skbuff: Add a function to check if a page belongs to page_pool
[linux-2.6-block.git] / net / core / skbuff.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/bitfield.h>
62#include <linux/if_vlan.h>
63#include <linux/mpls.h>
64#include <linux/kcov.h>
65#include <linux/iov_iter.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/gso.h>
72#include <net/ip6_checksum.h>
73#include <net/xfrm.h>
74#include <net/mpls.h>
75#include <net/mptcp.h>
76#include <net/mctp.h>
77#include <net/page_pool/helpers.h>
78#include <net/dropreason.h>
79
80#include <linux/uaccess.h>
81#include <trace/events/skb.h>
82#include <linux/highmem.h>
83#include <linux/capability.h>
84#include <linux/user_namespace.h>
85#include <linux/indirect_call_wrapper.h>
86#include <linux/textsearch.h>
87
88#include "dev.h"
89#include "sock_destructor.h"
90
91struct kmem_cache *skbuff_cache __ro_after_init;
92static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
93#ifdef CONFIG_SKB_EXTENSIONS
94static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95#endif
96
97
98static struct kmem_cache *skb_small_head_cache __ro_after_init;
99
100#define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
101
102/* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
103 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
104 * size, and we can differentiate heads from skb_small_head_cache
105 * vs system slabs by looking at their size (skb_end_offset()).
106 */
107#define SKB_SMALL_HEAD_CACHE_SIZE \
108 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
109 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
110 SKB_SMALL_HEAD_SIZE)
111
112#define SKB_SMALL_HEAD_HEADROOM \
113 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
114
115int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
116EXPORT_SYMBOL(sysctl_max_skb_frags);
117
118#undef FN
119#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
120static const char * const drop_reasons[] = {
121 [SKB_CONSUMED] = "CONSUMED",
122 DEFINE_DROP_REASON(FN, FN)
123};
124
125static const struct drop_reason_list drop_reasons_core = {
126 .reasons = drop_reasons,
127 .n_reasons = ARRAY_SIZE(drop_reasons),
128};
129
130const struct drop_reason_list __rcu *
131drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
132 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
133};
134EXPORT_SYMBOL(drop_reasons_by_subsys);
135
136/**
137 * drop_reasons_register_subsys - register another drop reason subsystem
138 * @subsys: the subsystem to register, must not be the core
139 * @list: the list of drop reasons within the subsystem, must point to
140 * a statically initialized list
141 */
142void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
143 const struct drop_reason_list *list)
144{
145 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
146 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
147 "invalid subsystem %d\n", subsys))
148 return;
149
150 /* must point to statically allocated memory, so INIT is OK */
151 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
152}
153EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
154
155/**
156 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
157 * @subsys: the subsystem to remove, must not be the core
158 *
159 * Note: This will synchronize_rcu() to ensure no users when it returns.
160 */
161void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
162{
163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 "invalid subsystem %d\n", subsys))
166 return;
167
168 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
169
170 synchronize_rcu();
171}
172EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
173
174/**
175 * skb_panic - private function for out-of-line support
176 * @skb: buffer
177 * @sz: size
178 * @addr: address
179 * @msg: skb_over_panic or skb_under_panic
180 *
181 * Out-of-line support for skb_put() and skb_push().
182 * Called via the wrapper skb_over_panic() or skb_under_panic().
183 * Keep out of line to prevent kernel bloat.
184 * __builtin_return_address is not used because it is not always reliable.
185 */
186static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
187 const char msg[])
188{
189 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
190 msg, addr, skb->len, sz, skb->head, skb->data,
191 (unsigned long)skb->tail, (unsigned long)skb->end,
192 skb->dev ? skb->dev->name : "<NULL>");
193 BUG();
194}
195
196static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
197{
198 skb_panic(skb, sz, addr, __func__);
199}
200
201static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
202{
203 skb_panic(skb, sz, addr, __func__);
204}
205
206#define NAPI_SKB_CACHE_SIZE 64
207#define NAPI_SKB_CACHE_BULK 16
208#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
209
210#if PAGE_SIZE == SZ_4K
211
212#define NAPI_HAS_SMALL_PAGE_FRAG 1
213#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
214
215/* specialized page frag allocator using a single order 0 page
216 * and slicing it into 1K sized fragment. Constrained to systems
217 * with a very limited amount of 1K fragments fitting a single
218 * page - to avoid excessive truesize underestimation
219 */
220
221struct page_frag_1k {
222 void *va;
223 u16 offset;
224 bool pfmemalloc;
225};
226
227static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
228{
229 struct page *page;
230 int offset;
231
232 offset = nc->offset - SZ_1K;
233 if (likely(offset >= 0))
234 goto use_frag;
235
236 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
237 if (!page)
238 return NULL;
239
240 nc->va = page_address(page);
241 nc->pfmemalloc = page_is_pfmemalloc(page);
242 offset = PAGE_SIZE - SZ_1K;
243 page_ref_add(page, offset / SZ_1K);
244
245use_frag:
246 nc->offset = offset;
247 return nc->va + offset;
248}
249#else
250
251/* the small page is actually unused in this build; add dummy helpers
252 * to please the compiler and avoid later preprocessor's conditionals
253 */
254#define NAPI_HAS_SMALL_PAGE_FRAG 0
255#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
256
257struct page_frag_1k {
258};
259
260static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
261{
262 return NULL;
263}
264
265#endif
266
267struct napi_alloc_cache {
268 struct page_frag_cache page;
269 struct page_frag_1k page_small;
270 unsigned int skb_count;
271 void *skb_cache[NAPI_SKB_CACHE_SIZE];
272};
273
274static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
275static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
276
277/* Double check that napi_get_frags() allocates skbs with
278 * skb->head being backed by slab, not a page fragment.
279 * This is to make sure bug fixed in 3226b158e67c
280 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
281 * does not accidentally come back.
282 */
283void napi_get_frags_check(struct napi_struct *napi)
284{
285 struct sk_buff *skb;
286
287 local_bh_disable();
288 skb = napi_get_frags(napi);
289 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
290 napi_free_frags(napi);
291 local_bh_enable();
292}
293
294void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
295{
296 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
297
298 fragsz = SKB_DATA_ALIGN(fragsz);
299
300 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
301}
302EXPORT_SYMBOL(__napi_alloc_frag_align);
303
304void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
305{
306 void *data;
307
308 fragsz = SKB_DATA_ALIGN(fragsz);
309 if (in_hardirq() || irqs_disabled()) {
310 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
311
312 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
313 } else {
314 struct napi_alloc_cache *nc;
315
316 local_bh_disable();
317 nc = this_cpu_ptr(&napi_alloc_cache);
318 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
319 local_bh_enable();
320 }
321 return data;
322}
323EXPORT_SYMBOL(__netdev_alloc_frag_align);
324
325static struct sk_buff *napi_skb_cache_get(void)
326{
327 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
328 struct sk_buff *skb;
329
330 if (unlikely(!nc->skb_count)) {
331 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
332 GFP_ATOMIC,
333 NAPI_SKB_CACHE_BULK,
334 nc->skb_cache);
335 if (unlikely(!nc->skb_count))
336 return NULL;
337 }
338
339 skb = nc->skb_cache[--nc->skb_count];
340 kasan_unpoison_object_data(skbuff_cache, skb);
341
342 return skb;
343}
344
345static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
346 unsigned int size)
347{
348 struct skb_shared_info *shinfo;
349
350 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
351
352 /* Assumes caller memset cleared SKB */
353 skb->truesize = SKB_TRUESIZE(size);
354 refcount_set(&skb->users, 1);
355 skb->head = data;
356 skb->data = data;
357 skb_reset_tail_pointer(skb);
358 skb_set_end_offset(skb, size);
359 skb->mac_header = (typeof(skb->mac_header))~0U;
360 skb->transport_header = (typeof(skb->transport_header))~0U;
361 skb->alloc_cpu = raw_smp_processor_id();
362 /* make sure we initialize shinfo sequentially */
363 shinfo = skb_shinfo(skb);
364 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
365 atomic_set(&shinfo->dataref, 1);
366
367 skb_set_kcov_handle(skb, kcov_common_handle());
368}
369
370static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
371 unsigned int *size)
372{
373 void *resized;
374
375 /* Must find the allocation size (and grow it to match). */
376 *size = ksize(data);
377 /* krealloc() will immediately return "data" when
378 * "ksize(data)" is requested: it is the existing upper
379 * bounds. As a result, GFP_ATOMIC will be ignored. Note
380 * that this "new" pointer needs to be passed back to the
381 * caller for use so the __alloc_size hinting will be
382 * tracked correctly.
383 */
384 resized = krealloc(data, *size, GFP_ATOMIC);
385 WARN_ON_ONCE(resized != data);
386 return resized;
387}
388
389/* build_skb() variant which can operate on slab buffers.
390 * Note that this should be used sparingly as slab buffers
391 * cannot be combined efficiently by GRO!
392 */
393struct sk_buff *slab_build_skb(void *data)
394{
395 struct sk_buff *skb;
396 unsigned int size;
397
398 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
399 if (unlikely(!skb))
400 return NULL;
401
402 memset(skb, 0, offsetof(struct sk_buff, tail));
403 data = __slab_build_skb(skb, data, &size);
404 __finalize_skb_around(skb, data, size);
405
406 return skb;
407}
408EXPORT_SYMBOL(slab_build_skb);
409
410/* Caller must provide SKB that is memset cleared */
411static void __build_skb_around(struct sk_buff *skb, void *data,
412 unsigned int frag_size)
413{
414 unsigned int size = frag_size;
415
416 /* frag_size == 0 is considered deprecated now. Callers
417 * using slab buffer should use slab_build_skb() instead.
418 */
419 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
420 data = __slab_build_skb(skb, data, &size);
421
422 __finalize_skb_around(skb, data, size);
423}
424
425/**
426 * __build_skb - build a network buffer
427 * @data: data buffer provided by caller
428 * @frag_size: size of data (must not be 0)
429 *
430 * Allocate a new &sk_buff. Caller provides space holding head and
431 * skb_shared_info. @data must have been allocated from the page
432 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
433 * allocation is deprecated, and callers should use slab_build_skb()
434 * instead.)
435 * The return is the new skb buffer.
436 * On a failure the return is %NULL, and @data is not freed.
437 * Notes :
438 * Before IO, driver allocates only data buffer where NIC put incoming frame
439 * Driver should add room at head (NET_SKB_PAD) and
440 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
441 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
442 * before giving packet to stack.
443 * RX rings only contains data buffers, not full skbs.
444 */
445struct sk_buff *__build_skb(void *data, unsigned int frag_size)
446{
447 struct sk_buff *skb;
448
449 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
450 if (unlikely(!skb))
451 return NULL;
452
453 memset(skb, 0, offsetof(struct sk_buff, tail));
454 __build_skb_around(skb, data, frag_size);
455
456 return skb;
457}
458
459/* build_skb() is wrapper over __build_skb(), that specifically
460 * takes care of skb->head and skb->pfmemalloc
461 */
462struct sk_buff *build_skb(void *data, unsigned int frag_size)
463{
464 struct sk_buff *skb = __build_skb(data, frag_size);
465
466 if (likely(skb && frag_size)) {
467 skb->head_frag = 1;
468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 }
470 return skb;
471}
472EXPORT_SYMBOL(build_skb);
473
474/**
475 * build_skb_around - build a network buffer around provided skb
476 * @skb: sk_buff provide by caller, must be memset cleared
477 * @data: data buffer provided by caller
478 * @frag_size: size of data
479 */
480struct sk_buff *build_skb_around(struct sk_buff *skb,
481 void *data, unsigned int frag_size)
482{
483 if (unlikely(!skb))
484 return NULL;
485
486 __build_skb_around(skb, data, frag_size);
487
488 if (frag_size) {
489 skb->head_frag = 1;
490 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
491 }
492 return skb;
493}
494EXPORT_SYMBOL(build_skb_around);
495
496/**
497 * __napi_build_skb - build a network buffer
498 * @data: data buffer provided by caller
499 * @frag_size: size of data
500 *
501 * Version of __build_skb() that uses NAPI percpu caches to obtain
502 * skbuff_head instead of inplace allocation.
503 *
504 * Returns a new &sk_buff on success, %NULL on allocation failure.
505 */
506static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
507{
508 struct sk_buff *skb;
509
510 skb = napi_skb_cache_get();
511 if (unlikely(!skb))
512 return NULL;
513
514 memset(skb, 0, offsetof(struct sk_buff, tail));
515 __build_skb_around(skb, data, frag_size);
516
517 return skb;
518}
519
520/**
521 * napi_build_skb - build a network buffer
522 * @data: data buffer provided by caller
523 * @frag_size: size of data
524 *
525 * Version of __napi_build_skb() that takes care of skb->head_frag
526 * and skb->pfmemalloc when the data is a page or page fragment.
527 *
528 * Returns a new &sk_buff on success, %NULL on allocation failure.
529 */
530struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
531{
532 struct sk_buff *skb = __napi_build_skb(data, frag_size);
533
534 if (likely(skb) && frag_size) {
535 skb->head_frag = 1;
536 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
537 }
538
539 return skb;
540}
541EXPORT_SYMBOL(napi_build_skb);
542
543/*
544 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
545 * the caller if emergency pfmemalloc reserves are being used. If it is and
546 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
547 * may be used. Otherwise, the packet data may be discarded until enough
548 * memory is free
549 */
550static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
551 bool *pfmemalloc)
552{
553 bool ret_pfmemalloc = false;
554 size_t obj_size;
555 void *obj;
556
557 obj_size = SKB_HEAD_ALIGN(*size);
558 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
559 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
560 obj = kmem_cache_alloc_node(skb_small_head_cache,
561 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
562 node);
563 *size = SKB_SMALL_HEAD_CACHE_SIZE;
564 if (obj || !(gfp_pfmemalloc_allowed(flags)))
565 goto out;
566 /* Try again but now we are using pfmemalloc reserves */
567 ret_pfmemalloc = true;
568 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
569 goto out;
570 }
571
572 obj_size = kmalloc_size_roundup(obj_size);
573 /* The following cast might truncate high-order bits of obj_size, this
574 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
575 */
576 *size = (unsigned int)obj_size;
577
578 /*
579 * Try a regular allocation, when that fails and we're not entitled
580 * to the reserves, fail.
581 */
582 obj = kmalloc_node_track_caller(obj_size,
583 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
584 node);
585 if (obj || !(gfp_pfmemalloc_allowed(flags)))
586 goto out;
587
588 /* Try again but now we are using pfmemalloc reserves */
589 ret_pfmemalloc = true;
590 obj = kmalloc_node_track_caller(obj_size, flags, node);
591
592out:
593 if (pfmemalloc)
594 *pfmemalloc = ret_pfmemalloc;
595
596 return obj;
597}
598
599/* Allocate a new skbuff. We do this ourselves so we can fill in a few
600 * 'private' fields and also do memory statistics to find all the
601 * [BEEP] leaks.
602 *
603 */
604
605/**
606 * __alloc_skb - allocate a network buffer
607 * @size: size to allocate
608 * @gfp_mask: allocation mask
609 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
610 * instead of head cache and allocate a cloned (child) skb.
611 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
612 * allocations in case the data is required for writeback
613 * @node: numa node to allocate memory on
614 *
615 * Allocate a new &sk_buff. The returned buffer has no headroom and a
616 * tail room of at least size bytes. The object has a reference count
617 * of one. The return is the buffer. On a failure the return is %NULL.
618 *
619 * Buffers may only be allocated from interrupts using a @gfp_mask of
620 * %GFP_ATOMIC.
621 */
622struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
623 int flags, int node)
624{
625 struct kmem_cache *cache;
626 struct sk_buff *skb;
627 bool pfmemalloc;
628 u8 *data;
629
630 cache = (flags & SKB_ALLOC_FCLONE)
631 ? skbuff_fclone_cache : skbuff_cache;
632
633 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
634 gfp_mask |= __GFP_MEMALLOC;
635
636 /* Get the HEAD */
637 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
638 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
639 skb = napi_skb_cache_get();
640 else
641 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
642 if (unlikely(!skb))
643 return NULL;
644 prefetchw(skb);
645
646 /* We do our best to align skb_shared_info on a separate cache
647 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
648 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
649 * Both skb->head and skb_shared_info are cache line aligned.
650 */
651 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
652 if (unlikely(!data))
653 goto nodata;
654 /* kmalloc_size_roundup() might give us more room than requested.
655 * Put skb_shared_info exactly at the end of allocated zone,
656 * to allow max possible filling before reallocation.
657 */
658 prefetchw(data + SKB_WITH_OVERHEAD(size));
659
660 /*
661 * Only clear those fields we need to clear, not those that we will
662 * actually initialise below. Hence, don't put any more fields after
663 * the tail pointer in struct sk_buff!
664 */
665 memset(skb, 0, offsetof(struct sk_buff, tail));
666 __build_skb_around(skb, data, size);
667 skb->pfmemalloc = pfmemalloc;
668
669 if (flags & SKB_ALLOC_FCLONE) {
670 struct sk_buff_fclones *fclones;
671
672 fclones = container_of(skb, struct sk_buff_fclones, skb1);
673
674 skb->fclone = SKB_FCLONE_ORIG;
675 refcount_set(&fclones->fclone_ref, 1);
676 }
677
678 return skb;
679
680nodata:
681 kmem_cache_free(cache, skb);
682 return NULL;
683}
684EXPORT_SYMBOL(__alloc_skb);
685
686/**
687 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
688 * @dev: network device to receive on
689 * @len: length to allocate
690 * @gfp_mask: get_free_pages mask, passed to alloc_skb
691 *
692 * Allocate a new &sk_buff and assign it a usage count of one. The
693 * buffer has NET_SKB_PAD headroom built in. Users should allocate
694 * the headroom they think they need without accounting for the
695 * built in space. The built in space is used for optimisations.
