| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* Kerberos-based RxRPC security |
| 3 | * |
| 4 | * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. |
| 5 | * Written by David Howells (dhowells@redhat.com) |
| 6 | */ |
| 7 | |
| 8 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 9 | |
| 10 | #include <crypto/skcipher.h> |
| 11 | #include <linux/module.h> |
| 12 | #include <linux/net.h> |
| 13 | #include <linux/skbuff.h> |
| 14 | #include <linux/udp.h> |
| 15 | #include <linux/scatterlist.h> |
| 16 | #include <linux/ctype.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/key-type.h> |
| 19 | #include <net/sock.h> |
| 20 | #include <net/af_rxrpc.h> |
| 21 | #include <keys/rxrpc-type.h> |
| 22 | #include "ar-internal.h" |
| 23 | |
| 24 | #define RXKAD_VERSION 2 |
| 25 | #define MAXKRB5TICKETLEN 1024 |
| 26 | #define RXKAD_TKT_TYPE_KERBEROS_V5 256 |
| 27 | #define ANAME_SZ 40 /* size of authentication name */ |
| 28 | #define INST_SZ 40 /* size of principal's instance */ |
| 29 | #define REALM_SZ 40 /* size of principal's auth domain */ |
| 30 | #define SNAME_SZ 40 /* size of service name */ |
| 31 | #define RXKAD_ALIGN 8 |
| 32 | |
| 33 | struct rxkad_level1_hdr { |
| 34 | __be32 data_size; /* true data size (excluding padding) */ |
| 35 | }; |
| 36 | |
| 37 | struct rxkad_level2_hdr { |
| 38 | __be32 data_size; /* true data size (excluding padding) */ |
| 39 | __be32 checksum; /* decrypted data checksum */ |
| 40 | }; |
| 41 | |
| 42 | static int rxkad_prime_packet_security(struct rxrpc_connection *conn, |
| 43 | struct crypto_sync_skcipher *ci); |
| 44 | |
| 45 | /* |
| 46 | * this holds a pinned cipher so that keventd doesn't get called by the cipher |
| 47 | * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE |
| 48 | * packets |
| 49 | */ |
| 50 | static struct crypto_sync_skcipher *rxkad_ci; |
| 51 | static struct skcipher_request *rxkad_ci_req; |
| 52 | static DEFINE_MUTEX(rxkad_ci_mutex); |
| 53 | |
| 54 | /* |
| 55 | * Parse the information from a server key |
| 56 | * |
| 57 | * The data should be the 8-byte secret key. |
| 58 | */ |
| 59 | static int rxkad_preparse_server_key(struct key_preparsed_payload *prep) |
| 60 | { |
| 61 | struct crypto_skcipher *ci; |
| 62 | |
| 63 | if (prep->datalen != 8) |
| 64 | return -EINVAL; |
| 65 | |
| 66 | memcpy(&prep->payload.data[2], prep->data, 8); |
| 67 | |
| 68 | ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC); |
| 69 | if (IS_ERR(ci)) { |
| 70 | _leave(" = %ld", PTR_ERR(ci)); |
| 71 | return PTR_ERR(ci); |
| 72 | } |
| 73 | |
| 74 | if (crypto_skcipher_setkey(ci, prep->data, 8) < 0) |
| 75 | BUG(); |
| 76 | |
| 77 | prep->payload.data[0] = ci; |
| 78 | _leave(" = 0"); |
| 79 | return 0; |
| 80 | } |
| 81 | |
| 82 | static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep) |
| 83 | { |
| 84 | |
| 85 | if (prep->payload.data[0]) |
| 86 | crypto_free_skcipher(prep->payload.data[0]); |
| 87 | } |
| 88 | |
| 89 | static void rxkad_destroy_server_key(struct key *key) |
| 90 | { |
| 91 | if (key->payload.data[0]) { |
| 92 | crypto_free_skcipher(key->payload.data[0]); |
| 93 | key->payload.data[0] = NULL; |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | /* |
| 98 | * initialise connection security |
| 99 | */ |
| 100 | static int rxkad_init_connection_security(struct rxrpc_connection *conn, |
| 101 | struct rxrpc_key_token *token) |
| 102 | { |
| 103 | struct crypto_sync_skcipher *ci; |
| 104 | int ret; |
| 105 | |
| 106 | _enter("{%d},{%x}", conn->debug_id, key_serial(conn->key)); |
| 107 | |
| 108 | conn->security_ix = token->security_index; |
| 109 | |
| 110 | ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0); |
| 111 | if (IS_ERR(ci)) { |
| 112 | _debug("no cipher"); |
| 113 | ret = PTR_ERR(ci); |
| 114 | goto error; |
| 115 | } |
| 116 | |
| 117 | if (crypto_sync_skcipher_setkey(ci, token->kad->session_key, |
| 118 | sizeof(token->kad->session_key)) < 0) |
| 119 | BUG(); |
| 120 | |
| 121 | switch (conn->security_level) { |
| 122 | case RXRPC_SECURITY_PLAIN: |
| 123 | case RXRPC_SECURITY_AUTH: |
| 124 | case RXRPC_SECURITY_ENCRYPT: |
| 125 | break; |
| 126 | default: |
| 127 | ret = -EKEYREJECTED; |
| 128 | goto error; |
| 129 | } |
| 130 | |
| 131 | ret = rxkad_prime_packet_security(conn, ci); |
| 132 | if (ret < 0) |
| 133 | goto error_ci; |
| 134 | |
| 135 | conn->rxkad.cipher = ci; |
| 136 | return 0; |
| 137 | |
| 138 | error_ci: |
| 139 | crypto_free_sync_skcipher(ci); |
| 140 | error: |
| 141 | _leave(" = %d", ret); |
| 142 | return ret; |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * Work out how much data we can put in a packet. |
| 147 | */ |
| 148 | static struct rxrpc_txbuf *rxkad_alloc_txbuf(struct rxrpc_call *call, size_t remain, gfp_t gfp) |
| 149 | { |
| 150 | struct rxrpc_txbuf *txb; |
| 151 | size_t shdr, alloc, limit, part; |
| 152 | |
| 153 | remain = umin(remain, 65535 - sizeof(struct rxrpc_wire_header)); |
| 154 | |
| 155 | switch (call->conn->security_level) { |
| 156 | default: |
| 157 | alloc = umin(remain, RXRPC_JUMBO_DATALEN); |
| 158 | return rxrpc_alloc_data_txbuf(call, alloc, 1, gfp); |
| 159 | case RXRPC_SECURITY_AUTH: |
| 160 | shdr = sizeof(struct rxkad_level1_hdr); |
| 161 | break; |
| 162 | case RXRPC_SECURITY_ENCRYPT: |
| 163 | shdr = sizeof(struct rxkad_level2_hdr); |
| 164 | break; |
| 165 | } |
| 166 | |
| 167 | limit = round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN) - shdr; |
| 168 | if (remain < limit) { |
| 169 | part = remain; |
| 170 | alloc = round_up(shdr + part, RXKAD_ALIGN); |
| 171 | } else { |
| 172 | part = limit; |
| 173 | alloc = RXRPC_JUMBO_DATALEN; |
| 174 | } |
| 175 | |
| 176 | txb = rxrpc_alloc_data_txbuf(call, alloc, RXKAD_ALIGN, gfp); |
| 177 | if (!txb) |
| 178 | return NULL; |
| 179 | |
| 180 | txb->crypto_header = 0; |
| 181 | txb->sec_header = shdr; |
