| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * DSA topology and switch handling |
| 4 | * |
| 5 | * Copyright (c) 2008-2009 Marvell Semiconductor |
| 6 | * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org> |
| 7 | * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch> |
| 8 | */ |
| 9 | |
| 10 | #include <linux/device.h> |
| 11 | #include <linux/err.h> |
| 12 | #include <linux/list.h> |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/netdevice.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <linux/rtnetlink.h> |
| 17 | #include <linux/of.h> |
| 18 | #include <linux/of_net.h> |
| 19 | #include <net/dsa_stubs.h> |
| 20 | #include <net/sch_generic.h> |
| 21 | |
| 22 | #include "conduit.h" |
| 23 | #include "devlink.h" |
| 24 | #include "dsa.h" |
| 25 | #include "netlink.h" |
| 26 | #include "port.h" |
| 27 | #include "switch.h" |
| 28 | #include "tag.h" |
| 29 | #include "user.h" |
| 30 | |
| 31 | #define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG |
| 32 | |
| 33 | static DEFINE_MUTEX(dsa2_mutex); |
| 34 | LIST_HEAD(dsa_tree_list); |
| 35 | |
| 36 | static struct workqueue_struct *dsa_owq; |
| 37 | |
| 38 | /* Track the bridges with forwarding offload enabled */ |
| 39 | static unsigned long dsa_fwd_offloading_bridges; |
| 40 | |
| 41 | bool dsa_schedule_work(struct work_struct *work) |
| 42 | { |
| 43 | return queue_work(dsa_owq, work); |
| 44 | } |
| 45 | |
| 46 | void dsa_flush_workqueue(void) |
| 47 | { |
| 48 | flush_workqueue(dsa_owq); |
| 49 | } |
| 50 | EXPORT_SYMBOL_GPL(dsa_flush_workqueue); |
| 51 | |
| 52 | /** |
| 53 | * dsa_lag_map() - Map LAG structure to a linear LAG array |
| 54 | * @dst: Tree in which to record the mapping. |
| 55 | * @lag: LAG structure that is to be mapped to the tree's array. |
| 56 | * |
| 57 | * dsa_lag_id/dsa_lag_by_id can then be used to translate between the |
| 58 | * two spaces. The size of the mapping space is determined by the |
| 59 | * driver by setting ds->num_lag_ids. It is perfectly legal to leave |
| 60 | * it unset if it is not needed, in which case these functions become |
| 61 | * no-ops. |
| 62 | */ |
| 63 | void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag) |
| 64 | { |
| 65 | unsigned int id; |
| 66 | |
| 67 | for (id = 1; id <= dst->lags_len; id++) { |
| 68 | if (!dsa_lag_by_id(dst, id)) { |
| 69 | dst->lags[id - 1] = lag; |
| 70 | lag->id = id; |
| 71 | return; |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | /* No IDs left, which is OK. Some drivers do not need it. The |
| 76 | * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id |
| 77 | * returns an error for this device when joining the LAG. The |
| 78 | * driver can then return -EOPNOTSUPP back to DSA, which will |
| 79 | * fall back to a software LAG. |
| 80 | */ |
| 81 | } |
| 82 | |
| 83 | /** |
| 84 | * dsa_lag_unmap() - Remove a LAG ID mapping |
| 85 | * @dst: Tree in which the mapping is recorded. |
| 86 | * @lag: LAG structure that was mapped. |
| 87 | * |
| 88 | * As there may be multiple users of the mapping, it is only removed |
| 89 | * if there are no other references to it. |
| 90 | */ |
| 91 | void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag) |
| 92 | { |
| 93 | unsigned int id; |
| 94 | |
| 95 | dsa_lags_foreach_id(id, dst) { |
| 96 | if (dsa_lag_by_id(dst, id) == lag) { |
| 97 | dst->lags[id - 1] = NULL; |
| 98 | lag->id = 0; |
| 99 | break; |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst, |
| 105 | const struct net_device *lag_dev) |
| 106 | { |
| 107 | struct dsa_port *dp; |
| 108 | |
| 109 | list_for_each_entry(dp, &dst->ports, list) |
| 110 | if (dsa_port_lag_dev_get(dp) == lag_dev) |
| 111 | return dp->lag; |
| 112 | |
| 113 | return NULL; |
| 114 | } |
| 115 | |
| 116 | struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst, |
| 117 | const struct net_device *br) |
| 118 | { |
| 119 | struct dsa_port *dp; |
| 120 | |
| 121 | list_for_each_entry(dp, &dst->ports, list) |
| 122 | if (dsa_port_bridge_dev_get(dp) == br) |
| 123 | return dp->bridge; |
| 124 | |
| 125 | return NULL; |
| 126 | } |
| 127 | |
| 128 | static int dsa_bridge_num_find(const struct net_device *bridge_dev) |
| 129 | { |
| 130 | struct dsa_switch_tree *dst; |
| 131 | |
| 132 | list_for_each_entry(dst, &dsa_tree_list, list) { |
| 133 | struct dsa_bridge *bridge; |
| 134 | |
| 135 | bridge = dsa_tree_bridge_find(dst, bridge_dev); |
| 136 | if (bridge) |
| 137 | return bridge->num; |
| 138 | } |
| 139 | |
| 140 | return 0; |
| 141 | } |
| 142 | |
| 143 | unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max) |
| 144 | { |
| 145 | unsigned int bridge_num = dsa_bridge_num_find(bridge_dev); |
| 146 | |
| 147 | /* Switches without FDB isolation support don't get unique |
| 148 | * bridge numbering |
| 149 | */ |
| 150 | if (!max) |
| 151 | return 0; |
| 152 | |
| 153 | if (!bridge_num) { |
| 154 | /* First port that requests FDB isolation or TX forwarding |
| 155 | * offload for this bridge |
| 156 | */ |
| 157 | bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges, |
| 158 | DSA_MAX_NUM_OFFLOADING_BRIDGES, |
| 159 | 1); |
| 160 | if (bridge_num >= max) |
| 161 | return 0; |
| 162 | |
| 163 | set_bit(bridge_num, &dsa_fwd_offloading_bridges); |
| 164 | } |
| 165 | |
| 166 | return bridge_num; |
| 167 | } |
| 168 | |
| 169 | void dsa_bridge_num_put(const struct net_device *bridge_dev, |
| 170 | unsigned int bridge_num) |
| 171 | { |
| 172 | /* Since we refcount bridges, we know that when we call this function |
| 173 | * it is no longer in use, so we can just go ahead and remove it from |
| 174 | * the bit mask. |
| 175 | */ |
| 176 | clear_bit(bridge_num, &dsa_fwd_offloading_bridges); |
| 177 | } |
| 178 | |
| 179 | struct dsa_switch *dsa_switch_find(int tree_index, int sw_index) |
| 180 | { |
| 181 | struct dsa_switch_tree *dst; |
| 182 | struct dsa_port *dp; |
| 183 | |
| 184 | list_for_each_entry(dst, &dsa_tree_list, list) { |
| 185 | if (dst->index != tree_index) |
| 186 | continue; |
| 187 | |
| 188 | list_for_each_entry(dp, &dst->ports, list) { |
| 189 | if (dp->ds->index != sw_index) |
| 190 | continue; |
| 191 | |
| 192 | return dp->ds; |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | return NULL; |
| 197 | } |
| 198 | EXPORT_SYMBOL_GPL(dsa_switch_find); |
| 199 | |
| 200 | static struct dsa_switch_tree *dsa_tree_find(int index) |
| 201 | { |
| 202 | struct dsa_switch_tree *dst; |
| 203 | |
| 204 | list_for_each_entry(dst, &dsa_tree_list, list) |
| 205 | if (dst->index == index) |
| 206 | return dst; |
| 207 | |
| 208 | return NULL; |
| 209 | } |
| 210 | |
| 211 | static struct dsa_switch_tree *dsa_tree_alloc(int index) |
| 212 | { |
| 213 | struct dsa_switch_tree *dst; |
| 214 | |
| 215 | dst = kzalloc(sizeof(*dst), GFP_KERNEL); |
| 216 | if (!dst) |
| 217 | return NULL; |
| 218 | |
| 219 | dst->index = index; |
| 220 | |
| 221 | INIT_LIST_HEAD(&dst->rtable); |
| 222 | |
| 223 | INIT_LIST_HEAD(&dst->ports); |
| 224 | |
| 225 | INIT_LIST_HEAD(&dst->list); |
| 226 | list_add_tail(&dst->list, &dsa_tree_list); |
