| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 4 | * operating system. INET is implemented using the BSD Socket |
| 5 | * interface as the means of communication with the user level. |
| 6 | * |
| 7 | * The Internet Protocol (IP) output module. |
| 8 | * |
| 9 | * Authors: Ross Biro |
| 10 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| 11 | * Donald Becker, <becker@super.org> |
| 12 | * Alan Cox, <Alan.Cox@linux.org> |
| 13 | * Richard Underwood |
| 14 | * Stefan Becker, <stefanb@yello.ping.de> |
| 15 | * Jorge Cwik, <jorge@laser.satlink.net> |
| 16 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
| 17 | * Hirokazu Takahashi, <taka@valinux.co.jp> |
| 18 | * |
| 19 | * See ip_input.c for original log |
| 20 | * |
| 21 | * Fixes: |
| 22 | * Alan Cox : Missing nonblock feature in ip_build_xmit. |
| 23 | * Mike Kilburn : htons() missing in ip_build_xmit. |
| 24 | * Bradford Johnson: Fix faulty handling of some frames when |
| 25 | * no route is found. |
| 26 | * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit |
| 27 | * (in case if packet not accepted by |
| 28 | * output firewall rules) |
| 29 | * Mike McLagan : Routing by source |
| 30 | * Alexey Kuznetsov: use new route cache |
| 31 | * Andi Kleen: Fix broken PMTU recovery and remove |
| 32 | * some redundant tests. |
| 33 | * Vitaly E. Lavrov : Transparent proxy revived after year coma. |
| 34 | * Andi Kleen : Replace ip_reply with ip_send_reply. |
| 35 | * Andi Kleen : Split fast and slow ip_build_xmit path |
| 36 | * for decreased register pressure on x86 |
| 37 | * and more readability. |
| 38 | * Marc Boucher : When call_out_firewall returns FW_QUEUE, |
| 39 | * silently drop skb instead of failing with -EPERM. |
| 40 | * Detlev Wengorz : Copy protocol for fragments. |
| 41 | * Hirokazu Takahashi: HW checksumming for outgoing UDP |
| 42 | * datagrams. |
| 43 | * Hirokazu Takahashi: sendfile() on UDP works now. |
| 44 | */ |
| 45 | |
| 46 | #include <linux/uaccess.h> |
| 47 | #include <linux/module.h> |
| 48 | #include <linux/types.h> |
| 49 | #include <linux/kernel.h> |
| 50 | #include <linux/mm.h> |
| 51 | #include <linux/string.h> |
| 52 | #include <linux/errno.h> |
| 53 | #include <linux/highmem.h> |
| 54 | #include <linux/slab.h> |
| 55 | |
| 56 | #include <linux/socket.h> |
| 57 | #include <linux/sockios.h> |
| 58 | #include <linux/in.h> |
| 59 | #include <linux/inet.h> |
| 60 | #include <linux/netdevice.h> |
| 61 | #include <linux/etherdevice.h> |
| 62 | #include <linux/proc_fs.h> |
| 63 | #include <linux/stat.h> |
| 64 | #include <linux/init.h> |
| 65 | |
| 66 | #include <net/snmp.h> |
| 67 | #include <net/ip.h> |
| 68 | #include <net/protocol.h> |
| 69 | #include <net/route.h> |
| 70 | #include <net/xfrm.h> |
| 71 | #include <linux/skbuff.h> |
| 72 | #include <net/sock.h> |
| 73 | #include <net/arp.h> |
| 74 | #include <net/icmp.h> |
| 75 | #include <net/checksum.h> |
| 76 | #include <net/gso.h> |
| 77 | #include <net/inetpeer.h> |
| 78 | #include <net/lwtunnel.h> |
| 79 | #include <net/inet_dscp.h> |
| 80 | #include <linux/bpf-cgroup.h> |
| 81 | #include <linux/igmp.h> |
| 82 | #include <linux/netfilter_ipv4.h> |
| 83 | #include <linux/netfilter_bridge.h> |
| 84 | #include <linux/netlink.h> |
| 85 | #include <linux/tcp.h> |
| 86 | |
| 87 | static int |
| 88 | ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, |
| 89 | unsigned int mtu, |
| 90 | int (*output)(struct net *, struct sock *, struct sk_buff *)); |
| 91 | |
| 92 | /* Generate a checksum for an outgoing IP datagram. */ |
| 93 | void ip_send_check(struct iphdr *iph) |
| 94 | { |
| 95 | iph->check = 0; |
| 96 | iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); |
| 97 | } |
| 98 | EXPORT_SYMBOL(ip_send_check); |
| 99 | |
| 100 | int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 101 | { |
| 102 | struct iphdr *iph = ip_hdr(skb); |
| 103 | |
| 104 | IP_INC_STATS(net, IPSTATS_MIB_OUTREQUESTS); |
| 105 | |
| 106 | iph_set_totlen(iph, skb->len); |
| 107 | ip_send_check(iph); |
| 108 | |
| 109 | /* if egress device is enslaved to an L3 master device pass the |
| 110 | * skb to its handler for processing |
| 111 | */ |
| 112 | skb = l3mdev_ip_out(sk, skb); |
| 113 | if (unlikely(!skb)) |
| 114 | return 0; |
| 115 | |
| 116 | skb->protocol = htons(ETH_P_IP); |
| 117 | |
| 118 | return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, |
| 119 | net, sk, skb, NULL, skb_dst(skb)->dev, |
| 120 | dst_output); |
| 121 | } |
| 122 | |
| 123 | int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 124 | { |
| 125 | int err; |
| 126 | |
| 127 | err = __ip_local_out(net, sk, skb); |
| 128 | if (likely(err == 1)) |
| 129 | err = dst_output(net, sk, skb); |
| 130 | |
| 131 | return err; |
| 132 | } |
| 133 | EXPORT_SYMBOL_GPL(ip_local_out); |
| 134 | |
| 135 | static inline int ip_select_ttl(const struct inet_sock *inet, |
| 136 | const struct dst_entry *dst) |
| 137 | { |
| 138 | int ttl = READ_ONCE(inet->uc_ttl); |
| 139 | |
| 140 | if (ttl < 0) |
| 141 | ttl = ip4_dst_hoplimit(dst); |
| 142 | return ttl; |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * Add an ip header to a skbuff and send it out. |
| 147 | * |
| 148 | */ |
| 149 | int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, |
| 150 | __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, |
| 151 | u8 tos) |
| 152 | { |
| 153 | const struct inet_sock *inet = inet_sk(sk); |
| 154 | struct rtable *rt = skb_rtable(skb); |
| 155 | struct net *net = sock_net(sk); |
| 156 | struct iphdr *iph; |
| 157 | |
| 158 | /* Build the IP header. */ |
| 159 | skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); |
| 160 | skb_reset_network_header(skb); |
| 161 | iph = ip_hdr(skb); |
| 162 | iph->version = 4; |
| 163 | iph->ihl = 5; |
| 164 | iph->tos = tos; |
| 165 | iph->ttl = ip_select_ttl(inet, &rt->dst); |
| 166 | iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); |
| 167 | iph->saddr = saddr; |
| 168 | iph->protocol = sk->sk_protocol; |
| 169 | /* Do not bother generating IPID for small packets (eg SYNACK) */ |
| 170 | if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) { |
| 171 | iph->frag_off = htons(IP_DF); |
| 172 | iph->id = 0; |
| 173 | } else { |
| 174 | iph->frag_off = 0; |
| 175 | /* TCP packets here are SYNACK with fat IPv4/TCP options. |
| 176 | * Avoid using the hashed IP ident generator. |
| 177 | */ |
| 178 | if (sk->sk_protocol == IPPROTO_TCP) |
| 179 | iph->id = (__force __be16)get_random_u16(); |
| 180 | else |
| 181 | __ip_select_ident(net, iph, 1); |
| 182 | } |
| 183 | |
| 184 | if (opt && opt->opt.optlen) { |
| 185 | iph->ihl += opt->opt.optlen>>2; |
| 186 | ip_options_build(skb, &opt->opt, daddr, rt); |
| 187 | } |
| 188 | |
| 189 | skb->priority = READ_ONCE(sk->sk_priority); |
| 190 | if (!skb->mark) |
| 191 | skb->mark = READ_ONCE(sk->sk_mark); |
| 192 | |
| 193 | /* Send it out. */ |
| 194 | return ip_local_out(net, skb->sk, skb); |
| 195 | } |
| 196 | EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); |
| 197 | |
| 198 | static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 199 | { |
| 200 | struct dst_entry *dst = skb_dst(skb); |
| 201 | struct rtable *rt = dst_rtable(dst); |