| 182 | txb->offset += shdr; |
| 183 | txb->space = part; |
| 184 | return txb; |
| 185 | } |
| 186 | |
| 187 | /* |
| 188 | * prime the encryption state with the invariant parts of a connection's |
| 189 | * description |
| 190 | */ |
| 191 | static int rxkad_prime_packet_security(struct rxrpc_connection *conn, |
| 192 | struct crypto_sync_skcipher *ci) |
| 193 | { |
| 194 | struct skcipher_request *req; |
| 195 | struct rxrpc_key_token *token; |
| 196 | struct scatterlist sg; |
| 197 | struct rxrpc_crypt iv; |
| 198 | __be32 *tmpbuf; |
| 199 | size_t tmpsize = 4 * sizeof(__be32); |
| 200 | |
| 201 | _enter(""); |
| 202 | |
| 203 | if (!conn->key) |
| 204 | return 0; |
| 205 | |
| 206 | tmpbuf = kmalloc(tmpsize, GFP_KERNEL); |
| 207 | if (!tmpbuf) |
| 208 | return -ENOMEM; |
| 209 | |
| 210 | req = skcipher_request_alloc(&ci->base, GFP_NOFS); |
| 211 | if (!req) { |
| 212 | kfree(tmpbuf); |
| 213 | return -ENOMEM; |
| 214 | } |
| 215 | |
| 216 | token = conn->key->payload.data[0]; |
| 217 | memcpy(&iv, token->kad->session_key, sizeof(iv)); |
| 218 | |
| 219 | tmpbuf[0] = htonl(conn->proto.epoch); |
| 220 | tmpbuf[1] = htonl(conn->proto.cid); |
| 221 | tmpbuf[2] = 0; |
| 222 | tmpbuf[3] = htonl(conn->security_ix); |
| 223 | |
| 224 | sg_init_one(&sg, tmpbuf, tmpsize); |
| 225 | skcipher_request_set_sync_tfm(req, ci); |
| 226 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 227 | skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x); |
| 228 | crypto_skcipher_encrypt(req); |
| 229 | skcipher_request_free(req); |
| 230 | |
| 231 | memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv)); |
| 232 | kfree(tmpbuf); |
| 233 | _leave(" = 0"); |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | /* |
| 238 | * Allocate and prepare the crypto request on a call. For any particular call, |
| 239 | * this is called serially for the packets, so no lock should be necessary. |
| 240 | */ |
| 241 | static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call) |
| 242 | { |
| 243 | struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base; |
| 244 | |
| 245 | return skcipher_request_alloc(tfm, GFP_NOFS); |
| 246 | } |
| 247 | |
| 248 | /* |
| 249 | * Clean up the crypto on a call. |
| 250 | */ |
| 251 | static void rxkad_free_call_crypto(struct rxrpc_call *call) |
| 252 | { |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * partially encrypt a packet (level 1 security) |
| 257 | */ |
| 258 | static int rxkad_secure_packet_auth(const struct rxrpc_call *call, |
| 259 | struct rxrpc_txbuf *txb, |
| 260 | struct skcipher_request *req) |
| 261 | { |
| 262 | struct rxkad_level1_hdr *hdr = txb->data; |
| 263 | struct rxrpc_crypt iv; |
| 264 | struct scatterlist sg; |
| 265 | size_t pad; |
| 266 | u16 check; |
| 267 | |
| 268 | _enter(""); |
| 269 | |
| 270 | check = txb->seq ^ call->call_id; |
| 271 | hdr->data_size = htonl((u32)check << 16 | txb->len); |
| 272 | |
| 273 | txb->pkt_len = sizeof(struct rxkad_level1_hdr) + txb->len; |
| 274 | pad = txb->pkt_len; |
| 275 | pad = RXKAD_ALIGN - pad; |
| 276 | pad &= RXKAD_ALIGN - 1; |
| 277 | if (pad) { |
| 278 | memset(txb->data + txb->offset, 0, pad); |
| 279 | txb->pkt_len += pad; |
| 280 | } |
| 281 | |
| 282 | /* start the encryption afresh */ |
| 283 | memset(&iv, 0, sizeof(iv)); |
| 284 | |
| 285 | sg_init_one(&sg, hdr, 8); |
| 286 | skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| 287 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 288 | skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x); |
| 289 | crypto_skcipher_encrypt(req); |
| 290 | skcipher_request_zero(req); |
| 291 | |
| 292 | _leave(" = 0"); |
| 293 | return 0; |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * wholly encrypt a packet (level 2 security) |
| 298 | */ |
| 299 | static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call, |
| 300 | struct rxrpc_txbuf *txb, |
| 301 | struct skcipher_request *req) |
| 302 | { |
| 303 | const struct rxrpc_key_token *token; |
| 304 | struct rxkad_level2_hdr *rxkhdr = txb->data; |
| 305 | struct rxrpc_crypt iv; |
| 306 | struct scatterlist sg; |
| 307 | size_t content, pad; |
| 308 | u16 check; |
| 309 | int ret; |
| 310 | |
| 311 | _enter(""); |
| 312 | |
| 313 | check = txb->seq ^ call->call_id; |
| 314 | |
| 315 | rxkhdr->data_size = htonl(txb->len | (u32)check << 16); |
| 316 | rxkhdr->checksum = 0; |
| 317 | |
| 318 | content = sizeof(struct rxkad_level2_hdr) + txb->len; |
| 319 | txb->pkt_len = round_up(content, RXKAD_ALIGN); |
| 320 | pad = txb->pkt_len - content; |
| 321 | if (pad) |
| 322 | memset(txb->data + txb->offset, 0, pad); |
| 323 | |
| 324 | /* encrypt from the session key */ |
| 325 | token = call->conn->key->payload.data[0]; |
| 326 | memcpy(&iv, token->kad->session_key, sizeof(iv)); |
| 327 | |
| 328 | sg_init_one(&sg, rxkhdr, txb->pkt_len); |
| 329 | skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| 330 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 331 | skcipher_request_set_crypt(req, &sg, &sg, txb->pkt_len, iv.x); |
| 332 | ret = crypto_skcipher_encrypt(req); |
| 333 | skcipher_request_zero(req); |
| 334 | return ret; |
| 335 | } |
| 336 | |
| 337 | /* |
| 338 | * checksum an RxRPC packet header |
| 339 | */ |
| 340 | static int rxkad_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb) |
| 341 | { |
| 342 | struct skcipher_request *req; |
| 343 | struct rxrpc_crypt iv; |
| 344 | struct scatterlist sg; |
| 345 | union { |
| 346 | __be32 buf[2]; |
| 347 | } crypto __aligned(8); |
| 348 | u32 x, y; |
| 349 | int ret; |
| 350 | |
| 351 | _enter("{%d{%x}},{#%u},%u,", |
| 352 | call->debug_id, key_serial(call->conn->key), |
| 353 | txb->seq, txb->len); |
| 354 | |
| 355 | if (!call->conn->rxkad.cipher) |
| 356 | return 0; |
| 357 | |
| 358 | ret = key_validate(call->conn->key); |
| 359 | if (ret < 0) |
| 360 | return ret; |