696 *
697 * %NULL is returned if there is no free memory.
698 */
699struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
700 gfp_t gfp_mask)
701{
702 struct page_frag_cache *nc;
703 struct sk_buff *skb;
704 bool pfmemalloc;
705 void *data;
706
707 len += NET_SKB_PAD;
708
709 /* If requested length is either too small or too big,
710 * we use kmalloc() for skb->head allocation.
711 */
712 if (len <= SKB_WITH_OVERHEAD(1024) ||
713 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
714 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
715 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
716 if (!skb)
717 goto skb_fail;
718 goto skb_success;
719 }
720
721 len = SKB_HEAD_ALIGN(len);
722
723 if (sk_memalloc_socks())
724 gfp_mask |= __GFP_MEMALLOC;
725
726 if (in_hardirq() || irqs_disabled()) {
727 nc = this_cpu_ptr(&netdev_alloc_cache);
728 data = page_frag_alloc(nc, len, gfp_mask);
729 pfmemalloc = nc->pfmemalloc;
730 } else {
731 local_bh_disable();
732 nc = this_cpu_ptr(&napi_alloc_cache.page);
733 data = page_frag_alloc(nc, len, gfp_mask);
734 pfmemalloc = nc->pfmemalloc;
735 local_bh_enable();
736 }
737
738 if (unlikely(!data))
739 return NULL;
740
741 skb = __build_skb(data, len);
742 if (unlikely(!skb)) {
743 skb_free_frag(data);
744 return NULL;
745 }
746
747 if (pfmemalloc)
748 skb->pfmemalloc = 1;
749 skb->head_frag = 1;
750
751skb_success:
752 skb_reserve(skb, NET_SKB_PAD);
753 skb->dev = dev;
754
755skb_fail:
756 return skb;
757}
758EXPORT_SYMBOL(__netdev_alloc_skb);
759
760/**
761 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
762 * @napi: napi instance this buffer was allocated for
763 * @len: length to allocate
764 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
765 *
766 * Allocate a new sk_buff for use in NAPI receive. This buffer will
767 * attempt to allocate the head from a special reserved region used
768 * only for NAPI Rx allocation. By doing this we can save several
769 * CPU cycles by avoiding having to disable and re-enable IRQs.
770 *
771 * %NULL is returned if there is no free memory.
772 */
773struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
774 gfp_t gfp_mask)
775{
776 struct napi_alloc_cache *nc;
777 struct sk_buff *skb;
778 bool pfmemalloc;
779 void *data;
780
781 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
782 len += NET_SKB_PAD + NET_IP_ALIGN;
783
784 /* If requested length is either too small or too big,
785 * we use kmalloc() for skb->head allocation.
786 * When the small frag allocator is available, prefer it over kmalloc
787 * for small fragments
788 */
789 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
790 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
791 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
792 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
793 NUMA_NO_NODE);
794 if (!skb)
795 goto skb_fail;
796 goto skb_success;
797 }
798
799 nc = this_cpu_ptr(&napi_alloc_cache);
800
801 if (sk_memalloc_socks())
802 gfp_mask |= __GFP_MEMALLOC;
803
804 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
805 /* we are artificially inflating the allocation size, but
806 * that is not as bad as it may look like, as:
807 * - 'len' less than GRO_MAX_HEAD makes little sense
808 * - On most systems, larger 'len' values lead to fragment
809 * size above 512 bytes
810 * - kmalloc would use the kmalloc-1k slab for such values
811 * - Builds with smaller GRO_MAX_HEAD will very likely do
812 * little networking, as that implies no WiFi and no
813 * tunnels support, and 32 bits arches.
814 */
815 len = SZ_1K;
816
817 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
818 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
819 } else {
820 len = SKB_HEAD_ALIGN(len);
821
822 data = page_frag_alloc(&nc->page, len, gfp_mask);
823 pfmemalloc = nc->page.pfmemalloc;
824 }
825
826 if (unlikely(!data))
827 return NULL;
828
829 skb = __napi_build_skb(data, len);
830 if (unlikely(!skb)) {
831 skb_free_frag(data);
832 return NULL;
833 }
834
835 if (pfmemalloc)
836 skb->pfmemalloc = 1;
837 skb->head_frag = 1;
838
839skb_success:
840 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
841 skb->dev = napi->dev;
842
843skb_fail:
844 return skb;
845}
846EXPORT_SYMBOL(__napi_alloc_skb);
847
848void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
849 int size, unsigned int truesize)
850{
851 DEBUG_NET_WARN_ON_ONCE(size > truesize);
852
853 skb_fill_page_desc(skb, i, page, off, size);
854 skb->len += size;
855 skb->data_len += size;
856 skb->truesize += truesize;
857}
858EXPORT_SYMBOL(skb_add_rx_frag);
859
860void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
861 unsigned int truesize)
862{
863 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
864
865 DEBUG_NET_WARN_ON_ONCE(size > truesize);
866
867 skb_frag_size_add(frag, size);
868 skb->len += size;
869 skb->data_len += size;
870 skb->truesize += truesize;
871}
872EXPORT_SYMBOL(skb_coalesce_rx_frag);
873
874static void skb_drop_list(struct sk_buff **listp)
875{
876 kfree_skb_list(*listp);
877 *listp = NULL;
878}
879
880static inline void skb_drop_fraglist(struct sk_buff *skb)
881{
882 skb_drop_list(&skb_shinfo(skb)->frag_list);
883}
884
885static void skb_clone_fraglist(struct sk_buff *skb)
886{
887 struct sk_buff *list;
888
889 skb_walk_frags(skb, list)
890 skb_get(list);
891}
892
893static bool is_pp_page(struct page *page)
894{
895 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
896}
897
898#if IS_ENABLED(CONFIG_PAGE_POOL)
899bool napi_pp_put_page(struct page *page, bool napi_safe)
900{
901 bool allow_direct = false;
902 struct page_pool *pp;
903
904 page = compound_head(page);
905
906 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
907 * in order to preserve any existing bits, such as bit 0 for the
908 * head page of compound page and bit 1 for pfmemalloc page, so
909 * mask those bits for freeing side when doing below checking,
910 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
911 * to avoid recycling the pfmemalloc page.
912 */
913 if (unlikely(!is_pp_page(page)))
914 return false;
915
916 pp = page->pp;
917
918 /* Allow direct recycle if we have reasons to believe that we are
919 * in the same context as the consumer would run, so there's
920 * no possible race.
921 * __page_pool_put_page() makes sure we're not in hardirq context
922 * and interrupts are enabled prior to accessing the cache.
923 */
924 if (napi_safe || in_softirq()) {
925 const struct napi_struct *napi = READ_ONCE(pp->p.napi);
926
927 allow_direct = napi &&
928 READ_ONCE(napi->list_owner) == smp_processor_id();
929 }
930
931 /* Driver set this to memory recycling info. Reset it on recycle.
932 * This will *not* work for NIC using a split-page memory model.
933 * The page will be returned to the pool here regardless of the
934 * 'flipped' fragment being in use or not.
935 */
936 page_pool_put_full_page(pp, page, allow_direct);
937
938 return true;
939}
940EXPORT_SYMBOL(napi_pp_put_page);
941#endif
942
943static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
944{
945 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
946 return false;
947 return napi_pp_put_page(virt_to_page(data), napi_safe);
948}
949
950static void skb_kfree_head(void *head, unsigned int end_offset)
951{
952 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
953 kmem_cache_free(skb_small_head_cache, head);
954 else
955 kfree(head);
956}
957
958static void skb_free_head(struct sk_buff *skb, bool napi_safe)
959{
960 unsigned char *head = skb->head;
961
962 if (skb->head_frag) {
963 if (skb_pp_recycle(skb, head, napi_safe))
964 return;
965 skb_free_frag(head);
966 } else {
967 skb_kfree_head(head, skb_end_offset(skb));
968 }
969}
970
971static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
972 bool napi_safe)
973{
974 struct skb_shared_info *shinfo = skb_shinfo(skb);
975 int i;
976
977 if (skb->cloned &&
978 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
979 &shinfo->dataref))
980 goto exit;
981
982 if (skb_zcopy(skb)) {
983 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
984
985 skb_zcopy_clear(skb, true);
986 if (skip_unref)
987 goto free_head;
988 }
989
990 for (i = 0; i < shinfo->nr_frags; i++)
991 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
992
993free_head:
994 if (shinfo->frag_list)
995 kfree_skb_list_reason(shinfo->frag_list, reason);
996
997 skb_free_head(skb, napi_safe);
998exit:
999 /* When we clone an SKB we copy the reycling bit. The pp_recycle
1000 * bit is only set on the head though, so in order to avoid races
1001 * while trying to recycle fragments on __skb_frag_unref() we need
1002 * to make one SKB responsible for triggering the recycle path.
1003 * So disable the recycling bit if an SKB is cloned and we have
1004 * additional references to the fragmented part of the SKB.
1005 * Eventually the last SKB will have the recycling bit set and it's
1006 * dataref set to 0, which will trigger the recycling
1007 */
1008 skb->pp_recycle = 0;
1009}
1010
1011/*
1012 * Free an skbuff by memory without cleaning the state.
1013 */
1014static void kfree_skbmem(struct sk_buff *skb)
1015{
1016 struct sk_buff_fclones *fclones;
1017
1018 switch (skb->fclone) {
1019 case SKB_FCLONE_UNAVAILABLE:
1020 kmem_cache_free(skbuff_cache, skb);
1021 return;
1022
1023 case SKB_FCLONE_ORIG:
1024 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1025
1026 /* We usually free the clone (TX completion) before original skb
1027 * This test would have no chance to be true for the clone,
1028 * while here, branch prediction will be good.
1029 */
1030 if (refcount_read(&fclones->fclone_ref) == 1)
1031 goto fastpath;
1032 break;
1033
1034 default: /* SKB_FCLONE_CLONE */
1035 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1036 break;
1037 }
1038 if (!refcount_dec_and_test(&fclones->fclone_ref))
1039 return;
1040fastpath:
1041 kmem_cache_free(skbuff_fclone_cache, fclones);
1042}
1043
1044void skb_release_head_state(struct sk_buff *skb)
1045{
1046 skb_dst_drop(skb);
1047 if (skb->destructor) {
1048 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1049 skb->destructor(skb);
1050 }
1051#if IS_ENABLED(CONFIG_NF_CONNTRACK)
1052 nf_conntrack_put(skb_nfct(skb));
1053#endif
1054 skb_ext_put(skb);
1055}
1056
1057/* Free everything but the sk_buff shell. */
1058static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1059 bool napi_safe)
1060{
1061 skb_release_head_state(skb);
1062 if (likely(skb->head))
1063 skb_release_data(skb, reason, napi_safe);
1064}
1065
1066/**
1067 * __kfree_skb - private function
1068 * @skb: buffer
1069 *
1070 * Free an sk_buff. Release anything attached to the buffer.
1071 * Clean the state. This is an internal helper function. Users should
1072 * always call kfree_skb
1073 */
1074
1075void __kfree_skb(struct sk_buff *skb)
1076{
1077 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1078 kfree_skbmem(skb);
1079}
1080EXPORT_SYMBOL(__kfree_skb);
1081
1082static __always_inline
1083bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1084{
1085 if (unlikely(!skb_unref(skb)))
1086 return false;
1087
1088 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1089 u32_get_bits(reason,
1090 SKB_DROP_REASON_SUBSYS_MASK) >=
1091 SKB_DROP_REASON_SUBSYS_NUM);
1092
1093 if (reason == SKB_CONSUMED)
1094 trace_consume_skb(skb, __builtin_return_address(0));
1095 else
1096 trace_kfree_skb(skb, __builtin_return_address(0), reason);
1097 return true;
1098}
1099
1100/**
1101 * kfree_skb_reason - free an sk_buff with special reason
1102 * @skb: buffer to free
1103 * @reason: reason why this skb is dropped
1104 *
1105 * Drop a reference to the buffer and free it if the usage count has
1106 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1107 * tracepoint.
1108 */
1109void __fix_address
1110kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1111{
1112 if (__kfree_skb_reason(skb, reason))
1113 __kfree_skb(skb);
1114}
1115EXPORT_SYMBOL(kfree_skb_reason);
1116
1117#define KFREE_SKB_BULK_SIZE 16
1118
1119struct skb_free_array {
1120 unsigned int skb_count;
1121 void *skb_array[KFREE_SKB_BULK_SIZE];
1122};
1123
1124static void kfree_skb_add_bulk(struct sk_buff *skb,
1125 struct skb_free_array *sa,
1126 enum skb_drop_reason reason)
1127{
1128 /* if SKB is a clone, don't handle this case */
1129 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1130 __kfree_skb(skb);
1131 return;
1132 }
1133
1134 skb_release_all(skb, reason, false);
1135 sa->skb_array[sa->skb_count++] = skb;
1136
1137 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1138 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1139 sa->skb_array);
1140 sa->skb_count = 0;
1141 }
1142}
1143
1144void __fix_address
1145kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1146{
1147 struct skb_free_array sa;
1148
1149 sa.skb_count = 0;
1150
1151 while (segs) {
1152 struct sk_buff *next = segs->next;
1153
1154 if (__kfree_skb_reason(segs, reason)) {
1155 skb_poison_list(segs);
1156 kfree_skb_add_bulk(segs, &sa, reason);
1157 }
1158
1159 segs = next;
1160 }
1161
1162 if (sa.skb_count)
1163 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1164}
1165EXPORT_SYMBOL(kfree_skb_list_reason);
1166
1167/* Dump skb information and contents.
1168 *
1169 * Must only be called from net_ratelimit()-ed paths.
1170 *
1171 * Dumps whole packets if full_pkt, only headers otherwise.
1172 */
1173void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1174{
1175 struct skb_shared_info *sh = skb_shinfo(skb);
1176 struct net_device *dev = skb->dev;
1177 struct sock *sk = skb->sk;
1178 struct sk_buff *list_skb;
1179 bool has_mac, has_trans;
1180 int headroom, tailroom;
1181 int i, len, seg_len;
1182
1183 if (full_pkt)
1184 len = skb->len;
1185 else
1186 len = min_t(int, skb->len, MAX_HEADER + 128);
1187
1188 headroom = skb_headroom(skb);
1189 tailroom = skb_tailroom(skb);
1190
1191 has_mac = skb_mac_header_was_set(skb);
1192 has_trans = skb_transport_header_was_set(skb);
1193
1194 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1195 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1196 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1197 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1198 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1199 level, skb->len, headroom, skb_headlen(skb), tailroom,
1200 has_mac ? skb->mac_header : -1,
1201 has_mac ? skb_mac_header_len(skb) : -1,
1202 skb->network_header,
1203 has_trans ? skb_network_header_len(skb) : -1,
1204 has_trans ? skb->transport_header : -1,
1205 sh->tx_flags, sh->nr_frags,
1206 sh->gso_size, sh->gso_type, sh->gso_segs,
1207 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1208 skb->csum_valid, skb->csum_level,
1209 skb->hash, skb->sw_hash, skb->l4_hash,
1210 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1211
1212 if (dev)
1213 printk("%sdev name=%s feat=%pNF\n",
1214 level, dev->name, &dev->features);
1215 if (sk)
1216 printk("%ssk family=%hu type=%u proto=%u\n",
1217 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1218
1219 if (full_pkt && headroom)
1220 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1221 16, 1, skb->head, headroom, false);
1222
1223 seg_len = min_t(int, skb_headlen(skb), len);
1224 if (seg_len)
1225 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1226 16, 1, skb->data, seg_len, false);
1227 len -= seg_len;
1228
1229 if (full_pkt && tailroom)
1230 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1231 16, 1, skb_tail_pointer(skb), tailroom, false);
1232
1233 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1234 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1235 u32 p_off, p_len, copied;
1236 struct page *p;
1237 u8 *vaddr;
1238
1239 skb_frag_foreach_page(frag, skb_frag_off(frag),
1240 skb_frag_size(frag), p, p_off, p_len,
1241 copied) {
1242 seg_len = min_t(int, p_len, len);
1243 vaddr = kmap_atomic(p);
1244 print_hex_dump(level, "skb frag: ",
1245 DUMP_PREFIX_OFFSET,
1246 16, 1, vaddr + p_off, seg_len, false);
1247 kunmap_atomic(vaddr);
1248 len -= seg_len;
1249 if (!len)
1250 break;
1251 }
1252 }
1253
1254 if (full_pkt && skb_has_frag_list(skb)) {
1255 printk("skb fraglist:\n");
1256 skb_walk_frags(skb, list_skb)
1257 skb_dump(level, list_skb, true);
1258 }
1259}
1260EXPORT_SYMBOL(skb_dump);
1261
1262/**
1263 * skb_tx_error - report an sk_buff xmit error
1264 * @skb: buffer that triggered an error
1265 *
1266 * Report xmit error if a device callback is tracking this skb.
1267 * skb must be freed afterwards.
