
| 299 | switch (q->loss_model) { |
| 300 | case CLG_RANDOM: |
| 301 | /* Random packet drop 0 => none, ~0 => all */ |
| 302 | return q->loss && q->loss >= get_crandom(&q->loss_cor, &q->prng); |
| 303 | |
| 304 | case CLG_4_STATES: |
| 305 | /* 4state loss model algorithm (used also for GI model) |
| 306 | * Extracts a value from the markov 4 state loss generator, |
| 307 | * if it is 1 drops a packet and if needed writes the event in |
| 308 | * the kernel logs |
| 309 | */ |
| 310 | return loss_4state(q); |
| 311 | |
| 312 | case CLG_GILB_ELL: |
| 313 | /* Gilbert-Elliot loss model algorithm |
| 314 | * Extracts a value from the Gilbert-Elliot loss generator, |
| 315 | * if it is 1 drops a packet and if needed writes the event in |
| 316 | * the kernel logs |
| 317 | */ |
| 318 | return loss_gilb_ell(q); |
| 319 | } |
| 320 | |
| 321 | return false; /* not reached */ |
| 322 | } |
| 323 | |
| 324 | |
| 325 | /* tabledist - return a pseudo-randomly distributed value with mean mu and |
| 326 | * std deviation sigma. Uses table lookup to approximate the desired |
| 327 | * distribution, and a uniformly-distributed pseudo-random source. |
| 328 | */ |
| 329 | static s64 tabledist(s64 mu, s32 sigma, |
| 330 | struct crndstate *state, |
| 331 | struct prng *prng, |
| 332 | const struct disttable *dist) |
| 333 | { |
| 334 | s64 x; |
| 335 | long t; |
| 336 | u32 rnd; |
| 337 | |
| 338 | if (sigma == 0) |
| 339 | return mu; |
| 340 | |
| 341 | rnd = get_crandom(state, prng); |
| 342 | |
| 343 | /* default uniform distribution */ |
| 344 | if (dist == NULL) |
| 345 | return ((rnd % (2 * (u32)sigma)) + mu) - sigma; |
| 346 | |
| 347 | t = dist->table[rnd % dist->size]; |
| 348 | x = (sigma % NETEM_DIST_SCALE) * t; |
| 349 | if (x >= 0) |
| 350 | x += NETEM_DIST_SCALE/2; |
| 351 | else |
| 352 | x -= NETEM_DIST_SCALE/2; |
| 353 | |
| 354 | return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu; |
| 355 | } |
| 356 | |
| 357 | static u64 packet_time_ns(u64 len, const struct netem_sched_data *q) |
| 358 | { |
| 359 | len += q->packet_overhead; |
| 360 | |
| 361 | if (q->cell_size) { |
| 362 | u32 cells = reciprocal_divide(len, q->cell_size_reciprocal); |
| 363 | |
| 364 | if (len > cells * q->cell_size) /* extra cell needed for remainder */ |
| 365 | cells++; |
| 366 | len = cells * (q->cell_size + q->cell_overhead); |
| 367 | } |
| 368 | |
| 369 | return div64_u64(len * NSEC_PER_SEC, q->rate); |
| 370 | } |
| 371 | |
| 372 | static void tfifo_reset(struct Qdisc *sch) |
| 373 | { |
| 374 | struct netem_sched_data *q = qdisc_priv(sch); |
| 375 | struct rb_node *p = rb_first(&q->t_root); |
| 376 | |
| 377 | while (p) { |
| 378 | struct sk_buff *skb = rb_to_skb(p); |
| 379 | |
| 380 | p = rb_next(p); |
| 381 | rb_erase(&skb->rbnode, &q->t_root); |
| 382 | rtnl_kfree_skbs(skb, skb); |
| 383 | } |
| 384 | |
| 385 | rtnl_kfree_skbs(q->t_head, q->t_tail); |
| 386 | q->t_head = NULL; |
| 387 | q->t_tail = NULL; |
| 388 | q->t_len = 0; |
| 389 | } |
| 390 | |
| 391 | static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch) |
| 392 | { |
| 393 | struct netem_sched_data *q = qdisc_priv(sch); |
| 394 | u64 tnext = netem_skb_cb(nskb)->time_to_send; |
| 395 | |
| 396 | if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) { |
| 397 | if (q->t_tail) |
| 398 | q->t_tail->next = nskb; |
| 399 | else |
| 400 | q->t_head = nskb; |
| 401 | q->t_tail = nskb; |
| 402 | } else { |
| 403 | struct rb_node **p = &q->t_root.rb_node, *parent = NULL; |
| 404 | |
| 405 | while (*p) { |
| 406 | struct sk_buff *skb; |
| 407 | |
| 408 | parent = *p; |
| 409 | skb = rb_to_skb(parent); |
| 410 | if (tnext >= netem_skb_cb(skb)->time_to_send) |
| 411 | p = &parent->rb_right; |
| 412 | else |
| 413 | p = &parent->rb_left; |
| 414 | } |
| 415 | rb_link_node(&nskb->rbnode, parent, p); |
| 416 | rb_insert_color(&nskb->rbnode, &q->t_root); |
| 417 | } |
| 418 | q->t_len++; |
| 419 | sch->q.qlen++; |
| 420 | } |
| 421 | |
| 422 | /* netem can't properly corrupt a megapacket (like we get from GSO), so instead |
| 423 | * when we statistically choose to corrupt one, we instead segment it, returning |
| 424 | * the first packet to be corrupted, and re-enqueue the remaining frames |