| 361 | |
| 362 | req = rxkad_get_call_crypto(call); |
| 363 | if (!req) |
| 364 | return -ENOMEM; |
| 365 | |
| 366 | /* continue encrypting from where we left off */ |
| 367 | memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv)); |
| 368 | |
| 369 | /* calculate the security checksum */ |
| 370 | x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT); |
| 371 | x |= txb->seq & 0x3fffffff; |
| 372 | crypto.buf[0] = htonl(call->call_id); |
| 373 | crypto.buf[1] = htonl(x); |
| 374 | |
| 375 | sg_init_one(&sg, crypto.buf, 8); |
| 376 | skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| 377 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 378 | skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x); |
| 379 | crypto_skcipher_encrypt(req); |
| 380 | skcipher_request_zero(req); |
| 381 | |
| 382 | y = ntohl(crypto.buf[1]); |
| 383 | y = (y >> 16) & 0xffff; |
| 384 | if (y == 0) |
| 385 | y = 1; /* zero checksums are not permitted */ |
| 386 | txb->cksum = htons(y); |
| 387 | |
| 388 | switch (call->conn->security_level) { |
| 389 | case RXRPC_SECURITY_PLAIN: |
| 390 | txb->pkt_len = txb->len; |
| 391 | ret = 0; |
| 392 | break; |
| 393 | case RXRPC_SECURITY_AUTH: |
| 394 | ret = rxkad_secure_packet_auth(call, txb, req); |
| 395 | if (txb->alloc_size == RXRPC_JUMBO_DATALEN) |
| 396 | txb->jumboable = true; |
| 397 | break; |
| 398 | case RXRPC_SECURITY_ENCRYPT: |
| 399 | ret = rxkad_secure_packet_encrypt(call, txb, req); |
| 400 | if (txb->alloc_size == RXRPC_JUMBO_DATALEN) |
| 401 | txb->jumboable = true; |
| 402 | break; |
| 403 | default: |
| 404 | ret = -EPERM; |
| 405 | break; |
| 406 | } |
| 407 | |
| 408 | /* Clear excess space in the packet */ |
| 409 | if (txb->pkt_len < txb->alloc_size) { |
| 410 | size_t gap = txb->alloc_size - txb->pkt_len; |
| 411 | void *p = txb->data; |
| 412 | |
| 413 | memset(p + txb->pkt_len, 0, gap); |
| 414 | } |
| 415 | |
| 416 | skcipher_request_free(req); |
| 417 | _leave(" = %d [set %x]", ret, y); |
| 418 | return ret; |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * decrypt partial encryption on a packet (level 1 security) |
| 423 | */ |
| 424 | static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb, |
| 425 | rxrpc_seq_t seq, |
| 426 | struct skcipher_request *req) |
| 427 | { |
| 428 | struct rxkad_level1_hdr sechdr; |
| 429 | struct rxrpc_skb_priv *sp = rxrpc_skb(skb); |
| 430 | struct rxrpc_crypt iv; |
| 431 | struct scatterlist sg[16]; |
| 432 | u32 data_size, buf; |
| 433 | u16 check; |
| 434 | int ret; |
| 435 | |
| 436 | _enter(""); |
| 437 | |
| 438 | if (sp->len < 8) |
| 439 | return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, |
| 440 | rxkad_abort_1_short_header); |
| 441 | |
| 442 | /* Decrypt the skbuff in-place. TODO: We really want to decrypt |
| 443 | * directly into the target buffer. |
| 444 | */ |
| 445 | sg_init_table(sg, ARRAY_SIZE(sg)); |
| 446 | ret = skb_to_sgvec(skb, sg, sp->offset, 8); |
| 447 | if (unlikely(ret < 0)) |
| 448 | return ret; |
| 449 | |
| 450 | /* start the decryption afresh */ |
| 451 | memset(&iv, 0, sizeof(iv)); |
| 452 | |
| 453 | skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| 454 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 455 | skcipher_request_set_crypt(req, sg, sg, 8, iv.x); |
| 456 | crypto_skcipher_decrypt(req); |
| 457 | skcipher_request_zero(req); |
| 458 | |
| 459 | /* Extract the decrypted packet length */ |
| 460 | if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0) |
| 461 | return rxrpc_abort_eproto(call, skb, RXKADDATALEN, |
| 462 | rxkad_abort_1_short_encdata); |
| 463 | sp->offset += sizeof(sechdr); |
| 464 | sp->len -= sizeof(sechdr); |
| 465 | |
| 466 | buf = ntohl(sechdr.data_size); |
| 467 | data_size = buf & 0xffff; |
| 468 | |
| 469 | check = buf >> 16; |
| 470 | check ^= seq ^ call->call_id; |
| 471 | check &= 0xffff; |
| 472 | if (check != 0) |
| 473 | return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, |
| 474 | rxkad_abort_1_short_check); |
| 475 | if (data_size > sp->len) |
| 476 | return rxrpc_abort_eproto(call, skb, RXKADDATALEN, |
| 477 | rxkad_abort_1_short_data); |
| 478 | sp->len = data_size; |
| 479 | |
| 480 | _leave(" = 0 [dlen=%x]", data_size); |
| 481 | return 0; |
| 482 | } |
| 483 | |
| 484 | /* |
| 485 | * wholly decrypt a packet (level 2 security) |
| 486 | */ |
| 487 | static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb, |
| 488 | rxrpc_seq_t seq, |
| 489 | struct skcipher_request *req) |
| 490 | { |
| 491 | const struct rxrpc_key_token *token; |
| 492 | struct rxkad_level2_hdr sechdr; |
| 493 | struct rxrpc_skb_priv *sp = rxrpc_skb(skb); |
| 494 | struct rxrpc_crypt iv; |
| 495 | struct scatterlist _sg[4], *sg; |
| 496 | u32 data_size, buf; |
| 497 | u16 check; |
| 498 | int nsg, ret; |
| 499 | |
| 500 | _enter(",{%d}", sp->len); |
| 501 | |
| 502 | if (sp->len < 8) |
| 503 | return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, |
| 504 | rxkad_abort_2_short_header); |
| 505 | |
| 506 | /* Decrypt the skbuff in-place. TODO: We really want to decrypt |
| 507 | * directly into the target buffer. |
| 508 | */ |
| 509 | sg = _sg; |
| 510 | nsg = skb_shinfo(skb)->nr_frags + 1; |
| 511 | if (nsg <= 4) { |
| 512 | nsg = 4; |
| 513 | } else { |
| 514 | sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO); |
| 515 | if (!sg) |
| 516 | return -ENOMEM; |
| 517 | } |
| 518 | |
| 519 | sg_init_table(sg, nsg); |
| 520 | ret = skb_to_sgvec(skb, sg, sp->offset, sp->len); |
| 521 | if (unlikely(ret < 0)) { |
| 522 | if (sg != _sg) |
| 523 | kfree(sg); |
| 524 | return ret; |
| 525 | } |
| 526 | |
| 527 | /* decrypt from the session key */ |
| 528 | token = call->conn->key->payload.data[0]; |
| 529 | memcpy(&iv, token->kad->session_key, sizeof(iv)); |
| 530 | |