| 227 | |
| 228 | kref_init(&dst->refcount); |
| 229 | |
| 230 | return dst; |
| 231 | } |
| 232 | |
| 233 | static void dsa_tree_free(struct dsa_switch_tree *dst) |
| 234 | { |
| 235 | if (dst->tag_ops) |
| 236 | dsa_tag_driver_put(dst->tag_ops); |
| 237 | list_del(&dst->list); |
| 238 | kfree(dst); |
| 239 | } |
| 240 | |
| 241 | static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst) |
| 242 | { |
| 243 | if (dst) |
| 244 | kref_get(&dst->refcount); |
| 245 | |
| 246 | return dst; |
| 247 | } |
| 248 | |
| 249 | static struct dsa_switch_tree *dsa_tree_touch(int index) |
| 250 | { |
| 251 | struct dsa_switch_tree *dst; |
| 252 | |
| 253 | dst = dsa_tree_find(index); |
| 254 | if (dst) |
| 255 | return dsa_tree_get(dst); |
| 256 | else |
| 257 | return dsa_tree_alloc(index); |
| 258 | } |
| 259 | |
| 260 | static void dsa_tree_release(struct kref *ref) |
| 261 | { |
| 262 | struct dsa_switch_tree *dst; |
| 263 | |
| 264 | dst = container_of(ref, struct dsa_switch_tree, refcount); |
| 265 | |
| 266 | dsa_tree_free(dst); |
| 267 | } |
| 268 | |
| 269 | static void dsa_tree_put(struct dsa_switch_tree *dst) |
| 270 | { |
| 271 | if (dst) |
| 272 | kref_put(&dst->refcount, dsa_tree_release); |
| 273 | } |
| 274 | |
| 275 | static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst, |
| 276 | struct device_node *dn) |
| 277 | { |
| 278 | struct dsa_port *dp; |
| 279 | |
| 280 | list_for_each_entry(dp, &dst->ports, list) |
| 281 | if (dp->dn == dn) |
| 282 | return dp; |
| 283 | |
| 284 | return NULL; |
| 285 | } |
| 286 | |
| 287 | static struct dsa_link *dsa_link_touch(struct dsa_port *dp, |
| 288 | struct dsa_port *link_dp) |
| 289 | { |
| 290 | struct dsa_switch *ds = dp->ds; |
| 291 | struct dsa_switch_tree *dst; |
| 292 | struct dsa_link *dl; |
| 293 | |
| 294 | dst = ds->dst; |
| 295 | |
| 296 | list_for_each_entry(dl, &dst->rtable, list) |
| 297 | if (dl->dp == dp && dl->link_dp == link_dp) |
| 298 | return dl; |
| 299 | |
| 300 | dl = kzalloc(sizeof(*dl), GFP_KERNEL); |
| 301 | if (!dl) |
| 302 | return NULL; |
| 303 | |
| 304 | dl->dp = dp; |
| 305 | dl->link_dp = link_dp; |
| 306 | |
| 307 | INIT_LIST_HEAD(&dl->list); |
| 308 | list_add_tail(&dl->list, &dst->rtable); |
| 309 | |
| 310 | return dl; |
| 311 | } |
| 312 | |
| 313 | static bool dsa_port_setup_routing_table(struct dsa_port *dp) |
| 314 | { |
| 315 | struct dsa_switch *ds = dp->ds; |
| 316 | struct dsa_switch_tree *dst = ds->dst; |
| 317 | struct device_node *dn = dp->dn; |
| 318 | struct of_phandle_iterator it; |
| 319 | struct dsa_port *link_dp; |
| 320 | struct dsa_link *dl; |
| 321 | int err; |
| 322 | |
| 323 | of_for_each_phandle(&it, err, dn, "link", NULL, 0) { |
| 324 | link_dp = dsa_tree_find_port_by_node(dst, it.node); |
| 325 | if (!link_dp) { |
| 326 | of_node_put(it.node); |
| 327 | return false; |
| 328 | } |
| 329 | |
| 330 | dl = dsa_link_touch(dp, link_dp); |
| 331 | if (!dl) { |
| 332 | of_node_put(it.node); |
| 333 | return false; |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | return true; |
| 338 | } |
| 339 | |
| 340 | static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst) |
| 341 | { |
| 342 | bool complete = true; |
| 343 | struct dsa_port *dp; |
| 344 | |
| 345 | list_for_each_entry(dp, &dst->ports, list) { |
| 346 | if (dsa_port_is_dsa(dp)) { |
| 347 | complete = dsa_port_setup_routing_table(dp); |
| 348 | if (!complete) |
| 349 | break; |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | return complete; |
| 354 | } |
| 355 | |
| 356 | static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst) |
| 357 | { |
| 358 | struct dsa_port *dp; |
| 359 | |
| 360 | list_for_each_entry(dp, &dst->ports, list) |
| 361 | if (dsa_port_is_cpu(dp)) |
| 362 | return dp; |
| 363 | |
| 364 | return NULL; |
| 365 | } |
| 366 | |
| 367 | struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst) |
| 368 | { |
| 369 | struct device_node *ethernet; |
| 370 | struct net_device *conduit; |
| 371 | struct dsa_port *cpu_dp; |
| 372 | |
| 373 | cpu_dp = dsa_tree_find_first_cpu(dst); |
| 374 | ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0); |
| 375 | conduit = of_find_net_device_by_node(ethernet); |
| 376 | of_node_put(ethernet); |
| 377 | |
| 378 | return conduit; |
| 379 | } |
| 380 | |
| 381 | /* Assign the default CPU port (the first one in the tree) to all ports of the |
| 382 | * fabric which don't already have one as part of their own switch. |
| 383 | */ |
| 384 | static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst) |
| 385 | { |
| 386 | struct dsa_port *cpu_dp, *dp; |
| 387 | |
| 388 | cpu_dp = dsa_tree_find_first_cpu(dst); |
| 389 | if (!cpu_dp) { |
| 390 | pr_err("DSA: tree %d has no CPU port\n", dst->index); |
| 391 | return -EINVAL; |
| 392 | } |
| 393 | |
| 394 | list_for_each_entry(dp, &dst->ports, list) { |
| 395 | if (dp->cpu_dp) |
| 396 | continue; |
| 397 | |
| 398 | if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) |
| 399 | dp->cpu_dp = cpu_dp; |
| 400 | } |
| 401 | |
| 402 | return 0; |
| 403 | } |
| 404 | |
| 405 | static struct dsa_port * |
| 406 | dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds) |
| 407 | { |
| 408 | struct dsa_port *cpu_dp; |
| 409 | |
| 410 | if (!ds->ops->preferred_default_local_cpu_port) |
| 411 | return NULL; |
| 412 | |
| 413 | cpu_dp = ds->ops->preferred_default_local_cpu_port(ds); |
| 414 | if (!cpu_dp) |
| 415 | return NULL; |
| 416 | |
| 417 | if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds)) |
| 418 | return NULL; |
| 419 | |
| 420 | return cpu_dp; |
| 421 | } |
| 422 | |
| 423 | /* Perform initial assignment of CPU ports to user ports and DSA links in the |
| 424 | * fabric, giving preference to CPU ports local to each switch. Default to |
| 425 | * using the first CPU port in the switch tree if the port does not have a CPU |
| 426 | * port local to this switch. |
| 427 | */ |
| 428 | static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst) |
| 429 | { |
| 430 | struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp; |
| 431 | |
| 432 | list_for_each_entry(cpu_dp, &dst->ports, list) { |
| 433 | if (!dsa_port_is_cpu(cpu_dp)) |
| 434 | continue; |
| 435 | |
| 436 | preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds); |
| 437 | if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp) |
| 438 | continue; |
| 439 | |
| 440 | /* Prefer a local CPU port */ |
| 441 | dsa_switch_for_each_port(dp, cpu_dp->ds) { |
| 442 | /* Prefer the first local CPU port found */ |
| 443 | if (dp->cpu_dp) |
| 444 | continue; |
| 445 | |
| 446 | if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) |
| 447 | dp->cpu_dp = cpu_dp; |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | return dsa_tree_setup_default_cpu(dst); |
| 452 | } |
| 453 | |
| 454 | static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst) |
| 455 | { |
| 456 | struct dsa_port *dp; |
| 457 | |
| 458 | list_for_each_entry(dp, &dst->ports, list) |
| 459 | if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) |