| 425 | */ |
| 426 | static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch, |
| 427 | struct sk_buff **to_free) |
| 428 | { |
| 429 | struct sk_buff *segs; |
| 430 | netdev_features_t features = netif_skb_features(skb); |
| 431 | |
| 432 | segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); |
| 433 | |
| 434 | if (IS_ERR_OR_NULL(segs)) { |
| 435 | qdisc_drop(skb, sch, to_free); |
| 436 | return NULL; |
| 437 | } |
| 438 | consume_skb(skb); |
| 439 | return segs; |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | * Insert one skb into qdisc. |
| 444 | * Note: parent depends on return value to account for queue length. |
| 445 | * NET_XMIT_DROP: queue length didn't change. |
| 446 | * NET_XMIT_SUCCESS: one skb was queued. |
| 447 | */ |
| 448 | static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch, |
| 449 | struct sk_buff **to_free) |
| 450 | { |
| 451 | struct netem_sched_data *q = qdisc_priv(sch); |
| 452 | /* We don't fill cb now as skb_unshare() may invalidate it */ |
| 453 | struct netem_skb_cb *cb; |
| 454 | struct sk_buff *skb2 = NULL; |
| 455 | struct sk_buff *segs = NULL; |
| 456 | unsigned int prev_len = qdisc_pkt_len(skb); |
| 457 | int count = 1; |
| 458 | |
| 459 | /* Do not fool qdisc_drop_all() */ |
| 460 | skb->prev = NULL; |
| 461 | |
| 462 | /* Random duplication */ |
| 463 | if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor, &q->prng)) |
| 464 | ++count; |
| 465 | |
| 466 | /* Drop packet? */ |
| 467 | if (loss_event(q)) { |
| 468 | if (q->ecn && INET_ECN_set_ce(skb)) |
| 469 | qdisc_qstats_drop(sch); /* mark packet */ |
| 470 | else |
| 471 | --count; |
| 472 | } |
| 473 | if (count == 0) { |
| 474 | qdisc_qstats_drop(sch); |
| 475 | __qdisc_drop(skb, to_free); |
| 476 | return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; |
| 477 | } |
| 478 | |
| 479 | /* If a delay is expected, orphan the skb. (orphaning usually takes |
| 480 | * place at TX completion time, so _before_ the link transit delay) |
| 481 | */ |
| 482 | if (q->latency || q->jitter || q->rate) |
| 483 | skb_orphan_partial(skb); |
| 484 | |
| 485 | /* |
| 486 | * If we need to duplicate packet, then clone it before |
| 487 | * original is modified. |
| 488 | */ |
| 489 | if (count > 1) |
| 490 | skb2 = skb_clone(skb, GFP_ATOMIC); |
| 491 | |
| 492 | /* |
| 493 | * Randomized packet corruption. |
| 494 | * Make copy if needed since we are modifying |
| 495 | * If packet is going to be hardware checksummed, then |
| 496 | * do it now in software before we mangle it. |
| 497 | */ |
| 498 | if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor, &q->prng)) { |
| 499 | if (skb_is_gso(skb)) { |
| 500 | skb = netem_segment(skb, sch, to_free); |
| 501 | if (!skb) |
| 502 | goto finish_segs; |
| 503 | |
| 504 | segs = skb->next; |
| 505 | skb_mark_not_on_list(skb); |
| 506 | qdisc_skb_cb(skb)->pkt_len = skb->len; |
| 507 | } |
| 508 | |
| 509 | skb = skb_unshare(skb, GFP_ATOMIC); |
| 510 | if (unlikely(!skb)) { |
| 511 | qdisc_qstats_drop(sch); |
| 512 | goto finish_segs; |
| 513 | } |
| 514 | if (skb->ip_summed == CHECKSUM_PARTIAL && |
| 515 | skb_checksum_help(skb)) { |
| 516 | qdisc_drop(skb, sch, to_free); |
| 517 | skb = NULL; |
| 518 | goto finish_segs; |
| 519 | } |
| 520 | |
| 521 | skb->data[get_random_u32_below(skb_headlen(skb))] ^= |
| 522 | 1<<get_random_u32_below(8); |
| 523 | } |
| 524 | |
| 525 | if (unlikely(q->t_len >= sch->limit)) { |
| 526 | /* re-link segs, so that qdisc_drop_all() frees them all */ |
| 527 | skb->next = segs; |
| 528 | qdisc_drop_all(skb, sch, to_free); |
| 529 | if (skb2) |
| 530 | __qdisc_drop(skb2, to_free); |
| 531 | return NET_XMIT_DROP; |
| 532 | } |
| 533 | |
| 534 | /* |
| 535 | * If doing duplication then re-insert at top of the |
| 536 | * qdisc tree, since parent queuer expects that only one |
| 537 | * skb will be queued. |
| 538 | */ |
| 539 | if (skb2) { |
| 540 | struct Qdisc *rootq = qdisc_root_bh(sch); |
| 541 | u32 dupsave = q->duplicate; /* prevent duplicating a dup... */ |
| 542 | |
| 543 | q->duplicate = 0; |
| 544 | rootq->enqueue(skb2, rootq, to_free); |
| 545 | q->duplicate = dupsave; |
| 546 | skb2 = NULL; |
| 547 | } |
| 548 | |
| 549 | qdisc_qstats_backlog_inc(sch, skb); |