| 531 | skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| 532 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 533 | skcipher_request_set_crypt(req, sg, sg, sp->len, iv.x); |
| 534 | crypto_skcipher_decrypt(req); |
| 535 | skcipher_request_zero(req); |
| 536 | if (sg != _sg) |
| 537 | kfree(sg); |
| 538 | |
| 539 | /* Extract the decrypted packet length */ |
| 540 | if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0) |
| 541 | return rxrpc_abort_eproto(call, skb, RXKADDATALEN, |
| 542 | rxkad_abort_2_short_len); |
| 543 | sp->offset += sizeof(sechdr); |
| 544 | sp->len -= sizeof(sechdr); |
| 545 | |
| 546 | buf = ntohl(sechdr.data_size); |
| 547 | data_size = buf & 0xffff; |
| 548 | |
| 549 | check = buf >> 16; |
| 550 | check ^= seq ^ call->call_id; |
| 551 | check &= 0xffff; |
| 552 | if (check != 0) |
| 553 | return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, |
| 554 | rxkad_abort_2_short_check); |
| 555 | |
| 556 | if (data_size > sp->len) |
| 557 | return rxrpc_abort_eproto(call, skb, RXKADDATALEN, |
| 558 | rxkad_abort_2_short_data); |
| 559 | |
| 560 | sp->len = data_size; |
| 561 | _leave(" = 0 [dlen=%x]", data_size); |
| 562 | return 0; |
| 563 | } |
| 564 | |
| 565 | /* |
| 566 | * Verify the security on a received packet and the subpackets therein. |
| 567 | */ |
| 568 | static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb) |
| 569 | { |
| 570 | struct rxrpc_skb_priv *sp = rxrpc_skb(skb); |
| 571 | struct skcipher_request *req; |
| 572 | struct rxrpc_crypt iv; |
| 573 | struct scatterlist sg; |
| 574 | union { |
| 575 | __be32 buf[2]; |
| 576 | } crypto __aligned(8); |
| 577 | rxrpc_seq_t seq = sp->hdr.seq; |
| 578 | int ret; |
| 579 | u16 cksum; |
| 580 | u32 x, y; |
| 581 | |
| 582 | _enter("{%d{%x}},{#%u}", |
| 583 | call->debug_id, key_serial(call->conn->key), seq); |
| 584 | |
| 585 | if (!call->conn->rxkad.cipher) |
| 586 | return 0; |
| 587 | |
| 588 | req = rxkad_get_call_crypto(call); |
| 589 | if (!req) |
| 590 | return -ENOMEM; |
| 591 | |
| 592 | /* continue encrypting from where we left off */ |
| 593 | memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv)); |
| 594 | |
| 595 | /* validate the security checksum */ |
| 596 | x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT); |
| 597 | x |= seq & 0x3fffffff; |
| 598 | crypto.buf[0] = htonl(call->call_id); |
| 599 | crypto.buf[1] = htonl(x); |
| 600 | |
| 601 | sg_init_one(&sg, crypto.buf, 8); |
| 602 | skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| 603 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 604 | skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x); |
| 605 | crypto_skcipher_encrypt(req); |
| 606 | skcipher_request_zero(req); |
| 607 | |
| 608 | y = ntohl(crypto.buf[1]); |
| 609 | cksum = (y >> 16) & 0xffff; |
| 610 | if (cksum == 0) |
| 611 | cksum = 1; /* zero checksums are not permitted */ |
| 612 | |
| 613 | if (cksum != sp->hdr.cksum) { |
| 614 | ret = rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, |
| 615 | rxkad_abort_bad_checksum); |
| 616 | goto out; |
| 617 | } |
| 618 | |
| 619 | switch (call->conn->security_level) { |
| 620 | case RXRPC_SECURITY_PLAIN: |
| 621 | ret = 0; |
| 622 | break; |
| 623 | case RXRPC_SECURITY_AUTH: |
| 624 | ret = rxkad_verify_packet_1(call, skb, seq, req); |
| 625 | break; |
| 626 | case RXRPC_SECURITY_ENCRYPT: |
| 627 | ret = rxkad_verify_packet_2(call, skb, seq, req); |
| 628 | break; |
| 629 | default: |
| 630 | ret = -ENOANO; |
| 631 | break; |
| 632 | } |
| 633 | |
| 634 | out: |
| 635 | skcipher_request_free(req); |
| 636 | return ret; |
| 637 | } |
| 638 | |
| 639 | /* |
| 640 | * issue a challenge |
| 641 | */ |
| 642 | static int rxkad_issue_challenge(struct rxrpc_connection *conn) |
| 643 | { |
| 644 | struct rxkad_challenge challenge; |
| 645 | struct rxrpc_wire_header whdr; |
| 646 | struct msghdr msg; |
| 647 | struct kvec iov[2]; |
| 648 | size_t len; |
| 649 | u32 serial; |
| 650 | int ret; |
| 651 | |
| 652 | _enter("{%d}", conn->debug_id); |
| 653 | |
| 654 | get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce)); |
| 655 | |
| 656 | challenge.version = htonl(2); |
| 657 | challenge.nonce = htonl(conn->rxkad.nonce); |
| 658 | challenge.min_level = htonl(0); |
| 659 | challenge.__padding = 0; |
| 660 | |
| 661 | msg.msg_name = &conn->peer->srx.transport; |
| 662 | msg.msg_namelen = conn->peer->srx.transport_len; |
| 663 | msg.msg_control = NULL; |
| 664 | msg.msg_controllen = 0; |
| 665 | msg.msg_flags = 0; |
| 666 | |
| 667 | whdr.epoch = htonl(conn->proto.epoch); |
| 668 | whdr.cid = htonl(conn->proto.cid); |
| 669 | whdr.callNumber = 0; |
| 670 | whdr.seq = 0; |
| 671 | whdr.type = RXRPC_PACKET_TYPE_CHALLENGE; |
| 672 | whdr.flags = conn->out_clientflag; |
| 673 | whdr.userStatus = 0; |
| 674 | whdr.securityIndex = conn->security_ix; |
| 675 | whdr._rsvd = 0; |
| 676 | whdr.serviceId = htons(conn->service_id); |
| 677 | |
| 678 | iov[0].iov_base = &whdr; |
| 679 | iov[0].iov_len = sizeof(whdr); |
| 680 | iov[1].iov_base = &challenge; |
| 681 | iov[1].iov_len = sizeof(challenge); |
| 682 | |
| 683 | len = iov[0].iov_len + iov[1].iov_len; |
| 684 | |
| 685 | serial = rxrpc_get_next_serial(conn); |
| 686 | whdr.serial = htonl(serial); |
| 687 | |
| 688 | trace_rxrpc_tx_challenge(conn, serial, 0, conn->rxkad.nonce); |
| 689 | |
| 690 | ret = kernel_sendmsg(conn->local->socket, &msg, iov, 2, len); |
| 691 | if (ret < 0) { |
| 692 | trace_rxrpc_tx_fail(conn->debug_id, serial, ret, |
| 693 | rxrpc_tx_point_rxkad_challenge); |
| 694 | return -EAGAIN; |
| 695 | } |
| 696 | |
| 697 | conn->peer->last_tx_at = ktime_get_seconds(); |
| 698 | trace_rxrpc_tx_packet(conn->debug_id, &whdr, |
| 699 | rxrpc_tx_point_rxkad_challenge); |
| 700 | _leave(" = 0"); |
| 701 | return 0; |
| 702 | } |
| 703 | |
| 704 | /* |
| 705 | * calculate the response checksum |
| 706 | */ |