| 202 | struct net_device *dev = dst->dev; |
| 203 | unsigned int hh_len = LL_RESERVED_SPACE(dev); |
| 204 | struct neighbour *neigh; |
| 205 | bool is_v6gw = false; |
| 206 | |
| 207 | if (rt->rt_type == RTN_MULTICAST) { |
| 208 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); |
| 209 | } else if (rt->rt_type == RTN_BROADCAST) |
| 210 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); |
| 211 | |
| 212 | /* OUTOCTETS should be counted after fragment */ |
| 213 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); |
| 214 | |
| 215 | if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { |
| 216 | skb = skb_expand_head(skb, hh_len); |
| 217 | if (!skb) |
| 218 | return -ENOMEM; |
| 219 | } |
| 220 | |
| 221 | if (lwtunnel_xmit_redirect(dst->lwtstate)) { |
| 222 | int res = lwtunnel_xmit(skb); |
| 223 | |
| 224 | if (res != LWTUNNEL_XMIT_CONTINUE) |
| 225 | return res; |
| 226 | } |
| 227 | |
| 228 | rcu_read_lock(); |
| 229 | neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); |
| 230 | if (!IS_ERR(neigh)) { |
| 231 | int res; |
| 232 | |
| 233 | sock_confirm_neigh(skb, neigh); |
| 234 | /* if crossing protocols, can not use the cached header */ |
| 235 | res = neigh_output(neigh, skb, is_v6gw); |
| 236 | rcu_read_unlock(); |
| 237 | return res; |
| 238 | } |
| 239 | rcu_read_unlock(); |
| 240 | |
| 241 | net_dbg_ratelimited("%s: No header cache and no neighbour!\n", |
| 242 | __func__); |
| 243 | kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL); |
| 244 | return PTR_ERR(neigh); |
| 245 | } |
| 246 | |
| 247 | static int ip_finish_output_gso(struct net *net, struct sock *sk, |
| 248 | struct sk_buff *skb, unsigned int mtu) |
| 249 | { |
| 250 | struct sk_buff *segs, *nskb; |
| 251 | netdev_features_t features; |
| 252 | int ret = 0; |
| 253 | |
| 254 | /* common case: seglen is <= mtu |
| 255 | */ |
| 256 | if (skb_gso_validate_network_len(skb, mtu)) |
| 257 | return ip_finish_output2(net, sk, skb); |
| 258 | |
| 259 | /* Slowpath - GSO segment length exceeds the egress MTU. |
| 260 | * |
| 261 | * This can happen in several cases: |
| 262 | * - Forwarding of a TCP GRO skb, when DF flag is not set. |
| 263 | * - Forwarding of an skb that arrived on a virtualization interface |
| 264 | * (virtio-net/vhost/tap) with TSO/GSO size set by other network |
| 265 | * stack. |
| 266 | * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an |
| 267 | * interface with a smaller MTU. |
| 268 | * - Arriving GRO skb (or GSO skb in a virtualized environment) that is |
| 269 | * bridged to a NETIF_F_TSO tunnel stacked over an interface with an |
| 270 | * insufficient MTU. |
| 271 | */ |
| 272 | features = netif_skb_features(skb); |
| 273 | BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); |
| 274 | segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); |
| 275 | if (IS_ERR_OR_NULL(segs)) { |
| 276 | kfree_skb(skb); |
| 277 | return -ENOMEM; |
| 278 | } |
| 279 | |
| 280 | consume_skb(skb); |
| 281 | |
| 282 | skb_list_walk_safe(segs, segs, nskb) { |
| 283 | int err; |
| 284 | |
| 285 | skb_mark_not_on_list(segs); |
| 286 | err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); |
| 287 | |
| 288 | if (err && ret == 0) |
| 289 | ret = err; |
| 290 | } |
| 291 | |
| 292 | return ret; |
| 293 | } |
| 294 | |
| 295 | static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 296 | { |
| 297 | unsigned int mtu; |
| 298 | |
| 299 | #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) |
| 300 | /* Policy lookup after SNAT yielded a new policy */ |
| 301 | if (skb_dst(skb)->xfrm) { |
| 302 | IPCB(skb)->flags |= IPSKB_REROUTED; |
| 303 | return dst_output(net, sk, skb); |
| 304 | } |
| 305 | #endif |
| 306 | mtu = ip_skb_dst_mtu(sk, skb); |
| 307 | if (skb_is_gso(skb)) |
| 308 | return ip_finish_output_gso(net, sk, skb, mtu); |
| 309 | |
| 310 | if (skb->len > mtu || IPCB(skb)->frag_max_size) |
| 311 | return ip_fragment(net, sk, skb, mtu, ip_finish_output2); |
| 312 | |
| 313 | return ip_finish_output2(net, sk, skb); |
| 314 | } |
| 315 | |
| 316 | static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 317 | { |
| 318 | int ret; |
| 319 | |
| 320 | ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); |
| 321 | switch (ret) { |
| 322 | case NET_XMIT_SUCCESS: |
| 323 | return __ip_finish_output(net, sk, skb); |
| 324 | case NET_XMIT_CN: |
| 325 | return __ip_finish_output(net, sk, skb) ? : ret; |
| 326 | default: |
| 327 | kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); |
| 328 | return ret; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | static int ip_mc_finish_output(struct net *net, struct sock *sk, |
| 333 | struct sk_buff *skb) |
| 334 | { |
| 335 | struct rtable *new_rt; |
| 336 | bool do_cn = false; |
| 337 | int ret, err; |
| 338 | |
| 339 | ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); |
| 340 | switch (ret) { |
| 341 | case NET_XMIT_CN: |
| 342 | do_cn = true; |
| 343 | fallthrough; |
| 344 | case NET_XMIT_SUCCESS: |
| 345 | break; |
| 346 | default: |
| 347 | kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); |
| 348 | return ret; |
| 349 | } |
| 350 | |
| 351 | /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting |
| 352 | * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, |
| 353 | * see ipv4_pktinfo_prepare(). |
| 354 | */ |
| 355 | new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); |
| 356 | if (new_rt) { |
| 357 | new_rt->rt_iif = 0; |
| 358 | skb_dst_drop(skb); |
| 359 | skb_dst_set(skb, &new_rt->dst); |
| 360 | } |
| 361 | |
| 362 | err = dev_loopback_xmit(net, sk, skb); |
| 363 | return (do_cn && err) ? ret : err; |
| 364 | } |
| 365 | |
| 366 | int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 367 | { |
| 368 | struct rtable *rt = skb_rtable(skb); |
| 369 | struct net_device *dev = rt->dst.dev; |
| 370 | |
| 371 | /* |
| 372 | * If the indicated interface is up and running, send the packet. |
| 373 | */ |
| 374 | skb->dev = dev; |
| 375 | skb->protocol = htons(ETH_P_IP); |
| 376 | |
| 377 | /* |
| 378 | * Multicasts are looped back for other local users |
| 379 | */ |
| 380 | |
| 381 | if (rt->rt_flags&RTCF_MULTICAST) { |
| 382 | if (sk_mc_loop(sk) |
| 383 | #ifdef CONFIG_IP_MROUTE |
| 384 | /* Small optimization: do not loopback not local frames, |
| 385 | which returned after forwarding; they will be dropped |
| 386 | by ip_mr_input in any case. |
| 387 | Note, that local frames are looped back to be delivered |
| 388 | to local recipients. |
| 389 | |
| 390 | This check is duplicated in ip_mr_input at the moment. |
| 391 | */ |
| 392 | && |
| 393 | ((rt->rt_flags & RTCF_LOCAL) || |
| 394 | !(IPCB(skb)->flags & IPSKB_FORWARDED)) |
| 395 | #endif |
| 396 | ) { |
| 397 | struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); |
| 398 | if (newskb) |
| 399 | NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
| 400 | net, sk, newskb, NULL, newskb->dev, |
| 401 | ip_mc_finish_output); |
| 402 | } |
| 403 | |
| 404 | /* Multicasts with ttl 0 must not go beyond the host */ |
| 405 | |
| 406 | if (ip_hdr(skb)->ttl == 0) { |
| 407 | kfree_skb(skb); |
| 408 | return 0; |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | if (rt->rt_flags&RTCF_BROADCAST) { |