| 550 | |
| 551 | cb = netem_skb_cb(skb); |
| 552 | if (q->gap == 0 || /* not doing reordering */ |
| 553 | q->counter < q->gap - 1 || /* inside last reordering gap */ |
| 554 | q->reorder < get_crandom(&q->reorder_cor, &q->prng)) { |
| 555 | u64 now; |
| 556 | s64 delay; |
| 557 | |
| 558 | delay = tabledist(q->latency, q->jitter, |
| 559 | &q->delay_cor, &q->prng, q->delay_dist); |
| 560 | |
| 561 | now = ktime_get_ns(); |
| 562 | |
| 563 | if (q->rate) { |
| 564 | struct netem_skb_cb *last = NULL; |
| 565 | |
| 566 | if (sch->q.tail) |
| 567 | last = netem_skb_cb(sch->q.tail); |
| 568 | if (q->t_root.rb_node) { |
| 569 | struct sk_buff *t_skb; |
| 570 | struct netem_skb_cb *t_last; |
| 571 | |
| 572 | t_skb = skb_rb_last(&q->t_root); |
| 573 | t_last = netem_skb_cb(t_skb); |
| 574 | if (!last || |
| 575 | t_last->time_to_send > last->time_to_send) |
| 576 | last = t_last; |
| 577 | } |
| 578 | if (q->t_tail) { |
| 579 | struct netem_skb_cb *t_last = |
| 580 | netem_skb_cb(q->t_tail); |
| 581 | |
| 582 | if (!last || |
| 583 | t_last->time_to_send > last->time_to_send) |
| 584 | last = t_last; |
| 585 | } |
| 586 | |
| 587 | if (last) { |
| 588 | /* |
| 589 | * Last packet in queue is reference point (now), |
| 590 | * calculate this time bonus and subtract |
| 591 | * from delay. |
| 592 | */ |
| 593 | delay -= last->time_to_send - now; |
| 594 | delay = max_t(s64, 0, delay); |
| 595 | now = last->time_to_send; |
| 596 | } |
| 597 | |
| 598 | delay += packet_time_ns(qdisc_pkt_len(skb), q); |
| 599 | } |
| 600 | |
| 601 | cb->time_to_send = now + delay; |
| 602 | ++q->counter; |
| 603 | tfifo_enqueue(skb, sch); |
| 604 | } else { |
| 605 | /* |
| 606 | * Do re-ordering by putting one out of N packets at the front |
| 607 | * of the queue. |
| 608 | */ |
| 609 | cb->time_to_send = ktime_get_ns(); |
| 610 | q->counter = 0; |
| 611 | |
| 612 | __qdisc_enqueue_head(skb, &sch->q); |
| 613 | sch->qstats.requeues++; |
| 614 | } |
| 615 | |
| 616 | finish_segs: |
| 617 | if (skb2) |
| 618 | __qdisc_drop(skb2, to_free); |
| 619 | |
| 620 | if (segs) { |
| 621 | unsigned int len, last_len; |
| 622 | int rc, nb; |
| 623 | |
| 624 | len = skb ? skb->len : 0; |
| 625 | nb = skb ? 1 : 0; |
| 626 | |
| 627 | while (segs) { |
| 628 | skb2 = segs->next; |
| 629 | skb_mark_not_on_list(segs); |
| 630 | qdisc_skb_cb(segs)->pkt_len = segs->len; |
| 631 | last_len = segs->len; |
| 632 | rc = qdisc_enqueue(segs, sch, to_free); |
| 633 | if (rc != NET_XMIT_SUCCESS) { |
| 634 | if (net_xmit_drop_count(rc)) |
| 635 | qdisc_qstats_drop(sch); |
| 636 | } else { |
| 637 | nb++; |
| 638 | len += last_len; |
| 639 | } |
| 640 | segs = skb2; |
| 641 | } |
| 642 | /* Parent qdiscs accounted for 1 skb of size @prev_len */ |
| 643 | qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len)); |
| 644 | } else if (!skb) { |
| 645 | return NET_XMIT_DROP; |
| 646 | } |
| 647 | return NET_XMIT_SUCCESS; |
| 648 | } |
| 649 | |
| 650 | /* Delay the next round with a new future slot with a |
| 651 | * correct number of bytes and packets. |
| 652 | */ |
| 653 | |
| 654 | static void get_slot_next(struct netem_sched_data *q, u64 now) |
| 655 | { |
| 656 | s64 next_delay; |
| 657 | |
| 658 | if (!q->slot_dist) |
| 659 | next_delay = q->slot_config.min_delay + |
| 660 | (get_random_u32() * |
| 661 | (q->slot_config.max_delay - |
| 662 | q->slot_config.min_delay) >> 32); |
| 663 | else |
| 664 | next_delay = tabledist(q->slot_config.dist_delay, |
| 665 | (s32)(q->slot_config.dist_jitter), |
| 666 | NULL, &q->prng, q->slot_dist); |
| 667 | |
| 668 | q->slot.slot_next = now + next_delay; |
| 669 | q->slot.packets_left = q->slot_config.max_packets; |
| 670 | q->slot.bytes_left = q->slot_config.max_bytes; |
| 671 | } |
| 672 | |
| 673 | static struct sk_buff *netem_peek(struct netem_sched_data *q) |
| 674 | { |
| 675 | struct sk_buff *skb = skb_rb_first(&q->t_root); |
| 676 | u64 t1, t2; |
| 677 | |
| 678 | if (!skb) |
| 679 | return q->t_head; |
| 680 | if (!q->t_head) |
| 681 | return skb; |
| 682 | |
| 683 | t1 = netem_skb_cb(skb)->time_to_send; |
| 684 | t2 = netem_skb_cb(q->t_head)->time_to_send; |
| 685 | if (t1 < t2) |
| 686 | return skb; |
| 687 | return q->t_head; |
| 688 | } |