| 707 | static void rxkad_calc_response_checksum(struct rxkad_response *response) |
| 708 | { |
| 709 | u32 csum = 1000003; |
| 710 | int loop; |
| 711 | u8 *p = (u8 *) response; |
| 712 | |
| 713 | for (loop = sizeof(*response); loop > 0; loop--) |
| 714 | csum = csum * 0x10204081 + *p++; |
| 715 | |
| 716 | response->encrypted.checksum = htonl(csum); |
| 717 | } |
| 718 | |
| 719 | /* |
| 720 | * encrypt the response packet |
| 721 | */ |
| 722 | static int rxkad_encrypt_response(struct rxrpc_connection *conn, |
| 723 | struct sk_buff *response, |
| 724 | const struct rxkad_key *s2) |
| 725 | { |
| 726 | struct skcipher_request *req; |
| 727 | struct rxrpc_crypt iv; |
| 728 | struct scatterlist sg[1]; |
| 729 | size_t encsize = sizeof(((struct rxkad_response *)0)->encrypted); |
| 730 | int ret; |
| 731 | |
| 732 | sg_init_table(sg, ARRAY_SIZE(sg)); |
| 733 | ret = skb_to_sgvec(response, sg, |
| 734 | sizeof(struct rxrpc_wire_header) + |
| 735 | offsetof(struct rxkad_response, encrypted), encsize); |
| 736 | if (ret < 0) |
| 737 | return ret; |
| 738 | |
| 739 | req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS); |
| 740 | if (!req) |
| 741 | return -ENOMEM; |
| 742 | |
| 743 | /* continue encrypting from where we left off */ |
| 744 | memcpy(&iv, s2->session_key, sizeof(iv)); |
| 745 | |
| 746 | skcipher_request_set_sync_tfm(req, conn->rxkad.cipher); |
| 747 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 748 | skcipher_request_set_crypt(req, sg, sg, encsize, iv.x); |
| 749 | ret = crypto_skcipher_encrypt(req); |
| 750 | skcipher_request_free(req); |
| 751 | return ret; |
| 752 | } |
| 753 | |
| 754 | /* |
| 755 | * Validate a challenge packet. |
| 756 | */ |
| 757 | static bool rxkad_validate_challenge(struct rxrpc_connection *conn, |
| 758 | struct sk_buff *skb) |
| 759 | { |
| 760 | struct rxkad_challenge challenge; |
| 761 | struct rxrpc_skb_priv *sp = rxrpc_skb(skb); |
| 762 | u32 version, min_level; |
| 763 | int ret; |
| 764 | |
| 765 | _enter("{%d,%x}", conn->debug_id, key_serial(conn->key)); |
| 766 | |
| 767 | if (!conn->key) { |
| 768 | rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO, |
| 769 | rxkad_abort_chall_no_key); |
| 770 | return false; |
| 771 | } |
| 772 | |
| 773 | ret = key_validate(conn->key); |
| 774 | if (ret < 0) { |
| 775 | rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret, |
| 776 | rxkad_abort_chall_key_expired); |
| 777 | return false; |
| 778 | } |
| 779 | |
| 780 | if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header), |
| 781 | &challenge, sizeof(challenge)) < 0) { |
| 782 | rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO, |
| 783 | rxkad_abort_chall_short); |
| 784 | return false; |
| 785 | } |
| 786 | |
| 787 | version = ntohl(challenge.version); |
| 788 | sp->chall.rxkad_nonce = ntohl(challenge.nonce); |
| 789 | min_level = ntohl(challenge.min_level); |
| 790 | |
| 791 | trace_rxrpc_rx_challenge(conn, sp->hdr.serial, version, |
| 792 | sp->chall.rxkad_nonce, min_level); |
| 793 | |
| 794 | if (version != RXKAD_VERSION) { |
| 795 | rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO, |
| 796 | rxkad_abort_chall_version); |
| 797 | return false; |
| 798 | } |
| 799 | |
| 800 | if (conn->security_level < min_level) { |
| 801 | rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EACCES, |
| 802 | rxkad_abort_chall_level); |
| 803 | return false; |
| 804 | } |
| 805 | return true; |
| 806 | } |
| 807 | |
| 808 | /* |
| 809 | * Insert the header into the response. |
| 810 | */ |
| 811 | static noinline |
| 812 | int rxkad_insert_response_header(struct rxrpc_connection *conn, |
| 813 | const struct rxrpc_key_token *token, |
| 814 | struct sk_buff *challenge, |
| 815 | struct sk_buff *response, |
| 816 | size_t *offset) |
| 817 | { |
| 818 | struct rxrpc_skb_priv *csp = rxrpc_skb(challenge); |
| 819 | struct { |
| 820 | struct rxrpc_wire_header whdr; |
| 821 | struct rxkad_response resp; |
| 822 | } h; |
| 823 | int ret; |
| 824 | |
| 825 | h.whdr.epoch = htonl(conn->proto.epoch); |
| 826 | h.whdr.cid = htonl(conn->proto.cid); |
| 827 | h.whdr.callNumber = 0; |
| 828 | h.whdr.serial = 0; |
| 829 | h.whdr.seq = 0; |
| 830 | h.whdr.type = RXRPC_PACKET_TYPE_RESPONSE; |
| 831 | h.whdr.flags = conn->out_clientflag; |
| 832 | h.whdr.userStatus = 0; |
| 833 | h.whdr.securityIndex = conn->security_ix; |
| 834 | h.whdr.cksum = 0; |
| 835 | h.whdr.serviceId = htons(conn->service_id); |
| 836 | h.resp.version = htonl(RXKAD_VERSION); |
| 837 | h.resp.__pad = 0; |
| 838 | h.resp.encrypted.epoch = htonl(conn->proto.epoch); |
| 839 | h.resp.encrypted.cid = htonl(conn->proto.cid); |
| 840 | h.resp.encrypted.checksum = 0; |
| 841 | h.resp.encrypted.securityIndex = htonl(conn->security_ix); |
| 842 | h.resp.encrypted.call_id[0] = htonl(conn->channels[0].call_counter); |
| 843 | h.resp.encrypted.call_id[1] = htonl(conn->channels[1].call_counter); |
| 844 | h.resp.encrypted.call_id[2] = htonl(conn->channels[2].call_counter); |
| 845 | h.resp.encrypted.call_id[3] = htonl(conn->channels[3].call_counter); |
| 846 | h.resp.encrypted.inc_nonce = htonl(csp->chall.rxkad_nonce + 1); |
| 847 | h.resp.encrypted.level = htonl(conn->security_level); |
| 848 | h.resp.kvno = htonl(token->kad->kvno); |
| 849 | h.resp.ticket_len = htonl(token->kad->ticket_len); |
| 850 | |
| 851 | rxkad_calc_response_checksum(&h.resp); |
| 852 | |
| 853 | ret = skb_store_bits(response, *offset, &h, sizeof(h)); |
| 854 | *offset += sizeof(h); |
| 855 | return ret; |
| 856 | } |
| 857 | |
| 858 | /* |
| 859 | * respond to a challenge packet |
| 860 | */ |
| 861 | static int rxkad_respond_to_challenge(struct rxrpc_connection *conn, |
| 862 | struct sk_buff *challenge) |
| 863 | { |
| 864 | const struct rxrpc_key_token *token; |
| 865 | struct rxrpc_skb_priv *csp, *rsp; |
| 866 | struct sk_buff *response; |
| 867 | size_t len, offset = 0; |