| 460 | dp->cpu_dp = NULL; |
| 461 | } |
| 462 | |
| 463 | static int dsa_port_setup(struct dsa_port *dp) |
| 464 | { |
| 465 | bool dsa_port_link_registered = false; |
| 466 | struct dsa_switch *ds = dp->ds; |
| 467 | bool dsa_port_enabled = false; |
| 468 | int err = 0; |
| 469 | |
| 470 | if (dp->setup) |
| 471 | return 0; |
| 472 | |
| 473 | err = dsa_port_devlink_setup(dp); |
| 474 | if (err) |
| 475 | return err; |
| 476 | |
| 477 | switch (dp->type) { |
| 478 | case DSA_PORT_TYPE_UNUSED: |
| 479 | dsa_port_disable(dp); |
| 480 | break; |
| 481 | case DSA_PORT_TYPE_CPU: |
| 482 | if (dp->dn) { |
| 483 | err = dsa_shared_port_link_register_of(dp); |
| 484 | if (err) |
| 485 | break; |
| 486 | dsa_port_link_registered = true; |
| 487 | } else { |
| 488 | dev_warn(ds->dev, |
| 489 | "skipping link registration for CPU port %d\n", |
| 490 | dp->index); |
| 491 | } |
| 492 | |
| 493 | err = dsa_port_enable(dp, NULL); |
| 494 | if (err) |
| 495 | break; |
| 496 | dsa_port_enabled = true; |
| 497 | |
| 498 | break; |
| 499 | case DSA_PORT_TYPE_DSA: |
| 500 | if (dp->dn) { |
| 501 | err = dsa_shared_port_link_register_of(dp); |
| 502 | if (err) |
| 503 | break; |
| 504 | dsa_port_link_registered = true; |
| 505 | } else { |
| 506 | dev_warn(ds->dev, |
| 507 | "skipping link registration for DSA port %d\n", |
| 508 | dp->index); |
| 509 | } |
| 510 | |
| 511 | err = dsa_port_enable(dp, NULL); |
| 512 | if (err) |
| 513 | break; |
| 514 | dsa_port_enabled = true; |
| 515 | |
| 516 | break; |
| 517 | case DSA_PORT_TYPE_USER: |
| 518 | of_get_mac_address(dp->dn, dp->mac); |
| 519 | err = dsa_user_create(dp); |
| 520 | break; |
| 521 | } |
| 522 | |
| 523 | if (err && dsa_port_enabled) |
| 524 | dsa_port_disable(dp); |
| 525 | if (err && dsa_port_link_registered) |
| 526 | dsa_shared_port_link_unregister_of(dp); |
| 527 | if (err) { |
| 528 | dsa_port_devlink_teardown(dp); |
| 529 | return err; |
| 530 | } |
| 531 | |
| 532 | dp->setup = true; |
| 533 | |
| 534 | return 0; |
| 535 | } |
| 536 | |
| 537 | static void dsa_port_teardown(struct dsa_port *dp) |
| 538 | { |
| 539 | if (!dp->setup) |
| 540 | return; |
| 541 | |
| 542 | switch (dp->type) { |
| 543 | case DSA_PORT_TYPE_UNUSED: |
| 544 | break; |
| 545 | case DSA_PORT_TYPE_CPU: |
| 546 | dsa_port_disable(dp); |
| 547 | if (dp->dn) |
| 548 | dsa_shared_port_link_unregister_of(dp); |
| 549 | break; |
| 550 | case DSA_PORT_TYPE_DSA: |
| 551 | dsa_port_disable(dp); |
| 552 | if (dp->dn) |
| 553 | dsa_shared_port_link_unregister_of(dp); |
| 554 | break; |
| 555 | case DSA_PORT_TYPE_USER: |
| 556 | if (dp->user) { |
| 557 | dsa_user_destroy(dp->user); |
| 558 | dp->user = NULL; |
| 559 | } |
| 560 | break; |
| 561 | } |
| 562 | |
| 563 | dsa_port_devlink_teardown(dp); |
| 564 | |
| 565 | dp->setup = false; |
| 566 | } |
| 567 | |
| 568 | static int dsa_port_setup_as_unused(struct dsa_port *dp) |
| 569 | { |
| 570 | dp->type = DSA_PORT_TYPE_UNUSED; |
| 571 | return dsa_port_setup(dp); |
| 572 | } |
| 573 | |
| 574 | static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds) |
| 575 | { |
| 576 | const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; |
| 577 | struct dsa_switch_tree *dst = ds->dst; |
| 578 | int err; |
| 579 | |
| 580 | if (tag_ops->proto == dst->default_proto) |
| 581 | goto connect; |
| 582 | |
| 583 | rtnl_lock(); |
| 584 | err = ds->ops->change_tag_protocol(ds, tag_ops->proto); |
| 585 | rtnl_unlock(); |
| 586 | if (err) { |
| 587 | dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n", |
| 588 | tag_ops->name, ERR_PTR(err)); |
| 589 | return err; |
| 590 | } |
| 591 | |
| 592 | connect: |
| 593 | if (tag_ops->connect) { |
| 594 | err = tag_ops->connect(ds); |
| 595 | if (err) |
| 596 | return err; |
| 597 | } |
| 598 | |
| 599 | if (ds->ops->connect_tag_protocol) { |
| 600 | err = ds->ops->connect_tag_protocol(ds, tag_ops->proto); |
| 601 | if (err) { |
| 602 | dev_err(ds->dev, |
| 603 | "Unable to connect to tag protocol \"%s\": %pe\n", |
| 604 | tag_ops->name, ERR_PTR(err)); |
| 605 | goto disconnect; |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | return 0; |
| 610 | |
| 611 | disconnect: |
| 612 | if (tag_ops->disconnect) |
| 613 | tag_ops->disconnect(ds); |
| 614 | |
| 615 | return err; |
| 616 | } |
| 617 | |
| 618 | static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds) |
| 619 | { |
| 620 | const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; |
| 621 | |
| 622 | if (tag_ops->disconnect) |
| 623 | tag_ops->disconnect(ds); |
| 624 | } |
| 625 | |
| 626 | static int dsa_switch_setup(struct dsa_switch *ds) |
| 627 | { |
| 628 | int err; |
| 629 | |
| 630 | if (ds->setup) |
| 631 | return 0; |
| 632 | |
| 633 | /* Initialize ds->phys_mii_mask before registering the user MDIO bus |
| 634 | * driver and before ops->setup() has run, since the switch drivers and |
| 635 | * the user MDIO bus driver rely on these values for probing PHY |
| 636 | * devices or not |
| 637 | */ |
| 638 | ds->phys_mii_mask |= dsa_user_ports(ds); |
| 639 | |
| 640 | err = dsa_switch_devlink_alloc(ds); |
| 641 | if (err) |
| 642 | return err; |
| 643 | |
| 644 | err = dsa_switch_register_notifier(ds); |
| 645 | if (err) |
| 646 | goto devlink_free; |
| 647 | |
| 648 | ds->configure_vlan_while_not_filtering = true; |
| 649 | |
| 650 | err = ds->ops->setup(ds); |
| 651 | if (err < 0) |
| 652 | goto unregister_notifier; |
| 653 | |
| 654 | err = dsa_switch_setup_tag_protocol(ds); |
| 655 | if (err) |
| 656 | goto teardown; |
| 657 | |
| 658 | if (!ds->user_mii_bus && ds->ops->phy_read) { |
| 659 | ds->user_mii_bus = mdiobus_alloc(); |
| 660 | if (!ds->user_mii_bus) { |
| 661 | err = -ENOMEM; |
| 662 | goto teardown; |
| 663 | } |
| 664 | |
| 665 | dsa_user_mii_bus_init(ds); |
| 666 | |
| 667 | err = mdiobus_register(ds->user_mii_bus); |
| 668 | if (err < 0) |
| 669 | goto free_user_mii_bus; |
| 670 | } |
| 671 | |
| 672 | dsa_switch_devlink_register(ds); |
| 673 | |
| 674 | ds->setup = true; |
| 675 | return 0; |
| 676 | |
| 677 | free_user_mii_bus: |
| 678 | if (ds->user_mii_bus && ds->ops->phy_read) |
| 679 | mdiobus_free(ds->user_mii_bus); |
| 680 | teardown: |
| 681 | if (ds->ops->teardown) |
| 682 | ds->ops->teardown(ds); |
| 683 | unregister_notifier: |
| 684 | dsa_switch_unregister_notifier(ds); |
| 685 | devlink_free: |
| 686 | dsa_switch_devlink_free(ds); |
| 687 | return err; |
| 688 | } |
| 689 | |
| 690 | static void dsa_switch_teardown(struct dsa_switch *ds) |
| 691 | { |
| 692 | if (!ds->setup) |
| 693 | return; |
| 694 | |
| 695 | dsa_switch_devlink_unregister(ds); |
| 696 | |
| 697 | if (ds->user_mii_bus && ds->ops->phy_read) { |
| 698 | mdiobus_unregister(ds->user_mii_bus); |
| 699 | mdiobus_free(ds->user_mii_bus); |
| 700 | ds->user_mii_bus = NULL; |
| 701 | } |
| 702 | |
| 703 | dsa_switch_teardown_tag_protocol(ds); |
| 704 | |
| 705 | if (ds->ops->teardown) |
| 706 | ds->ops->teardown(ds); |
| 707 | |
| 708 | dsa_switch_unregister_notifier(ds); |
| 709 | |
| 710 | dsa_switch_devlink_free(ds); |