| 689 | |
| 690 | static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb) |
| 691 | { |
| 692 | if (skb == q->t_head) { |
| 693 | q->t_head = skb->next; |
| 694 | if (!q->t_head) |
| 695 | q->t_tail = NULL; |
| 696 | } else { |
| 697 | rb_erase(&skb->rbnode, &q->t_root); |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | static struct sk_buff *netem_dequeue(struct Qdisc *sch) |
| 702 | { |
| 703 | struct netem_sched_data *q = qdisc_priv(sch); |
| 704 | struct sk_buff *skb; |
| 705 | |
| 706 | tfifo_dequeue: |
| 707 | skb = __qdisc_dequeue_head(&sch->q); |
| 708 | if (skb) { |
| 709 | deliver: |
| 710 | qdisc_qstats_backlog_dec(sch, skb); |
| 711 | qdisc_bstats_update(sch, skb); |
| 712 | return skb; |
| 713 | } |
| 714 | skb = netem_peek(q); |
| 715 | if (skb) { |
| 716 | u64 time_to_send; |
| 717 | u64 now = ktime_get_ns(); |
| 718 | |
| 719 | /* if more time remaining? */ |
| 720 | time_to_send = netem_skb_cb(skb)->time_to_send; |
| 721 | if (q->slot.slot_next && q->slot.slot_next < time_to_send) |
| 722 | get_slot_next(q, now); |
| 723 | |
| 724 | if (time_to_send <= now && q->slot.slot_next <= now) { |
| 725 | netem_erase_head(q, skb); |
| 726 | q->t_len--; |
| 727 | skb->next = NULL; |
| 728 | skb->prev = NULL; |
| 729 | /* skb->dev shares skb->rbnode area, |
| 730 | * we need to restore its value. |
| 731 | */ |
| 732 | skb->dev = qdisc_dev(sch); |
| 733 | |
| 734 | if (q->slot.slot_next) { |
| 735 | q->slot.packets_left--; |
| 736 | q->slot.bytes_left -= qdisc_pkt_len(skb); |
| 737 | if (q->slot.packets_left <= 0 || |
| 738 | q->slot.bytes_left <= 0) |
| 739 | get_slot_next(q, now); |
| 740 | } |
| 741 | |
| 742 | if (q->qdisc) { |
| 743 | unsigned int pkt_len = qdisc_pkt_len(skb); |
| 744 | struct sk_buff *to_free = NULL; |
| 745 | int err; |
| 746 | |
| 747 | err = qdisc_enqueue(skb, q->qdisc, &to_free); |
| 748 | kfree_skb_list(to_free); |
| 749 | if (err != NET_XMIT_SUCCESS) { |
| 750 | if (net_xmit_drop_count(err)) |
| 751 | qdisc_qstats_drop(sch); |
| 752 | sch->qstats.backlog -= pkt_len; |
| 753 | sch->q.qlen--; |
| 754 | qdisc_tree_reduce_backlog(sch, 1, pkt_len); |
| 755 | } |
| 756 | goto tfifo_dequeue; |
| 757 | } |
| 758 | sch->q.qlen--; |
| 759 | goto deliver; |
| 760 | } |
| 761 | |
| 762 | if (q->qdisc) { |
| 763 | skb = q->qdisc->ops->dequeue(q->qdisc); |
| 764 | if (skb) { |
| 765 | sch->q.qlen--; |
| 766 | goto deliver; |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | qdisc_watchdog_schedule_ns(&q->watchdog, |
| 771 | max(time_to_send, |
| 772 | q->slot.slot_next)); |
| 773 | } |
| 774 | |
| 775 | if (q->qdisc) { |
| 776 | skb = q->qdisc->ops->dequeue(q->qdisc); |
| 777 | if (skb) { |
| 778 | sch->q.qlen--; |
| 779 | goto deliver; |
| 780 | } |
| 781 | } |
| 782 | return NULL; |
| 783 | } |
| 784 | |
| 785 | static void netem_reset(struct Qdisc *sch) |
| 786 | { |
| 787 | struct netem_sched_data *q = qdisc_priv(sch); |
| 788 | |
| 789 | qdisc_reset_queue(sch); |
| 790 | tfifo_reset(sch); |
| 791 | if (q->qdisc) |
| 792 | qdisc_reset(q->qdisc); |
| 793 | qdisc_watchdog_cancel(&q->watchdog); |
| 794 | } |
| 795 | |
| 796 | static void dist_free(struct disttable *d) |
| 797 | { |
| 798 | kvfree(d); |
| 799 | } |
| 800 | |
| 801 | /* |
| 802 | * Distribution data is a variable size payload containing |
| 803 | * signed 16 bit values. |
| 804 | */ |
| 805 | |
| 806 | static int get_dist_table(struct disttable **tbl, const struct nlattr *attr) |
| 807 | { |
| 808 | size_t n = nla_len(attr)/sizeof(__s16); |
| 809 | const __s16 *data = nla_data(attr); |
| 810 | struct disttable *d; |
| 811 | int i; |
| 812 | |
| 813 | if (!n || n > NETEM_DIST_MAX) |
| 814 | return -EINVAL; |
| 815 | |
| 816 | d = kvmalloc(struct_size(d, table, n), GFP_KERNEL); |
| 817 | if (!d) |
| 818 | return -ENOMEM; |
| 819 | |
| 820 | d->size = n; |
| 821 | for (i = 0; i < n; i++) |
| 822 | d->table[i] = data[i]; |
| 823 | |
| 824 | *tbl = d; |
| 825 | return 0; |
| 826 | } |
| 827 | |
| 828 | static void get_slot(struct netem_sched_data *q, const struct nlattr *attr) |
| 829 | { |
| 830 | const struct tc_netem_slot *c = nla_data(attr); |
| 831 | |
| 832 | q->slot_config = *c; |
| 833 | if (q->slot_config.max_packets == 0) |