1268 */
1269void skb_tx_error(struct sk_buff *skb)
1270{
1271 if (skb) {
1272 skb_zcopy_downgrade_managed(skb);
1273 skb_zcopy_clear(skb, true);
1274 }
1275}
1276EXPORT_SYMBOL(skb_tx_error);
1277
1278#ifdef CONFIG_TRACEPOINTS
1279/**
1280 * consume_skb - free an skbuff
1281 * @skb: buffer to free
1282 *
1283 * Drop a ref to the buffer and free it if the usage count has hit zero
1284 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1285 * is being dropped after a failure and notes that
1286 */
1287void consume_skb(struct sk_buff *skb)
1288{
1289 if (!skb_unref(skb))
1290 return;
1291
1292 trace_consume_skb(skb, __builtin_return_address(0));
1293 __kfree_skb(skb);
1294}
1295EXPORT_SYMBOL(consume_skb);
1296#endif
1297
1298/**
1299 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1300 * @skb: buffer to free
1301 *
1302 * Alike consume_skb(), but this variant assumes that this is the last
1303 * skb reference and all the head states have been already dropped
1304 */
1305void __consume_stateless_skb(struct sk_buff *skb)
1306{
1307 trace_consume_skb(skb, __builtin_return_address(0));
1308 skb_release_data(skb, SKB_CONSUMED, false);
1309 kfree_skbmem(skb);
1310}
1311
1312static void napi_skb_cache_put(struct sk_buff *skb)
1313{
1314 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1315 u32 i;
1316
1317 kasan_poison_object_data(skbuff_cache, skb);
1318 nc->skb_cache[nc->skb_count++] = skb;
1319
1320 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1321 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1322 kasan_unpoison_object_data(skbuff_cache,
1323 nc->skb_cache[i]);
1324
1325 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1326 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1327 nc->skb_count = NAPI_SKB_CACHE_HALF;
1328 }
1329}
1330
1331void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1332{
1333 skb_release_all(skb, reason, true);
1334 napi_skb_cache_put(skb);
1335}
1336
1337void napi_skb_free_stolen_head(struct sk_buff *skb)
1338{
1339 if (unlikely(skb->slow_gro)) {
1340 nf_reset_ct(skb);
1341 skb_dst_drop(skb);
1342 skb_ext_put(skb);
1343 skb_orphan(skb);
1344 skb->slow_gro = 0;
1345 }
1346 napi_skb_cache_put(skb);
1347}
1348
1349void napi_consume_skb(struct sk_buff *skb, int budget)
1350{
1351 /* Zero budget indicate non-NAPI context called us, like netpoll */
1352 if (unlikely(!budget)) {
1353 dev_consume_skb_any(skb);
1354 return;
1355 }
1356
1357 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1358
1359 if (!skb_unref(skb))
1360 return;
1361
1362 /* if reaching here SKB is ready to free */
1363 trace_consume_skb(skb, __builtin_return_address(0));
1364
1365 /* if SKB is a clone, don't handle this case */
1366 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1367 __kfree_skb(skb);
1368 return;
1369 }
1370
1371 skb_release_all(skb, SKB_CONSUMED, !!budget);
1372 napi_skb_cache_put(skb);
1373}
1374EXPORT_SYMBOL(napi_consume_skb);
1375
1376/* Make sure a field is contained by headers group */
1377#define CHECK_SKB_FIELD(field) \
1378 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1379 offsetof(struct sk_buff, headers.field)); \
1380
1381static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1382{
1383 new->tstamp = old->tstamp;
1384 /* We do not copy old->sk */
1385 new->dev = old->dev;
1386 memcpy(new->cb, old->cb, sizeof(old->cb));
1387 skb_dst_copy(new, old);
1388 __skb_ext_copy(new, old);
1389 __nf_copy(new, old, false);
1390
1391 /* Note : this field could be in the headers group.
1392 * It is not yet because we do not want to have a 16 bit hole
1393 */
1394 new->queue_mapping = old->queue_mapping;
1395
1396 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1397 CHECK_SKB_FIELD(protocol);
1398 CHECK_SKB_FIELD(csum);
1399 CHECK_SKB_FIELD(hash);
1400 CHECK_SKB_FIELD(priority);
1401 CHECK_SKB_FIELD(skb_iif);
1402 CHECK_SKB_FIELD(vlan_proto);
1403 CHECK_SKB_FIELD(vlan_tci);
1404 CHECK_SKB_FIELD(transport_header);
1405 CHECK_SKB_FIELD(network_header);
1406 CHECK_SKB_FIELD(mac_header);
1407 CHECK_SKB_FIELD(inner_protocol);
1408 CHECK_SKB_FIELD(inner_transport_header);
1409 CHECK_SKB_FIELD(inner_network_header);
1410 CHECK_SKB_FIELD(inner_mac_header);
1411 CHECK_SKB_FIELD(mark);
1412#ifdef CONFIG_NETWORK_SECMARK
1413 CHECK_SKB_FIELD(secmark);
1414#endif
1415#ifdef CONFIG_NET_RX_BUSY_POLL
1416 CHECK_SKB_FIELD(napi_id);
1417#endif
1418 CHECK_SKB_FIELD(alloc_cpu);
1419#ifdef CONFIG_XPS
1420 CHECK_SKB_FIELD(sender_cpu);
1421#endif
1422#ifdef CONFIG_NET_SCHED
1423 CHECK_SKB_FIELD(tc_index);
1424#endif
1425
1426}
1427
1428/*
1429 * You should not add any new code to this function. Add it to
1430 * __copy_skb_header above instead.
1431 */
1432static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1433{
1434#define C(x) n->x = skb->x
1435
1436 n->next = n->prev = NULL;
1437 n->sk = NULL;
1438 __copy_skb_header(n, skb);
1439
1440 C(len);
1441 C(data_len);
1442 C(mac_len);
1443 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1444 n->cloned = 1;
1445 n->nohdr = 0;
1446 n->peeked = 0;
1447 C(pfmemalloc);
1448 C(pp_recycle);
1449 n->destructor = NULL;
1450 C(tail);
1451 C(end);
1452 C(head);
1453 C(head_frag);
1454 C(data);
1455 C(truesize);
1456 refcount_set(&n->users, 1);
1457
1458 atomic_inc(&(skb_shinfo(skb)->dataref));
1459 skb->cloned = 1;
1460
1461 return n;
1462#undef C
1463}
1464
1465/**
1466 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1467 * @first: first sk_buff of the msg
1468 */
1469struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1470{
1471 struct sk_buff *n;
1472
1473 n = alloc_skb(0, GFP_ATOMIC);
1474 if (!n)
1475 return NULL;
1476
1477 n->len = first->len;
1478 n->data_len = first->len;
1479 n->truesize = first->truesize;
1480
1481 skb_shinfo(n)->frag_list = first;
1482
1483 __copy_skb_header(n, first);
1484 n->destructor = NULL;
1485
1486 return n;
1487}
1488EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1489
1490/**
1491 * skb_morph - morph one skb into another
1492 * @dst: the skb to receive the contents
1493 * @src: the skb to supply the contents
1494 *
1495 * This is identical to skb_clone except that the target skb is
1496 * supplied by the user.
1497 *
1498 * The target skb is returned upon exit.
1499 */
1500struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1501{
1502 skb_release_all(dst, SKB_CONSUMED, false);
1503 return __skb_clone(dst, src);
1504}
1505EXPORT_SYMBOL_GPL(skb_morph);
1506
1507int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1508{
1509 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1510 struct user_struct *user;
1511
1512 if (capable(CAP_IPC_LOCK) || !size)
1513 return 0;
1514
1515 rlim = rlimit(RLIMIT_MEMLOCK);
1516 if (rlim == RLIM_INFINITY)
1517 return 0;
1518
1519 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1520 max_pg = rlim >> PAGE_SHIFT;
1521 user = mmp->user ? : current_user();
1522
1523 old_pg = atomic_long_read(&user->locked_vm);
1524 do {
1525 new_pg = old_pg + num_pg;
1526 if (new_pg > max_pg)
1527 return -ENOBUFS;
1528 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1529
1530 if (!mmp->user) {
1531 mmp->user = get_uid(user);
1532 mmp->num_pg = num_pg;
1533 } else {
1534 mmp->num_pg += num_pg;
1535 }
1536
1537 return 0;
1538}
1539EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1540
1541void mm_unaccount_pinned_pages(struct mmpin *mmp)
1542{
1543 if (mmp->user) {
1544 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1545 free_uid(mmp->user);
1546 }
1547}
1548EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1549
1550static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1551{
1552 struct ubuf_info_msgzc *uarg;
1553 struct sk_buff *skb;
1554
1555 WARN_ON_ONCE(!in_task());
1556
1557 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1558 if (!skb)
1559 return NULL;
1560
1561 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1562 uarg = (void *)skb->cb;
1563 uarg->mmp.user = NULL;
1564
1565 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1566 kfree_skb(skb);
1567 return NULL;
1568 }
1569
1570 uarg->ubuf.callback = msg_zerocopy_callback;
1571 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1572 uarg->len = 1;
1573 uarg->bytelen = size;
1574 uarg->zerocopy = 1;
1575 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1576 refcount_set(&uarg->ubuf.refcnt, 1);
1577 sock_hold(sk);
1578
1579 return &uarg->ubuf;
1580}
1581
1582static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1583{
1584 return container_of((void *)uarg, struct sk_buff, cb);
1585}
1586
1587struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1588 struct ubuf_info *uarg)
1589{
1590 if (uarg) {
1591 struct ubuf_info_msgzc *uarg_zc;
1592 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1593 u32 bytelen, next;
1594
1595 /* there might be non MSG_ZEROCOPY users */
1596 if (uarg->callback != msg_zerocopy_callback)
1597 return NULL;
1598
1599 /* realloc only when socket is locked (TCP, UDP cork),
1600 * so uarg->len and sk_zckey access is serialized
1601 */
1602 if (!sock_owned_by_user(sk)) {
1603 WARN_ON_ONCE(1);
1604 return NULL;
1605 }
1606
1607 uarg_zc = uarg_to_msgzc(uarg);
1608 bytelen = uarg_zc->bytelen + size;
1609 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1610 /* TCP can create new skb to attach new uarg */
1611 if (sk->sk_type == SOCK_STREAM)
1612 goto new_alloc;
1613 return NULL;
1614 }
1615
1616 next = (u32)atomic_read(&sk->sk_zckey);
1617 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1618 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1619 return NULL;
1620 uarg_zc->len++;
1621 uarg_zc->bytelen = bytelen;
1622 atomic_set(&sk->sk_zckey, ++next);
1623
1624 /* no extra ref when appending to datagram (MSG_MORE) */
1625 if (sk->sk_type == SOCK_STREAM)
1626 net_zcopy_get(uarg);
1627
1628 return uarg;
1629 }
1630 }
1631
1632new_alloc:
1633 return msg_zerocopy_alloc(sk, size);
1634}
1635EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1636
1637static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1638{
1639 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1640 u32 old_lo, old_hi;
1641 u64 sum_len;
1642
1643 old_lo = serr->ee.ee_info;
1644 old_hi = serr->ee.ee_data;
1645 sum_len = old_hi - old_lo + 1ULL + len;
1646
1647 if (sum_len >= (1ULL << 32))
1648 return false;
1649
1650 if (lo != old_hi + 1)
1651 return false;
1652
1653 serr->ee.ee_data += len;
1654 return true;
1655}
1656
1657static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1658{
1659 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1660 struct sock_exterr_skb *serr;
1661 struct sock *sk = skb->sk;
1662 struct sk_buff_head *q;
1663 unsigned long flags;
1664 bool is_zerocopy;
1665 u32 lo, hi;
1666 u16 len;
1667
1668 mm_unaccount_pinned_pages(&uarg->mmp);
1669
1670 /* if !len, there was only 1 call, and it was aborted
1671 * so do not queue a completion notification
1672 */
1673 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1674 goto release;
1675
1676 len = uarg->len;
1677 lo = uarg->id;
1678 hi = uarg->id + len - 1;
1679 is_zerocopy = uarg->zerocopy;
1680
1681 serr = SKB_EXT_ERR(skb);
1682 memset(serr, 0, sizeof(*serr));
1683 serr->ee.ee_errno = 0;
1684 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1685 serr->ee.ee_data = hi;
1686 serr->ee.ee_info = lo;
1687 if (!is_zerocopy)
1688 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1689
1690 q = &sk->sk_error_queue;
1691 spin_lock_irqsave(&q->lock, flags);
1692 tail = skb_peek_tail(q);
1693 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1694 !skb_zerocopy_notify_extend(tail, lo, len)) {
1695 __skb_queue_tail(q, skb);
1696 skb = NULL;
1697 }
1698 spin_unlock_irqrestore(&q->lock, flags);
1699
1700 sk_error_report(sk);
1701
1702release:
1703 consume_skb(skb);
1704 sock_put(sk);
1705}
1706
1707void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1708 bool success)
1709{
1710 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1711
1712 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1713
1714 if (refcount_dec_and_test(&uarg->refcnt))
1715 __msg_zerocopy_callback(uarg_zc);
1716}
1717EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1718
1719void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1720{
1721 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1722
1723 atomic_dec(&sk->sk_zckey);
1724 uarg_to_msgzc(uarg)->len--;
1725
1726 if (have_uref)
1727 msg_zerocopy_callback(NULL, uarg, true);
1728}
1729EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1730
1731int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1732 struct msghdr *msg, int len,
1733 struct ubuf_info *uarg)
1734{
1735 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1736 int err, orig_len = skb->len;
1737
1738 /* An skb can only point to one uarg. This edge case happens when
1739 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1740 */
1741 if (orig_uarg && uarg != orig_uarg)
1742 return -EEXIST;
1743
1744 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1745 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1746 struct sock *save_sk = skb->sk;
1747
1748 /* Streams do not free skb on error. Reset to prev state. */
1749 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1750 skb->sk = sk;
1751 ___pskb_trim(skb, orig_len);
1752 skb->sk = save_sk;
1753 return err;
1754 }
1755
1756 skb_zcopy_set(skb, uarg, NULL);
1757 return skb->len - orig_len;
1758}
1759EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1760
1761void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1762{
1763 int i;
1764
1765 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1767 skb_frag_ref(skb, i);
1768}
1769EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1770
1771static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1772 gfp_t gfp_mask)
1773{
1774 if (skb_zcopy(orig)) {
1775 if (skb_zcopy(nskb)) {
1776 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1777 if (!gfp_mask) {
1778 WARN_ON_ONCE(1);
1779 return -ENOMEM;
1780 }
1781 if (skb_uarg(nskb) == skb_uarg(orig))
1782 return 0;
1783 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1784 return -EIO;
1785 }
1786 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1787 }
1788 return 0;
1789}
1790
1791/**
1792 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1793 * @skb: the skb to modify
1794 * @gfp_mask: allocation priority
1795 *
1796 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1797 * It will copy all frags into kernel and drop the reference
1798 * to userspace pages.
1799 *
1800 * If this function is called from an interrupt gfp_mask() must be
1801 * %GFP_ATOMIC.
1802 *
1803 * Returns 0 on success or a negative error code on failure
1804 * to allocate kernel memory to copy to.
1805 */
1806int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1807{
1808 int num_frags = skb_shinfo(skb)->nr_frags;
1809 struct page *page, *head = NULL;
1810 int i, order, psize, new_frags;
1811 u32 d_off;
1812
1813 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1814 return -EINVAL;
1815
1816 if (!num_frags)
1817 goto release;
1818
1819 /* We might have to allocate high order pages, so compute what minimum
1820 * page order is needed.
1821 */
1822 order = 0;
1823 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1824 order++;
1825 psize = (PAGE_SIZE << order);
1826
1827 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1828 for (i = 0; i < new_frags; i++) {
1829 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1830 if (!page) {
1831 while (head) {
1832 struct page *next = (struct page *)page_private(head);
1833 put_page(head);
1834 head = next;
1835 }
1836 return -ENOMEM;
1837 }
1838 set_page_private(page, (unsigned long)head);
1839 head = page;
1840 }
1841
1842 page = head;
1843 d_off = 0;
1844 for (i = 0; i < num_frags; i++) {
1845 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1846 u32 p_off, p_len, copied;
1847 struct page *p;
1848 u8 *vaddr;
1849
1850 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1851 p, p_off, p_len, copied) {
1852 u32 copy, done = 0;
1853 vaddr = kmap_atomic(p);
1854
1855 while (done < p_len) {
1856 if (d_off == psize) {
1857 d_off = 0;
1858 page = (struct page *)page_private(page);
1859 }
1860 copy = min_t(u32, psize - d_off, p_len - done);
1861 memcpy(page_address(page) + d_off,
1862 vaddr + p_off + done, copy);
1863 done += copy;
1864 d_off += copy;
1865 }
1866 kunmap_atomic(vaddr);
1867 }
1868 }
1869
1870 /* skb frags release userspace buffers */
1871 for (i = 0; i < num_frags; i++)
1872 skb_frag_unref(skb, i);
1873
1874 /* skb frags point to kernel buffers */
1875 for (i = 0; i < new_frags - 1; i++) {
1876 __skb_fill_page_desc(skb, i, head, 0, psize);
1877 head = (struct page *)page_private(head);
1878 }
1879 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1880 skb_shinfo(skb)->nr_frags = new_frags;
1881
1882release:
1883 skb_zcopy_clear(skb, false);
1884 return 0;
1885}
1886EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1887
1888/**
1889 * skb_clone - duplicate an sk_buff
1890 * @skb: buffer to clone
1891 * @gfp_mask: allocation priority
1892 *
1893 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1894 * copies share the same packet data but not structure. The new
1895 * buffer has a reference count of 1. If the allocation fails the
1896 * function returns %NULL otherwise the new buffer is returned.
1897 *
1898 * If this function is called from an interrupt gfp_mask() must be
1899 * %GFP_ATOMIC.