| 868 | int ret = -EPROTO; |
| 869 | |
| 870 | _enter("{%d,%x}", conn->debug_id, key_serial(conn->key)); |
| 871 | |
| 872 | ret = key_validate(conn->key); |
| 873 | if (ret < 0) |
| 874 | return rxrpc_abort_conn(conn, challenge, RXKADEXPIRED, ret, |
| 875 | rxkad_abort_chall_key_expired); |
| 876 | |
| 877 | token = conn->key->payload.data[0]; |
| 878 | |
| 879 | /* build the response packet */ |
| 880 | len = sizeof(struct rxrpc_wire_header) + |
| 881 | sizeof(struct rxkad_response) + |
| 882 | token->kad->ticket_len; |
| 883 | |
| 884 | response = alloc_skb_with_frags(0, len, 0, &ret, GFP_NOFS); |
| 885 | if (!response) |
| 886 | goto error; |
| 887 | rxrpc_new_skb(response, rxrpc_skb_new_response_rxkad); |
| 888 | response->len = len; |
| 889 | response->data_len = len; |
| 890 | |
| 891 | offset = 0; |
| 892 | ret = rxkad_insert_response_header(conn, token, challenge, response, |
| 893 | &offset); |
| 894 | if (ret < 0) |
| 895 | goto error; |
| 896 | |
| 897 | ret = rxkad_encrypt_response(conn, response, token->kad); |
| 898 | if (ret < 0) |
| 899 | goto error; |
| 900 | |
| 901 | ret = skb_store_bits(response, offset, token->kad->ticket, |
| 902 | token->kad->ticket_len); |
| 903 | if (ret < 0) |
| 904 | goto error; |
| 905 | |
| 906 | csp = rxrpc_skb(challenge); |
| 907 | rsp = rxrpc_skb(response); |
| 908 | rsp->resp.len = len; |
| 909 | rsp->resp.challenge_serial = csp->hdr.serial; |
| 910 | rxrpc_post_response(conn, response); |
| 911 | response = NULL; |
| 912 | ret = 0; |
| 913 | |
| 914 | error: |
| 915 | rxrpc_free_skb(response, rxrpc_skb_put_response); |
| 916 | return ret; |
| 917 | } |
| 918 | |
| 919 | /* |
| 920 | * RxKAD does automatic response only as there's nothing to manage that isn't |
| 921 | * already in the key. |
| 922 | */ |
| 923 | static int rxkad_sendmsg_respond_to_challenge(struct sk_buff *challenge, |
| 924 | struct msghdr *msg) |
| 925 | { |
| 926 | return -EINVAL; |
| 927 | } |
| 928 | |
| 929 | /** |
| 930 | * rxkad_kernel_respond_to_challenge - Respond to a challenge with appdata |
| 931 | * @challenge: The challenge to respond to |
| 932 | * |
| 933 | * Allow a kernel application to respond to a CHALLENGE. |
| 934 | * |
| 935 | * Return: %0 if successful and a negative error code otherwise. |
| 936 | */ |
| 937 | int rxkad_kernel_respond_to_challenge(struct sk_buff *challenge) |
| 938 | { |
| 939 | struct rxrpc_skb_priv *csp = rxrpc_skb(challenge); |
| 940 | |
| 941 | return rxkad_respond_to_challenge(csp->chall.conn, challenge); |
| 942 | } |
| 943 | EXPORT_SYMBOL(rxkad_kernel_respond_to_challenge); |
| 944 | |
| 945 | /* |
| 946 | * decrypt the kerberos IV ticket in the response |
| 947 | */ |
| 948 | static int rxkad_decrypt_ticket(struct rxrpc_connection *conn, |
| 949 | struct key *server_key, |
| 950 | struct sk_buff *skb, |
| 951 | void *ticket, size_t ticket_len, |
| 952 | struct rxrpc_crypt *_session_key, |
| 953 | time64_t *_expiry) |
| 954 | { |
| 955 | struct skcipher_request *req; |
| 956 | struct rxrpc_crypt iv, key; |
| 957 | struct scatterlist sg[1]; |
| 958 | struct in_addr addr; |
| 959 | unsigned int life; |
| 960 | time64_t issue, now; |
| 961 | bool little_endian; |
| 962 | u8 *p, *q, *name, *end; |
| 963 | |
| 964 | _enter("{%d},{%x}", conn->debug_id, key_serial(server_key)); |
| 965 | |
| 966 | *_expiry = 0; |
| 967 | |
| 968 | ASSERT(server_key->payload.data[0] != NULL); |
| 969 | ASSERTCMP((unsigned long) ticket & 7UL, ==, 0); |
| 970 | |
| 971 | memcpy(&iv, &server_key->payload.data[2], sizeof(iv)); |
| 972 | |
| 973 | req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS); |
| 974 | if (!req) |
| 975 | return -ENOMEM; |
| 976 | |
| 977 | sg_init_one(&sg[0], ticket, ticket_len); |
| 978 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 979 | skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x); |
| 980 | crypto_skcipher_decrypt(req); |
| 981 | skcipher_request_free(req); |
| 982 | |
| 983 | p = ticket; |
| 984 | end = p + ticket_len; |
| 985 | |
| 986 | #define Z(field, fieldl) \ |
| 987 | ({ \ |
| 988 | u8 *__str = p; \ |
| 989 | q = memchr(p, 0, end - p); \ |
| 990 | if (!q || q - p > field##_SZ) \ |
| 991 | return rxrpc_abort_conn( \ |
| 992 | conn, skb, RXKADBADTICKET, -EPROTO, \ |
| 993 | rxkad_abort_resp_tkt_##fieldl); \ |
| 994 | for (; p < q; p++) \ |
| 995 | if (!isprint(*p)) \ |
| 996 | return rxrpc_abort_conn( \ |
| 997 | conn, skb, RXKADBADTICKET, -EPROTO, \ |
| 998 | rxkad_abort_resp_tkt_##fieldl); \ |
| 999 | p++; \ |
| 1000 | __str; \ |
| 1001 | }) |
| 1002 | |
| 1003 | /* extract the ticket flags */ |
| 1004 | _debug("KIV FLAGS: %x", *p); |
| 1005 | little_endian = *p & 1; |
| 1006 | p++; |
| 1007 | |
| 1008 | /* extract the authentication name */ |
| 1009 | name = Z(ANAME, aname); |
| 1010 | _debug("KIV ANAME: %s", name); |
| 1011 | |
| 1012 | /* extract the principal's instance */ |
| 1013 | name = Z(INST, inst); |
| 1014 | _debug("KIV INST : %s", name); |
| 1015 | |
| 1016 | /* extract the principal's authentication domain */ |
| 1017 | name = Z(REALM, realm); |
| 1018 | _debug("KIV REALM: %s", name); |
| 1019 | |
| 1020 | if (end - p < 4 + 8 + 4 + 2) |
| 1021 | return rxrpc_abort_conn(conn, skb, RXKADBADTICKET, -EPROTO, |
| 1022 | rxkad_abort_resp_tkt_short); |
| 1023 | |
| 1024 | /* get the IPv4 address of the entity that requested the ticket */ |
| 1025 | memcpy(&addr, p, sizeof(addr)); |
| 1026 | p += 4; |
| 1027 | _debug("KIV ADDR : %pI4", &addr); |
| 1028 | |
| 1029 | /* get the session key from the ticket */ |
| 1030 | memcpy(&key, p, sizeof(key)); |
| 1031 | p += 8; |
| 1032 | _debug("KIV KEY : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1])); |
| 1033 | memcpy(_session_key, &key, sizeof(key)); |
| 1034 | |
| 1035 | /* get the ticket's lifetime */ |
| 1036 | life = *p++ * 5 * 60; |
| 1037 | _debug("KIV LIFE : %u", life); |
| 1038 | |