| 834 | q->slot_config.max_packets = INT_MAX; |
| 835 | if (q->slot_config.max_bytes == 0) |
| 836 | q->slot_config.max_bytes = INT_MAX; |
| 837 | |
| 838 | /* capping dist_jitter to the range acceptable by tabledist() */ |
| 839 | q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter)); |
| 840 | |
| 841 | q->slot.packets_left = q->slot_config.max_packets; |
| 842 | q->slot.bytes_left = q->slot_config.max_bytes; |
| 843 | if (q->slot_config.min_delay | q->slot_config.max_delay | |
| 844 | q->slot_config.dist_jitter) |
| 845 | q->slot.slot_next = ktime_get_ns(); |
| 846 | else |
| 847 | q->slot.slot_next = 0; |
| 848 | } |
| 849 | |
| 850 | static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr) |
| 851 | { |
| 852 | const struct tc_netem_corr *c = nla_data(attr); |
| 853 | |
| 854 | init_crandom(&q->delay_cor, c->delay_corr); |
| 855 | init_crandom(&q->loss_cor, c->loss_corr); |
| 856 | init_crandom(&q->dup_cor, c->dup_corr); |
| 857 | } |
| 858 | |
| 859 | static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr) |
| 860 | { |
| 861 | const struct tc_netem_reorder *r = nla_data(attr); |
| 862 | |
| 863 | q->reorder = r->probability; |
| 864 | init_crandom(&q->reorder_cor, r->correlation); |
| 865 | } |
| 866 | |
| 867 | static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr) |
| 868 | { |
| 869 | const struct tc_netem_corrupt *r = nla_data(attr); |
| 870 | |
| 871 | q->corrupt = r->probability; |
| 872 | init_crandom(&q->corrupt_cor, r->correlation); |
| 873 | } |
| 874 | |
| 875 | static void get_rate(struct netem_sched_data *q, const struct nlattr *attr) |
| 876 | { |
| 877 | const struct tc_netem_rate *r = nla_data(attr); |
| 878 | |
| 879 | q->rate = r->rate; |
| 880 | q->packet_overhead = r->packet_overhead; |
| 881 | q->cell_size = r->cell_size; |
| 882 | q->cell_overhead = r->cell_overhead; |
| 883 | if (q->cell_size) |
| 884 | q->cell_size_reciprocal = reciprocal_value(q->cell_size); |
| 885 | else |
| 886 | q->cell_size_reciprocal = (struct reciprocal_value) { 0 }; |
| 887 | } |
| 888 | |
| 889 | static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr) |
| 890 | { |
| 891 | const struct nlattr *la; |
| 892 | int rem; |
| 893 | |
| 894 | nla_for_each_nested(la, attr, rem) { |
| 895 | u16 type = nla_type(la); |
| 896 | |
| 897 | switch (type) { |
| 898 | case NETEM_LOSS_GI: { |
| 899 | const struct tc_netem_gimodel *gi = nla_data(la); |
| 900 | |
| 901 | if (nla_len(la) < sizeof(struct tc_netem_gimodel)) { |
| 902 | pr_info("netem: incorrect gi model size\n"); |
| 903 | return -EINVAL; |
| 904 | } |
| 905 | |
| 906 | q->loss_model = CLG_4_STATES; |
| 907 | |
| 908 | q->clg.state = TX_IN_GAP_PERIOD; |
| 909 | q->clg.a1 = gi->p13; |
| 910 | q->clg.a2 = gi->p31; |
| 911 | q->clg.a3 = gi->p32; |
| 912 | q->clg.a4 = gi->p14; |
| 913 | q->clg.a5 = gi->p23; |
| 914 | break; |
| 915 | } |
| 916 | |
| 917 | case NETEM_LOSS_GE: { |
| 918 | const struct tc_netem_gemodel *ge = nla_data(la); |
| 919 | |
| 920 | if (nla_len(la) < sizeof(struct tc_netem_gemodel)) { |
| 921 | pr_info("netem: incorrect ge model size\n"); |
| 922 | return -EINVAL; |
| 923 | } |
| 924 | |
| 925 | q->loss_model = CLG_GILB_ELL; |
| 926 | q->clg.state = GOOD_STATE; |
| 927 | q->clg.a1 = ge->p; |
| 928 | q->clg.a2 = ge->r; |
| 929 | q->clg.a3 = ge->h; |
| 930 | q->clg.a4 = ge->k1; |
| 931 | break; |
| 932 | } |
| 933 | |
| 934 | default: |
| 935 | pr_info("netem: unknown loss type %u\n", type); |
| 936 | return -EINVAL; |
| 937 | } |
| 938 | } |
| 939 | |
| 940 | return 0; |
| 941 | } |
| 942 | |
| 943 | static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = { |
| 944 | [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) }, |
| 945 | [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) }, |
| 946 | [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) }, |
| 947 | [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) }, |
| 948 | [TCA_NETEM_LOSS] = { .type = NLA_NESTED }, |
| 949 | [TCA_NETEM_ECN] = { .type = NLA_U32 }, |
| 950 | [TCA_NETEM_RATE64] = { .type = NLA_U64 }, |
| 951 | [TCA_NETEM_LATENCY64] = { .type = NLA_S64 }, |
| 952 | [TCA_NETEM_JITTER64] = { .type = NLA_S64 }, |
| 953 | [TCA_NETEM_SLOT] = { .len = sizeof(struct tc_netem_slot) }, |