| 711 | |
| 712 | ds->setup = false; |
| 713 | } |
| 714 | |
| 715 | /* First tear down the non-shared, then the shared ports. This ensures that |
| 716 | * all work items scheduled by our switchdev handlers for user ports have |
| 717 | * completed before we destroy the refcounting kept on the shared ports. |
| 718 | */ |
| 719 | static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst) |
| 720 | { |
| 721 | struct dsa_port *dp; |
| 722 | |
| 723 | list_for_each_entry(dp, &dst->ports, list) |
| 724 | if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) |
| 725 | dsa_port_teardown(dp); |
| 726 | |
| 727 | dsa_flush_workqueue(); |
| 728 | |
| 729 | list_for_each_entry(dp, &dst->ports, list) |
| 730 | if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) |
| 731 | dsa_port_teardown(dp); |
| 732 | } |
| 733 | |
| 734 | static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst) |
| 735 | { |
| 736 | struct dsa_port *dp; |
| 737 | |
| 738 | list_for_each_entry(dp, &dst->ports, list) |
| 739 | dsa_switch_teardown(dp->ds); |
| 740 | } |
| 741 | |
| 742 | /* Bring shared ports up first, then non-shared ports */ |
| 743 | static int dsa_tree_setup_ports(struct dsa_switch_tree *dst) |
| 744 | { |
| 745 | struct dsa_port *dp; |
| 746 | int err = 0; |
| 747 | |
| 748 | list_for_each_entry(dp, &dst->ports, list) { |
| 749 | if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) { |
| 750 | err = dsa_port_setup(dp); |
| 751 | if (err) |
| 752 | goto teardown; |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | list_for_each_entry(dp, &dst->ports, list) { |
| 757 | if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) { |
| 758 | err = dsa_port_setup(dp); |
| 759 | if (err) { |
| 760 | err = dsa_port_setup_as_unused(dp); |
| 761 | if (err) |
| 762 | goto teardown; |
| 763 | } |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | return 0; |
| 768 | |
| 769 | teardown: |
| 770 | dsa_tree_teardown_ports(dst); |
| 771 | |
| 772 | return err; |
| 773 | } |
| 774 | |
| 775 | static int dsa_tree_setup_switches(struct dsa_switch_tree *dst) |
| 776 | { |
| 777 | struct dsa_port *dp; |
| 778 | int err = 0; |
| 779 | |
| 780 | list_for_each_entry(dp, &dst->ports, list) { |
| 781 | err = dsa_switch_setup(dp->ds); |
| 782 | if (err) { |
| 783 | dsa_tree_teardown_switches(dst); |
| 784 | break; |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | return err; |
| 789 | } |
| 790 | |
| 791 | static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst) |
| 792 | { |
| 793 | struct dsa_port *cpu_dp; |
| 794 | int err = 0; |
| 795 | |
| 796 | rtnl_lock(); |
| 797 | |
| 798 | dsa_tree_for_each_cpu_port(cpu_dp, dst) { |
| 799 | struct net_device *conduit = cpu_dp->conduit; |
| 800 | bool admin_up = (conduit->flags & IFF_UP) && |
| 801 | !qdisc_tx_is_noop(conduit); |
| 802 | |
| 803 | err = dsa_conduit_setup(conduit, cpu_dp); |
| 804 | if (err) |
| 805 | break; |
| 806 | |
| 807 | /* Replay conduit state event */ |
| 808 | dsa_tree_conduit_admin_state_change(dst, conduit, admin_up); |
| 809 | dsa_tree_conduit_oper_state_change(dst, conduit, |
| 810 | netif_oper_up(conduit)); |
| 811 | } |
| 812 | |
| 813 | rtnl_unlock(); |
| 814 | |
| 815 | return err; |
| 816 | } |
| 817 | |
| 818 | static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst) |
| 819 | { |
| 820 | struct dsa_port *cpu_dp; |
| 821 | |
| 822 | rtnl_lock(); |
| 823 | |
| 824 | dsa_tree_for_each_cpu_port(cpu_dp, dst) { |
| 825 | struct net_device *conduit = cpu_dp->conduit; |
| 826 | |
| 827 | /* Synthesizing an "admin down" state is sufficient for |
| 828 | * the switches to get a notification if the conduit is |
| 829 | * currently up and running. |
| 830 | */ |
| 831 | dsa_tree_conduit_admin_state_change(dst, conduit, false); |
| 832 | |
| 833 | dsa_conduit_teardown(conduit); |
| 834 | } |
| 835 | |
| 836 | rtnl_unlock(); |
| 837 | } |
| 838 | |
| 839 | static int dsa_tree_setup_lags(struct dsa_switch_tree *dst) |
| 840 | { |
| 841 | unsigned int len = 0; |
| 842 | struct dsa_port *dp; |
| 843 | |
| 844 | list_for_each_entry(dp, &dst->ports, list) { |
| 845 | if (dp->ds->num_lag_ids > len) |
| 846 | len = dp->ds->num_lag_ids; |
| 847 | } |
| 848 | |
| 849 | if (!len) |
| 850 | return 0; |
| 851 | |
| 852 | dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL); |
| 853 | if (!dst->lags) |
| 854 | return -ENOMEM; |
| 855 | |
| 856 | dst->lags_len = len; |
| 857 | return 0; |
| 858 | } |
| 859 | |
| 860 | static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst) |
| 861 | { |
| 862 | kfree(dst->lags); |
| 863 | } |
| 864 | |
| 865 | static void dsa_tree_teardown_routing_table(struct dsa_switch_tree *dst) |
| 866 | { |
| 867 | struct dsa_link *dl, *next; |
| 868 | |
| 869 | list_for_each_entry_safe(dl, next, &dst->rtable, list) { |
| 870 | list_del(&dl->list); |
| 871 | kfree(dl); |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | static int dsa_tree_setup(struct dsa_switch_tree *dst) |
| 876 | { |
| 877 | bool complete; |
| 878 | int err; |
| 879 | |
| 880 | if (dst->setup) { |
| 881 | pr_err("DSA: tree %d already setup! Disjoint trees?\n", |
| 882 | dst->index); |
| 883 | return -EEXIST; |
| 884 | } |
| 885 | |
| 886 | complete = dsa_tree_setup_routing_table(dst); |
| 887 | if (!complete) |
| 888 | return 0; |
| 889 | |
| 890 | err = dsa_tree_setup_cpu_ports(dst); |
| 891 | if (err) |
| 892 | goto teardown_rtable; |
| 893 | |
| 894 | err = dsa_tree_setup_switches(dst); |
| 895 | if (err) |
| 896 | goto teardown_cpu_ports; |
| 897 | |
| 898 | err = dsa_tree_setup_ports(dst); |
| 899 | if (err) |
| 900 | goto teardown_switches; |
| 901 | |
| 902 | err = dsa_tree_setup_conduit(dst); |
| 903 | if (err) |
| 904 | goto teardown_ports; |
| 905 | |
| 906 | err = dsa_tree_setup_lags(dst); |
| 907 | if (err) |
| 908 | goto teardown_conduit; |
| 909 | |
| 910 | dst->setup = true; |
| 911 | |
| 912 | pr_info("DSA: tree %d setup\n", dst->index); |
| 913 | |
| 914 | return 0; |
| 915 | |
| 916 | teardown_conduit: |
| 917 | dsa_tree_teardown_conduit(dst); |
| 918 | teardown_ports: |
| 919 | dsa_tree_teardown_ports(dst); |
| 920 | teardown_switches: |
| 921 | dsa_tree_teardown_switches(dst); |
| 922 | teardown_cpu_ports: |
| 923 | dsa_tree_teardown_cpu_ports(dst); |
| 924 | teardown_rtable: |
| 925 | dsa_tree_teardown_routing_table(dst); |
| 926 | |
| 927 | return err; |
| 928 | } |
| 929 | |
| 930 | static void dsa_tree_teardown(struct dsa_switch_tree *dst) |
| 931 | { |
| 932 | if (!dst->setup) |
| 933 | return; |
| 934 | |
| 935 | dsa_tree_teardown_lags(dst); |
| 936 | |
| 937 | dsa_tree_teardown_conduit(dst); |
| 938 | |
| 939 | dsa_tree_teardown_ports(dst); |
| 940 | |
| 941 | dsa_tree_teardown_switches(dst); |
| 942 | |
| 943 | dsa_tree_teardown_cpu_ports(dst); |
| 944 | |
| 945 | dsa_tree_teardown_routing_table(dst); |
| 946 | |
| 947 | pr_info("DSA: tree %d torn down\n", dst->index); |
| 948 | |
| 949 | dst->setup = false; |
| 950 | } |
| 951 | |
| 952 | static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst, |