| 1039 | /* get the issue time of the ticket */ |
| 1040 | if (little_endian) { |
| 1041 | __le32 stamp; |
| 1042 | memcpy(&stamp, p, 4); |
| 1043 | issue = rxrpc_u32_to_time64(le32_to_cpu(stamp)); |
| 1044 | } else { |
| 1045 | __be32 stamp; |
| 1046 | memcpy(&stamp, p, 4); |
| 1047 | issue = rxrpc_u32_to_time64(be32_to_cpu(stamp)); |
| 1048 | } |
| 1049 | p += 4; |
| 1050 | now = ktime_get_real_seconds(); |
| 1051 | _debug("KIV ISSUE: %llx [%llx]", issue, now); |
| 1052 | |
| 1053 | /* check the ticket is in date */ |
| 1054 | if (issue > now) |
| 1055 | return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, -EKEYREJECTED, |
| 1056 | rxkad_abort_resp_tkt_future); |
| 1057 | if (issue < now - life) |
| 1058 | return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, -EKEYEXPIRED, |
| 1059 | rxkad_abort_resp_tkt_expired); |
| 1060 | |
| 1061 | *_expiry = issue + life; |
| 1062 | |
| 1063 | /* get the service name */ |
| 1064 | name = Z(SNAME, sname); |
| 1065 | _debug("KIV SNAME: %s", name); |
| 1066 | |
| 1067 | /* get the service instance name */ |
| 1068 | name = Z(INST, sinst); |
| 1069 | _debug("KIV SINST: %s", name); |
| 1070 | return 0; |
| 1071 | } |
| 1072 | |
| 1073 | /* |
| 1074 | * decrypt the response packet |
| 1075 | */ |
| 1076 | static void rxkad_decrypt_response(struct rxrpc_connection *conn, |
| 1077 | struct rxkad_response *resp, |
| 1078 | const struct rxrpc_crypt *session_key) |
| 1079 | { |
| 1080 | struct skcipher_request *req = rxkad_ci_req; |
| 1081 | struct scatterlist sg[1]; |
| 1082 | struct rxrpc_crypt iv; |
| 1083 | |
| 1084 | _enter(",,%08x%08x", |
| 1085 | ntohl(session_key->n[0]), ntohl(session_key->n[1])); |
| 1086 | |
| 1087 | mutex_lock(&rxkad_ci_mutex); |
| 1088 | if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x, |
| 1089 | sizeof(*session_key)) < 0) |
| 1090 | BUG(); |
| 1091 | |
| 1092 | memcpy(&iv, session_key, sizeof(iv)); |
| 1093 | |
| 1094 | sg_init_table(sg, 1); |
| 1095 | sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted)); |
| 1096 | skcipher_request_set_sync_tfm(req, rxkad_ci); |
| 1097 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 1098 | skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x); |
| 1099 | crypto_skcipher_decrypt(req); |
| 1100 | skcipher_request_zero(req); |
| 1101 | |
| 1102 | mutex_unlock(&rxkad_ci_mutex); |
| 1103 | |
| 1104 | _leave(""); |
| 1105 | } |
| 1106 | |
| 1107 | /* |
| 1108 | * verify a response |
| 1109 | */ |
| 1110 | static int rxkad_verify_response(struct rxrpc_connection *conn, |
| 1111 | struct sk_buff *skb) |
| 1112 | { |
| 1113 | struct rxkad_response *response; |
| 1114 | struct rxrpc_skb_priv *sp = rxrpc_skb(skb); |
| 1115 | struct rxrpc_crypt session_key; |
| 1116 | struct key *server_key; |
| 1117 | time64_t expiry; |
| 1118 | void *ticket; |
| 1119 | u32 version, kvno, ticket_len, level; |
| 1120 | __be32 csum; |
| 1121 | int ret, i; |
| 1122 | |
| 1123 | _enter("{%d}", conn->debug_id); |
| 1124 | |
| 1125 | server_key = rxrpc_look_up_server_security(conn, skb, 0, 0); |
| 1126 | if (IS_ERR(server_key)) { |
| 1127 | ret = PTR_ERR(server_key); |
| 1128 | switch (ret) { |
| 1129 | case -ENOKEY: |
| 1130 | return rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, ret, |
| 1131 | rxkad_abort_resp_nokey); |
| 1132 | case -EKEYEXPIRED: |
| 1133 | return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret, |
| 1134 | rxkad_abort_resp_key_expired); |
| 1135 | default: |
| 1136 | return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, ret, |
| 1137 | rxkad_abort_resp_key_rejected); |
| 1138 | } |
| 1139 | } |
| 1140 | |
| 1141 | ret = -ENOMEM; |
| 1142 | response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS); |
| 1143 | if (!response) |
| 1144 | goto temporary_error; |
| 1145 | |
| 1146 | if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header), |
| 1147 | response, sizeof(*response)) < 0) { |
| 1148 | rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO, |
| 1149 | rxkad_abort_resp_short); |
| 1150 | goto protocol_error; |
| 1151 | } |
| 1152 | |
| 1153 | version = ntohl(response->version); |
| 1154 | ticket_len = ntohl(response->ticket_len); |
| 1155 | kvno = ntohl(response->kvno); |
| 1156 | |
| 1157 | trace_rxrpc_rx_response(conn, sp->hdr.serial, version, kvno, ticket_len); |
| 1158 | |
| 1159 | if (version != RXKAD_VERSION) { |
| 1160 | rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO, |
| 1161 | rxkad_abort_resp_version); |
| 1162 | goto protocol_error; |
| 1163 | } |
| 1164 | |
| 1165 | if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN) { |
| 1166 | rxrpc_abort_conn(conn, skb, RXKADTICKETLEN, -EPROTO, |
| 1167 | rxkad_abort_resp_tkt_len); |
| 1168 | goto protocol_error; |
| 1169 | } |
| 1170 | |
| 1171 | if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5) { |
| 1172 | rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, -EPROTO, |
| 1173 | rxkad_abort_resp_unknown_tkt); |
| 1174 | goto protocol_error; |
| 1175 | } |
| 1176 | |
| 1177 | /* extract the kerberos ticket and decrypt and decode it */ |
| 1178 | ret = -ENOMEM; |
| 1179 | ticket = kmalloc(ticket_len, GFP_NOFS); |
| 1180 | if (!ticket) |
| 1181 | goto temporary_error_free_resp; |
| 1182 | |
| 1183 | if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response), |
| 1184 | ticket, ticket_len) < 0) { |
| 1185 | rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO, |
| 1186 | rxkad_abort_resp_short_tkt); |
| 1187 | goto protocol_error; |
| 1188 | } |
| 1189 | |
| 1190 | ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len, |
| 1191 | &session_key, &expiry); |
| 1192 | if (ret < 0) |
| 1193 | goto temporary_error_free_ticket; |
| 1194 | |
| 1195 | /* use the session key from inside the ticket to decrypt the |
| 1196 | * response */ |
| 1197 | rxkad_decrypt_response(conn, response, &session_key); |