| 954 | [TCA_NETEM_PRNG_SEED] = { .type = NLA_U64 }, |
| 955 | }; |
| 956 | |
| 957 | static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla, |
| 958 | const struct nla_policy *policy, int len) |
| 959 | { |
| 960 | int nested_len = nla_len(nla) - NLA_ALIGN(len); |
| 961 | |
| 962 | if (nested_len < 0) { |
| 963 | pr_info("netem: invalid attributes len %d\n", nested_len); |
| 964 | return -EINVAL; |
| 965 | } |
| 966 | |
| 967 | if (nested_len >= nla_attr_size(0)) |
| 968 | return nla_parse_deprecated(tb, maxtype, |
| 969 | nla_data(nla) + NLA_ALIGN(len), |
| 970 | nested_len, policy, NULL); |
| 971 | |
| 972 | memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); |
| 973 | return 0; |
| 974 | } |
| 975 | |
| 976 | /* Parse netlink message to set options */ |
| 977 | static int netem_change(struct Qdisc *sch, struct nlattr *opt, |
| 978 | struct netlink_ext_ack *extack) |
| 979 | { |
| 980 | struct netem_sched_data *q = qdisc_priv(sch); |
| 981 | struct nlattr *tb[TCA_NETEM_MAX + 1]; |
| 982 | struct disttable *delay_dist = NULL; |
| 983 | struct disttable *slot_dist = NULL; |
| 984 | struct tc_netem_qopt *qopt; |
| 985 | struct clgstate old_clg; |
| 986 | int old_loss_model = CLG_RANDOM; |
| 987 | int ret; |
| 988 | |
| 989 | qopt = nla_data(opt); |
| 990 | ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt)); |
| 991 | if (ret < 0) |
| 992 | return ret; |
| 993 | |
| 994 | if (tb[TCA_NETEM_DELAY_DIST]) { |
| 995 | ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]); |
| 996 | if (ret) |
| 997 | goto table_free; |
| 998 | } |
| 999 | |
| 1000 | if (tb[TCA_NETEM_SLOT_DIST]) { |
| 1001 | ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]); |
| 1002 | if (ret) |
| 1003 | goto table_free; |
| 1004 | } |
| 1005 | |
| 1006 | sch_tree_lock(sch); |
| 1007 | /* backup q->clg and q->loss_model */ |
| 1008 | old_clg = q->clg; |
| 1009 | old_loss_model = q->loss_model; |
| 1010 | |
| 1011 | if (tb[TCA_NETEM_LOSS]) { |
| 1012 | ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]); |
| 1013 | if (ret) { |
| 1014 | q->loss_model = old_loss_model; |
| 1015 | q->clg = old_clg; |
| 1016 | goto unlock; |
| 1017 | } |
| 1018 | } else { |
| 1019 | q->loss_model = CLG_RANDOM; |
| 1020 | } |
| 1021 | |
| 1022 | if (delay_dist) |
| 1023 | swap(q->delay_dist, delay_dist); |
| 1024 | if (slot_dist) |
| 1025 | swap(q->slot_dist, slot_dist); |
| 1026 | sch->limit = qopt->limit; |
| 1027 | |
| 1028 | q->latency = PSCHED_TICKS2NS(qopt->latency); |
| 1029 | q->jitter = PSCHED_TICKS2NS(qopt->jitter); |
| 1030 | q->limit = qopt->limit; |
| 1031 | q->gap = qopt->gap; |
| 1032 | q->counter = 0; |
| 1033 | q->loss = qopt->loss; |
| 1034 | q->duplicate = qopt->duplicate; |
| 1035 | |
| 1036 | /* for compatibility with earlier versions. |
| 1037 | * if gap is set, need to assume 100% probability |
| 1038 | */ |
| 1039 | if (q->gap) |
| 1040 | q->reorder = ~0; |
| 1041 | |
| 1042 | if (tb[TCA_NETEM_CORR]) |
| 1043 | get_correlation(q, tb[TCA_NETEM_CORR]); |
| 1044 | |
| 1045 | if (tb[TCA_NETEM_REORDER]) |
| 1046 | get_reorder(q, tb[TCA_NETEM_REORDER]); |
| 1047 | |
| 1048 | if (tb[TCA_NETEM_CORRUPT]) |
| 1049 | get_corrupt(q, tb[TCA_NETEM_CORRUPT]); |
| 1050 | |
| 1051 | if (tb[TCA_NETEM_RATE]) |
| 1052 | get_rate(q, tb[TCA_NETEM_RATE]); |
| 1053 | |
| 1054 | if (tb[TCA_NETEM_RATE64]) |
| 1055 | q->rate = max_t(u64, q->rate, |
| 1056 | nla_get_u64(tb[TCA_NETEM_RATE64])); |
| 1057 | |
| 1058 | if (tb[TCA_NETEM_LATENCY64]) |
| 1059 | q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]); |
| 1060 | |
| 1061 | if (tb[TCA_NETEM_JITTER64]) |
| 1062 | q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]); |
| 1063 | |
| 1064 | if (tb[TCA_NETEM_ECN]) |
| 1065 | q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]); |
| 1066 | |
| 1067 | if (tb[TCA_NETEM_SLOT]) |
| 1068 | get_slot(q, tb[TCA_NETEM_SLOT]); |
| 1069 | |
| 1070 | /* capping jitter to the range acceptable by tabledist() */ |
| 1071 | q->jitter = min_t(s64, abs(q->jitter), INT_MAX); |
| 1072 | |
| 1073 | if (tb[TCA_NETEM_PRNG_SEED]) |
| 1074 | q->prng.seed = nla_get_u64(tb[TCA_NETEM_PRNG_SEED]); |
| 1075 | else |
| 1076 | q->prng.seed = get_random_u64(); |
| 1077 | prandom_seed_state(&q->prng.prng_state, q->prng.seed); |