| 413 | struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); |
| 414 | if (newskb) |
| 415 | NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
| 416 | net, sk, newskb, NULL, newskb->dev, |
| 417 | ip_mc_finish_output); |
| 418 | } |
| 419 | |
| 420 | return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
| 421 | net, sk, skb, NULL, skb->dev, |
| 422 | ip_finish_output, |
| 423 | !(IPCB(skb)->flags & IPSKB_REROUTED)); |
| 424 | } |
| 425 | |
| 426 | int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 427 | { |
| 428 | struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; |
| 429 | |
| 430 | skb->dev = dev; |
| 431 | skb->protocol = htons(ETH_P_IP); |
| 432 | |
| 433 | return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
| 434 | net, sk, skb, indev, dev, |
| 435 | ip_finish_output, |
| 436 | !(IPCB(skb)->flags & IPSKB_REROUTED)); |
| 437 | } |
| 438 | EXPORT_SYMBOL(ip_output); |
| 439 | |
| 440 | /* |
| 441 | * copy saddr and daddr, possibly using 64bit load/stores |
| 442 | * Equivalent to : |
| 443 | * iph->saddr = fl4->saddr; |
| 444 | * iph->daddr = fl4->daddr; |
| 445 | */ |
| 446 | static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) |
| 447 | { |
| 448 | BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != |
| 449 | offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); |
| 450 | |
| 451 | iph->saddr = fl4->saddr; |
| 452 | iph->daddr = fl4->daddr; |
| 453 | } |
| 454 | |
| 455 | /* Note: skb->sk can be different from sk, in case of tunnels */ |
| 456 | int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, |
| 457 | __u8 tos) |
| 458 | { |
| 459 | struct inet_sock *inet = inet_sk(sk); |
| 460 | struct net *net = sock_net(sk); |
| 461 | struct ip_options_rcu *inet_opt; |
| 462 | struct flowi4 *fl4; |
| 463 | struct rtable *rt; |
| 464 | struct iphdr *iph; |
| 465 | int res; |
| 466 | |
| 467 | /* Skip all of this if the packet is already routed, |
| 468 | * f.e. by something like SCTP. |
| 469 | */ |
| 470 | rcu_read_lock(); |
| 471 | inet_opt = rcu_dereference(inet->inet_opt); |
| 472 | fl4 = &fl->u.ip4; |
| 473 | rt = skb_rtable(skb); |
| 474 | if (rt) |
| 475 | goto packet_routed; |
| 476 | |
| 477 | /* Make sure we can route this packet. */ |
| 478 | rt = dst_rtable(__sk_dst_check(sk, 0)); |
| 479 | if (!rt) { |
| 480 | inet_sk_init_flowi4(inet, fl4); |
| 481 | |
| 482 | /* sctp_v4_xmit() uses its own DSCP value */ |
| 483 | fl4->flowi4_tos = tos & INET_DSCP_MASK; |
| 484 | |
| 485 | /* If this fails, retransmit mechanism of transport layer will |
| 486 | * keep trying until route appears or the connection times |
| 487 | * itself out. |
| 488 | */ |
| 489 | rt = ip_route_output_flow(net, fl4, sk); |
| 490 | if (IS_ERR(rt)) |
| 491 | goto no_route; |
| 492 | sk_setup_caps(sk, &rt->dst); |
| 493 | } |
| 494 | skb_dst_set_noref(skb, &rt->dst); |
| 495 | |
| 496 | packet_routed: |
| 497 | if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) |
| 498 | goto no_route; |
| 499 | |
| 500 | /* OK, we know where to send it, allocate and build IP header. */ |
| 501 | skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); |
| 502 | skb_reset_network_header(skb); |
| 503 | iph = ip_hdr(skb); |
| 504 | *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); |
| 505 | if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) |
| 506 | iph->frag_off = htons(IP_DF); |
| 507 | else |
| 508 | iph->frag_off = 0; |
| 509 | iph->ttl = ip_select_ttl(inet, &rt->dst); |
| 510 | iph->protocol = sk->sk_protocol; |
| 511 | ip_copy_addrs(iph, fl4); |
| 512 | |
| 513 | /* Transport layer set skb->h.foo itself. */ |
| 514 | |
| 515 | if (inet_opt && inet_opt->opt.optlen) { |
| 516 | iph->ihl += inet_opt->opt.optlen >> 2; |
| 517 | ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt); |
| 518 | } |
| 519 | |
| 520 | ip_select_ident_segs(net, skb, sk, |
| 521 | skb_shinfo(skb)->gso_segs ?: 1); |
| 522 | |
| 523 | /* TODO : should we use skb->sk here instead of sk ? */ |
| 524 | skb->priority = READ_ONCE(sk->sk_priority); |
| 525 | skb->mark = READ_ONCE(sk->sk_mark); |
| 526 | |
| 527 | res = ip_local_out(net, sk, skb); |
| 528 | rcu_read_unlock(); |
| 529 | return res; |
| 530 | |
| 531 | no_route: |
| 532 | rcu_read_unlock(); |
| 533 | IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); |
| 534 | kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES); |
| 535 | return -EHOSTUNREACH; |
| 536 | } |
| 537 | EXPORT_SYMBOL(__ip_queue_xmit); |
| 538 | |
| 539 | int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) |
| 540 | { |
| 541 | return __ip_queue_xmit(sk, skb, fl, READ_ONCE(inet_sk(sk)->tos)); |
| 542 | } |
| 543 | EXPORT_SYMBOL(ip_queue_xmit); |
| 544 | |
| 545 | static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) |
| 546 | { |
| 547 | to->pkt_type = from->pkt_type; |
| 548 | to->priority = from->priority; |
| 549 | to->protocol = from->protocol; |
| 550 | to->skb_iif = from->skb_iif; |
| 551 | skb_dst_drop(to); |
| 552 | skb_dst_copy(to, from); |
| 553 | to->dev = from->dev; |
| 554 | to->mark = from->mark; |
| 555 | |
| 556 | skb_copy_hash(to, from); |
| 557 | |
| 558 | #ifdef CONFIG_NET_SCHED |
| 559 | to->tc_index = from->tc_index; |
| 560 | #endif |
| 561 | nf_copy(to, from); |
| 562 | skb_ext_copy(to, from); |
| 563 | #if IS_ENABLED(CONFIG_IP_VS) |
| 564 | to->ipvs_property = from->ipvs_property; |
| 565 | #endif |
| 566 | skb_copy_secmark(to, from); |
| 567 | } |
| 568 | |
| 569 | static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, |
| 570 | unsigned int mtu, |
| 571 | int (*output)(struct net *, struct sock *, struct sk_buff *)) |
| 572 | { |
| 573 | struct iphdr *iph = ip_hdr(skb); |
| 574 | |
| 575 | if ((iph->frag_off & htons(IP_DF)) == 0) |
| 576 | return ip_do_fragment(net, sk, skb, output); |
| 577 | |
| 578 | if (unlikely(!skb->ignore_df || |
| 579 | (IPCB(skb)->frag_max_size && |
| 580 | IPCB(skb)->frag_max_size > mtu))) { |
| 581 | IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); |
| 582 | icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, |
| 583 | htonl(mtu)); |
| 584 | kfree_skb(skb); |
| 585 | return -EMSGSIZE; |
| 586 | } |
| 587 | |
| 588 | return ip_do_fragment(net, sk, skb, output); |
| 589 | } |
| 590 | |
| 591 | void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, |
| 592 | unsigned int hlen, struct ip_fraglist_iter *iter) |
| 593 | { |
| 594 | unsigned int first_len = skb_pagelen(skb); |
| 595 | |
| 596 | iter->frag = skb_shinfo(skb)->frag_list; |
| 597 | skb_frag_list_init(skb); |
| 598 | |
| 599 | iter->offset = 0; |
| 600 | iter->iph = iph; |
| 601 | iter->hlen = hlen; |
| 602 | |
| 603 | skb->data_len = first_len - skb_headlen(skb); |
| 604 | skb->len = first_len; |
| 605 | iph->tot_len = htons(first_len); |
| 606 | iph->frag_off = htons(IP_MF); |
| 607 | ip_send_check(iph); |
| 608 | } |
| 609 | EXPORT_SYMBOL(ip_fraglist_init); |
| 610 | |
| 611 | void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) |
| 612 | { |
| 613 | unsigned int hlen = iter->hlen; |
| 614 | struct iphdr *iph = iter->iph; |
| 615 | struct sk_buff *frag; |
| 616 | |
| 617 | frag = iter->frag; |
| 618 | frag->ip_summed = CHECKSUM_NONE; |
| 619 | skb_reset_transport_header(frag); |