| 1198 | |
| 1199 | if (ntohl(response->encrypted.epoch) != conn->proto.epoch || |
| 1200 | ntohl(response->encrypted.cid) != conn->proto.cid || |
| 1201 | ntohl(response->encrypted.securityIndex) != conn->security_ix) { |
| 1202 | rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, |
| 1203 | rxkad_abort_resp_bad_param); |
| 1204 | goto protocol_error_free; |
| 1205 | } |
| 1206 | |
| 1207 | csum = response->encrypted.checksum; |
| 1208 | response->encrypted.checksum = 0; |
| 1209 | rxkad_calc_response_checksum(response); |
| 1210 | if (response->encrypted.checksum != csum) { |
| 1211 | rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, |
| 1212 | rxkad_abort_resp_bad_checksum); |
| 1213 | goto protocol_error_free; |
| 1214 | } |
| 1215 | |
| 1216 | for (i = 0; i < RXRPC_MAXCALLS; i++) { |
| 1217 | u32 call_id = ntohl(response->encrypted.call_id[i]); |
| 1218 | u32 counter = READ_ONCE(conn->channels[i].call_counter); |
| 1219 | |
| 1220 | if (call_id > INT_MAX) { |
| 1221 | rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, |
| 1222 | rxkad_abort_resp_bad_callid); |
| 1223 | goto protocol_error_free; |
| 1224 | } |
| 1225 | |
| 1226 | if (call_id < counter) { |
| 1227 | rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, |
| 1228 | rxkad_abort_resp_call_ctr); |
| 1229 | goto protocol_error_free; |
| 1230 | } |
| 1231 | |
| 1232 | if (call_id > counter) { |
| 1233 | if (conn->channels[i].call) { |
| 1234 | rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, |
| 1235 | rxkad_abort_resp_call_state); |
| 1236 | goto protocol_error_free; |
| 1237 | } |
| 1238 | conn->channels[i].call_counter = call_id; |
| 1239 | } |
| 1240 | } |
| 1241 | |
| 1242 | if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1) { |
| 1243 | rxrpc_abort_conn(conn, skb, RXKADOUTOFSEQUENCE, -EPROTO, |
| 1244 | rxkad_abort_resp_ooseq); |
| 1245 | goto protocol_error_free; |
| 1246 | } |
| 1247 | |
| 1248 | level = ntohl(response->encrypted.level); |
| 1249 | if (level > RXRPC_SECURITY_ENCRYPT) { |
| 1250 | rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EPROTO, |
| 1251 | rxkad_abort_resp_level); |
| 1252 | goto protocol_error_free; |
| 1253 | } |
| 1254 | conn->security_level = level; |
| 1255 | |
| 1256 | /* create a key to hold the security data and expiration time - after |
| 1257 | * this the connection security can be handled in exactly the same way |
| 1258 | * as for a client connection */ |
| 1259 | ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno); |
| 1260 | if (ret < 0) |
| 1261 | goto temporary_error_free_ticket; |
| 1262 | |
| 1263 | kfree(ticket); |
| 1264 | kfree(response); |
| 1265 | _leave(" = 0"); |
| 1266 | return 0; |
| 1267 | |
| 1268 | protocol_error_free: |
| 1269 | kfree(ticket); |
| 1270 | protocol_error: |
| 1271 | kfree(response); |
| 1272 | key_put(server_key); |
| 1273 | return -EPROTO; |
| 1274 | |
| 1275 | temporary_error_free_ticket: |
| 1276 | kfree(ticket); |
| 1277 | temporary_error_free_resp: |
| 1278 | kfree(response); |
| 1279 | temporary_error: |
| 1280 | /* Ignore the response packet if we got a temporary error such as |
| 1281 | * ENOMEM. We just want to send the challenge again. Note that we |
| 1282 | * also come out this way if the ticket decryption fails. |
| 1283 | */ |
| 1284 | key_put(server_key); |
| 1285 | return ret; |
| 1286 | } |
| 1287 | |
| 1288 | /* |
| 1289 | * clear the connection security |
| 1290 | */ |
| 1291 | static void rxkad_clear(struct rxrpc_connection *conn) |
| 1292 | { |
| 1293 | _enter(""); |
| 1294 | |
| 1295 | if (conn->rxkad.cipher) |
| 1296 | crypto_free_sync_skcipher(conn->rxkad.cipher); |
| 1297 | } |
| 1298 | |
| 1299 | /* |
| 1300 | * Initialise the rxkad security service. |
| 1301 | */ |
| 1302 | static int rxkad_init(void) |
| 1303 | { |
| 1304 | struct crypto_sync_skcipher *tfm; |
| 1305 | struct skcipher_request *req; |
| 1306 | |
| 1307 | /* pin the cipher we need so that the crypto layer doesn't invoke |
| 1308 | * keventd to go get it */ |
| 1309 | tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0); |
| 1310 | if (IS_ERR(tfm)) |
| 1311 | return PTR_ERR(tfm); |
| 1312 | |
| 1313 | req = skcipher_request_alloc(&tfm->base, GFP_KERNEL); |
| 1314 | if (!req) |
| 1315 | goto nomem_tfm; |
| 1316 | |
| 1317 | rxkad_ci_req = req; |
| 1318 | rxkad_ci = tfm; |
| 1319 | return 0; |
| 1320 | |
| 1321 | nomem_tfm: |
| 1322 | crypto_free_sync_skcipher(tfm); |
| 1323 | return -ENOMEM; |
| 1324 | } |
| 1325 | |
| 1326 | /* |
| 1327 | * Clean up the rxkad security service. |
| 1328 | */ |
| 1329 | static void rxkad_exit(void) |
| 1330 | { |
| 1331 | crypto_free_sync_skcipher(rxkad_ci); |
| 1332 | skcipher_request_free(rxkad_ci_req); |
| 1333 | } |
| 1334 | |
| 1335 | /* |
| 1336 | * RxRPC Kerberos-based security |
| 1337 | */ |
| 1338 | const struct rxrpc_security rxkad = { |
| 1339 | .name = "rxkad", |
| 1340 | .security_index = RXRPC_SECURITY_RXKAD, |
| 1341 | .no_key_abort = RXKADUNKNOWNKEY, |
| 1342 | .init = rxkad_init, |
| 1343 | .exit = rxkad_exit, |
| 1344 | .preparse_server_key = rxkad_preparse_server_key, |
| 1345 | .free_preparse_server_key = rxkad_free_preparse_server_key, |
| 1346 | .destroy_server_key = rxkad_destroy_server_key, |
| 1347 | .init_connection_security = rxkad_init_connection_security, |
| 1348 | .alloc_txbuf = rxkad_alloc_txbuf, |
| 1349 | .secure_packet = rxkad_secure_packet, |
| 1350 | .verify_packet = rxkad_verify_packet, |
| 1351 | .free_call_crypto = rxkad_free_call_crypto, |
| 1352 | .issue_challenge = rxkad_issue_challenge, |
| 1353 | .validate_challenge = rxkad_validate_challenge, |
| 1354 | .sendmsg_respond_to_challenge = rxkad_sendmsg_respond_to_challenge, |
| 1355 | .respond_to_challenge = rxkad_respond_to_challenge, |
| 1356 | .verify_response = rxkad_verify_response, |
| 1357 | .clear = rxkad_clear, |
| 1358 | }; |