1900 */
1901
1902struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1903{
1904 struct sk_buff_fclones *fclones = container_of(skb,
1905 struct sk_buff_fclones,
1906 skb1);
1907 struct sk_buff *n;
1908
1909 if (skb_orphan_frags(skb, gfp_mask))
1910 return NULL;
1911
1912 if (skb->fclone == SKB_FCLONE_ORIG &&
1913 refcount_read(&fclones->fclone_ref) == 1) {
1914 n = &fclones->skb2;
1915 refcount_set(&fclones->fclone_ref, 2);
1916 n->fclone = SKB_FCLONE_CLONE;
1917 } else {
1918 if (skb_pfmemalloc(skb))
1919 gfp_mask |= __GFP_MEMALLOC;
1920
1921 n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1922 if (!n)
1923 return NULL;
1924
1925 n->fclone = SKB_FCLONE_UNAVAILABLE;
1926 }
1927
1928 return __skb_clone(n, skb);
1929}
1930EXPORT_SYMBOL(skb_clone);
1931
1932void skb_headers_offset_update(struct sk_buff *skb, int off)
1933{
1934 /* Only adjust this if it actually is csum_start rather than csum */
1935 if (skb->ip_summed == CHECKSUM_PARTIAL)
1936 skb->csum_start += off;
1937 /* {transport,network,mac}_header and tail are relative to skb->head */
1938 skb->transport_header += off;
1939 skb->network_header += off;
1940 if (skb_mac_header_was_set(skb))
1941 skb->mac_header += off;
1942 skb->inner_transport_header += off;
1943 skb->inner_network_header += off;
1944 skb->inner_mac_header += off;
1945}
1946EXPORT_SYMBOL(skb_headers_offset_update);
1947
1948void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1949{
1950 __copy_skb_header(new, old);
1951
1952 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1953 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1954 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1955}
1956EXPORT_SYMBOL(skb_copy_header);
1957
1958static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1959{
1960 if (skb_pfmemalloc(skb))
1961 return SKB_ALLOC_RX;
1962 return 0;
1963}
1964
1965/**
1966 * skb_copy - create private copy of an sk_buff
1967 * @skb: buffer to copy
1968 * @gfp_mask: allocation priority
1969 *
1970 * Make a copy of both an &sk_buff and its data. This is used when the
1971 * caller wishes to modify the data and needs a private copy of the
1972 * data to alter. Returns %NULL on failure or the pointer to the buffer
1973 * on success. The returned buffer has a reference count of 1.
1974 *
1975 * As by-product this function converts non-linear &sk_buff to linear
1976 * one, so that &sk_buff becomes completely private and caller is allowed
1977 * to modify all the data of returned buffer. This means that this
1978 * function is not recommended for use in circumstances when only
1979 * header is going to be modified. Use pskb_copy() instead.
1980 */
1981
1982struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1983{
1984 int headerlen = skb_headroom(skb);
1985 unsigned int size = skb_end_offset(skb) + skb->data_len;
1986 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1987 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1988
1989 if (!n)
1990 return NULL;
1991
1992 /* Set the data pointer */
1993 skb_reserve(n, headerlen);
1994 /* Set the tail pointer and length */
1995 skb_put(n, skb->len);
1996
1997 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1998
1999 skb_copy_header(n, skb);
2000 return n;
2001}
2002EXPORT_SYMBOL(skb_copy);
2003
2004/**
2005 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2006 * @skb: buffer to copy
2007 * @headroom: headroom of new skb
2008 * @gfp_mask: allocation priority
2009 * @fclone: if true allocate the copy of the skb from the fclone
2010 * cache instead of the head cache; it is recommended to set this
2011 * to true for the cases where the copy will likely be cloned
2012 *
2013 * Make a copy of both an &sk_buff and part of its data, located
2014 * in header. Fragmented data remain shared. This is used when
2015 * the caller wishes to modify only header of &sk_buff and needs
2016 * private copy of the header to alter. Returns %NULL on failure
2017 * or the pointer to the buffer on success.
2018 * The returned buffer has a reference count of 1.
2019 */
2020
2021struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2022 gfp_t gfp_mask, bool fclone)
2023{
2024 unsigned int size = skb_headlen(skb) + headroom;
2025 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2026 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2027
2028 if (!n)
2029 goto out;
2030
2031 /* Set the data pointer */
2032 skb_reserve(n, headroom);
2033 /* Set the tail pointer and length */
2034 skb_put(n, skb_headlen(skb));
2035 /* Copy the bytes */
2036 skb_copy_from_linear_data(skb, n->data, n->len);
2037
2038 n->truesize += skb->data_len;
2039 n->data_len = skb->data_len;
2040 n->len = skb->len;
2041
2042 if (skb_shinfo(skb)->nr_frags) {
2043 int i;
2044
2045 if (skb_orphan_frags(skb, gfp_mask) ||
2046 skb_zerocopy_clone(n, skb, gfp_mask)) {
2047 kfree_skb(n);
2048 n = NULL;
2049 goto out;
2050 }
2051 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2052 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2053 skb_frag_ref(skb, i);
2054 }
2055 skb_shinfo(n)->nr_frags = i;
2056 }
2057
2058 if (skb_has_frag_list(skb)) {
2059 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2060 skb_clone_fraglist(n);
2061 }
2062
2063 skb_copy_header(n, skb);
2064out:
2065 return n;
2066}
2067EXPORT_SYMBOL(__pskb_copy_fclone);
2068
2069/**
2070 * pskb_expand_head - reallocate header of &sk_buff
2071 * @skb: buffer to reallocate
2072 * @nhead: room to add at head
2073 * @ntail: room to add at tail
2074 * @gfp_mask: allocation priority
2075 *
2076 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2077 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2078 * reference count of 1. Returns zero in the case of success or error,
2079 * if expansion failed. In the last case, &sk_buff is not changed.
2080 *
2081 * All the pointers pointing into skb header may change and must be
2082 * reloaded after call to this function.
2083 */
2084
2085int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2086 gfp_t gfp_mask)
2087{
2088 unsigned int osize = skb_end_offset(skb);
2089 unsigned int size = osize + nhead + ntail;
2090 long off;
2091 u8 *data;
2092 int i;
2093
2094 BUG_ON(nhead < 0);
2095
2096 BUG_ON(skb_shared(skb));
2097
2098 skb_zcopy_downgrade_managed(skb);
2099
2100 if (skb_pfmemalloc(skb))
2101 gfp_mask |= __GFP_MEMALLOC;
2102
2103 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2104 if (!data)
2105 goto nodata;
2106 size = SKB_WITH_OVERHEAD(size);
2107
2108 /* Copy only real data... and, alas, header. This should be
2109 * optimized for the cases when header is void.
2110 */
2111 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2112
2113 memcpy((struct skb_shared_info *)(data + size),
2114 skb_shinfo(skb),
2115 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2116
2117 /*
2118 * if shinfo is shared we must drop the old head gracefully, but if it
2119 * is not we can just drop the old head and let the existing refcount
2120 * be since all we did is relocate the values
2121 */
2122 if (skb_cloned(skb)) {
2123 if (skb_orphan_frags(skb, gfp_mask))
2124 goto nofrags;
2125 if (skb_zcopy(skb))
2126 refcount_inc(&skb_uarg(skb)->refcnt);
2127 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2128 skb_frag_ref(skb, i);
2129
2130 if (skb_has_frag_list(skb))
2131 skb_clone_fraglist(skb);
2132
2133 skb_release_data(skb, SKB_CONSUMED, false);
2134 } else {
2135 skb_free_head(skb, false);
2136 }
2137 off = (data + nhead) - skb->head;
2138
2139 skb->head = data;
2140 skb->head_frag = 0;
2141 skb->data += off;
2142
2143 skb_set_end_offset(skb, size);
2144#ifdef NET_SKBUFF_DATA_USES_OFFSET
2145 off = nhead;
2146#endif
2147 skb->tail += off;
2148 skb_headers_offset_update(skb, nhead);
2149 skb->cloned = 0;
2150 skb->hdr_len = 0;
2151 skb->nohdr = 0;
2152 atomic_set(&skb_shinfo(skb)->dataref, 1);
2153
2154 skb_metadata_clear(skb);
2155
2156 /* It is not generally safe to change skb->truesize.
2157 * For the moment, we really care of rx path, or
2158 * when skb is orphaned (not attached to a socket).
2159 */
2160 if (!skb->sk || skb->destructor == sock_edemux)
2161 skb->truesize += size - osize;
2162
2163 return 0;
2164
2165nofrags:
2166 skb_kfree_head(data, size);
2167nodata:
2168 return -ENOMEM;
2169}
2170EXPORT_SYMBOL(pskb_expand_head);
2171
2172/* Make private copy of skb with writable head and some headroom */
2173
2174struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2175{
2176 struct sk_buff *skb2;
2177 int delta = headroom - skb_headroom(skb);
2178
2179 if (delta <= 0)
2180 skb2 = pskb_copy(skb, GFP_ATOMIC);
2181 else {
2182 skb2 = skb_clone(skb, GFP_ATOMIC);
2183 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2184 GFP_ATOMIC)) {
2185 kfree_skb(skb2);
2186 skb2 = NULL;
2187 }
2188 }
2189 return skb2;
2190}
2191EXPORT_SYMBOL(skb_realloc_headroom);
2192
2193/* Note: We plan to rework this in linux-6.4 */
2194int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2195{
2196 unsigned int saved_end_offset, saved_truesize;
2197 struct skb_shared_info *shinfo;
2198 int res;
2199
2200 saved_end_offset = skb_end_offset(skb);
2201 saved_truesize = skb->truesize;
2202
2203 res = pskb_expand_head(skb, 0, 0, pri);
2204 if (res)
2205 return res;
2206
2207 skb->truesize = saved_truesize;
2208
2209 if (likely(skb_end_offset(skb) == saved_end_offset))
2210 return 0;
2211
2212 /* We can not change skb->end if the original or new value
2213 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2214 */
2215 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2216 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2217 /* We think this path should not be taken.
2218 * Add a temporary trace to warn us just in case.
2219 */
2220 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2221 saved_end_offset, skb_end_offset(skb));
2222 WARN_ON_ONCE(1);
2223 return 0;
2224 }
2225
2226 shinfo = skb_shinfo(skb);
2227
2228 /* We are about to change back skb->end,
2229 * we need to move skb_shinfo() to its new location.
2230 */
2231 memmove(skb->head + saved_end_offset,
2232 shinfo,
2233 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2234
2235 skb_set_end_offset(skb, saved_end_offset);
2236
2237 return 0;
2238}
2239
2240/**
2241 * skb_expand_head - reallocate header of &sk_buff
2242 * @skb: buffer to reallocate
2243 * @headroom: needed headroom
2244 *
2245 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2246 * if possible; copies skb->sk to new skb as needed
2247 * and frees original skb in case of failures.
2248 *
2249 * It expect increased headroom and generates warning otherwise.
2250 */
2251
2252struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2253{
2254 int delta = headroom - skb_headroom(skb);
2255 int osize = skb_end_offset(skb);
2256 struct sock *sk = skb->sk;
2257
2258 if (WARN_ONCE(delta <= 0,
2259 "%s is expecting an increase in the headroom", __func__))
2260 return skb;
2261
2262 delta = SKB_DATA_ALIGN(delta);
2263 /* pskb_expand_head() might crash, if skb is shared. */
2264 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2265 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2266
2267 if (unlikely(!nskb))
2268 goto fail;
2269
2270 if (sk)
2271 skb_set_owner_w(nskb, sk);
2272 consume_skb(skb);
2273 skb = nskb;
2274 }
2275 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2276 goto fail;
2277
2278 if (sk && is_skb_wmem(skb)) {
2279 delta = skb_end_offset(skb) - osize;
2280 refcount_add(delta, &sk->sk_wmem_alloc);
2281 skb->truesize += delta;
2282 }
2283 return skb;
2284
2285fail:
2286 kfree_skb(skb);
2287 return NULL;
2288}
2289EXPORT_SYMBOL(skb_expand_head);
2290
2291/**
2292 * skb_copy_expand - copy and expand sk_buff
2293 * @skb: buffer to copy
2294 * @newheadroom: new free bytes at head
2295 * @newtailroom: new free bytes at tail
2296 * @gfp_mask: allocation priority
2297 *
2298 * Make a copy of both an &sk_buff and its data and while doing so
2299 * allocate additional space.
2300 *
2301 * This is used when the caller wishes to modify the data and needs a
2302 * private copy of the data to alter as well as more space for new fields.
2303 * Returns %NULL on failure or the pointer to the buffer
2304 * on success. The returned buffer has a reference count of 1.
2305 *
2306 * You must pass %GFP_ATOMIC as the allocation priority if this function
2307 * is called from an interrupt.
2308 */
2309struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2310 int newheadroom, int newtailroom,
2311 gfp_t gfp_mask)
2312{
2313 /*
2314 * Allocate the copy buffer
2315 */
2316 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2317 gfp_mask, skb_alloc_rx_flag(skb),
2318 NUMA_NO_NODE);
2319 int oldheadroom = skb_headroom(skb);
2320 int head_copy_len, head_copy_off;
2321
2322 if (!n)
2323 return NULL;
2324
2325 skb_reserve(n, newheadroom);
2326
2327 /* Set the tail pointer and length */
2328 skb_put(n, skb->len);
2329
2330 head_copy_len = oldheadroom;
2331 head_copy_off = 0;
2332 if (newheadroom <= head_copy_len)
2333 head_copy_len = newheadroom;
2334 else
2335 head_copy_off = newheadroom - head_copy_len;
2336
2337 /* Copy the linear header and data. */
2338 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2339 skb->len + head_copy_len));
2340
2341 skb_copy_header(n, skb);
2342
2343 skb_headers_offset_update(n, newheadroom - oldheadroom);
2344
2345 return n;
2346}
2347EXPORT_SYMBOL(skb_copy_expand);
2348
2349/**
2350 * __skb_pad - zero pad the tail of an skb
2351 * @skb: buffer to pad
2352 * @pad: space to pad
2353 * @free_on_error: free buffer on error
2354 *
2355 * Ensure that a buffer is followed by a padding area that is zero
2356 * filled. Used by network drivers which may DMA or transfer data
2357 * beyond the buffer end onto the wire.
2358 *
2359 * May return error in out of memory cases. The skb is freed on error
2360 * if @free_on_error is true.
2361 */
2362
2363int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2364{
2365 int err;
2366 int ntail;
2367
2368 /* If the skbuff is non linear tailroom is always zero.. */
2369 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2370 memset(skb->data+skb->len, 0, pad);
2371 return 0;
2372 }
2373
2374 ntail = skb->data_len + pad - (skb->end - skb->tail);
2375 if (likely(skb_cloned(skb) || ntail > 0)) {
2376 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2377 if (unlikely(err))
2378 goto free_skb;
2379 }
2380
2381 /* FIXME: The use of this function with non-linear skb's really needs
2382 * to be audited.
2383 */
2384 err = skb_linearize(skb);
2385 if (unlikely(err))
2386 goto free_skb;
2387
2388 memset(skb->data + skb->len, 0, pad);
2389 return 0;
2390
2391free_skb:
2392 if (free_on_error)
2393 kfree_skb(skb);
2394 return err;
2395}
2396EXPORT_SYMBOL(__skb_pad);
2397
2398/**
2399 * pskb_put - add data to the tail of a potentially fragmented buffer
2400 * @skb: start of the buffer to use
2401 * @tail: tail fragment of the buffer to use
2402 * @len: amount of data to add
2403 *
2404 * This function extends the used data area of the potentially
2405 * fragmented buffer. @tail must be the last fragment of @skb -- or
2406 * @skb itself. If this would exceed the total buffer size the kernel
2407 * will panic. A pointer to the first byte of the extra data is
2408 * returned.
2409 */
2410
2411void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2412{
2413 if (tail != skb) {
2414 skb->data_len += len;
2415 skb->len += len;
2416 }
2417 return skb_put(tail, len);
2418}
2419EXPORT_SYMBOL_GPL(pskb_put);
2420
2421/**
2422 * skb_put - add data to a buffer
2423 * @skb: buffer to use
2424 * @len: amount of data to add
2425 *
2426 * This function extends the used data area of the buffer. If this would
2427 * exceed the total buffer size the kernel will panic. A pointer to the
2428 * first byte of the extra data is returned.
2429 */
2430void *skb_put(struct sk_buff *skb, unsigned int len)
2431{
2432 void *tmp = skb_tail_pointer(skb);
2433 SKB_LINEAR_ASSERT(skb);
2434 skb->tail += len;
2435 skb->len += len;
2436 if (unlikely(skb->tail > skb->end))
2437 skb_over_panic(skb, len, __builtin_return_address(0));
2438 return tmp;
2439}
2440EXPORT_SYMBOL(skb_put);
2441
2442/**
2443 * skb_push - add data to the start of a buffer
2444 * @skb: buffer to use
2445 * @len: amount of data to add
2446 *
2447 * This function extends the used data area of the buffer at the buffer
2448 * start. If this would exceed the total buffer headroom the kernel will
2449 * panic. A pointer to the first byte of the extra data is returned.
2450 */
2451void *skb_push(struct sk_buff *skb, unsigned int len)
2452{
2453 skb->data -= len;
2454 skb->len += len;
2455 if (unlikely(skb->data < skb->head))
2456 skb_under_panic(skb, len, __builtin_return_address(0));
2457 return skb->data;
2458}
2459EXPORT_SYMBOL(skb_push);
2460
2461/**
2462 * skb_pull - remove data from the start of a buffer
2463 * @skb: buffer to use
2464 * @len: amount of data to remove
2465 *
2466 * This function removes data from the start of a buffer, returning
2467 * the memory to the headroom. A pointer to the next data in the buffer
2468 * is returned. Once the data has been pulled future pushes will overwrite
2469 * the old data.