| 953 | const struct dsa_device_ops *tag_ops) |
| 954 | { |
| 955 | const struct dsa_device_ops *old_tag_ops = dst->tag_ops; |
| 956 | struct dsa_notifier_tag_proto_info info; |
| 957 | int err; |
| 958 | |
| 959 | dst->tag_ops = tag_ops; |
| 960 | |
| 961 | /* Notify the switches from this tree about the connection |
| 962 | * to the new tagger |
| 963 | */ |
| 964 | info.tag_ops = tag_ops; |
| 965 | err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info); |
| 966 | if (err && err != -EOPNOTSUPP) |
| 967 | goto out_disconnect; |
| 968 | |
| 969 | /* Notify the old tagger about the disconnection from this tree */ |
| 970 | info.tag_ops = old_tag_ops; |
| 971 | dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); |
| 972 | |
| 973 | return 0; |
| 974 | |
| 975 | out_disconnect: |
| 976 | info.tag_ops = tag_ops; |
| 977 | dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); |
| 978 | dst->tag_ops = old_tag_ops; |
| 979 | |
| 980 | return err; |
| 981 | } |
| 982 | |
| 983 | /* Since the dsa/tagging sysfs device attribute is per conduit, the assumption |
| 984 | * is that all DSA switches within a tree share the same tagger, otherwise |
| 985 | * they would have formed disjoint trees (different "dsa,member" values). |
| 986 | */ |
| 987 | int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst, |
| 988 | const struct dsa_device_ops *tag_ops, |
| 989 | const struct dsa_device_ops *old_tag_ops) |
| 990 | { |
| 991 | struct dsa_notifier_tag_proto_info info; |
| 992 | struct dsa_port *dp; |
| 993 | int err = -EBUSY; |
| 994 | |
| 995 | if (!rtnl_trylock()) |
| 996 | return restart_syscall(); |
| 997 | |
| 998 | /* At the moment we don't allow changing the tag protocol under |
| 999 | * traffic. The rtnl_mutex also happens to serialize concurrent |
| 1000 | * attempts to change the tagging protocol. If we ever lift the IFF_UP |
| 1001 | * restriction, there needs to be another mutex which serializes this. |
| 1002 | */ |
| 1003 | dsa_tree_for_each_user_port(dp, dst) { |
| 1004 | if (dsa_port_to_conduit(dp)->flags & IFF_UP) |
| 1005 | goto out_unlock; |
| 1006 | |
| 1007 | if (dp->user->flags & IFF_UP) |
| 1008 | goto out_unlock; |
| 1009 | } |
| 1010 | |
| 1011 | /* Notify the tag protocol change */ |
| 1012 | info.tag_ops = tag_ops; |
| 1013 | err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); |
| 1014 | if (err) |
| 1015 | goto out_unwind_tagger; |
| 1016 | |
| 1017 | err = dsa_tree_bind_tag_proto(dst, tag_ops); |
| 1018 | if (err) |
| 1019 | goto out_unwind_tagger; |
| 1020 | |
| 1021 | rtnl_unlock(); |
| 1022 | |
| 1023 | return 0; |
| 1024 | |
| 1025 | out_unwind_tagger: |
| 1026 | info.tag_ops = old_tag_ops; |
| 1027 | dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); |
| 1028 | out_unlock: |
| 1029 | rtnl_unlock(); |
| 1030 | return err; |
| 1031 | } |
| 1032 | |
| 1033 | static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst, |
| 1034 | struct net_device *conduit) |
| 1035 | { |
| 1036 | struct dsa_notifier_conduit_state_info info; |
| 1037 | struct dsa_port *cpu_dp = conduit->dsa_ptr; |
| 1038 | |
| 1039 | info.conduit = conduit; |
| 1040 | info.operational = dsa_port_conduit_is_operational(cpu_dp); |
| 1041 | |
| 1042 | dsa_tree_notify(dst, DSA_NOTIFIER_CONDUIT_STATE_CHANGE, &info); |
| 1043 | } |
| 1044 | |
| 1045 | void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst, |
| 1046 | struct net_device *conduit, |
| 1047 | bool up) |
| 1048 | { |
| 1049 | struct dsa_port *cpu_dp = conduit->dsa_ptr; |
| 1050 | bool notify = false; |
| 1051 | |
| 1052 | /* Don't keep track of admin state on LAG DSA conduits, |
| 1053 | * but rather just of physical DSA conduits |
| 1054 | */ |
| 1055 | if (netif_is_lag_master(conduit)) |
| 1056 | return; |
| 1057 | |
| 1058 | if ((dsa_port_conduit_is_operational(cpu_dp)) != |
| 1059 | (up && cpu_dp->conduit_oper_up)) |
| 1060 | notify = true; |
| 1061 | |
| 1062 | cpu_dp->conduit_admin_up = up; |
| 1063 | |
| 1064 | if (notify) |
| 1065 | dsa_tree_conduit_state_change(dst, conduit); |
| 1066 | } |
| 1067 | |
| 1068 | void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst, |
| 1069 | struct net_device *conduit, |
| 1070 | bool up) |
| 1071 | { |
| 1072 | struct dsa_port *cpu_dp = conduit->dsa_ptr; |
| 1073 | bool notify = false; |
| 1074 | |
| 1075 | /* Don't keep track of oper state on LAG DSA conduits, |
| 1076 | * but rather just of physical DSA conduits |
| 1077 | */ |
| 1078 | if (netif_is_lag_master(conduit)) |
| 1079 | return; |
| 1080 | |
| 1081 | if ((dsa_port_conduit_is_operational(cpu_dp)) != |
| 1082 | (cpu_dp->conduit_admin_up && up)) |
| 1083 | notify = true; |
| 1084 | |
| 1085 | cpu_dp->conduit_oper_up = up; |
| 1086 | |
| 1087 | if (notify) |
| 1088 | dsa_tree_conduit_state_change(dst, conduit); |
| 1089 | } |
| 1090 | |
| 1091 | static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index) |
| 1092 | { |
| 1093 | struct dsa_switch_tree *dst = ds->dst; |
| 1094 | struct dsa_port *dp; |
| 1095 | |
| 1096 | dsa_switch_for_each_port(dp, ds) |
| 1097 | if (dp->index == index) |
| 1098 | return dp; |
| 1099 | |
| 1100 | dp = kzalloc(sizeof(*dp), GFP_KERNEL); |
| 1101 | if (!dp) |
| 1102 | return NULL; |
| 1103 | |
| 1104 | dp->ds = ds; |
| 1105 | dp->index = index; |
| 1106 | |
| 1107 | mutex_init(&dp->addr_lists_lock); |
| 1108 | mutex_init(&dp->vlans_lock); |
| 1109 | INIT_LIST_HEAD(&dp->fdbs); |
| 1110 | INIT_LIST_HEAD(&dp->mdbs); |
| 1111 | INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */ |
| 1112 | INIT_LIST_HEAD(&dp->list); |
| 1113 | list_add_tail(&dp->list, &dst->ports); |
| 1114 | |
| 1115 | return dp; |
| 1116 | } |
| 1117 | |
| 1118 | static int dsa_port_parse_user(struct dsa_port *dp, const char *name) |
| 1119 | { |
| 1120 | dp->type = DSA_PORT_TYPE_USER; |
| 1121 | dp->name = name; |
| 1122 | |
| 1123 | return 0; |
| 1124 | } |
| 1125 | |
| 1126 | static int dsa_port_parse_dsa(struct dsa_port *dp) |
| 1127 | { |
| 1128 | dp->type = DSA_PORT_TYPE_DSA; |
| 1129 | |
| 1130 | return 0; |
| 1131 | } |
| 1132 | |
| 1133 | static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp, |
| 1134 | struct net_device *conduit) |
| 1135 | { |
| 1136 | enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE; |
| 1137 | struct dsa_switch *mds, *ds = dp->ds; |
| 1138 | unsigned int mdp_upstream; |
| 1139 | struct dsa_port *mdp; |
| 1140 | |
| 1141 | /* It is possible to stack DSA switches onto one another when that |
| 1142 | * happens the switch driver may want to know if its tagging protocol |
| 1143 | * is going to work in such a configuration. |
| 1144 | */ |
| 1145 | if (dsa_user_dev_check(conduit)) { |
| 1146 | mdp = dsa_user_to_port(conduit); |
| 1147 | mds = mdp->ds; |
| 1148 | mdp_upstream = dsa_upstream_port(mds, mdp->index); |
| 1149 | tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream, |
| 1150 | DSA_TAG_PROTO_NONE); |
| 1151 | } |
| 1152 | |
| 1153 | /* If the conduit device is not itself a DSA user in a disjoint DSA |
| 1154 | * tree, then return immediately. |