| 1078 | |
| 1079 | unlock: |
| 1080 | sch_tree_unlock(sch); |
| 1081 | |
| 1082 | table_free: |
| 1083 | dist_free(delay_dist); |
| 1084 | dist_free(slot_dist); |
| 1085 | return ret; |
| 1086 | } |
| 1087 | |
| 1088 | static int netem_init(struct Qdisc *sch, struct nlattr *opt, |
| 1089 | struct netlink_ext_ack *extack) |
| 1090 | { |
| 1091 | struct netem_sched_data *q = qdisc_priv(sch); |
| 1092 | int ret; |
| 1093 | |
| 1094 | qdisc_watchdog_init(&q->watchdog, sch); |
| 1095 | |
| 1096 | if (!opt) |
| 1097 | return -EINVAL; |
| 1098 | |
| 1099 | q->loss_model = CLG_RANDOM; |
| 1100 | ret = netem_change(sch, opt, extack); |
| 1101 | if (ret) |
| 1102 | pr_info("netem: change failed\n"); |
| 1103 | return ret; |
| 1104 | } |
| 1105 | |
| 1106 | static void netem_destroy(struct Qdisc *sch) |
| 1107 | { |
| 1108 | struct netem_sched_data *q = qdisc_priv(sch); |
| 1109 | |
| 1110 | qdisc_watchdog_cancel(&q->watchdog); |
| 1111 | if (q->qdisc) |
| 1112 | qdisc_put(q->qdisc); |
| 1113 | dist_free(q->delay_dist); |
| 1114 | dist_free(q->slot_dist); |
| 1115 | } |
| 1116 | |
| 1117 | static int dump_loss_model(const struct netem_sched_data *q, |
| 1118 | struct sk_buff *skb) |
| 1119 | { |
| 1120 | struct nlattr *nest; |
| 1121 | |
| 1122 | nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS); |
| 1123 | if (nest == NULL) |
| 1124 | goto nla_put_failure; |
| 1125 | |
| 1126 | switch (q->loss_model) { |
| 1127 | case CLG_RANDOM: |
| 1128 | /* legacy loss model */ |
| 1129 | nla_nest_cancel(skb, nest); |
| 1130 | return 0; /* no data */ |
| 1131 | |
| 1132 | case CLG_4_STATES: { |
| 1133 | struct tc_netem_gimodel gi = { |
| 1134 | .p13 = q->clg.a1, |
| 1135 | .p31 = q->clg.a2, |
| 1136 | .p32 = q->clg.a3, |
| 1137 | .p14 = q->clg.a4, |
| 1138 | .p23 = q->clg.a5, |
| 1139 | }; |
| 1140 | |
| 1141 | if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi)) |
| 1142 | goto nla_put_failure; |
| 1143 | break; |
| 1144 | } |
| 1145 | case CLG_GILB_ELL: { |
| 1146 | struct tc_netem_gemodel ge = { |
| 1147 | .p = q->clg.a1, |
| 1148 | .r = q->clg.a2, |
| 1149 | .h = q->clg.a3, |
| 1150 | .k1 = q->clg.a4, |
| 1151 | }; |
| 1152 | |
| 1153 | if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge)) |
| 1154 | goto nla_put_failure; |
| 1155 | break; |
| 1156 | } |
| 1157 | } |
| 1158 | |
| 1159 | nla_nest_end(skb, nest); |
| 1160 | return 0; |
| 1161 | |
| 1162 | nla_put_failure: |
| 1163 | nla_nest_cancel(skb, nest); |
| 1164 | return -1; |
| 1165 | } |
| 1166 | |
| 1167 | static int netem_dump(struct Qdisc *sch, struct sk_buff *skb) |
| 1168 | { |
| 1169 | const struct netem_sched_data *q = qdisc_priv(sch); |
| 1170 | struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb); |
| 1171 | struct tc_netem_qopt qopt; |
| 1172 | struct tc_netem_corr cor; |
| 1173 | struct tc_netem_reorder reorder; |
| 1174 | struct tc_netem_corrupt corrupt; |
| 1175 | struct tc_netem_rate rate; |
| 1176 | struct tc_netem_slot slot; |
| 1177 | |
| 1178 | qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency), |
| 1179 | UINT_MAX); |
| 1180 | qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter), |
| 1181 | UINT_MAX); |
| 1182 | qopt.limit = q->limit; |
| 1183 | qopt.loss = q->loss; |
| 1184 | qopt.gap = q->gap; |
| 1185 | qopt.duplicate = q->duplicate; |
| 1186 | if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) |
| 1187 | goto nla_put_failure; |
| 1188 | |
| 1189 | if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency)) |
| 1190 | goto nla_put_failure; |
| 1191 | |
| 1192 | if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter)) |
| 1193 | goto nla_put_failure; |
| 1194 | |
| 1195 | cor.delay_corr = q->delay_cor.rho; |
| 1196 | cor.loss_corr = q->loss_cor.rho; |
| 1197 | cor.dup_corr = q->dup_cor.rho; |
| 1198 | if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor)) |
| 1199 | goto nla_put_failure; |
| 1200 | |
| 1201 | reorder.probability = q->reorder; |
| 1202 | reorder.correlation = q->reorder_cor.rho; |
| 1203 | if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder)) |
| 1204 | goto nla_put_failure; |
| 1205 | |
| 1206 | corrupt.probability = q->corrupt; |
| 1207 | corrupt.correlation = q->corrupt_cor.rho; |