2470 */
2471void *skb_pull(struct sk_buff *skb, unsigned int len)
2472{
2473 return skb_pull_inline(skb, len);
2474}
2475EXPORT_SYMBOL(skb_pull);
2476
2477/**
2478 * skb_pull_data - remove data from the start of a buffer returning its
2479 * original position.
2480 * @skb: buffer to use
2481 * @len: amount of data to remove
2482 *
2483 * This function removes data from the start of a buffer, returning
2484 * the memory to the headroom. A pointer to the original data in the buffer
2485 * is returned after checking if there is enough data to pull. Once the
2486 * data has been pulled future pushes will overwrite the old data.
2487 */
2488void *skb_pull_data(struct sk_buff *skb, size_t len)
2489{
2490 void *data = skb->data;
2491
2492 if (skb->len < len)
2493 return NULL;
2494
2495 skb_pull(skb, len);
2496
2497 return data;
2498}
2499EXPORT_SYMBOL(skb_pull_data);
2500
2501/**
2502 * skb_trim - remove end from a buffer
2503 * @skb: buffer to alter
2504 * @len: new length
2505 *
2506 * Cut the length of a buffer down by removing data from the tail. If
2507 * the buffer is already under the length specified it is not modified.
2508 * The skb must be linear.
2509 */
2510void skb_trim(struct sk_buff *skb, unsigned int len)
2511{
2512 if (skb->len > len)
2513 __skb_trim(skb, len);
2514}
2515EXPORT_SYMBOL(skb_trim);
2516
2517/* Trims skb to length len. It can change skb pointers.
2518 */
2519
2520int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2521{
2522 struct sk_buff **fragp;
2523 struct sk_buff *frag;
2524 int offset = skb_headlen(skb);
2525 int nfrags = skb_shinfo(skb)->nr_frags;
2526 int i;
2527 int err;
2528
2529 if (skb_cloned(skb) &&
2530 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2531 return err;
2532
2533 i = 0;
2534 if (offset >= len)
2535 goto drop_pages;
2536
2537 for (; i < nfrags; i++) {
2538 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2539
2540 if (end < len) {
2541 offset = end;
2542 continue;
2543 }
2544
2545 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2546
2547drop_pages:
2548 skb_shinfo(skb)->nr_frags = i;
2549
2550 for (; i < nfrags; i++)
2551 skb_frag_unref(skb, i);
2552
2553 if (skb_has_frag_list(skb))
2554 skb_drop_fraglist(skb);
2555 goto done;
2556 }
2557
2558 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2559 fragp = &frag->next) {
2560 int end = offset + frag->len;
2561
2562 if (skb_shared(frag)) {
2563 struct sk_buff *nfrag;
2564
2565 nfrag = skb_clone(frag, GFP_ATOMIC);
2566 if (unlikely(!nfrag))
2567 return -ENOMEM;
2568
2569 nfrag->next = frag->next;
2570 consume_skb(frag);
2571 frag = nfrag;
2572 *fragp = frag;
2573 }
2574
2575 if (end < len) {
2576 offset = end;
2577 continue;
2578 }
2579
2580 if (end > len &&
2581 unlikely((err = pskb_trim(frag, len - offset))))
2582 return err;
2583
2584 if (frag->next)
2585 skb_drop_list(&frag->next);
2586 break;
2587 }
2588
2589done:
2590 if (len > skb_headlen(skb)) {
2591 skb->data_len -= skb->len - len;
2592 skb->len = len;
2593 } else {
2594 skb->len = len;
2595 skb->data_len = 0;
2596 skb_set_tail_pointer(skb, len);
2597 }
2598
2599 if (!skb->sk || skb->destructor == sock_edemux)
2600 skb_condense(skb);
2601 return 0;
2602}
2603EXPORT_SYMBOL(___pskb_trim);
2604
2605/* Note : use pskb_trim_rcsum() instead of calling this directly
2606 */
2607int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2608{
2609 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2610 int delta = skb->len - len;
2611
2612 skb->csum = csum_block_sub(skb->csum,
2613 skb_checksum(skb, len, delta, 0),
2614 len);
2615 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2616 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2617 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2618
2619 if (offset + sizeof(__sum16) > hdlen)
2620 return -EINVAL;
2621 }
2622 return __pskb_trim(skb, len);
2623}
2624EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2625
2626/**
2627 * __pskb_pull_tail - advance tail of skb header
2628 * @skb: buffer to reallocate
2629 * @delta: number of bytes to advance tail
2630 *
2631 * The function makes a sense only on a fragmented &sk_buff,
2632 * it expands header moving its tail forward and copying necessary
2633 * data from fragmented part.
2634 *
2635 * &sk_buff MUST have reference count of 1.
2636 *
2637 * Returns %NULL (and &sk_buff does not change) if pull failed
2638 * or value of new tail of skb in the case of success.
2639 *
2640 * All the pointers pointing into skb header may change and must be
2641 * reloaded after call to this function.
2642 */
2643
2644/* Moves tail of skb head forward, copying data from fragmented part,
2645 * when it is necessary.
2646 * 1. It may fail due to malloc failure.
2647 * 2. It may change skb pointers.
2648 *
2649 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2650 */
2651void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2652{
2653 /* If skb has not enough free space at tail, get new one
2654 * plus 128 bytes for future expansions. If we have enough
2655 * room at tail, reallocate without expansion only if skb is cloned.
2656 */
2657 int i, k, eat = (skb->tail + delta) - skb->end;
2658
2659 if (eat > 0 || skb_cloned(skb)) {
2660 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2661 GFP_ATOMIC))
2662 return NULL;
2663 }
2664
2665 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2666 skb_tail_pointer(skb), delta));
2667
2668 /* Optimization: no fragments, no reasons to preestimate
2669 * size of pulled pages. Superb.
2670 */
2671 if (!skb_has_frag_list(skb))
2672 goto pull_pages;
2673
2674 /* Estimate size of pulled pages. */
2675 eat = delta;
2676 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2677 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2678
2679 if (size >= eat)
2680 goto pull_pages;
2681 eat -= size;
2682 }
2683
2684 /* If we need update frag list, we are in troubles.
2685 * Certainly, it is possible to add an offset to skb data,
2686 * but taking into account that pulling is expected to
2687 * be very rare operation, it is worth to fight against
2688 * further bloating skb head and crucify ourselves here instead.
2689 * Pure masohism, indeed. 8)8)
2690 */
2691 if (eat) {
2692 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2693 struct sk_buff *clone = NULL;
2694 struct sk_buff *insp = NULL;
2695
2696 do {
2697 if (list->len <= eat) {
2698 /* Eaten as whole. */
2699 eat -= list->len;
2700 list = list->next;
2701 insp = list;
2702 } else {
2703 /* Eaten partially. */
2704 if (skb_is_gso(skb) && !list->head_frag &&
2705 skb_headlen(list))
2706 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2707
2708 if (skb_shared(list)) {
2709 /* Sucks! We need to fork list. :-( */
2710 clone = skb_clone(list, GFP_ATOMIC);
2711 if (!clone)
2712 return NULL;
2713 insp = list->next;
2714 list = clone;
2715 } else {
2716 /* This may be pulled without
2717 * problems. */
2718 insp = list;
2719 }
2720 if (!pskb_pull(list, eat)) {
2721 kfree_skb(clone);
2722 return NULL;
2723 }
2724 break;
2725 }
2726 } while (eat);
2727
2728 /* Free pulled out fragments. */
2729 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2730 skb_shinfo(skb)->frag_list = list->next;
2731 consume_skb(list);
2732 }
2733 /* And insert new clone at head. */
2734 if (clone) {
2735 clone->next = list;
2736 skb_shinfo(skb)->frag_list = clone;
2737 }
2738 }
2739 /* Success! Now we may commit changes to skb data. */
2740
2741pull_pages:
2742 eat = delta;
2743 k = 0;
2744 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2745 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2746
2747 if (size <= eat) {
2748 skb_frag_unref(skb, i);
2749 eat -= size;
2750 } else {
2751 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2752
2753 *frag = skb_shinfo(skb)->frags[i];
2754 if (eat) {
2755 skb_frag_off_add(frag, eat);
2756 skb_frag_size_sub(frag, eat);
2757 if (!i)
2758 goto end;
2759 eat = 0;
2760 }
2761 k++;
2762 }
2763 }
2764 skb_shinfo(skb)->nr_frags = k;
2765
2766end:
2767 skb->tail += delta;
2768 skb->data_len -= delta;
2769
2770 if (!skb->data_len)
2771 skb_zcopy_clear(skb, false);
2772
2773 return skb_tail_pointer(skb);
2774}
2775EXPORT_SYMBOL(__pskb_pull_tail);
2776
2777/**
2778 * skb_copy_bits - copy bits from skb to kernel buffer
2779 * @skb: source skb
2780 * @offset: offset in source
2781 * @to: destination buffer
2782 * @len: number of bytes to copy
2783 *
2784 * Copy the specified number of bytes from the source skb to the
2785 * destination buffer.
2786 *
2787 * CAUTION ! :
2788 * If its prototype is ever changed,
2789 * check arch/{*}/net/{*}.S files,
2790 * since it is called from BPF assembly code.
2791 */
2792int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2793{
2794 int start = skb_headlen(skb);
2795 struct sk_buff *frag_iter;
2796 int i, copy;
2797
2798 if (offset > (int)skb->len - len)
2799 goto fault;
2800
2801 /* Copy header. */
2802 if ((copy = start - offset) > 0) {
2803 if (copy > len)
2804 copy = len;
2805 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2806 if ((len -= copy) == 0)
2807 return 0;
2808 offset += copy;
2809 to += copy;
2810 }
2811
2812 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2813 int end;
2814 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2815
2816 WARN_ON(start > offset + len);
2817
2818 end = start + skb_frag_size(f);
2819 if ((copy = end - offset) > 0) {
2820 u32 p_off, p_len, copied;
2821 struct page *p;
2822 u8 *vaddr;
2823
2824 if (copy > len)
2825 copy = len;
2826
2827 skb_frag_foreach_page(f,
2828 skb_frag_off(f) + offset - start,
2829 copy, p, p_off, p_len, copied) {
2830 vaddr = kmap_atomic(p);
2831 memcpy(to + copied, vaddr + p_off, p_len);
2832 kunmap_atomic(vaddr);
2833 }
2834
2835 if ((len -= copy) == 0)
2836 return 0;
2837 offset += copy;
2838 to += copy;
2839 }
2840 start = end;
2841 }
2842
2843 skb_walk_frags(skb, frag_iter) {
2844 int end;
2845
2846 WARN_ON(start > offset + len);
2847
2848 end = start + frag_iter->len;
2849 if ((copy = end - offset) > 0) {
2850 if (copy > len)
2851 copy = len;
2852 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2853 goto fault;
2854 if ((len -= copy) == 0)
2855 return 0;
2856 offset += copy;
2857 to += copy;
2858 }
2859 start = end;
2860 }
2861
2862 if (!len)
2863 return 0;
2864
2865fault:
2866 return -EFAULT;
2867}
2868EXPORT_SYMBOL(skb_copy_bits);
2869
2870/*
2871 * Callback from splice_to_pipe(), if we need to release some pages
2872 * at the end of the spd in case we error'ed out in filling the pipe.
2873 */
2874static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2875{
2876 put_page(spd->pages[i]);
2877}
2878
2879static struct page *linear_to_page(struct page *page, unsigned int *len,
2880 unsigned int *offset,
2881 struct sock *sk)
2882{
2883 struct page_frag *pfrag = sk_page_frag(sk);
2884
2885 if (!sk_page_frag_refill(sk, pfrag))
2886 return NULL;
2887
2888 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2889
2890 memcpy(page_address(pfrag->page) + pfrag->offset,
2891 page_address(page) + *offset, *len);
2892 *offset = pfrag->offset;
2893 pfrag->offset += *len;
2894
2895 return pfrag->page;
2896}
2897
2898static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2899 struct page *page,
2900 unsigned int offset)
2901{
2902 return spd->nr_pages &&
2903 spd->pages[spd->nr_pages - 1] == page &&
2904 (spd->partial[spd->nr_pages - 1].offset +
2905 spd->partial[spd->nr_pages - 1].len == offset);
2906}
2907
2908/*
2909 * Fill page/offset/length into spd, if it can hold more pages.
2910 */
2911static bool spd_fill_page(struct splice_pipe_desc *spd,
2912 struct pipe_inode_info *pipe, struct page *page,
2913 unsigned int *len, unsigned int offset,
2914 bool linear,
2915 struct sock *sk)
2916{
2917 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2918 return true;
2919
2920 if (linear) {
2921 page = linear_to_page(page, len, &offset, sk);
2922 if (!page)
2923 return true;
2924 }
2925 if (spd_can_coalesce(spd, page, offset)) {
2926 spd->partial[spd->nr_pages - 1].len += *len;
2927 return false;
2928 }
2929 get_page(page);
2930 spd->pages[spd->nr_pages] = page;
2931 spd->partial[spd->nr_pages].len = *len;
2932 spd->partial[spd->nr_pages].offset = offset;
2933 spd->nr_pages++;
2934
2935 return false;
2936}
2937
2938static bool __splice_segment(struct page *page, unsigned int poff,
2939 unsigned int plen, unsigned int *off,
2940 unsigned int *len,
2941 struct splice_pipe_desc *spd, bool linear,
2942 struct sock *sk,
2943 struct pipe_inode_info *pipe)
2944{
2945 if (!*len)
2946 return true;
2947
2948 /* skip this segment if already processed */
2949 if (*off >= plen) {
2950 *off -= plen;
2951 return false;
2952 }
2953
2954 /* ignore any bits we already processed */
2955 poff += *off;
2956 plen -= *off;
2957 *off = 0;
2958
2959 do {
2960 unsigned int flen = min(*len, plen);
2961
2962 if (spd_fill_page(spd, pipe, page, &flen, poff,
2963 linear, sk))
2964 return true;
2965 poff += flen;
2966 plen -= flen;
2967 *len -= flen;
2968 } while (*len && plen);
2969
2970 return false;
2971}
2972
2973/*
2974 * Map linear and fragment data from the skb to spd. It reports true if the
2975 * pipe is full or if we already spliced the requested length.
2976 */
2977static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2978 unsigned int *offset, unsigned int *len,
2979 struct splice_pipe_desc *spd, struct sock *sk)
2980{
2981 int seg;
2982 struct sk_buff *iter;
2983
2984 /* map the linear part :
2985 * If skb->head_frag is set, this 'linear' part is backed by a
2986 * fragment, and if the head is not shared with any clones then
2987 * we can avoid a copy since we own the head portion of this page.
2988 */
2989 if (__splice_segment(virt_to_page(skb->data),
2990 (unsigned long) skb->data & (PAGE_SIZE - 1),
2991 skb_headlen(skb),
2992 offset, len, spd,
2993 skb_head_is_locked(skb),
2994 sk, pipe))
2995 return true;
2996
2997 /*
2998 * then map the fragments
2999 */
3000 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3001 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3002
3003 if (__splice_segment(skb_frag_page(f),
3004 skb_frag_off(f), skb_frag_size(f),
3005 offset, len, spd, false, sk, pipe))
3006 return true;
3007 }
3008
3009 skb_walk_frags(skb, iter) {
3010 if (*offset >= iter->len) {
3011 *offset -= iter->len;
3012 continue;
3013 }
3014 /* __skb_splice_bits() only fails if the output has no room
3015 * left, so no point in going over the frag_list for the error
3016 * case.
3017 */
3018 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3019 return true;
3020 }
3021
3022 return false;
3023}
3024
3025/*
3026 * Map data from the skb to a pipe. Should handle both the linear part,
3027 * the fragments, and the frag list.