| 1155 | */ |
| 1156 | return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol); |
| 1157 | } |
| 1158 | |
| 1159 | static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit, |
| 1160 | const char *user_protocol) |
| 1161 | { |
| 1162 | const struct dsa_device_ops *tag_ops = NULL; |
| 1163 | struct dsa_switch *ds = dp->ds; |
| 1164 | struct dsa_switch_tree *dst = ds->dst; |
| 1165 | enum dsa_tag_protocol default_proto; |
| 1166 | |
| 1167 | /* Find out which protocol the switch would prefer. */ |
| 1168 | default_proto = dsa_get_tag_protocol(dp, conduit); |
| 1169 | if (dst->default_proto) { |
| 1170 | if (dst->default_proto != default_proto) { |
| 1171 | dev_err(ds->dev, |
| 1172 | "A DSA switch tree can have only one tagging protocol\n"); |
| 1173 | return -EINVAL; |
| 1174 | } |
| 1175 | } else { |
| 1176 | dst->default_proto = default_proto; |
| 1177 | } |
| 1178 | |
| 1179 | /* See if the user wants to override that preference. */ |
| 1180 | if (user_protocol) { |
| 1181 | if (!ds->ops->change_tag_protocol) { |
| 1182 | dev_err(ds->dev, "Tag protocol cannot be modified\n"); |
| 1183 | return -EINVAL; |
| 1184 | } |
| 1185 | |
| 1186 | tag_ops = dsa_tag_driver_get_by_name(user_protocol); |
| 1187 | if (IS_ERR(tag_ops)) { |
| 1188 | dev_warn(ds->dev, |
| 1189 | "Failed to find a tagging driver for protocol %s, using default\n", |
| 1190 | user_protocol); |
| 1191 | tag_ops = NULL; |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | if (!tag_ops) |
| 1196 | tag_ops = dsa_tag_driver_get_by_id(default_proto); |
| 1197 | |
| 1198 | if (IS_ERR(tag_ops)) { |
| 1199 | if (PTR_ERR(tag_ops) == -ENOPROTOOPT) |
| 1200 | return -EPROBE_DEFER; |
| 1201 | |
| 1202 | dev_warn(ds->dev, "No tagger for this switch\n"); |
| 1203 | return PTR_ERR(tag_ops); |
| 1204 | } |
| 1205 | |
| 1206 | if (dst->tag_ops) { |
| 1207 | if (dst->tag_ops != tag_ops) { |
| 1208 | dev_err(ds->dev, |
| 1209 | "A DSA switch tree can have only one tagging protocol\n"); |
| 1210 | |
| 1211 | dsa_tag_driver_put(tag_ops); |
| 1212 | return -EINVAL; |
| 1213 | } |
| 1214 | |
| 1215 | /* In the case of multiple CPU ports per switch, the tagging |
| 1216 | * protocol is still reference-counted only per switch tree. |
| 1217 | */ |
| 1218 | dsa_tag_driver_put(tag_ops); |
| 1219 | } else { |
| 1220 | dst->tag_ops = tag_ops; |
| 1221 | } |
| 1222 | |
| 1223 | dp->conduit = conduit; |
| 1224 | dp->type = DSA_PORT_TYPE_CPU; |
| 1225 | dsa_port_set_tag_protocol(dp, dst->tag_ops); |
| 1226 | dp->dst = dst; |
| 1227 | |
| 1228 | /* At this point, the tree may be configured to use a different |
| 1229 | * tagger than the one chosen by the switch driver during |
| 1230 | * .setup, in the case when a user selects a custom protocol |
| 1231 | * through the DT. |
| 1232 | * |
| 1233 | * This is resolved by syncing the driver with the tree in |
| 1234 | * dsa_switch_setup_tag_protocol once .setup has run and the |
| 1235 | * driver is ready to accept calls to .change_tag_protocol. If |
| 1236 | * the driver does not support the custom protocol at that |
| 1237 | * point, the tree is wholly rejected, thereby ensuring that the |
| 1238 | * tree and driver are always in agreement on the protocol to |
| 1239 | * use. |
| 1240 | */ |
| 1241 | return 0; |
| 1242 | } |
| 1243 | |
| 1244 | static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn) |
| 1245 | { |
| 1246 | struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0); |
| 1247 | const char *name = of_get_property(dn, "label", NULL); |
| 1248 | bool link = of_property_read_bool(dn, "link"); |
| 1249 | |
| 1250 | dp->dn = dn; |
| 1251 | |
| 1252 | if (ethernet) { |
| 1253 | struct net_device *conduit; |
| 1254 | const char *user_protocol; |
| 1255 | |
| 1256 | conduit = of_find_net_device_by_node(ethernet); |
| 1257 | of_node_put(ethernet); |
| 1258 | if (!conduit) |
| 1259 | return -EPROBE_DEFER; |
| 1260 | |
| 1261 | user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL); |
| 1262 | return dsa_port_parse_cpu(dp, conduit, user_protocol); |
| 1263 | } |
| 1264 | |
| 1265 | if (link) |
| 1266 | return dsa_port_parse_dsa(dp); |
| 1267 | |
| 1268 | return dsa_port_parse_user(dp, name); |
| 1269 | } |
| 1270 | |
| 1271 | static int dsa_switch_parse_ports_of(struct dsa_switch *ds, |
| 1272 | struct device_node *dn) |
| 1273 | { |
| 1274 | struct device_node *ports, *port; |
| 1275 | struct dsa_port *dp; |
| 1276 | int err = 0; |
| 1277 | u32 reg; |
| 1278 | |
| 1279 | ports = of_get_child_by_name(dn, "ports"); |
| 1280 | if (!ports) { |
| 1281 | /* The second possibility is "ethernet-ports" */ |
| 1282 | ports = of_get_child_by_name(dn, "ethernet-ports"); |
| 1283 | if (!ports) { |
| 1284 | dev_err(ds->dev, "no ports child node found\n"); |
| 1285 | return -EINVAL; |
| 1286 | } |
| 1287 | } |
| 1288 | |
| 1289 | for_each_available_child_of_node(ports, port) { |
| 1290 | err = of_property_read_u32(port, "reg", ®); |
| 1291 | if (err) { |
| 1292 | of_node_put(port); |
| 1293 | goto out_put_node; |
| 1294 | } |
| 1295 | |
| 1296 | if (reg >= ds->num_ports) { |
| 1297 | dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n", |
| 1298 | port, reg, ds->num_ports); |
| 1299 | of_node_put(port); |
| 1300 | err = -EINVAL; |
| 1301 | goto out_put_node; |
| 1302 | } |
| 1303 | |
| 1304 | dp = dsa_to_port(ds, reg); |
| 1305 | |
| 1306 | err = dsa_port_parse_of(dp, port); |
| 1307 | if (err) { |
| 1308 | of_node_put(port); |
| 1309 | goto out_put_node; |
| 1310 | } |
| 1311 | } |
| 1312 | |
| 1313 | out_put_node: |
| 1314 | of_node_put(ports); |
| 1315 | return err; |
| 1316 | } |
| 1317 | |
| 1318 | static int dsa_switch_parse_member_of(struct dsa_switch *ds, |
| 1319 | struct device_node *dn) |
| 1320 | { |
| 1321 | u32 m[2] = { 0, 0 }; |
| 1322 | int sz; |
| 1323 | |
| 1324 | /* Don't error out if this optional property isn't found */ |
| 1325 | sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2); |
| 1326 | if (sz < 0 && sz != -EINVAL) |
| 1327 | return sz; |
| 1328 | |
| 1329 | ds->index = m[1]; |
| 1330 | |
| 1331 | ds->dst = dsa_tree_touch(m[0]); |
| 1332 | if (!ds->dst) |
| 1333 | return -ENOMEM; |
| 1334 | |
| 1335 | if (dsa_switch_find(ds->dst->index, ds->index)) { |
| 1336 | dev_err(ds->dev, |
| 1337 | "A DSA switch with index %d already exists in tree %d\n", |
| 1338 | ds->index, ds->dst->index); |
| 1339 | return -EEXIST; |
| 1340 | } |
| 1341 | |
| 1342 | if (ds->dst->last_switch < ds->index) |
| 1343 | ds->dst->last_switch = ds->index; |
| 1344 | |
| 1345 | return 0; |
| 1346 | } |
| 1347 | |
| 1348 | static int dsa_switch_touch_ports(struct dsa_switch *ds) |
| 1349 | { |
| 1350 | struct dsa_port *dp; |
| 1351 | int port; |
| 1352 | |
| 1353 | for (port = 0; port < ds->num_ports; port++) { |
| 1354 | dp = dsa_port_touch(ds, port); |
| 1355 | if (!dp) |
| 1356 | return -ENOMEM; |
| 1357 | } |
| 1358 | |
| 1359 | return 0; |
| 1360 | } |
| 1361 | |
| 1362 | static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn) |
| 1363 | { |
| 1364 | int err; |