| 620 | __skb_push(frag, hlen); |
| 621 | skb_reset_network_header(frag); |
| 622 | memcpy(skb_network_header(frag), iph, hlen); |
| 623 | iter->iph = ip_hdr(frag); |
| 624 | iph = iter->iph; |
| 625 | iph->tot_len = htons(frag->len); |
| 626 | ip_copy_metadata(frag, skb); |
| 627 | iter->offset += skb->len - hlen; |
| 628 | iph->frag_off = htons(iter->offset >> 3); |
| 629 | if (frag->next) |
| 630 | iph->frag_off |= htons(IP_MF); |
| 631 | /* Ready, complete checksum */ |
| 632 | ip_send_check(iph); |
| 633 | } |
| 634 | EXPORT_SYMBOL(ip_fraglist_prepare); |
| 635 | |
| 636 | void ip_frag_init(struct sk_buff *skb, unsigned int hlen, |
| 637 | unsigned int ll_rs, unsigned int mtu, bool DF, |
| 638 | struct ip_frag_state *state) |
| 639 | { |
| 640 | struct iphdr *iph = ip_hdr(skb); |
| 641 | |
| 642 | state->DF = DF; |
| 643 | state->hlen = hlen; |
| 644 | state->ll_rs = ll_rs; |
| 645 | state->mtu = mtu; |
| 646 | |
| 647 | state->left = skb->len - hlen; /* Space per frame */ |
| 648 | state->ptr = hlen; /* Where to start from */ |
| 649 | |
| 650 | state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; |
| 651 | state->not_last_frag = iph->frag_off & htons(IP_MF); |
| 652 | } |
| 653 | EXPORT_SYMBOL(ip_frag_init); |
| 654 | |
| 655 | static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, |
| 656 | bool first_frag) |
| 657 | { |
| 658 | /* Copy the flags to each fragment. */ |
| 659 | IPCB(to)->flags = IPCB(from)->flags; |
| 660 | |
| 661 | /* ANK: dirty, but effective trick. Upgrade options only if |
| 662 | * the segment to be fragmented was THE FIRST (otherwise, |
| 663 | * options are already fixed) and make it ONCE |
| 664 | * on the initial skb, so that all the following fragments |
| 665 | * will inherit fixed options. |
| 666 | */ |
| 667 | if (first_frag) |
| 668 | ip_options_fragment(from); |
| 669 | } |
| 670 | |
| 671 | struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) |
| 672 | { |
| 673 | unsigned int len = state->left; |
| 674 | struct sk_buff *skb2; |
| 675 | struct iphdr *iph; |
| 676 | |
| 677 | /* IF: it doesn't fit, use 'mtu' - the data space left */ |
| 678 | if (len > state->mtu) |
| 679 | len = state->mtu; |
| 680 | /* IF: we are not sending up to and including the packet end |
| 681 | then align the next start on an eight byte boundary */ |
| 682 | if (len < state->left) { |
| 683 | len &= ~7; |
| 684 | } |
| 685 | |
| 686 | /* Allocate buffer */ |
| 687 | skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); |
| 688 | if (!skb2) |
| 689 | return ERR_PTR(-ENOMEM); |
| 690 | |
| 691 | /* |
| 692 | * Set up data on packet |
| 693 | */ |
| 694 | |
| 695 | ip_copy_metadata(skb2, skb); |
| 696 | skb_reserve(skb2, state->ll_rs); |
| 697 | skb_put(skb2, len + state->hlen); |
| 698 | skb_reset_network_header(skb2); |
| 699 | skb2->transport_header = skb2->network_header + state->hlen; |
| 700 | |
| 701 | /* |
| 702 | * Charge the memory for the fragment to any owner |
| 703 | * it might possess |
| 704 | */ |
| 705 | |
| 706 | if (skb->sk) |
| 707 | skb_set_owner_w(skb2, skb->sk); |
| 708 | |
| 709 | /* |
| 710 | * Copy the packet header into the new buffer. |
| 711 | */ |
| 712 | |
| 713 | skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); |
| 714 | |
| 715 | /* |
| 716 | * Copy a block of the IP datagram. |
| 717 | */ |
| 718 | if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) |
| 719 | BUG(); |
| 720 | state->left -= len; |
| 721 | |
| 722 | /* |
| 723 | * Fill in the new header fields. |
| 724 | */ |
| 725 | iph = ip_hdr(skb2); |
| 726 | iph->frag_off = htons((state->offset >> 3)); |
| 727 | if (state->DF) |
| 728 | iph->frag_off |= htons(IP_DF); |
| 729 | |
| 730 | /* |
| 731 | * Added AC : If we are fragmenting a fragment that's not the |
| 732 | * last fragment then keep MF on each bit |
| 733 | */ |
| 734 | if (state->left > 0 || state->not_last_frag) |
| 735 | iph->frag_off |= htons(IP_MF); |
| 736 | state->ptr += len; |
| 737 | state->offset += len; |
| 738 | |
| 739 | iph->tot_len = htons(len + state->hlen); |
| 740 | |
| 741 | ip_send_check(iph); |
| 742 | |
| 743 | return skb2; |
| 744 | } |
| 745 | EXPORT_SYMBOL(ip_frag_next); |
| 746 | |
| 747 | /* |
| 748 | * This IP datagram is too large to be sent in one piece. Break it up into |
| 749 | * smaller pieces (each of size equal to IP header plus |
| 750 | * a block of the data of the original IP data part) that will yet fit in a |
| 751 | * single device frame, and queue such a frame for sending. |
| 752 | */ |
| 753 | |
| 754 | int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, |
| 755 | int (*output)(struct net *, struct sock *, struct sk_buff *)) |
| 756 | { |
| 757 | struct iphdr *iph; |
| 758 | struct sk_buff *skb2; |
| 759 | u8 tstamp_type = skb->tstamp_type; |
| 760 | struct rtable *rt = skb_rtable(skb); |
| 761 | unsigned int mtu, hlen, ll_rs; |
| 762 | struct ip_fraglist_iter iter; |
| 763 | ktime_t tstamp = skb->tstamp; |
| 764 | struct ip_frag_state state; |
| 765 | int err = 0; |
| 766 | |
| 767 | /* for offloaded checksums cleanup checksum before fragmentation */ |
| 768 | if (skb->ip_summed == CHECKSUM_PARTIAL && |
| 769 | (err = skb_checksum_help(skb))) |
| 770 | goto fail; |
| 771 | |
| 772 | /* |
| 773 | * Point into the IP datagram header. |
| 774 | */ |
| 775 | |
| 776 | iph = ip_hdr(skb); |
| 777 | |
| 778 | mtu = ip_skb_dst_mtu(sk, skb); |
| 779 | if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) |
| 780 | mtu = IPCB(skb)->frag_max_size; |
| 781 | |
| 782 | /* |
| 783 | * Setup starting values. |
| 784 | */ |
| 785 | |
| 786 | hlen = iph->ihl * 4; |
| 787 | mtu = mtu - hlen; /* Size of data space */ |
| 788 | IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; |
| 789 | ll_rs = LL_RESERVED_SPACE(rt->dst.dev); |
| 790 | |
| 791 | /* When frag_list is given, use it. First, check its validity: |
| 792 | * some transformers could create wrong frag_list or break existing |
| 793 | * one, it is not prohibited. In this case fall back to copying. |
| 794 | * |
| 795 | * LATER: this step can be merged to real generation of fragments, |
| 796 | * we can switch to copy when see the first bad fragment. |
| 797 | */ |
| 798 | if (skb_has_frag_list(skb)) { |
| 799 | struct sk_buff *frag, *frag2; |
| 800 | unsigned int first_len = skb_pagelen(skb); |
| 801 | |
| 802 | if (first_len - hlen > mtu || |
| 803 | ((first_len - hlen) & 7) || |
| 804 | ip_is_fragment(iph) || |
| 805 | skb_cloned(skb) || |
| 806 | skb_headroom(skb) < ll_rs) |
| 807 | goto slow_path; |
| 808 | |
| 809 | skb_walk_frags(skb, frag) { |
| 810 | /* Correct geometry. */ |
| 811 | if (frag->len > mtu || |
| 812 | ((frag->len & 7) && frag->next) || |
| 813 | skb_headroom(frag) < hlen + ll_rs) |
| 814 | goto slow_path_clean; |
| 815 | |
| 816 | /* Partially cloned skb? */ |
| 817 | if (skb_shared(frag)) |
| 818 | goto slow_path_clean; |
| 819 | |
| 820 | BUG_ON(frag->sk); |
| 821 | if (skb->sk) { |
| 822 | frag->sk = skb->sk; |
| 823 | frag->destructor = sock_wfree; |
| 824 | } |
| 825 | skb->truesize -= frag->truesize; |
| 826 | } |
| 827 | |
| 828 | /* Everything is OK. Generate! */ |
| 829 | ip_fraglist_init(skb, iph, hlen, &iter); |
| 830 | |