3028 */
3029int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3030 struct pipe_inode_info *pipe, unsigned int tlen,
3031 unsigned int flags)
3032{
3033 struct partial_page partial[MAX_SKB_FRAGS];
3034 struct page *pages[MAX_SKB_FRAGS];
3035 struct splice_pipe_desc spd = {
3036 .pages = pages,
3037 .partial = partial,
3038 .nr_pages_max = MAX_SKB_FRAGS,
3039 .ops = &nosteal_pipe_buf_ops,
3040 .spd_release = sock_spd_release,
3041 };
3042 int ret = 0;
3043
3044 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3045
3046 if (spd.nr_pages)
3047 ret = splice_to_pipe(pipe, &spd);
3048
3049 return ret;
3050}
3051EXPORT_SYMBOL_GPL(skb_splice_bits);
3052
3053static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3054{
3055 struct socket *sock = sk->sk_socket;
3056 size_t size = msg_data_left(msg);
3057
3058 if (!sock)
3059 return -EINVAL;
3060
3061 if (!sock->ops->sendmsg_locked)
3062 return sock_no_sendmsg_locked(sk, msg, size);
3063
3064 return sock->ops->sendmsg_locked(sk, msg, size);
3065}
3066
3067static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3068{
3069 struct socket *sock = sk->sk_socket;
3070
3071 if (!sock)
3072 return -EINVAL;
3073 return sock_sendmsg(sock, msg);
3074}
3075
3076typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3077static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3078 int len, sendmsg_func sendmsg)
3079{
3080 unsigned int orig_len = len;
3081 struct sk_buff *head = skb;
3082 unsigned short fragidx;
3083 int slen, ret;
3084
3085do_frag_list:
3086
3087 /* Deal with head data */
3088 while (offset < skb_headlen(skb) && len) {
3089 struct kvec kv;
3090 struct msghdr msg;
3091
3092 slen = min_t(int, len, skb_headlen(skb) - offset);
3093 kv.iov_base = skb->data + offset;
3094 kv.iov_len = slen;
3095 memset(&msg, 0, sizeof(msg));
3096 msg.msg_flags = MSG_DONTWAIT;
3097
3098 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3099 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3100 sendmsg_unlocked, sk, &msg);
3101 if (ret <= 0)
3102 goto error;
3103
3104 offset += ret;
3105 len -= ret;
3106 }
3107
3108 /* All the data was skb head? */
3109 if (!len)
3110 goto out;
3111
3112 /* Make offset relative to start of frags */
3113 offset -= skb_headlen(skb);
3114
3115 /* Find where we are in frag list */
3116 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3117 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3118
3119 if (offset < skb_frag_size(frag))
3120 break;
3121
3122 offset -= skb_frag_size(frag);
3123 }
3124
3125 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3126 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3127
3128 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3129
3130 while (slen) {
3131 struct bio_vec bvec;
3132 struct msghdr msg = {
3133 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3134 };
3135
3136 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3137 skb_frag_off(frag) + offset);
3138 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3139 slen);
3140
3141 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3142 sendmsg_unlocked, sk, &msg);
3143 if (ret <= 0)
3144 goto error;
3145
3146 len -= ret;
3147 offset += ret;
3148 slen -= ret;
3149 }
3150
3151 offset = 0;
3152 }
3153
3154 if (len) {
3155 /* Process any frag lists */
3156
3157 if (skb == head) {
3158 if (skb_has_frag_list(skb)) {
3159 skb = skb_shinfo(skb)->frag_list;
3160 goto do_frag_list;
3161 }
3162 } else if (skb->next) {
3163 skb = skb->next;
3164 goto do_frag_list;
3165 }
3166 }
3167
3168out:
3169 return orig_len - len;
3170
3171error:
3172 return orig_len == len ? ret : orig_len - len;
3173}
3174
3175/* Send skb data on a socket. Socket must be locked. */
3176int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3177 int len)
3178{
3179 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3180}
3181EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3182
3183/* Send skb data on a socket. Socket must be unlocked. */
3184int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3185{
3186 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3187}
3188
3189/**
3190 * skb_store_bits - store bits from kernel buffer to skb
3191 * @skb: destination buffer
3192 * @offset: offset in destination
3193 * @from: source buffer
3194 * @len: number of bytes to copy
3195 *
3196 * Copy the specified number of bytes from the source buffer to the
3197 * destination skb. This function handles all the messy bits of
3198 * traversing fragment lists and such.
3199 */
3200
3201int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3202{
3203 int start = skb_headlen(skb);
3204 struct sk_buff *frag_iter;
3205 int i, copy;
3206
3207 if (offset > (int)skb->len - len)
3208 goto fault;
3209
3210 if ((copy = start - offset) > 0) {
3211 if (copy > len)
3212 copy = len;
3213 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3214 if ((len -= copy) == 0)
3215 return 0;
3216 offset += copy;
3217 from += copy;
3218 }
3219
3220 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3221 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3222 int end;
3223
3224 WARN_ON(start > offset + len);
3225
3226 end = start + skb_frag_size(frag);
3227 if ((copy = end - offset) > 0) {
3228 u32 p_off, p_len, copied;
3229 struct page *p;
3230 u8 *vaddr;
3231
3232 if (copy > len)
3233 copy = len;
3234
3235 skb_frag_foreach_page(frag,
3236 skb_frag_off(frag) + offset - start,
3237 copy, p, p_off, p_len, copied) {
3238 vaddr = kmap_atomic(p);
3239 memcpy(vaddr + p_off, from + copied, p_len);
3240 kunmap_atomic(vaddr);
3241 }
3242
3243 if ((len -= copy) == 0)
3244 return 0;
3245 offset += copy;
3246 from += copy;
3247 }
3248 start = end;
3249 }
3250
3251 skb_walk_frags(skb, frag_iter) {
3252 int end;
3253
3254 WARN_ON(start > offset + len);
3255
3256 end = start + frag_iter->len;
3257 if ((copy = end - offset) > 0) {
3258 if (copy > len)
3259 copy = len;
3260 if (skb_store_bits(frag_iter, offset - start,
3261 from, copy))
3262 goto fault;
3263 if ((len -= copy) == 0)
3264 return 0;
3265 offset += copy;
3266 from += copy;
3267 }
3268 start = end;
3269 }
3270 if (!len)
3271 return 0;
3272
3273fault:
3274 return -EFAULT;
3275}
3276EXPORT_SYMBOL(skb_store_bits);
3277
3278/* Checksum skb data. */
3279__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3280 __wsum csum, const struct skb_checksum_ops *ops)
3281{
3282 int start = skb_headlen(skb);
3283 int i, copy = start - offset;
3284 struct sk_buff *frag_iter;
3285 int pos = 0;
3286
3287 /* Checksum header. */
3288 if (copy > 0) {
3289 if (copy > len)
3290 copy = len;
3291 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3292 skb->data + offset, copy, csum);
3293 if ((len -= copy) == 0)
3294 return csum;
3295 offset += copy;
3296 pos = copy;
3297 }
3298
3299 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3300 int end;
3301 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3302
3303 WARN_ON(start > offset + len);
3304
3305 end = start + skb_frag_size(frag);
3306 if ((copy = end - offset) > 0) {
3307 u32 p_off, p_len, copied;
3308 struct page *p;
3309 __wsum csum2;
3310 u8 *vaddr;
3311
3312 if (copy > len)
3313 copy = len;
3314
3315 skb_frag_foreach_page(frag,
3316 skb_frag_off(frag) + offset - start,
3317 copy, p, p_off, p_len, copied) {
3318 vaddr = kmap_atomic(p);
3319 csum2 = INDIRECT_CALL_1(ops->update,
3320 csum_partial_ext,
3321 vaddr + p_off, p_len, 0);
3322 kunmap_atomic(vaddr);
3323 csum = INDIRECT_CALL_1(ops->combine,
3324 csum_block_add_ext, csum,
3325 csum2, pos, p_len);
3326 pos += p_len;
3327 }
3328
3329 if (!(len -= copy))
3330 return csum;
3331 offset += copy;
3332 }
3333 start = end;
3334 }
3335
3336 skb_walk_frags(skb, frag_iter) {
3337 int end;
3338
3339 WARN_ON(start > offset + len);
3340
3341 end = start + frag_iter->len;
3342 if ((copy = end - offset) > 0) {
3343 __wsum csum2;
3344 if (copy > len)
3345 copy = len;
3346 csum2 = __skb_checksum(frag_iter, offset - start,
3347 copy, 0, ops);
3348 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3349 csum, csum2, pos, copy);
3350 if ((len -= copy) == 0)
3351 return csum;
3352 offset += copy;
3353 pos += copy;
3354 }
3355 start = end;
3356 }
3357 BUG_ON(len);
3358
3359 return csum;
3360}
3361EXPORT_SYMBOL(__skb_checksum);
3362
3363__wsum skb_checksum(const struct sk_buff *skb, int offset,
3364 int len, __wsum csum)
3365{
3366 const struct skb_checksum_ops ops = {
3367 .update = csum_partial_ext,
3368 .combine = csum_block_add_ext,
3369 };
3370
3371 return __skb_checksum(skb, offset, len, csum, &ops);
3372}
3373EXPORT_SYMBOL(skb_checksum);
3374
3375/* Both of above in one bottle. */
3376
3377__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3378 u8 *to, int len)
3379{
3380 int start = skb_headlen(skb);
3381 int i, copy = start - offset;
3382 struct sk_buff *frag_iter;
3383 int pos = 0;
3384 __wsum csum = 0;
3385
3386 /* Copy header. */
3387 if (copy > 0) {
3388 if (copy > len)
3389 copy = len;
3390 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3391 copy);
3392 if ((len -= copy) == 0)
3393 return csum;
3394 offset += copy;
3395 to += copy;
3396 pos = copy;
3397 }
3398
3399 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3400 int end;
3401
3402 WARN_ON(start > offset + len);
3403
3404 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3405 if ((copy = end - offset) > 0) {
3406 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3407 u32 p_off, p_len, copied;
3408 struct page *p;
3409 __wsum csum2;
3410 u8 *vaddr;
3411
3412 if (copy > len)
3413 copy = len;
3414
3415 skb_frag_foreach_page(frag,
3416 skb_frag_off(frag) + offset - start,
3417 copy, p, p_off, p_len, copied) {
3418 vaddr = kmap_atomic(p);
3419 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3420 to + copied,
3421 p_len);
3422 kunmap_atomic(vaddr);
3423 csum = csum_block_add(csum, csum2, pos);
3424 pos += p_len;
3425 }
3426
3427 if (!(len -= copy))
3428 return csum;
3429 offset += copy;
3430 to += copy;
3431 }
3432 start = end;
3433 }
3434
3435 skb_walk_frags(skb, frag_iter) {
3436 __wsum csum2;
3437 int end;
3438
3439 WARN_ON(start > offset + len);
3440
3441 end = start + frag_iter->len;
3442 if ((copy = end - offset) > 0) {
3443 if (copy > len)
3444 copy = len;
3445 csum2 = skb_copy_and_csum_bits(frag_iter,
3446 offset - start,
3447 to, copy);
3448 csum = csum_block_add(csum, csum2, pos);
3449 if ((len -= copy) == 0)
3450 return csum;
3451 offset += copy;
3452 to += copy;
3453 pos += copy;
3454 }
3455 start = end;
3456 }
3457 BUG_ON(len);
3458 return csum;
3459}
3460EXPORT_SYMBOL(skb_copy_and_csum_bits);
3461
3462__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3463{
3464 __sum16 sum;
3465
3466 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3467 /* See comments in __skb_checksum_complete(). */
3468 if (likely(!sum)) {
3469 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3470 !skb->csum_complete_sw)
3471 netdev_rx_csum_fault(skb->dev, skb);
3472 }
3473 if (!skb_shared(skb))
3474 skb->csum_valid = !sum;
3475 return sum;
3476}
3477EXPORT_SYMBOL(__skb_checksum_complete_head);
3478
3479/* This function assumes skb->csum already holds pseudo header's checksum,
3480 * which has been changed from the hardware checksum, for example, by
3481 * __skb_checksum_validate_complete(). And, the original skb->csum must
3482 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3483 *
3484 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3485 * zero. The new checksum is stored back into skb->csum unless the skb is
3486 * shared.
3487 */
3488__sum16 __skb_checksum_complete(struct sk_buff *skb)
3489{
3490 __wsum csum;
3491 __sum16 sum;
3492
3493 csum = skb_checksum(skb, 0, skb->len, 0);
3494
3495 sum = csum_fold(csum_add(skb->csum, csum));
3496 /* This check is inverted, because we already knew the hardware
3497 * checksum is invalid before calling this function. So, if the
3498 * re-computed checksum is valid instead, then we have a mismatch
3499 * between the original skb->csum and skb_checksum(). This means either
3500 * the original hardware checksum is incorrect or we screw up skb->csum
3501 * when moving skb->data around.
3502 */
3503 if (likely(!sum)) {
3504 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3505 !skb->csum_complete_sw)
3506 netdev_rx_csum_fault(skb->dev, skb);
3507 }
3508
3509 if (!skb_shared(skb)) {
3510 /* Save full packet checksum */
3511 skb->csum = csum;
3512 skb->ip_summed = CHECKSUM_COMPLETE;
3513 skb->csum_complete_sw = 1;
3514 skb->csum_valid = !sum;
3515 }
3516
3517 return sum;
3518}
3519EXPORT_SYMBOL(__skb_checksum_complete);
3520
3521static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3522{
3523 net_warn_ratelimited(
3524 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3525 __func__);
3526 return 0;
3527}
3528
3529static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3530 int offset, int len)
3531{
3532 net_warn_ratelimited(
3533 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3534 __func__);
3535 return 0;
3536}
3537
3538static const struct skb_checksum_ops default_crc32c_ops = {
3539 .update = warn_crc32c_csum_update,
3540 .combine = warn_crc32c_csum_combine,
3541};
3542
3543const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3544 &default_crc32c_ops;
3545EXPORT_SYMBOL(crc32c_csum_stub);
3546
3547 /**
3548 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3549 * @from: source buffer
3550 *
3551 * Calculates the amount of linear headroom needed in the 'to' skb passed
3552 * into skb_zerocopy().
3553 */
3554unsigned int
3555skb_zerocopy_headlen(const struct sk_buff *from)
3556{
3557 unsigned int hlen = 0;
3558
3559 if (!from->head_frag ||
3560 skb_headlen(from) < L1_CACHE_BYTES ||
3561 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3562 hlen = skb_headlen(from);
3563 if (!hlen)
3564 hlen = from->len;
3565 }
3566
3567 if (skb_has_frag_list(from))
3568 hlen = from->len;
3569
3570 return hlen;
3571}
3572EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3573
3574/**
3575 * skb_zerocopy - Zero copy skb to skb
3576 * @to: destination buffer
3577 * @from: source buffer
3578 * @len: number of bytes to copy from source buffer
3579 * @hlen: size of linear headroom in destination buffer
3580 *
3581 * Copies up to `len` bytes from `from` to `to` by creating references
3582 * to the frags in the source buffer.
3583 *
3584 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3585 * headroom in the `to` buffer.
3586 *
3587 * Return value:
3588 * 0: everything is OK
3589 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3590 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3591 */
3592int
3593skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3594{
3595 int i, j = 0;
3596 int plen = 0; /* length of skb->head fragment */
3597 int ret;
3598 struct page *page;
3599 unsigned int offset;
3600
3601 BUG_ON(!from->head_frag && !hlen);
3602
3603 /* dont bother with small payloads */
3604 if (len <= skb_tailroom(to))
3605 return skb_copy_bits(from, 0, skb_put(to, len), len);
3606
3607 if (hlen) {
3608 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3609 if (unlikely(ret))
3610 return ret;
3611 len -= hlen;
3612 } else {
3613 plen = min_t(int, skb_headlen(from), len);
3614 if (plen) {
3615 page = virt_to_head_page(from->head);
3616 offset = from->data - (unsigned char *)page_address(page);
3617 __skb_fill_page_desc(to, 0, page, offset, plen);
3618 get_page(page);
3619 j = 1;
3620 len -= plen;
3621 }
3622 }
3623
3624 skb_len_add(to, len + plen);
3625
3626 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3627 skb_tx_error(from);
3628 return -ENOMEM;
3629 }
3630 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3631
3632 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3633 int size;
3634
3635 if (!len)
3636 break;
3637 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3638 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3639 len);
3640 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3641 len -= size;
3642 skb_frag_ref(to, j);
3643 j++;
3644 }
3645 skb_shinfo(to)->nr_frags = j;
3646
3647 return 0;
3648}
3649EXPORT_SYMBOL_GPL(skb_zerocopy);
3650
3651void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3652{
3653 __wsum csum;
3654 long csstart;
3655
3656 if (skb->ip_summed == CHECKSUM_PARTIAL)
3657 csstart = skb_checksum_start_offset(skb);
3658 else
3659 csstart = skb_headlen(skb);
3660
3661 BUG_ON(csstart > skb_headlen(skb));
3662
3663 skb_copy_from_linear_data(skb, to, csstart);
3664
3665 csum = 0;
3666 if (csstart != skb->len)
3667 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3668 skb->len - csstart);
3669
3670 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3671 long csstuff = csstart + skb->csum_offset;
3672
3673 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3674 }
3675}
3676EXPORT_SYMBOL(skb_copy_and_csum_dev);
3677
3678/**
3679 * skb_dequeue - remove from the head of the queue
3680 * @list: list to dequeue from
3681 *
3682 * Remove the head of the list. The list lock is taken so the function
3683 * may be used safely with other locking list functions. The head item is
3684 * returned or %NULL if the list is empty.
3685 */
3686
3687struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3688{
3689 unsigned long flags;
3690 struct sk_buff *result;
3691
3692 spin_lock_irqsave(&list->lock, flags);
3693 result = __skb_dequeue(list);
3694 spin_unlock_irqrestore(&list->lock, flags);
3695 return result;
3696}
3697EXPORT_SYMBOL(skb_dequeue);
3698
3699/**
3700 * skb_dequeue_tail - remove from the tail of the queue
3701 * @list: list to dequeue from
3702 *
3703 * Remove the tail of the list. The list lock is taken so the function
3704 * may be used safely with other locking list functions. The tail item is
3705 * returned or %NULL if the list is empty.
3706 */
3707struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3708{
3709 unsigned long flags;
3710 struct sk_buff *result;
3711
3712 spin_lock_irqsave(&list->lock, flags);
3713 result = __skb_dequeue_tail(list);
3714 spin_unlock_irqrestore(&list->lock, flags);
3715 return result;
3716}
3717EXPORT_SYMBOL(skb_dequeue_tail);
3718
3719/**
3720 * skb_queue_purge_reason - empty a list
3721 * @list: list to empty
3722 * @reason: drop reason
3723 *
3724 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3725 * the list and one reference dropped. This function takes the list
3726 * lock and is atomic with respect to other list locking functions.