| 1365 | |
| 1366 | err = dsa_switch_parse_member_of(ds, dn); |
| 1367 | if (err) |
| 1368 | return err; |
| 1369 | |
| 1370 | err = dsa_switch_touch_ports(ds); |
| 1371 | if (err) |
| 1372 | return err; |
| 1373 | |
| 1374 | return dsa_switch_parse_ports_of(ds, dn); |
| 1375 | } |
| 1376 | |
| 1377 | static int dev_is_class(struct device *dev, const void *class) |
| 1378 | { |
| 1379 | if (dev->class != NULL && !strcmp(dev->class->name, class)) |
| 1380 | return 1; |
| 1381 | |
| 1382 | return 0; |
| 1383 | } |
| 1384 | |
| 1385 | static struct device *dev_find_class(struct device *parent, char *class) |
| 1386 | { |
| 1387 | if (dev_is_class(parent, class)) { |
| 1388 | get_device(parent); |
| 1389 | return parent; |
| 1390 | } |
| 1391 | |
| 1392 | return device_find_child(parent, class, dev_is_class); |
| 1393 | } |
| 1394 | |
| 1395 | static struct net_device *dsa_dev_to_net_device(struct device *dev) |
| 1396 | { |
| 1397 | struct device *d; |
| 1398 | |
| 1399 | d = dev_find_class(dev, "net"); |
| 1400 | if (d != NULL) { |
| 1401 | struct net_device *nd; |
| 1402 | |
| 1403 | nd = to_net_dev(d); |
| 1404 | dev_hold(nd); |
| 1405 | put_device(d); |
| 1406 | |
| 1407 | return nd; |
| 1408 | } |
| 1409 | |
| 1410 | return NULL; |
| 1411 | } |
| 1412 | |
| 1413 | static int dsa_port_parse(struct dsa_port *dp, const char *name, |
| 1414 | struct device *dev) |
| 1415 | { |
| 1416 | if (!strcmp(name, "cpu")) { |
| 1417 | struct net_device *conduit; |
| 1418 | |
| 1419 | conduit = dsa_dev_to_net_device(dev); |
| 1420 | if (!conduit) |
| 1421 | return -EPROBE_DEFER; |
| 1422 | |
| 1423 | dev_put(conduit); |
| 1424 | |
| 1425 | return dsa_port_parse_cpu(dp, conduit, NULL); |
| 1426 | } |
| 1427 | |
| 1428 | if (!strcmp(name, "dsa")) |
| 1429 | return dsa_port_parse_dsa(dp); |
| 1430 | |
| 1431 | return dsa_port_parse_user(dp, name); |
| 1432 | } |
| 1433 | |
| 1434 | static int dsa_switch_parse_ports(struct dsa_switch *ds, |
| 1435 | struct dsa_chip_data *cd) |
| 1436 | { |
| 1437 | bool valid_name_found = false; |
| 1438 | struct dsa_port *dp; |
| 1439 | struct device *dev; |
| 1440 | const char *name; |
| 1441 | unsigned int i; |
| 1442 | int err; |
| 1443 | |
| 1444 | for (i = 0; i < DSA_MAX_PORTS; i++) { |
| 1445 | name = cd->port_names[i]; |
| 1446 | dev = cd->netdev[i]; |
| 1447 | dp = dsa_to_port(ds, i); |
| 1448 | |
| 1449 | if (!name) |
| 1450 | continue; |
| 1451 | |
| 1452 | err = dsa_port_parse(dp, name, dev); |
| 1453 | if (err) |
| 1454 | return err; |
| 1455 | |
| 1456 | valid_name_found = true; |
| 1457 | } |
| 1458 | |
| 1459 | if (!valid_name_found && i == DSA_MAX_PORTS) |
| 1460 | return -EINVAL; |
| 1461 | |
| 1462 | return 0; |
| 1463 | } |
| 1464 | |
| 1465 | static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd) |
| 1466 | { |
| 1467 | int err; |
| 1468 | |
| 1469 | ds->cd = cd; |
| 1470 | |
| 1471 | /* We don't support interconnected switches nor multiple trees via |
| 1472 | * platform data, so this is the unique switch of the tree. |
| 1473 | */ |
| 1474 | ds->index = 0; |
| 1475 | ds->dst = dsa_tree_touch(0); |
| 1476 | if (!ds->dst) |
| 1477 | return -ENOMEM; |
| 1478 | |
| 1479 | err = dsa_switch_touch_ports(ds); |
| 1480 | if (err) |
| 1481 | return err; |
| 1482 | |
| 1483 | return dsa_switch_parse_ports(ds, cd); |
| 1484 | } |
| 1485 | |
| 1486 | static void dsa_switch_release_ports(struct dsa_switch *ds) |
| 1487 | { |
| 1488 | struct dsa_mac_addr *a, *tmp; |
| 1489 | struct dsa_port *dp, *next; |
| 1490 | struct dsa_vlan *v, *n; |
| 1491 | |
| 1492 | dsa_switch_for_each_port_safe(dp, next, ds) { |
| 1493 | /* These are either entries that upper layers lost track of |
| 1494 | * (probably due to bugs), or installed through interfaces |
| 1495 | * where one does not necessarily have to remove them, like |
| 1496 | * ndo_dflt_fdb_add(). |
| 1497 | */ |
| 1498 | list_for_each_entry_safe(a, tmp, &dp->fdbs, list) { |
| 1499 | dev_info(ds->dev, |
| 1500 | "Cleaning up unicast address %pM vid %u from port %d\n", |
| 1501 | a->addr, a->vid, dp->index); |
| 1502 | list_del(&a->list); |
| 1503 | kfree(a); |
| 1504 | } |
| 1505 | |
| 1506 | list_for_each_entry_safe(a, tmp, &dp->mdbs, list) { |
| 1507 | dev_info(ds->dev, |
| 1508 | "Cleaning up multicast address %pM vid %u from port %d\n", |
| 1509 | a->addr, a->vid, dp->index); |
| 1510 | list_del(&a->list); |
| 1511 | kfree(a); |
| 1512 | } |
| 1513 | |
| 1514 | /* These are entries that upper layers have lost track of, |
| 1515 | * probably due to bugs, but also due to dsa_port_do_vlan_del() |
| 1516 | * having failed and the VLAN entry still lingering on. |
| 1517 | */ |
| 1518 | list_for_each_entry_safe(v, n, &dp->vlans, list) { |
| 1519 | dev_info(ds->dev, |
| 1520 | "Cleaning up vid %u from port %d\n", |
| 1521 | v->vid, dp->index); |
| 1522 | list_del(&v->list); |
| 1523 | kfree(v); |
| 1524 | } |
| 1525 | |
| 1526 | list_del(&dp->list); |
| 1527 | kfree(dp); |
| 1528 | } |
| 1529 | } |
| 1530 | |
| 1531 | static int dsa_switch_probe(struct dsa_switch *ds) |
| 1532 | { |
| 1533 | struct dsa_switch_tree *dst; |
| 1534 | struct dsa_chip_data *pdata; |
| 1535 | struct device_node *np; |
| 1536 | int err; |
| 1537 | |
| 1538 | if (!ds->dev) |
| 1539 | return -ENODEV; |
| 1540 | |
| 1541 | pdata = ds->dev->platform_data; |
| 1542 | np = ds->dev->of_node; |
| 1543 | |
| 1544 | if (!ds->num_ports) |
| 1545 | return -EINVAL; |
| 1546 | |
| 1547 | if (np) { |
| 1548 | err = dsa_switch_parse_of(ds, np); |
| 1549 | if (err) |
| 1550 | dsa_switch_release_ports(ds); |
| 1551 | } else if (pdata) { |
| 1552 | err = dsa_switch_parse(ds, pdata); |
| 1553 | if (err) |
| 1554 | dsa_switch_release_ports(ds); |
| 1555 | } else { |
| 1556 | err = -ENODEV; |
| 1557 | } |
| 1558 | |
| 1559 | if (err) |
| 1560 | return err; |
| 1561 | |
| 1562 | dst = ds->dst; |
| 1563 | dsa_tree_get(dst); |
| 1564 | err = dsa_tree_setup(dst); |
| 1565 | if (err) { |
| 1566 | dsa_switch_release_ports(ds); |
| 1567 | dsa_tree_put(dst); |
| 1568 | } |
| 1569 | |
| 1570 | return err; |
| 1571 | } |
| 1572 | |
| 1573 | int dsa_register_switch(struct dsa_switch *ds) |
| 1574 | { |
| 1575 | int err; |
| 1576 | |
| 1577 | mutex_lock(&dsa2_mutex); |
| 1578 | err = dsa_switch_probe(ds); |
| 1579 | dsa_tree_put(ds->dst); |
| 1580 | mutex_unlock(&dsa2_mutex); |
| 1581 | |
| 1582 | return err; |
| 1583 | } |
| 1584 | EXPORT_SYMBOL_GPL(dsa_register_switch); |
| 1585 | |
| 1586 | static void dsa_switch_remove(struct dsa_switch *ds) |
| 1587 | { |
| 1588 | struct dsa_switch_tree *dst = ds->dst; |
| 1589 | |
| 1590 | dsa_tree_teardown(dst); |
| 1591 | dsa_switch_release_ports(ds); |
| 1592 | dsa_tree_put(dst); |
| 1593 | } |
| 1594 | |
| 1595 | void dsa_unregister_switch(struct dsa_switch *ds) |
| 1596 | { |
| 1597 | mutex_lock(&dsa2_mutex); |
| 1598 | dsa_switch_remove(ds); |
| 1599 | mutex_unlock(&dsa2_mutex); |
| 1600 | } |
| 1601 | EXPORT_SYMBOL_GPL(dsa_unregister_switch); |
| 1602 | |
| 1603 | /* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is |