| 1208 | if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt)) |
| 1209 | goto nla_put_failure; |
| 1210 | |
| 1211 | if (q->rate >= (1ULL << 32)) { |
| 1212 | if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate, |
| 1213 | TCA_NETEM_PAD)) |
| 1214 | goto nla_put_failure; |
| 1215 | rate.rate = ~0U; |
| 1216 | } else { |
| 1217 | rate.rate = q->rate; |
| 1218 | } |
| 1219 | rate.packet_overhead = q->packet_overhead; |
| 1220 | rate.cell_size = q->cell_size; |
| 1221 | rate.cell_overhead = q->cell_overhead; |
| 1222 | if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate)) |
| 1223 | goto nla_put_failure; |
| 1224 | |
| 1225 | if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn)) |
| 1226 | goto nla_put_failure; |
| 1227 | |
| 1228 | if (dump_loss_model(q, skb) != 0) |
| 1229 | goto nla_put_failure; |
| 1230 | |
| 1231 | if (q->slot_config.min_delay | q->slot_config.max_delay | |
| 1232 | q->slot_config.dist_jitter) { |
| 1233 | slot = q->slot_config; |
| 1234 | if (slot.max_packets == INT_MAX) |
| 1235 | slot.max_packets = 0; |
| 1236 | if (slot.max_bytes == INT_MAX) |
| 1237 | slot.max_bytes = 0; |
| 1238 | if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot)) |
| 1239 | goto nla_put_failure; |
| 1240 | } |
| 1241 | |
| 1242 | if (nla_put_u64_64bit(skb, TCA_NETEM_PRNG_SEED, q->prng.seed, |
| 1243 | TCA_NETEM_PAD)) |
| 1244 | goto nla_put_failure; |
| 1245 | |
| 1246 | return nla_nest_end(skb, nla); |
| 1247 | |
| 1248 | nla_put_failure: |
| 1249 | nlmsg_trim(skb, nla); |
| 1250 | return -1; |
| 1251 | } |
| 1252 | |
| 1253 | static int netem_dump_class(struct Qdisc *sch, unsigned long cl, |
| 1254 | struct sk_buff *skb, struct tcmsg *tcm) |
| 1255 | { |
| 1256 | struct netem_sched_data *q = qdisc_priv(sch); |
| 1257 | |
| 1258 | if (cl != 1 || !q->qdisc) /* only one class */ |
| 1259 | return -ENOENT; |
| 1260 | |
| 1261 | tcm->tcm_handle |= TC_H_MIN(1); |
| 1262 | tcm->tcm_info = q->qdisc->handle; |
| 1263 | |
| 1264 | return 0; |
| 1265 | } |
| 1266 | |
| 1267 | static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, |
| 1268 | struct Qdisc **old, struct netlink_ext_ack *extack) |
| 1269 | { |
| 1270 | struct netem_sched_data *q = qdisc_priv(sch); |
| 1271 | |
| 1272 | *old = qdisc_replace(sch, new, &q->qdisc); |
| 1273 | return 0; |
| 1274 | } |
| 1275 | |
| 1276 | static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg) |
| 1277 | { |
| 1278 | struct netem_sched_data *q = qdisc_priv(sch); |
| 1279 | return q->qdisc; |
| 1280 | } |
| 1281 | |
| 1282 | static unsigned long netem_find(struct Qdisc *sch, u32 classid) |
| 1283 | { |
| 1284 | return 1; |
| 1285 | } |
| 1286 | |
| 1287 | static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker) |
| 1288 | { |
| 1289 | if (!walker->stop) { |
| 1290 | if (!tc_qdisc_stats_dump(sch, 1, walker)) |
| 1291 | return; |
| 1292 | } |
| 1293 | } |
| 1294 | |
| 1295 | static const struct Qdisc_class_ops netem_class_ops = { |
| 1296 | .graft = netem_graft, |
| 1297 | .leaf = netem_leaf, |
| 1298 | .find = netem_find, |
| 1299 | .walk = netem_walk, |
| 1300 | .dump = netem_dump_class, |
| 1301 | }; |
| 1302 | |
| 1303 | static struct Qdisc_ops netem_qdisc_ops __read_mostly = { |
| 1304 | .id = "netem", |
| 1305 | .cl_ops = &netem_class_ops, |
| 1306 | .priv_size = sizeof(struct netem_sched_data), |
| 1307 | .enqueue = netem_enqueue, |
| 1308 | .dequeue = netem_dequeue, |
| 1309 | .peek = qdisc_peek_dequeued, |
| 1310 | .init = netem_init, |
| 1311 | .reset = netem_reset, |
| 1312 | .destroy = netem_destroy, |
| 1313 | .change = netem_change, |
| 1314 | .dump = netem_dump, |
| 1315 | .owner = THIS_MODULE, |
| 1316 | }; |
| 1317 | MODULE_ALIAS_NET_SCH("netem"); |
| 1318 | |
| 1319 | |
| 1320 | static int __init netem_module_init(void) |
| 1321 | { |
| 1322 | pr_info("netem: version " VERSION "\n"); |
| 1323 | return register_qdisc(&netem_qdisc_ops); |
| 1324 | } |
| 1325 | static void __exit netem_module_exit(void) |
| 1326 | { |
| 1327 | unregister_qdisc(&netem_qdisc_ops); |
| 1328 | } |
| 1329 | module_init(netem_module_init) |
| 1330 | module_exit(netem_module_exit) |
| 1331 | MODULE_LICENSE("GPL"); |
| 1332 | MODULE_DESCRIPTION("Network characteristics emulator qdisc"); |