3727 */
3728void skb_queue_purge_reason(struct sk_buff_head *list,
3729 enum skb_drop_reason reason)
3730{
3731 struct sk_buff_head tmp;
3732 unsigned long flags;
3733
3734 if (skb_queue_empty_lockless(list))
3735 return;
3736
3737 __skb_queue_head_init(&tmp);
3738
3739 spin_lock_irqsave(&list->lock, flags);
3740 skb_queue_splice_init(list, &tmp);
3741 spin_unlock_irqrestore(&list->lock, flags);
3742
3743 __skb_queue_purge_reason(&tmp, reason);
3744}
3745EXPORT_SYMBOL(skb_queue_purge_reason);
3746
3747/**
3748 * skb_rbtree_purge - empty a skb rbtree
3749 * @root: root of the rbtree to empty
3750 * Return value: the sum of truesizes of all purged skbs.
3751 *
3752 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3753 * the list and one reference dropped. This function does not take
3754 * any lock. Synchronization should be handled by the caller (e.g., TCP
3755 * out-of-order queue is protected by the socket lock).
3756 */
3757unsigned int skb_rbtree_purge(struct rb_root *root)
3758{
3759 struct rb_node *p = rb_first(root);
3760 unsigned int sum = 0;
3761
3762 while (p) {
3763 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3764
3765 p = rb_next(p);
3766 rb_erase(&skb->rbnode, root);
3767 sum += skb->truesize;
3768 kfree_skb(skb);
3769 }
3770 return sum;
3771}
3772
3773void skb_errqueue_purge(struct sk_buff_head *list)
3774{
3775 struct sk_buff *skb, *next;
3776 struct sk_buff_head kill;
3777 unsigned long flags;
3778
3779 __skb_queue_head_init(&kill);
3780
3781 spin_lock_irqsave(&list->lock, flags);
3782 skb_queue_walk_safe(list, skb, next) {
3783 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3784 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3785 continue;
3786 __skb_unlink(skb, list);
3787 __skb_queue_tail(&kill, skb);
3788 }
3789 spin_unlock_irqrestore(&list->lock, flags);
3790 __skb_queue_purge(&kill);
3791}
3792EXPORT_SYMBOL(skb_errqueue_purge);
3793
3794/**
3795 * skb_queue_head - queue a buffer at the list head
3796 * @list: list to use
3797 * @newsk: buffer to queue
3798 *
3799 * Queue a buffer at the start of the list. This function takes the
3800 * list lock and can be used safely with other locking &sk_buff functions
3801 * safely.
3802 *
3803 * A buffer cannot be placed on two lists at the same time.
3804 */
3805void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3806{
3807 unsigned long flags;
3808
3809 spin_lock_irqsave(&list->lock, flags);
3810 __skb_queue_head(list, newsk);
3811 spin_unlock_irqrestore(&list->lock, flags);
3812}
3813EXPORT_SYMBOL(skb_queue_head);
3814
3815/**
3816 * skb_queue_tail - queue a buffer at the list tail
3817 * @list: list to use
3818 * @newsk: buffer to queue
3819 *
3820 * Queue a buffer at the tail of the list. This function takes the
3821 * list lock and can be used safely with other locking &sk_buff functions
3822 * safely.
3823 *
3824 * A buffer cannot be placed on two lists at the same time.
3825 */
3826void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3827{
3828 unsigned long flags;
3829
3830 spin_lock_irqsave(&list->lock, flags);
3831 __skb_queue_tail(list, newsk);
3832 spin_unlock_irqrestore(&list->lock, flags);
3833}
3834EXPORT_SYMBOL(skb_queue_tail);
3835
3836/**
3837 * skb_unlink - remove a buffer from a list
3838 * @skb: buffer to remove
3839 * @list: list to use
3840 *
3841 * Remove a packet from a list. The list locks are taken and this
3842 * function is atomic with respect to other list locked calls
3843 *
3844 * You must know what list the SKB is on.
3845 */
3846void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3847{
3848 unsigned long flags;
3849
3850 spin_lock_irqsave(&list->lock, flags);
3851 __skb_unlink(skb, list);
3852 spin_unlock_irqrestore(&list->lock, flags);
3853}
3854EXPORT_SYMBOL(skb_unlink);
3855
3856/**
3857 * skb_append - append a buffer
3858 * @old: buffer to insert after
3859 * @newsk: buffer to insert
3860 * @list: list to use
3861 *
3862 * Place a packet after a given packet in a list. The list locks are taken
3863 * and this function is atomic with respect to other list locked calls.
3864 * A buffer cannot be placed on two lists at the same time.
3865 */
3866void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3867{
3868 unsigned long flags;
3869
3870 spin_lock_irqsave(&list->lock, flags);
3871 __skb_queue_after(list, old, newsk);
3872 spin_unlock_irqrestore(&list->lock, flags);
3873}
3874EXPORT_SYMBOL(skb_append);
3875
3876static inline void skb_split_inside_header(struct sk_buff *skb,
3877 struct sk_buff* skb1,
3878 const u32 len, const int pos)
3879{
3880 int i;
3881
3882 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3883 pos - len);
3884 /* And move data appendix as is. */
3885 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3886 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3887
3888 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3889 skb_shinfo(skb)->nr_frags = 0;
3890 skb1->data_len = skb->data_len;
3891 skb1->len += skb1->data_len;
3892 skb->data_len = 0;
3893 skb->len = len;
3894 skb_set_tail_pointer(skb, len);
3895}
3896
3897static inline void skb_split_no_header(struct sk_buff *skb,
3898 struct sk_buff* skb1,
3899 const u32 len, int pos)
3900{
3901 int i, k = 0;
3902 const int nfrags = skb_shinfo(skb)->nr_frags;
3903
3904 skb_shinfo(skb)->nr_frags = 0;
3905 skb1->len = skb1->data_len = skb->len - len;
3906 skb->len = len;
3907 skb->data_len = len - pos;
3908
3909 for (i = 0; i < nfrags; i++) {
3910 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3911
3912 if (pos + size > len) {
3913 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3914
3915 if (pos < len) {
3916 /* Split frag.
3917 * We have two variants in this case:
3918 * 1. Move all the frag to the second
3919 * part, if it is possible. F.e.
3920 * this approach is mandatory for TUX,
3921 * where splitting is expensive.
3922 * 2. Split is accurately. We make this.
3923 */
3924 skb_frag_ref(skb, i);
3925 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3926 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3927 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3928 skb_shinfo(skb)->nr_frags++;
3929 }
3930 k++;
3931 } else
3932 skb_shinfo(skb)->nr_frags++;
3933 pos += size;
3934 }
3935 skb_shinfo(skb1)->nr_frags = k;
3936}
3937
3938/**
3939 * skb_split - Split fragmented skb to two parts at length len.
3940 * @skb: the buffer to split
3941 * @skb1: the buffer to receive the second part
3942 * @len: new length for skb
3943 */
3944void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3945{
3946 int pos = skb_headlen(skb);
3947 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3948
3949 skb_zcopy_downgrade_managed(skb);
3950
3951 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3952 skb_zerocopy_clone(skb1, skb, 0);
3953 if (len < pos) /* Split line is inside header. */
3954 skb_split_inside_header(skb, skb1, len, pos);
3955 else /* Second chunk has no header, nothing to copy. */
3956 skb_split_no_header(skb, skb1, len, pos);
3957}
3958EXPORT_SYMBOL(skb_split);
3959
3960/* Shifting from/to a cloned skb is a no-go.
3961 *
3962 * Caller cannot keep skb_shinfo related pointers past calling here!
3963 */
3964static int skb_prepare_for_shift(struct sk_buff *skb)
3965{
3966 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3967}
3968
3969/**
3970 * skb_shift - Shifts paged data partially from skb to another
3971 * @tgt: buffer into which tail data gets added
3972 * @skb: buffer from which the paged data comes from
3973 * @shiftlen: shift up to this many bytes
3974 *
3975 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3976 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3977 * It's up to caller to free skb if everything was shifted.
3978 *
3979 * If @tgt runs out of frags, the whole operation is aborted.
3980 *
3981 * Skb cannot include anything else but paged data while tgt is allowed
3982 * to have non-paged data as well.
3983 *
3984 * TODO: full sized shift could be optimized but that would need
3985 * specialized skb free'er to handle frags without up-to-date nr_frags.
3986 */
3987int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3988{
3989 int from, to, merge, todo;
3990 skb_frag_t *fragfrom, *fragto;
3991
3992 BUG_ON(shiftlen > skb->len);
3993
3994 if (skb_headlen(skb))
3995 return 0;
3996 if (skb_zcopy(tgt) || skb_zcopy(skb))
3997 return 0;
3998
3999 todo = shiftlen;
4000 from = 0;
4001 to = skb_shinfo(tgt)->nr_frags;
4002 fragfrom = &skb_shinfo(skb)->frags[from];
4003
4004 /* Actual merge is delayed until the point when we know we can
4005 * commit all, so that we don't have to undo partial changes
4006 */
4007 if (!to ||
4008 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4009 skb_frag_off(fragfrom))) {
4010 merge = -1;
4011 } else {
4012 merge = to - 1;
4013
4014 todo -= skb_frag_size(fragfrom);
4015 if (todo < 0) {
4016 if (skb_prepare_for_shift(skb) ||
4017 skb_prepare_for_shift(tgt))
4018 return 0;
4019
4020 /* All previous frag pointers might be stale! */
4021 fragfrom = &skb_shinfo(skb)->frags[from];
4022 fragto = &skb_shinfo(tgt)->frags[merge];
4023
4024 skb_frag_size_add(fragto, shiftlen);
4025 skb_frag_size_sub(fragfrom, shiftlen);
4026 skb_frag_off_add(fragfrom, shiftlen);
4027
4028 goto onlymerged;
4029 }
4030
4031 from++;
4032 }
4033
4034 /* Skip full, not-fitting skb to avoid expensive operations */
4035 if ((shiftlen == skb->len) &&
4036 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4037 return 0;
4038
4039 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4040 return 0;
4041
4042 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4043 if (to == MAX_SKB_FRAGS)
4044 return 0;
4045
4046 fragfrom = &skb_shinfo(skb)->frags[from];
4047 fragto = &skb_shinfo(tgt)->frags[to];
4048
4049 if (todo >= skb_frag_size(fragfrom)) {
4050 *fragto = *fragfrom;
4051 todo -= skb_frag_size(fragfrom);
4052 from++;
4053 to++;
4054
4055 } else {
4056 __skb_frag_ref(fragfrom);
4057 skb_frag_page_copy(fragto, fragfrom);
4058 skb_frag_off_copy(fragto, fragfrom);
4059 skb_frag_size_set(fragto, todo);
4060
4061 skb_frag_off_add(fragfrom, todo);
4062 skb_frag_size_sub(fragfrom, todo);
4063 todo = 0;
4064
4065 to++;
4066 break;
4067 }
4068 }
4069
4070 /* Ready to "commit" this state change to tgt */
4071 skb_shinfo(tgt)->nr_frags = to;
4072
4073 if (merge >= 0) {
4074 fragfrom = &skb_shinfo(skb)->frags[0];
4075 fragto = &skb_shinfo(tgt)->frags[merge];
4076
4077 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4078 __skb_frag_unref(fragfrom, skb->pp_recycle);
4079 }
4080
4081 /* Reposition in the original skb */
4082 to = 0;
4083 while (from < skb_shinfo(skb)->nr_frags)
4084 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4085 skb_shinfo(skb)->nr_frags = to;
4086
4087 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4088
4089onlymerged:
4090 /* Most likely the tgt won't ever need its checksum anymore, skb on
4091 * the other hand might need it if it needs to be resent
4092 */
4093 tgt->ip_summed = CHECKSUM_PARTIAL;
4094 skb->ip_summed = CHECKSUM_PARTIAL;
4095
4096 skb_len_add(skb, -shiftlen);
4097 skb_len_add(tgt, shiftlen);
4098
4099 return shiftlen;
4100}
4101
4102/**
4103 * skb_prepare_seq_read - Prepare a sequential read of skb data
4104 * @skb: the buffer to read
4105 * @from: lower offset of data to be read
4106 * @to: upper offset of data to be read
4107 * @st: state variable
4108 *
4109 * Initializes the specified state variable. Must be called before
4110 * invoking skb_seq_read() for the first time.
4111 */
4112void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4113 unsigned int to, struct skb_seq_state *st)
4114{
4115 st->lower_offset = from;
4116 st->upper_offset = to;
4117 st->root_skb = st->cur_skb = skb;
4118 st->frag_idx = st->stepped_offset = 0;
4119 st->frag_data = NULL;
4120 st->frag_off = 0;
4121}
4122EXPORT_SYMBOL(skb_prepare_seq_read);
4123
4124/**
4125 * skb_seq_read - Sequentially read skb data
4126 * @consumed: number of bytes consumed by the caller so far
4127 * @data: destination pointer for data to be returned
4128 * @st: state variable
4129 *
4130 * Reads a block of skb data at @consumed relative to the
4131 * lower offset specified to skb_prepare_seq_read(). Assigns
4132 * the head of the data block to @data and returns the length
4133 * of the block or 0 if the end of the skb data or the upper
4134 * offset has been reached.
4135 *
4136 * The caller is not required to consume all of the data
4137 * returned, i.e. @consumed is typically set to the number
4138 * of bytes already consumed and the next call to
4139 * skb_seq_read() will return the remaining part of the block.
4140 *
4141 * Note 1: The size of each block of data returned can be arbitrary,
4142 * this limitation is the cost for zerocopy sequential
4143 * reads of potentially non linear data.
4144 *
4145 * Note 2: Fragment lists within fragments are not implemented
4146 * at the moment, state->root_skb could be replaced with
4147 * a stack for this purpose.
4148 */
4149unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4150 struct skb_seq_state *st)
4151{
4152 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4153 skb_frag_t *frag;
4154
4155 if (unlikely(abs_offset >= st->upper_offset)) {
4156 if (st->frag_data) {
4157 kunmap_atomic(st->frag_data);
4158 st->frag_data = NULL;
4159 }
4160 return 0;
4161 }
4162
4163next_skb:
4164 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4165
4166 if (abs_offset < block_limit && !st->frag_data) {
4167 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4168 return block_limit - abs_offset;
4169 }
4170
4171 if (st->frag_idx == 0 && !st->frag_data)
4172 st->stepped_offset += skb_headlen(st->cur_skb);
4173
4174 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4175 unsigned int pg_idx, pg_off, pg_sz;
4176
4177 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4178
4179 pg_idx = 0;
4180 pg_off = skb_frag_off(frag);
4181 pg_sz = skb_frag_size(frag);
4182
4183 if (skb_frag_must_loop(skb_frag_page(frag))) {
4184 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4185 pg_off = offset_in_page(pg_off + st->frag_off);
4186 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4187 PAGE_SIZE - pg_off);
4188 }
4189
4190 block_limit = pg_sz + st->stepped_offset;
4191 if (abs_offset < block_limit) {
4192 if (!st->frag_data)
4193 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4194
4195 *data = (u8 *)st->frag_data + pg_off +
4196 (abs_offset - st->stepped_offset);
4197
4198 return block_limit - abs_offset;
4199 }
4200
4201 if (st->frag_data) {
4202 kunmap_atomic(st->frag_data);
4203 st->frag_data = NULL;
4204 }
4205
4206 st->stepped_offset += pg_sz;
4207 st->frag_off += pg_sz;
4208 if (st->frag_off == skb_frag_size(frag)) {
4209 st->frag_off = 0;
4210 st->frag_idx++;
4211 }
4212 }
4213
4214 if (st->frag_data) {
4215 kunmap_atomic(st->frag_data);
4216 st->frag_data = NULL;
4217 }
4218
4219 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4220 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4221 st->frag_idx = 0;
4222 goto next_skb;
4223 } else if (st->cur_skb->next) {
4224 st->cur_skb = st->cur_skb->next;
4225 st->frag_idx = 0;
4226 goto next_skb;
4227 }
4228
4229 return 0;
4230}
4231EXPORT_SYMBOL(skb_seq_read);
4232
4233/**
4234 * skb_abort_seq_read - Abort a sequential read of skb data
4235 * @st: state variable
4236 *
4237 * Must be called if skb_seq_read() was not called until it
4238 * returned 0.
4239 */
4240void skb_abort_seq_read(struct skb_seq_state *st)
4241{
4242 if (st->frag_data)
4243 kunmap_atomic(st->frag_data);
4244}
4245EXPORT_SYMBOL(skb_abort_seq_read);
4246
4247#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4248
4249static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4250 struct ts_config *conf,
4251 struct ts_state *state)
4252{
4253 return skb_seq_read(offset, text, TS_SKB_CB(state));
4254}
4255
4256static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4257{
4258 skb_abort_seq_read(TS_SKB_CB(state));
4259}
4260
4261/**
4262 * skb_find_text - Find a text pattern in skb data
4263 * @skb: the buffer to look in
4264 * @from: search offset
4265 * @to: search limit
4266 * @config: textsearch configuration
4267 *
4268 * Finds a pattern in the skb data according to the specified
4269 * textsearch configuration. Use textsearch_next() to retrieve
4270 * subsequent occurrences of the pattern. Returns the offset
4271 * to the first occurrence or UINT_MAX if no match was found.