| 1604 | * blocking that operation from completion, due to the dev_hold taken inside |
| 1605 | * netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of |
| 1606 | * the DSA conduit, so that the system can reboot successfully. |
| 1607 | */ |
| 1608 | void dsa_switch_shutdown(struct dsa_switch *ds) |
| 1609 | { |
| 1610 | struct net_device *conduit, *user_dev; |
| 1611 | LIST_HEAD(close_list); |
| 1612 | struct dsa_port *dp; |
| 1613 | |
| 1614 | mutex_lock(&dsa2_mutex); |
| 1615 | |
| 1616 | if (!ds->setup) |
| 1617 | goto out; |
| 1618 | |
| 1619 | rtnl_lock(); |
| 1620 | |
| 1621 | dsa_switch_for_each_cpu_port(dp, ds) |
| 1622 | list_add(&dp->conduit->close_list, &close_list); |
| 1623 | |
| 1624 | dev_close_many(&close_list, true); |
| 1625 | |
| 1626 | dsa_switch_for_each_user_port(dp, ds) { |
| 1627 | conduit = dsa_port_to_conduit(dp); |
| 1628 | user_dev = dp->user; |
| 1629 | |
| 1630 | netif_device_detach(user_dev); |
| 1631 | netdev_upper_dev_unlink(conduit, user_dev); |
| 1632 | } |
| 1633 | |
| 1634 | /* Disconnect from further netdevice notifiers on the conduit, |
| 1635 | * since netdev_uses_dsa() will now return false. |
| 1636 | */ |
| 1637 | dsa_switch_for_each_cpu_port(dp, ds) |
| 1638 | dp->conduit->dsa_ptr = NULL; |
| 1639 | |
| 1640 | rtnl_unlock(); |
| 1641 | out: |
| 1642 | mutex_unlock(&dsa2_mutex); |
| 1643 | } |
| 1644 | EXPORT_SYMBOL_GPL(dsa_switch_shutdown); |
| 1645 | |
| 1646 | #ifdef CONFIG_PM_SLEEP |
| 1647 | static bool dsa_port_is_initialized(const struct dsa_port *dp) |
| 1648 | { |
| 1649 | return dp->type == DSA_PORT_TYPE_USER && dp->user; |
| 1650 | } |
| 1651 | |
| 1652 | int dsa_switch_suspend(struct dsa_switch *ds) |
| 1653 | { |
| 1654 | struct dsa_port *dp; |
| 1655 | int ret = 0; |
| 1656 | |
| 1657 | /* Suspend user network devices */ |
| 1658 | dsa_switch_for_each_port(dp, ds) { |
| 1659 | if (!dsa_port_is_initialized(dp)) |
| 1660 | continue; |
| 1661 | |
| 1662 | ret = dsa_user_suspend(dp->user); |
| 1663 | if (ret) |
| 1664 | return ret; |
| 1665 | } |
| 1666 | |
| 1667 | if (ds->ops->suspend) |
| 1668 | ret = ds->ops->suspend(ds); |
| 1669 | |
| 1670 | return ret; |
| 1671 | } |
| 1672 | EXPORT_SYMBOL_GPL(dsa_switch_suspend); |
| 1673 | |
| 1674 | int dsa_switch_resume(struct dsa_switch *ds) |
| 1675 | { |
| 1676 | struct dsa_port *dp; |
| 1677 | int ret = 0; |
| 1678 | |
| 1679 | if (ds->ops->resume) |
| 1680 | ret = ds->ops->resume(ds); |
| 1681 | |
| 1682 | if (ret) |
| 1683 | return ret; |
| 1684 | |
| 1685 | /* Resume user network devices */ |
| 1686 | dsa_switch_for_each_port(dp, ds) { |
| 1687 | if (!dsa_port_is_initialized(dp)) |
| 1688 | continue; |
| 1689 | |
| 1690 | ret = dsa_user_resume(dp->user); |
| 1691 | if (ret) |
| 1692 | return ret; |
| 1693 | } |
| 1694 | |
| 1695 | return 0; |
| 1696 | } |
| 1697 | EXPORT_SYMBOL_GPL(dsa_switch_resume); |
| 1698 | #endif |
| 1699 | |
| 1700 | struct dsa_port *dsa_port_from_netdev(struct net_device *netdev) |
| 1701 | { |
| 1702 | if (!netdev || !dsa_user_dev_check(netdev)) |
| 1703 | return ERR_PTR(-ENODEV); |
| 1704 | |
| 1705 | return dsa_user_to_port(netdev); |
| 1706 | } |
| 1707 | EXPORT_SYMBOL_GPL(dsa_port_from_netdev); |
| 1708 | |
| 1709 | bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b) |
| 1710 | { |
| 1711 | if (a->type != b->type) |
| 1712 | return false; |
| 1713 | |
| 1714 | switch (a->type) { |
| 1715 | case DSA_DB_PORT: |
| 1716 | return a->dp == b->dp; |
| 1717 | case DSA_DB_LAG: |
| 1718 | return a->lag.dev == b->lag.dev; |
| 1719 | case DSA_DB_BRIDGE: |
| 1720 | return a->bridge.num == b->bridge.num; |
| 1721 | default: |
| 1722 | WARN_ON(1); |
| 1723 | return false; |
| 1724 | } |
| 1725 | } |
| 1726 | |
| 1727 | bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port, |
| 1728 | const unsigned char *addr, u16 vid, |
| 1729 | struct dsa_db db) |
| 1730 | { |
| 1731 | struct dsa_port *dp = dsa_to_port(ds, port); |
| 1732 | struct dsa_mac_addr *a; |
| 1733 | |
| 1734 | lockdep_assert_held(&dp->addr_lists_lock); |
| 1735 | |
| 1736 | list_for_each_entry(a, &dp->fdbs, list) { |
| 1737 | if (!ether_addr_equal(a->addr, addr) || a->vid != vid) |
| 1738 | continue; |
| 1739 | |
| 1740 | if (a->db.type == db.type && !dsa_db_equal(&a->db, &db)) |
| 1741 | return true; |
| 1742 | } |
| 1743 | |
| 1744 | return false; |
| 1745 | } |
| 1746 | EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db); |
| 1747 | |
| 1748 | bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port, |
| 1749 | const struct switchdev_obj_port_mdb *mdb, |
| 1750 | struct dsa_db db) |
| 1751 | { |
| 1752 | struct dsa_port *dp = dsa_to_port(ds, port); |
| 1753 | struct dsa_mac_addr *a; |
| 1754 | |
| 1755 | lockdep_assert_held(&dp->addr_lists_lock); |
| 1756 | |
| 1757 | list_for_each_entry(a, &dp->mdbs, list) { |
| 1758 | if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid) |
| 1759 | continue; |
| 1760 | |
| 1761 | if (a->db.type == db.type && !dsa_db_equal(&a->db, &db)) |
| 1762 | return true; |
| 1763 | } |
| 1764 | |
| 1765 | return false; |
| 1766 | } |
| 1767 | EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db); |
| 1768 | |
| 1769 | static const struct dsa_stubs __dsa_stubs = { |
| 1770 | .conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate, |
| 1771 | }; |
| 1772 | |
| 1773 | static void dsa_register_stubs(void) |
| 1774 | { |
| 1775 | dsa_stubs = &__dsa_stubs; |
| 1776 | } |
| 1777 | |
| 1778 | static void dsa_unregister_stubs(void) |
| 1779 | { |
| 1780 | dsa_stubs = NULL; |
| 1781 | } |
| 1782 | |
| 1783 | static int __init dsa_init_module(void) |
| 1784 | { |
| 1785 | int rc; |
| 1786 | |
| 1787 | dsa_owq = alloc_ordered_workqueue("dsa_ordered", |
| 1788 | WQ_MEM_RECLAIM); |
| 1789 | if (!dsa_owq) |
| 1790 | return -ENOMEM; |
| 1791 | |
| 1792 | rc = dsa_user_register_notifier(); |
| 1793 | if (rc) |
| 1794 | goto register_notifier_fail; |
| 1795 | |
| 1796 | dev_add_pack(&dsa_pack_type); |
| 1797 | |
| 1798 | rc = rtnl_link_register(&dsa_link_ops); |
| 1799 | if (rc) |
| 1800 | goto netlink_register_fail; |
| 1801 | |
| 1802 | dsa_register_stubs(); |
| 1803 | |
| 1804 | return 0; |
| 1805 | |
| 1806 | netlink_register_fail: |
| 1807 | dsa_user_unregister_notifier(); |
| 1808 | dev_remove_pack(&dsa_pack_type); |
| 1809 | register_notifier_fail: |
| 1810 | destroy_workqueue(dsa_owq); |
| 1811 | |
| 1812 | return rc; |
| 1813 | } |
| 1814 | module_init(dsa_init_module); |
| 1815 | |
| 1816 | static void __exit dsa_cleanup_module(void) |
| 1817 | { |
| 1818 | dsa_unregister_stubs(); |
| 1819 | |
| 1820 | rtnl_link_unregister(&dsa_link_ops); |
| 1821 | |
| 1822 | dsa_user_unregister_notifier(); |
| 1823 | dev_remove_pack(&dsa_pack_type); |
| 1824 | destroy_workqueue(dsa_owq); |
| 1825 | } |
| 1826 | module_exit(dsa_cleanup_module); |
| 1827 | |
| 1828 | MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>"); |
| 1829 | MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips"); |
| 1830 | MODULE_LICENSE("GPL"); |
| 1831 | MODULE_ALIAS("platform:dsa"); |