| 831 | for (;;) { |
| 832 | /* Prepare header of the next frame, |
| 833 | * before previous one went down. */ |
| 834 | if (iter.frag) { |
| 835 | bool first_frag = (iter.offset == 0); |
| 836 | |
| 837 | IPCB(iter.frag)->flags = IPCB(skb)->flags; |
| 838 | ip_fraglist_prepare(skb, &iter); |
| 839 | if (first_frag && IPCB(skb)->opt.optlen) { |
| 840 | /* ipcb->opt is not populated for frags |
| 841 | * coming from __ip_make_skb(), |
| 842 | * ip_options_fragment() needs optlen |
| 843 | */ |
| 844 | IPCB(iter.frag)->opt.optlen = |
| 845 | IPCB(skb)->opt.optlen; |
| 846 | ip_options_fragment(iter.frag); |
| 847 | ip_send_check(iter.iph); |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | skb_set_delivery_time(skb, tstamp, tstamp_type); |
| 852 | err = output(net, sk, skb); |
| 853 | |
| 854 | if (!err) |
| 855 | IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); |
| 856 | if (err || !iter.frag) |
| 857 | break; |
| 858 | |
| 859 | skb = ip_fraglist_next(&iter); |
| 860 | } |
| 861 | |
| 862 | if (err == 0) { |
| 863 | IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); |
| 864 | return 0; |
| 865 | } |
| 866 | |
| 867 | kfree_skb_list(iter.frag); |
| 868 | |
| 869 | IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); |
| 870 | return err; |
| 871 | |
| 872 | slow_path_clean: |
| 873 | skb_walk_frags(skb, frag2) { |
| 874 | if (frag2 == frag) |
| 875 | break; |
| 876 | frag2->sk = NULL; |
| 877 | frag2->destructor = NULL; |
| 878 | skb->truesize += frag2->truesize; |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | slow_path: |
| 883 | /* |
| 884 | * Fragment the datagram. |
| 885 | */ |
| 886 | |
| 887 | ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, |
| 888 | &state); |
| 889 | |
| 890 | /* |
| 891 | * Keep copying data until we run out. |
| 892 | */ |
| 893 | |
| 894 | while (state.left > 0) { |
| 895 | bool first_frag = (state.offset == 0); |
| 896 | |
| 897 | skb2 = ip_frag_next(skb, &state); |
| 898 | if (IS_ERR(skb2)) { |
| 899 | err = PTR_ERR(skb2); |
| 900 | goto fail; |
| 901 | } |
| 902 | ip_frag_ipcb(skb, skb2, first_frag); |
| 903 | |
| 904 | /* |
| 905 | * Put this fragment into the sending queue. |
| 906 | */ |
| 907 | skb_set_delivery_time(skb2, tstamp, tstamp_type); |
| 908 | err = output(net, sk, skb2); |
| 909 | if (err) |
| 910 | goto fail; |
| 911 | |
| 912 | IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); |
| 913 | } |
| 914 | consume_skb(skb); |
| 915 | IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); |
| 916 | return err; |
| 917 | |
| 918 | fail: |
| 919 | kfree_skb(skb); |
| 920 | IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); |
| 921 | return err; |
| 922 | } |
| 923 | EXPORT_SYMBOL(ip_do_fragment); |
| 924 | |
| 925 | int |
| 926 | ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) |
| 927 | { |
| 928 | struct msghdr *msg = from; |
| 929 | |
| 930 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| 931 | if (!copy_from_iter_full(to, len, &msg->msg_iter)) |
| 932 | return -EFAULT; |
| 933 | } else { |
| 934 | __wsum csum = 0; |
| 935 | if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) |
| 936 | return -EFAULT; |
| 937 | skb->csum = csum_block_add(skb->csum, csum, odd); |
| 938 | } |
| 939 | return 0; |
| 940 | } |
| 941 | EXPORT_SYMBOL(ip_generic_getfrag); |
| 942 | |
| 943 | static int __ip_append_data(struct sock *sk, |
| 944 | struct flowi4 *fl4, |
| 945 | struct sk_buff_head *queue, |
| 946 | struct inet_cork *cork, |
| 947 | struct page_frag *pfrag, |
| 948 | int getfrag(void *from, char *to, int offset, |
| 949 | int len, int odd, struct sk_buff *skb), |
| 950 | void *from, int length, int transhdrlen, |
| 951 | unsigned int flags) |
| 952 | { |
| 953 | struct inet_sock *inet = inet_sk(sk); |
| 954 | struct ubuf_info *uarg = NULL; |
| 955 | struct sk_buff *skb; |
| 956 | struct ip_options *opt = cork->opt; |
| 957 | int hh_len; |
| 958 | int exthdrlen; |
| 959 | int mtu; |
| 960 | int copy; |
| 961 | int err; |
| 962 | int offset = 0; |
| 963 | bool zc = false; |
| 964 | unsigned int maxfraglen, fragheaderlen, maxnonfragsize; |
| 965 | int csummode = CHECKSUM_NONE; |
| 966 | struct rtable *rt = dst_rtable(cork->dst); |
| 967 | bool paged, hold_tskey = false, extra_uref = false; |
| 968 | unsigned int wmem_alloc_delta = 0; |
| 969 | u32 tskey = 0; |
| 970 | |
| 971 | skb = skb_peek_tail(queue); |
| 972 | |
| 973 | exthdrlen = !skb ? rt->dst.header_len : 0; |
| 974 | mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; |
| 975 | paged = !!cork->gso_size; |
| 976 | |
| 977 | hh_len = LL_RESERVED_SPACE(rt->dst.dev); |
| 978 | |
| 979 | fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); |
| 980 | maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; |
| 981 | maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; |
| 982 | |
| 983 | if (cork->length + length > maxnonfragsize - fragheaderlen) { |
| 984 | ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, |
| 985 | mtu - (opt ? opt->optlen : 0)); |
| 986 | return -EMSGSIZE; |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * transhdrlen > 0 means that this is the first fragment and we wish |
| 991 | * it won't be fragmented in the future. |
| 992 | */ |
| 993 | if (transhdrlen && |
| 994 | length + fragheaderlen <= mtu && |
| 995 | rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && |
| 996 | (!(flags & MSG_MORE) || cork->gso_size) && |
| 997 | (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) |
| 998 | csummode = CHECKSUM_PARTIAL; |
| 999 | |
| 1000 | if ((flags & MSG_ZEROCOPY) && length) { |
| 1001 | struct msghdr *msg = from; |
| 1002 | |
| 1003 | if (getfrag == ip_generic_getfrag && msg->msg_ubuf) { |
| 1004 | if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb)) |
| 1005 | return -EINVAL; |
| 1006 | |
| 1007 | /* Leave uarg NULL if can't zerocopy, callers should |
| 1008 | * be able to handle it. |
| 1009 | */ |
| 1010 | if ((rt->dst.dev->features & NETIF_F_SG) && |
| 1011 | csummode == CHECKSUM_PARTIAL) { |
| 1012 | paged = true; |
| 1013 | zc = true; |
| 1014 | uarg = msg->msg_ubuf; |
| 1015 | } |
| 1016 | } else if (sock_flag(sk, SOCK_ZEROCOPY)) { |
| 1017 | uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb), |
| 1018 | false); |
| 1019 | if (!uarg) |
| 1020 | return -ENOBUFS; |
| 1021 | extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ |
| 1022 | if (rt->dst.dev->features & NETIF_F_SG && |
| 1023 | csummode == CHECKSUM_PARTIAL) { |
| 1024 | paged = true; |
| 1025 | zc = true; |
| 1026 | } else { |
| 1027 | uarg_to_msgzc(uarg)->zerocopy = 0; |
| 1028 | skb_zcopy_set(skb, uarg, &extra_uref); |
| 1029 | } |
| 1030 | } |
| 1031 | } else if ((flags & MSG_SPLICE_PAGES) && length) { |
| 1032 | if (inet_test_bit(HDRINCL, sk)) |
| 1033 | return -EPERM; |
| 1034 | if (rt->dst.dev->features & NETIF_F_SG && |
| 1035 | getfrag == ip_generic_getfrag) |
| 1036 | /* We need an empty buffer to attach stuff to */ |
| 1037 | paged = true; |
| 1038 | else |
| 1039 | flags &= ~MSG_SPLICE_PAGES; |
| 1040 | } |
| 1041 | |
| 1042 | cork->length += length; |
| 1043 | |
| 1044 | if (cork->tx_flags & SKBTX_ANY_TSTAMP && |
| 1045 | READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { |
| 1046 | if (cork->flags & IPCORK_TS_OPT_ID) { |
| 1047 | tskey = cork->ts_opt_id; |
| 1048 | } else { |
| 1049 | tskey = atomic_inc_return(&sk->sk_tskey) - 1; |
| 1050 | hold_tskey = true; |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | /* So, what's going on in the loop below? |
| 1055 | * |
| 1056 | * We use calculated fragment length to generate chained skb, |
| 1057 | * each of segments is IP fragment ready for sending to network after |
| 1058 | * adding appropriate IP header. |
| 1059 | */ |
| 1060 | |
| 1061 | if (!skb) |
| 1062 | goto alloc_new_skb; |
| 1063 | |
| 1064 | while (length > 0) { |
| 1065 | /* Check if the remaining data fits into current packet. */ |
| 1066 | copy = mtu - skb->len; |
| 1067 | if (copy < length) |
| 1068 | copy = maxfraglen - skb->len; |
| 1069 | if (copy <= 0) { |
| 1070 | char *data; |
| 1071 | unsigned int datalen; |
| 1072 | unsigned int fraglen; |
| 1073 | unsigned int fraggap; |
| 1074 | unsigned int alloclen, alloc_extra; |
| 1075 | unsigned int pagedlen; |
| 1076 | struct sk_buff *skb_prev; |
| 1077 | alloc_new_skb: |
| 1078 | skb_prev = skb; |
| 1079 | if (skb_prev) |
| 1080 | fraggap = skb_prev->len - maxfraglen; |
| 1081 | else |
| 1082 | fraggap = 0; |
| 1083 | |
| 1084 | /* |
| 1085 | * If remaining data exceeds the mtu, |
| 1086 | * we know we need more fragment(s). |
| 1087 | */ |
| 1088 | datalen = length + fraggap; |
| 1089 | if (datalen > mtu - fragheaderlen) |
| 1090 | datalen = maxfraglen - fragheaderlen; |
| 1091 | fraglen = datalen + fragheaderlen; |
| 1092 | pagedlen = 0; |
| 1093 | |
| 1094 | alloc_extra = hh_len + 15; |
| 1095 | alloc_extra += exthdrlen; |
| 1096 | |
| 1097 | /* The last fragment gets additional space at tail. |
| 1098 | * Note, with MSG_MORE we overallocate on fragments, |
| 1099 | * because we have no idea what fragment will be |
| 1100 | * the last. |
| 1101 | */ |
| 1102 | if (datalen == length + fraggap) |
| 1103 | alloc_extra += rt->dst.trailer_len; |
| 1104 | |
| 1105 | if ((flags & MSG_MORE) && |
| 1106 | !(rt->dst.dev->features&NETIF_F_SG)) |
| 1107 | alloclen = mtu; |
| 1108 | else if (!paged && |
| 1109 | (fraglen + alloc_extra < SKB_MAX_ALLOC || |
| 1110 | !(rt->dst.dev->features & NETIF_F_SG))) |
| 1111 | alloclen = fraglen; |
| 1112 | else { |
| 1113 | alloclen = fragheaderlen + transhdrlen; |
| 1114 | pagedlen = datalen - transhdrlen; |
| 1115 | } |
| 1116 | |
| 1117 | alloclen += alloc_extra; |
| 1118 | |
| 1119 | if (transhdrlen) { |
| 1120 | skb = sock_alloc_send_skb(sk, alloclen, |
| 1121 | (flags & MSG_DONTWAIT), &err); |
| 1122 | } else { |
| 1123 | skb = NULL; |
| 1124 | if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= |
| 1125 | 2 * sk->sk_sndbuf) |
| 1126 | skb = alloc_skb(alloclen, |
| 1127 | sk->sk_allocation); |
| 1128 | if (unlikely(!skb)) |
| 1129 | err = -ENOBUFS; |
| 1130 | } |
| 1131 | if (!skb) |
| 1132 | goto error; |
| 1133 | |
| 1134 | /* |
| 1135 | * Fill in the control structures |
| 1136 | */ |
| 1137 | skb->ip_summed = csummode; |
| 1138 | skb->csum = 0; |
| 1139 | skb_reserve(skb, hh_len); |
| 1140 | |
| 1141 | /* |
| 1142 | * Find where to start putting bytes. |
| 1143 | */ |
| 1144 | data = skb_put(skb, fraglen + exthdrlen - pagedlen); |
| 1145 | skb_set_network_header(skb, exthdrlen); |
| 1146 | skb->transport_header = (skb->network_header + |
| 1147 | fragheaderlen); |
| 1148 | data += fragheaderlen + exthdrlen; |
| 1149 | |
| 1150 | if (fraggap) { |
| 1151 | skb->csum = skb_copy_and_csum_bits( |
| 1152 | skb_prev, maxfraglen, |
| 1153 | data + transhdrlen, fraggap); |
| 1154 | skb_prev->csum = csum_sub(skb_prev->csum, |
| 1155 | skb->csum); |
| 1156 | data += fraggap; |
| 1157 | pskb_trim_unique(skb_prev, maxfraglen); |
| 1158 | } |
| 1159 | |
| 1160 | copy = datalen - transhdrlen - fraggap - pagedlen; |
| 1161 | /* [!] NOTE: copy will be negative if pagedlen>0 |
| 1162 | * because then the equation reduces to -fraggap. |
| 1163 | */ |
| 1164 | if (copy > 0 && |
| 1165 | INDIRECT_CALL_1(getfrag, ip_generic_getfrag, |
| 1166 | from, data + transhdrlen, offset, |
| 1167 | copy, fraggap, skb) < 0) { |
| 1168 | err = -EFAULT; |
| 1169 | kfree_skb(skb); |
| 1170 | goto error; |
| 1171 | } else if (flags & MSG_SPLICE_PAGES) { |
| 1172 | copy = 0; |
| 1173 | } |
| 1174 | |
| 1175 | offset += copy; |
| 1176 | length -= copy + transhdrlen; |
| 1177 | transhdrlen = 0; |
| 1178 | exthdrlen = 0; |
| 1179 | csummode = CHECKSUM_NONE; |
| 1180 | |
| 1181 | /* only the initial fragment is time stamped */ |
| 1182 | skb_shinfo(skb)->tx_flags = cork->tx_flags; |
| 1183 | cork->tx_flags = 0; |
| 1184 | skb_shinfo(skb)->tskey = tskey; |
| 1185 | tskey = 0; |
| 1186 | skb_zcopy_set(skb, uarg, &extra_uref); |
| 1187 | |
| 1188 | if ((flags & MSG_CONFIRM) && !skb_prev) |
| 1189 | skb_set_dst_pending_confirm(skb, 1); |
| 1190 | |
| 1191 | /* |
| 1192 | * Put the packet on the pending queue. |
| 1193 | */ |
| 1194 | if (!skb->destructor) { |
| 1195 | skb->destructor = sock_wfree; |
| 1196 | skb->sk = sk; |
| 1197 | wmem_alloc_delta += skb->truesize; |
| 1198 | } |
| 1199 | __skb_queue_tail(queue, skb); |
| 1200 | continue; |
| 1201 | } |
| 1202 | |
| 1203 | if (copy > length) |
| 1204 | copy = length; |
| 1205 | |
| 1206 | if (!(rt->dst.dev->features&NETIF_F_SG) && |
| 1207 | skb_tailroom(skb) >= copy) { |
| 1208 | unsigned int off; |
| 1209 | |
| 1210 | off = skb->len; |
| 1211 | if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag, |
| 1212 | from, skb_put(skb, copy), |
| 1213 | offset, copy, off, skb) < 0) { |
| 1214 | __skb_trim(skb, off); |
| 1215 | err = -EFAULT; |
| 1216 | goto error; |
| 1217 | } |
| 1218 | } else if (flags & MSG_SPLICE_PAGES) { |
| 1219 | struct msghdr *msg = from; |
| 1220 | |
| 1221 | err = -EIO; |
| 1222 | if (WARN_ON_ONCE(copy > msg->msg_iter.count)) |
| 1223 | goto error; |
| 1224 | |
| 1225 | err = skb_splice_from_iter(skb, &msg->msg_iter, copy, |
| 1226 | sk->sk_allocation); |
| 1227 | if (err < 0) |
| 1228 | goto error; |
| 1229 | copy = err; |
| 1230 | wmem_alloc_delta += copy; |
| 1231 | } else if (!zc) { |
| 1232 | int i = skb_shinfo(skb)->nr_frags; |
| 1233 | |
| 1234 | err = -ENOMEM; |
| 1235 | if (!sk_page_frag_refill(sk, pfrag)) |
| 1236 | goto error; |
| 1237 | |
| 1238 | skb_zcopy_downgrade_managed(skb); |
| 1239 | if (!skb_can_coalesce(skb, i, pfrag->page, |
| 1240 | pfrag->offset)) { |
| 1241 | err = -EMSGSIZE; |
| 1242 | if (i == MAX_SKB_FRAGS) |
| 1243 | goto error; |
| 1244 | |
| 1245 | __skb_fill_page_desc(skb, i, pfrag->page, |
| 1246 | pfrag->offset, 0); |
| 1247 | skb_shinfo(skb)->nr_frags = ++i; |
| 1248 | get_page(pfrag->page); |
| 1249 | } |
| 1250 | copy = min_t(int, copy, pfrag->size - pfrag->offset); |
| 1251 | if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag, |
| 1252 | from, |
| 1253 | page_address(pfrag->page) + pfrag->offset, |
| 1254 | offset, copy, skb->len, skb) < 0) |
| 1255 | goto error_efault; |
| 1256 | |
| 1257 | pfrag->offset += copy; |
| 1258 | skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); |
| 1259 | skb_len_add(skb, copy); |
| 1260 | wmem_alloc_delta += copy; |
| 1261 | } else { |
| 1262 | err = skb_zerocopy_iter_dgram(skb, from, copy); |
| 1263 | if (err < 0) |
| 1264 | goto error; |
| 1265 | } |
| 1266 | offset += copy; |
| 1267 | length -= copy; |
| 1268 | } |
| 1269 | |
| 1270 | if (wmem_alloc_delta) |
| 1271 | refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); |
| 1272 | return 0; |
| 1273 | |
| 1274 | error_efault: |
| 1275 | err = -EFAULT; |
| 1276 | error: |
| 1277 | net_zcopy_put_abort(uarg, extra_uref); |
| 1278 | cork->length -= length; |
| 1279 | IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); |
| 1280 | refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); |
| 1281 | if (hold_tskey) |
| 1282 | atomic_dec(&sk->sk_tskey); |
| 1283 | return err; |
| 1284 | } |
| 1285 | |
| 1286 | static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, |
| 1287 | struct ipcm_cookie *ipc, struct rtable **rtp) |
| 1288 | { |
| 1289 | struct ip_options_rcu *opt; |
| 1290 | struct rtable *rt; |
| 1291 | |
| 1292 | rt = *rtp; |
| 1293 | if (unlikely(!rt)) |
| 1294 | return -EFAULT; |
| 1295 | |
| 1296 | cork->fragsize = ip_sk_use_pmtu(sk) ? |
| 1297 | dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); |
| 1298 | |
| 1299 | if (!inetdev_valid_mtu(cork->fragsize)) |
| 1300 | return -ENETUNREACH; |
| 1301 | |
| 1302 | /* |
| 1303 | * setup for corking. |
| 1304 | */ |
| 1305 | opt = ipc->opt; |
| 1306 | if (opt) { |
| 1307 | if (!cork->opt) { |
| 1308 | cork->opt = kmalloc(sizeof(struct ip_options) + 40, |
| 1309 | sk->sk_allocation); |
| 1310 | if (unlikely(!cork->opt)) |
| 1311 | return -ENOBUFS; |
| 1312 | } |
| 1313 | memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); |
| 1314 | cork->flags |= IPCORK_OPT; |
| 1315 | cork->addr = ipc->addr; |
| 1316 | } |
| 1317 | |
| 1318 | cork->gso_size = ipc->gso_size; |
| 1319 | |
| 1320 | cork->dst = &rt->dst; |
| 1321 | /* We stole this route, caller should not release it. */ |
| 1322 | *rtp = NULL; |
| 1323 | |
| 1324 | cork->length = 0; |
| 1325 | cork->ttl = ipc->ttl; |
| 1326 | cork->tos = ipc->tos; |
| 1327 | cork->mark = ipc->sockc.mark; |
| 1328 | cork->priority = ipc->sockc.priority; |
| 1329 | cork->transmit_time = ipc->sockc.transmit_time; |
| 1330 | cork->tx_flags = 0; |
| 1331 | sock_tx_timestamp(sk, &ipc->sockc, &cork->tx_flags); |
| 1332 | if (ipc->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) { |
| 1333 | cork->flags |= IPCORK_TS_OPT_ID; |
| 1334 | cork->ts_opt_id = ipc->sockc.ts_opt_id; |
| 1335 | } |
| 1336 | |
| 1337 | return 0; |
| 1338 | } |
| 1339 | |
| 1340 | /* |
| 1341 | * ip_append_data() can make one large IP datagram from many pieces of |
| 1342 | * data. Each piece will be held on the socket until |
| 1343 | * ip_push_pending_frames() is called. Each piece can be a page or |
| 1344 | * non-page data. |
| 1345 | * |
| 1346 | * Not only UDP, other transport protocols - e.g. raw sockets - can use |
| 1347 | * this interface potentially. |
| 1348 | * |
| 1349 | * LATER: length must be adjusted by pad at tail, when it is required. |
| 1350 | */ |
| 1351 | int ip_append_data(struct sock *sk, struct flowi4 *fl4, |
| 1352 | int getfrag(void *from, char *to, int offset, int len, |
| 1353 | int odd, struct sk_buff *skb), |
| 1354 | void *from, int length, int transhdrlen, |
| 1355 | struct ipcm_cookie *ipc, struct rtable **rtp, |
| 1356 | unsigned int flags) |
| 1357 | { |
| 1358 | struct inet_sock *inet = inet_sk(sk); |
| 1359 | int err; |
| 1360 | |
| 1361 | if (flags&MSG_PROBE) |
| 1362 | return 0; |
| 1363 | |
| 1364 | if (skb_queue_empty(&sk->sk_write_queue)) { |
| 1365 | err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); |
| 1366 | if (err) |
| 1367 | return err; |
| 1368 | } else { |
| 1369 | transhdrlen = 0; |
| 1370 | } |
| 1371 | |
| 1372 | return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, |
| 1373 | sk_page_frag(sk), getfrag, |
| 1374 | from, length, transhdrlen, flags); |
| 1375 | } |
| 1376 | |
| 1377 | static void ip_cork_release(struct inet_cork *cork) |
| 1378 | { |
| 1379 | cork->flags &= ~IPCORK_OPT; |
| 1380 | kfree(cork->opt); |
| 1381 | cork->opt = NULL; |
| 1382 | dst_release(cork->dst); |
| 1383 | cork->dst = NULL; |
| 1384 | } |
| 1385 | |
| 1386 | /* |
| 1387 | * Combined all pending IP fragments on the socket as one IP datagram |
| 1388 | * and push them out. |
| 1389 | */ |
| 1390 | struct sk_buff *__ip_make_skb(struct sock *sk, |
| 1391 | struct flowi4 *fl4, |
| 1392 | struct sk_buff_head *queue, |
| 1393 | struct inet_cork *cork) |
| 1394 | { |
| 1395 | struct sk_buff *skb, *tmp_skb; |
| 1396 | struct sk_buff **tail_skb; |
| 1397 | struct inet_sock *inet = inet_sk(sk); |
| 1398 | struct net *net = sock_net(sk); |
| 1399 | struct ip_options *opt = NULL; |
| 1400 | struct rtable *rt = dst_rtable(cork->dst); |
| 1401 | struct iphdr *iph; |
| 1402 | u8 pmtudisc, ttl; |
| 1403 | __be16 df = 0; |
| 1404 | |
| 1405 | skb = __skb_dequeue(queue); |
| 1406 | if (!skb) |
| 1407 | goto out; |
| 1408 | tail_skb = &(skb_shinfo(skb)->frag_list); |
| 1409 | |
| 1410 | /* move skb->data to ip header from ext header */ |
| 1411 | if (skb->data < skb_network_header(skb)) |
| 1412 | __skb_pull(skb, skb_network_offset(skb)); |
| 1413 | while ((tmp_skb = __skb_dequeue(queue)) != NULL) { |
| 1414 | __skb_pull(tmp_skb, skb_network_header_len(skb)); |
| 1415 | *tail_skb = tmp_skb; |
| 1416 | tail_skb = &(tmp_skb->next); |
| 1417 | skb->len += tmp_skb->len; |
| 1418 | skb->data_len += tmp_skb->len; |
| 1419 | skb->truesize += tmp_skb->truesize; |
| 1420 | tmp_skb->destructor = NULL; |
| 1421 | tmp_skb->sk = NULL; |
| 1422 | } |
| 1423 | |
| 1424 | /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow |
| 1425 | * to fragment the frame generated here. No matter, what transforms |
| 1426 | * how transforms change size of the packet, it will come out. |
| 1427 | */ |
| 1428 | skb->ignore_df = ip_sk_ignore_df(sk); |
| 1429 | |
| 1430 | /* DF bit is set when we want to see DF on outgoing frames. |
| 1431 | * If ignore_df is set too, we still allow to fragment this frame |
| 1432 | * locally. */ |
| 1433 | pmtudisc = READ_ONCE(inet->pmtudisc); |
| 1434 | if (pmtudisc == IP_PMTUDISC_DO || |
| 1435 | pmtudisc == IP_PMTUDISC_PROBE || |
| 1436 | (skb->len <= dst_mtu(&rt->dst) && |
| 1437 | ip_dont_fragment(sk, &rt->dst))) |
| 1438 | df = htons(IP_DF); |
| 1439 | |
| 1440 | if (cork->flags & IPCORK_OPT) |
| 1441 | opt = cork->opt; |
| 1442 | |
| 1443 | if (cork->ttl != 0) |
| 1444 | ttl = cork->ttl; |
| 1445 | else if (rt->rt_type == RTN_MULTICAST) |
| 1446 | ttl = READ_ONCE(inet->mc_ttl); |
| 1447 | else |
| 1448 | ttl = ip_select_ttl(inet, &rt->dst); |
| 1449 | |
| 1450 | iph = ip_hdr(skb); |
| 1451 | iph->version = 4; |
| 1452 | iph->ihl = 5; |
| 1453 | iph->tos = (cork->tos != -1) ? cork->tos : READ_ONCE(inet->tos); |
| 1454 | iph->frag_off = df; |
| 1455 | iph->ttl = ttl; |
| 1456 | iph->protocol = sk->sk_protocol; |
| 1457 | ip_copy_addrs(iph, fl4); |
| 1458 | ip_select_ident(net, skb, sk); |
| 1459 | |
| 1460 | if (opt) { |
| 1461 | iph->ihl += opt->optlen >> 2; |
| 1462 | ip_options_build(skb, opt, cork->addr, rt); |
| 1463 | } |
| 1464 | |
| 1465 | skb->priority = cork->priority; |
| 1466 | skb->mark = cork->mark; |
| 1467 | if (sk_is_tcp(sk)) |
| 1468 | skb_set_delivery_time(skb, cork->transmit_time, SKB_CLOCK_MONOTONIC); |
| 1469 | else |
| 1470 | skb_set_delivery_type_by_clockid(skb, cork->transmit_time, sk->sk_clockid); |
| 1471 | /* |
| 1472 | * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec |
| 1473 | * on dst refcount |
| 1474 | */ |
| 1475 | cork->dst = NULL; |
| 1476 | skb_dst_set(skb, &rt->dst); |
| 1477 | |
| 1478 | if (iph->protocol == IPPROTO_ICMP) { |
| 1479 | u8 icmp_type; |
| 1480 | |
| 1481 | /* For such sockets, transhdrlen is zero when do ip_append_data(), |
| 1482 | * so icmphdr does not in skb linear region and can not get icmp_type |
| 1483 | * by icmp_hdr(skb)->type. |
| 1484 | */ |
| 1485 | if (sk->sk_type == SOCK_RAW && |
| 1486 | !(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH)) |
| 1487 | icmp_type = fl4->fl4_icmp_type; |
| 1488 | else |
| 1489 | icmp_type = icmp_hdr(skb)->type; |
| 1490 | icmp_out_count(net, icmp_type); |
| 1491 | } |
| 1492 | |
| 1493 | ip_cork_release(cork); |
| 1494 | out: |
| 1495 | return skb; |
| 1496 | } |
| 1497 | |
| 1498 | int ip_send_skb(struct net *net, struct sk_buff *skb) |
| 1499 | { |
| 1500 | int err; |
| 1501 | |
| 1502 | err = ip_local_out(net, skb->sk, skb); |
| 1503 | if (err) { |
| 1504 | if (err > 0) |
| 1505 | err = net_xmit_errno(err); |
| 1506 | if (err) |
| 1507 | IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); |
| 1508 | } |
| 1509 | |
| 1510 | return err; |
| 1511 | } |
| 1512 | |
| 1513 | int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) |
| 1514 | { |
| 1515 | struct sk_buff *skb; |
| 1516 | |
| 1517 | skb = ip_finish_skb(sk, fl4); |
| 1518 | if (!skb) |
| 1519 | return 0; |
| 1520 | |
| 1521 | /* Netfilter gets whole the not fragmented skb. */ |
| 1522 | return ip_send_skb(sock_net(sk), skb); |
| 1523 | } |
| 1524 | |
| 1525 | /* |
| 1526 | * Throw away all pending data on the socket. |
| 1527 | */ |
| 1528 | static void __ip_flush_pending_frames(struct sock *sk, |
| 1529 | struct sk_buff_head *queue, |
| 1530 | struct inet_cork *cork) |
| 1531 | { |
| 1532 | struct sk_buff *skb; |
| 1533 | |
| 1534 | while ((skb = __skb_dequeue_tail(queue)) != NULL) |
| 1535 | kfree_skb(skb); |
| 1536 | |
| 1537 | ip_cork_release(cork); |
| 1538 | } |
| 1539 | |
| 1540 | void ip_flush_pending_frames(struct sock *sk) |
| 1541 | { |
| 1542 | __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); |
| 1543 | } |
| 1544 | |
| 1545 | struct sk_buff *ip_make_skb(struct sock *sk, |
| 1546 | struct flowi4 *fl4, |
| 1547 | int getfrag(void *from, char *to, int offset, |
| 1548 | int len, int odd, struct sk_buff *skb), |
| 1549 | void *from, int length, int transhdrlen, |
| 1550 | struct ipcm_cookie *ipc, struct rtable **rtp, |
| 1551 | struct inet_cork *cork, unsigned int flags) |
| 1552 | { |
| 1553 | struct sk_buff_head queue; |
| 1554 | int err; |
| 1555 | |
| 1556 | if (flags & MSG_PROBE) |
| 1557 | return NULL; |
| 1558 | |
| 1559 | __skb_queue_head_init(&queue); |
| 1560 | |
| 1561 | cork->flags = 0; |
| 1562 | cork->addr = 0; |
| 1563 | cork->opt = NULL; |
| 1564 | err = ip_setup_cork(sk, cork, ipc, rtp); |
| 1565 | if (err) |
| 1566 | return ERR_PTR(err); |
| 1567 | |
| 1568 | err = __ip_append_data(sk, fl4, &queue, cork, |
| 1569 | ¤t->task_frag, getfrag, |
| 1570 | from, length, transhdrlen, flags); |
| 1571 | if (err) { |
| 1572 | __ip_flush_pending_frames(sk, &queue, cork); |
| 1573 | return ERR_PTR(err); |
| 1574 | } |
| 1575 | |
| 1576 | return __ip_make_skb(sk, fl4, &queue, cork); |
| 1577 | } |
| 1578 | |
| 1579 | /* |
| 1580 | * Fetch data from kernel space and fill in checksum if needed. |
| 1581 | */ |
| 1582 | static int ip_reply_glue_bits(void *dptr, char *to, int offset, |
| 1583 | int len, int odd, struct sk_buff *skb) |
| 1584 | { |
| 1585 | __wsum csum; |
| 1586 | |
| 1587 | csum = csum_partial_copy_nocheck(dptr+offset, to, len); |
| 1588 | skb->csum = csum_block_add(skb->csum, csum, odd); |
| 1589 | return 0; |
| 1590 | } |
| 1591 | |
| 1592 | /* |
| 1593 | * Generic function to send a packet as reply to another packet. |
| 1594 | * Used to send some TCP resets/acks so far. |
| 1595 | */ |
| 1596 | void ip_send_unicast_reply(struct sock *sk, const struct sock *orig_sk, |
| 1597 | struct sk_buff *skb, |
| 1598 | const struct ip_options *sopt, |
| 1599 | __be32 daddr, __be32 saddr, |
| 1600 | const struct ip_reply_arg *arg, |
| 1601 | unsigned int len, u64 transmit_time, u32 txhash) |
| 1602 | { |
| 1603 | struct ip_options_data replyopts; |
| 1604 | struct ipcm_cookie ipc; |
| 1605 | struct flowi4 fl4; |
| 1606 | struct rtable *rt = skb_rtable(skb); |
| 1607 | struct net *net = sock_net(sk); |
| 1608 | struct sk_buff *nskb; |
| 1609 | int err; |
| 1610 | int oif; |
| 1611 | |
| 1612 | if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) |
| 1613 | return; |
| 1614 | |
| 1615 | ipcm_init(&ipc); |
| 1616 | ipc.addr = daddr; |
| 1617 | ipc.sockc.transmit_time = transmit_time; |
| 1618 | |
| 1619 | if (replyopts.opt.opt.optlen) { |
| 1620 | ipc.opt = &replyopts.opt; |
| 1621 | |
| 1622 | if (replyopts.opt.opt.srr) |
| 1623 | daddr = replyopts.opt.opt.faddr; |
| 1624 | } |
| 1625 | |
| 1626 | oif = arg->bound_dev_if; |
| 1627 | if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) |
| 1628 | oif = skb->skb_iif; |
| 1629 | |
| 1630 | flowi4_init_output(&fl4, oif, |
| 1631 | IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, |
| 1632 | arg->tos & INET_DSCP_MASK, |
| 1633 | RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, |
| 1634 | ip_reply_arg_flowi_flags(arg), |
| 1635 | daddr, saddr, |
| 1636 | tcp_hdr(skb)->source, tcp_hdr(skb)->dest, |
| 1637 | arg->uid); |
| 1638 | security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4)); |
| 1639 | rt = ip_route_output_flow(net, &fl4, sk); |
| 1640 | if (IS_ERR(rt)) |
| 1641 | return; |
| 1642 | |
| 1643 | inet_sk(sk)->tos = arg->tos; |
| 1644 | |
| 1645 | sk->sk_protocol = ip_hdr(skb)->protocol; |
| 1646 | sk->sk_bound_dev_if = arg->bound_dev_if; |
| 1647 | sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); |
| 1648 | ipc.sockc.mark = fl4.flowi4_mark; |
| 1649 | err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, |
| 1650 | len, 0, &ipc, &rt, MSG_DONTWAIT); |
| 1651 | if (unlikely(err)) { |
| 1652 | ip_flush_pending_frames(sk); |
| 1653 | goto out; |
| 1654 | } |
| 1655 | |
| 1656 | nskb = skb_peek(&sk->sk_write_queue); |
| 1657 | if (nskb) { |
| 1658 | if (arg->csumoffset >= 0) |
| 1659 | *((__sum16 *)skb_transport_header(nskb) + |
| 1660 | arg->csumoffset) = csum_fold(csum_add(nskb->csum, |
| 1661 | arg->csum)); |
| 1662 | nskb->ip_summed = CHECKSUM_NONE; |
| 1663 | if (orig_sk) |
| 1664 | skb_set_owner_edemux(nskb, (struct sock *)orig_sk); |
| 1665 | if (transmit_time) |
| 1666 | nskb->tstamp_type = SKB_CLOCK_MONOTONIC; |
| 1667 | if (txhash) |
| 1668 | skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4); |
| 1669 | ip_push_pending_frames(sk, &fl4); |
| 1670 | } |
| 1671 | out: |
| 1672 | ip_rt_put(rt); |
| 1673 | } |
| 1674 | |
| 1675 | void __init ip_init(void) |
| 1676 | { |
| 1677 | ip_rt_init(); |
| 1678 | inet_initpeers(); |
| 1679 | |
| 1680 | #if defined(CONFIG_IP_MULTICAST) |
| 1681 | igmp_mc_init(); |
| 1682 | #endif |
| 1683 | } |