4272 */
4273unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4274 unsigned int to, struct ts_config *config)
4275{
4276 unsigned int patlen = config->ops->get_pattern_len(config);
4277 struct ts_state state;
4278 unsigned int ret;
4279
4280 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4281
4282 config->get_next_block = skb_ts_get_next_block;
4283 config->finish = skb_ts_finish;
4284
4285 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4286
4287 ret = textsearch_find(config, &state);
4288 return (ret + patlen <= to - from ? ret : UINT_MAX);
4289}
4290EXPORT_SYMBOL(skb_find_text);
4291
4292int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4293 int offset, size_t size, size_t max_frags)
4294{
4295 int i = skb_shinfo(skb)->nr_frags;
4296
4297 if (skb_can_coalesce(skb, i, page, offset)) {
4298 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4299 } else if (i < max_frags) {
4300 skb_zcopy_downgrade_managed(skb);
4301 get_page(page);
4302 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4303 } else {
4304 return -EMSGSIZE;
4305 }
4306
4307 return 0;
4308}
4309EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4310
4311/**
4312 * skb_pull_rcsum - pull skb and update receive checksum
4313 * @skb: buffer to update
4314 * @len: length of data pulled
4315 *
4316 * This function performs an skb_pull on the packet and updates
4317 * the CHECKSUM_COMPLETE checksum. It should be used on
4318 * receive path processing instead of skb_pull unless you know
4319 * that the checksum difference is zero (e.g., a valid IP header)
4320 * or you are setting ip_summed to CHECKSUM_NONE.
4321 */
4322void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4323{
4324 unsigned char *data = skb->data;
4325
4326 BUG_ON(len > skb->len);
4327 __skb_pull(skb, len);
4328 skb_postpull_rcsum(skb, data, len);
4329 return skb->data;
4330}
4331EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4332
4333static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4334{
4335 skb_frag_t head_frag;
4336 struct page *page;
4337
4338 page = virt_to_head_page(frag_skb->head);
4339 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4340 (unsigned char *)page_address(page),
4341 skb_headlen(frag_skb));
4342 return head_frag;
4343}
4344
4345struct sk_buff *skb_segment_list(struct sk_buff *skb,
4346 netdev_features_t features,
4347 unsigned int offset)
4348{
4349 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4350 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4351 unsigned int delta_truesize = 0;
4352 unsigned int delta_len = 0;
4353 struct sk_buff *tail = NULL;
4354 struct sk_buff *nskb, *tmp;
4355 int len_diff, err;
4356
4357 skb_push(skb, -skb_network_offset(skb) + offset);
4358
4359 /* Ensure the head is writeable before touching the shared info */
4360 err = skb_unclone(skb, GFP_ATOMIC);
4361 if (err)
4362 goto err_linearize;
4363
4364 skb_shinfo(skb)->frag_list = NULL;
4365
4366 while (list_skb) {
4367 nskb = list_skb;
4368 list_skb = list_skb->next;
4369
4370 err = 0;
4371 delta_truesize += nskb->truesize;
4372 if (skb_shared(nskb)) {
4373 tmp = skb_clone(nskb, GFP_ATOMIC);
4374 if (tmp) {
4375 consume_skb(nskb);
4376 nskb = tmp;
4377 err = skb_unclone(nskb, GFP_ATOMIC);
4378 } else {
4379 err = -ENOMEM;
4380 }
4381 }
4382
4383 if (!tail)
4384 skb->next = nskb;
4385 else
4386 tail->next = nskb;
4387
4388 if (unlikely(err)) {
4389 nskb->next = list_skb;
4390 goto err_linearize;
4391 }
4392
4393 tail = nskb;
4394
4395 delta_len += nskb->len;
4396
4397 skb_push(nskb, -skb_network_offset(nskb) + offset);
4398
4399 skb_release_head_state(nskb);
4400 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4401 __copy_skb_header(nskb, skb);
4402
4403 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4404 nskb->transport_header += len_diff;
4405 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4406 nskb->data - tnl_hlen,
4407 offset + tnl_hlen);
4408
4409 if (skb_needs_linearize(nskb, features) &&
4410 __skb_linearize(nskb))
4411 goto err_linearize;
4412 }
4413
4414 skb->truesize = skb->truesize - delta_truesize;
4415 skb->data_len = skb->data_len - delta_len;
4416 skb->len = skb->len - delta_len;
4417
4418 skb_gso_reset(skb);
4419
4420 skb->prev = tail;
4421
4422 if (skb_needs_linearize(skb, features) &&
4423 __skb_linearize(skb))
4424 goto err_linearize;
4425
4426 skb_get(skb);
4427
4428 return skb;
4429
4430err_linearize:
4431 kfree_skb_list(skb->next);
4432 skb->next = NULL;
4433 return ERR_PTR(-ENOMEM);
4434}
4435EXPORT_SYMBOL_GPL(skb_segment_list);
4436
4437/**
4438 * skb_segment - Perform protocol segmentation on skb.
4439 * @head_skb: buffer to segment
4440 * @features: features for the output path (see dev->features)
4441 *
4442 * This function performs segmentation on the given skb. It returns
4443 * a pointer to the first in a list of new skbs for the segments.
4444 * In case of error it returns ERR_PTR(err).
4445 */
4446struct sk_buff *skb_segment(struct sk_buff *head_skb,
4447 netdev_features_t features)
4448{
4449 struct sk_buff *segs = NULL;
4450 struct sk_buff *tail = NULL;
4451 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4452 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4453 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4454 unsigned int offset = doffset;
4455 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4456 unsigned int partial_segs = 0;
4457 unsigned int headroom;
4458 unsigned int len = head_skb->len;
4459 struct sk_buff *frag_skb;
4460 skb_frag_t *frag;
4461 __be16 proto;
4462 bool csum, sg;
4463 int err = -ENOMEM;
4464 int i = 0;
4465 int nfrags, pos;
4466
4467 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4468 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4469 struct sk_buff *check_skb;
4470
4471 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4472 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4473 /* gso_size is untrusted, and we have a frag_list with
4474 * a linear non head_frag item.
4475 *
4476 * If head_skb's headlen does not fit requested gso_size,
4477 * it means that the frag_list members do NOT terminate
4478 * on exact gso_size boundaries. Hence we cannot perform
4479 * skb_frag_t page sharing. Therefore we must fallback to
4480 * copying the frag_list skbs; we do so by disabling SG.
4481 */
4482 features &= ~NETIF_F_SG;
4483 break;
4484 }
4485 }
4486 }
4487
4488 __skb_push(head_skb, doffset);
4489 proto = skb_network_protocol(head_skb, NULL);
4490 if (unlikely(!proto))
4491 return ERR_PTR(-EINVAL);
4492
4493 sg = !!(features & NETIF_F_SG);
4494 csum = !!can_checksum_protocol(features, proto);
4495
4496 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4497 if (!(features & NETIF_F_GSO_PARTIAL)) {
4498 struct sk_buff *iter;
4499 unsigned int frag_len;
4500
4501 if (!list_skb ||
4502 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4503 goto normal;
4504
4505 /* If we get here then all the required
4506 * GSO features except frag_list are supported.
4507 * Try to split the SKB to multiple GSO SKBs
4508 * with no frag_list.
4509 * Currently we can do that only when the buffers don't
4510 * have a linear part and all the buffers except
4511 * the last are of the same length.
4512 */
4513 frag_len = list_skb->len;
4514 skb_walk_frags(head_skb, iter) {
4515 if (frag_len != iter->len && iter->next)
4516 goto normal;
4517 if (skb_headlen(iter) && !iter->head_frag)
4518 goto normal;
4519
4520 len -= iter->len;
4521 }
4522
4523 if (len != frag_len)
4524 goto normal;
4525 }
4526
4527 /* GSO partial only requires that we trim off any excess that
4528 * doesn't fit into an MSS sized block, so take care of that
4529 * now.
4530 * Cap len to not accidentally hit GSO_BY_FRAGS.
4531 */
4532 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4533 if (partial_segs > 1)
4534 mss *= partial_segs;
4535 else
4536 partial_segs = 0;
4537 }
4538
4539normal:
4540 headroom = skb_headroom(head_skb);
4541 pos = skb_headlen(head_skb);
4542
4543 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4544 return ERR_PTR(-ENOMEM);
4545
4546 nfrags = skb_shinfo(head_skb)->nr_frags;
4547 frag = skb_shinfo(head_skb)->frags;
4548 frag_skb = head_skb;
4549
4550 do {
4551 struct sk_buff *nskb;
4552 skb_frag_t *nskb_frag;
4553 int hsize;
4554 int size;
4555
4556 if (unlikely(mss == GSO_BY_FRAGS)) {
4557 len = list_skb->len;
4558 } else {
4559 len = head_skb->len - offset;
4560 if (len > mss)
4561 len = mss;
4562 }
4563
4564 hsize = skb_headlen(head_skb) - offset;
4565
4566 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4567 (skb_headlen(list_skb) == len || sg)) {
4568 BUG_ON(skb_headlen(list_skb) > len);
4569
4570 nskb = skb_clone(list_skb, GFP_ATOMIC);
4571 if (unlikely(!nskb))
4572 goto err;
4573
4574 i = 0;
4575 nfrags = skb_shinfo(list_skb)->nr_frags;
4576 frag = skb_shinfo(list_skb)->frags;
4577 frag_skb = list_skb;
4578 pos += skb_headlen(list_skb);
4579
4580 while (pos < offset + len) {
4581 BUG_ON(i >= nfrags);
4582
4583 size = skb_frag_size(frag);
4584 if (pos + size > offset + len)
4585 break;
4586
4587 i++;
4588 pos += size;
4589 frag++;
4590 }
4591
4592 list_skb = list_skb->next;
4593
4594 if (unlikely(pskb_trim(nskb, len))) {
4595 kfree_skb(nskb);
4596 goto err;
4597 }
4598
4599 hsize = skb_end_offset(nskb);
4600 if (skb_cow_head(nskb, doffset + headroom)) {
4601 kfree_skb(nskb);
4602 goto err;
4603 }
4604
4605 nskb->truesize += skb_end_offset(nskb) - hsize;
4606 skb_release_head_state(nskb);
4607 __skb_push(nskb, doffset);
4608 } else {
4609 if (hsize < 0)
4610 hsize = 0;
4611 if (hsize > len || !sg)
4612 hsize = len;
4613
4614 nskb = __alloc_skb(hsize + doffset + headroom,
4615 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4616 NUMA_NO_NODE);
4617
4618 if (unlikely(!nskb))
4619 goto err;
4620
4621 skb_reserve(nskb, headroom);
4622 __skb_put(nskb, doffset);
4623 }
4624
4625 if (segs)
4626 tail->next = nskb;
4627 else
4628 segs = nskb;
4629 tail = nskb;
4630
4631 __copy_skb_header(nskb, head_skb);
4632
4633 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4634 skb_reset_mac_len(nskb);
4635
4636 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4637 nskb->data - tnl_hlen,
4638 doffset + tnl_hlen);
4639
4640 if (nskb->len == len + doffset)
4641 goto perform_csum_check;
4642
4643 if (!sg) {
4644 if (!csum) {
4645 if (!nskb->remcsum_offload)
4646 nskb->ip_summed = CHECKSUM_NONE;
4647 SKB_GSO_CB(nskb)->csum =
4648 skb_copy_and_csum_bits(head_skb, offset,
4649 skb_put(nskb,
4650 len),
4651 len);
4652 SKB_GSO_CB(nskb)->csum_start =
4653 skb_headroom(nskb) + doffset;
4654 } else {
4655 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4656 goto err;
4657 }
4658 continue;
4659 }
4660
4661 nskb_frag = skb_shinfo(nskb)->frags;
4662
4663 skb_copy_from_linear_data_offset(head_skb, offset,
4664 skb_put(nskb, hsize), hsize);
4665
4666 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4667 SKBFL_SHARED_FRAG;
4668
4669 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4670 goto err;
4671
4672 while (pos < offset + len) {
4673 if (i >= nfrags) {
4674 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4675 skb_zerocopy_clone(nskb, list_skb,
4676 GFP_ATOMIC))
4677 goto err;
4678
4679 i = 0;
4680 nfrags = skb_shinfo(list_skb)->nr_frags;
4681 frag = skb_shinfo(list_skb)->frags;
4682 frag_skb = list_skb;
4683 if (!skb_headlen(list_skb)) {
4684 BUG_ON(!nfrags);
4685 } else {
4686 BUG_ON(!list_skb->head_frag);
4687
4688 /* to make room for head_frag. */
4689 i--;
4690 frag--;
4691 }
4692
4693 list_skb = list_skb->next;
4694 }
4695
4696 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4697 MAX_SKB_FRAGS)) {
4698 net_warn_ratelimited(
4699 "skb_segment: too many frags: %u %u\n",
4700 pos, mss);
4701 err = -EINVAL;
4702 goto err;
4703 }
4704
4705 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4706 __skb_frag_ref(nskb_frag);
4707 size = skb_frag_size(nskb_frag);
4708
4709 if (pos < offset) {
4710 skb_frag_off_add(nskb_frag, offset - pos);
4711 skb_frag_size_sub(nskb_frag, offset - pos);
4712 }
4713
4714 skb_shinfo(nskb)->nr_frags++;
4715
4716 if (pos + size <= offset + len) {
4717 i++;
4718 frag++;
4719 pos += size;
4720 } else {
4721 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4722 goto skip_fraglist;
4723 }
4724
4725 nskb_frag++;
4726 }
4727
4728skip_fraglist:
4729 nskb->data_len = len - hsize;
4730 nskb->len += nskb->data_len;
4731 nskb->truesize += nskb->data_len;
4732
4733perform_csum_check:
4734 if (!csum) {
4735 if (skb_has_shared_frag(nskb) &&
4736 __skb_linearize(nskb))
4737 goto err;
4738
4739 if (!nskb->remcsum_offload)
4740 nskb->ip_summed = CHECKSUM_NONE;
4741 SKB_GSO_CB(nskb)->csum =
4742 skb_checksum(nskb, doffset,
4743 nskb->len - doffset, 0);
4744 SKB_GSO_CB(nskb)->csum_start =
4745 skb_headroom(nskb) + doffset;
4746 }
4747 } while ((offset += len) < head_skb->len);
4748
4749 /* Some callers want to get the end of the list.
4750 * Put it in segs->prev to avoid walking the list.
4751 * (see validate_xmit_skb_list() for example)
4752 */
4753 segs->prev = tail;
4754
4755 if (partial_segs) {
4756 struct sk_buff *iter;
4757 int type = skb_shinfo(head_skb)->gso_type;
4758 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4759
4760 /* Update type to add partial and then remove dodgy if set */
4761 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4762 type &= ~SKB_GSO_DODGY;
4763
4764 /* Update GSO info and prepare to start updating headers on
4765 * our way back down the stack of protocols.
4766 */
4767 for (iter = segs; iter; iter = iter->next) {
4768 skb_shinfo(iter)->gso_size = gso_size;
4769 skb_shinfo(iter)->gso_segs = partial_segs;
4770 skb_shinfo(iter)->gso_type = type;
4771 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4772 }
4773
4774 if (tail->len - doffset <= gso_size)
4775 skb_shinfo(tail)->gso_size = 0;
4776 else if (tail != segs)
4777 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4778 }
4779
4780 /* Following permits correct backpressure, for protocols
4781 * using skb_set_owner_w().
4782 * Idea is to tranfert ownership from head_skb to last segment.
4783 */
4784 if (head_skb->destructor == sock_wfree) {
4785 swap(tail->truesize, head_skb->truesize);
4786 swap(tail->destructor, head_skb->destructor);
4787 swap(tail->sk, head_skb->sk);
4788 }
4789 return segs;
4790
4791err:
4792 kfree_skb_list(segs);
4793 return ERR_PTR(err);
4794}
4795EXPORT_SYMBOL_GPL(skb_segment);
4796
4797#ifdef CONFIG_SKB_EXTENSIONS
4798#define SKB_EXT_ALIGN_VALUE 8
4799#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4800
4801static const u8 skb_ext_type_len[] = {
4802#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4803 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4804#endif
4805#ifdef CONFIG_XFRM
4806 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4807#endif
4808#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4809 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4810#endif
4811#if IS_ENABLED(CONFIG_MPTCP)
4812 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4813#endif
4814#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4815 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4816#endif
4817};
4818
4819static __always_inline unsigned int skb_ext_total_length(void)
4820{
4821 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4822 int i;
4823
4824 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4825 l += skb_ext_type_len[i];
4826
4827 return l;
4828}
4829
4830static void skb_extensions_init(void)
4831{
4832 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4833 BUILD_BUG_ON(skb_ext_total_length() > 255);
4834
4835 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4836 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4837 0,
4838 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4839 NULL);
4840}
4841#else
4842static void skb_extensions_init(void) {}
4843#endif
4844
4845/* The SKB kmem_cache slab is critical for network performance. Never
4846 * merge/alias the slab with similar sized objects. This avoids fragmentation
4847 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4848 */
4849#ifndef CONFIG_SLUB_TINY
4850#define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
4851#else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4852#define FLAG_SKB_NO_MERGE 0
4853#endif
4854
4855void __init skb_init(void)
4856{
4857 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4858 sizeof(struct sk_buff),
4859 0,
4860 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4861 FLAG_SKB_NO_MERGE,
4862 offsetof(struct sk_buff, cb),
4863 sizeof_field(struct sk_buff, cb),
4864 NULL);
4865 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4866 sizeof(struct sk_buff_fclones),
4867 0,
4868 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4869 NULL);
4870 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4871 * struct skb_shared_info is located at the end of skb->head,
4872 * and should not be copied to/from user.
4873 */
4874 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4875 SKB_SMALL_HEAD_CACHE_SIZE,
4876 0,
4877 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4878 0,
4879 SKB_SMALL_HEAD_HEADROOM,
4880 NULL);
4881 skb_extensions_init();
4882}
4883
4884static int
4885__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4886 unsigned int recursion_level)
4887{
4888 int start = skb_headlen(skb);
4889 int i, copy = start - offset;
4890 struct sk_buff *frag_iter;
4891 int elt = 0;
4892
4893 if (unlikely(recursion_level >= 24))
4894 return -EMSGSIZE;
4895
4896 if (copy > 0) {
4897 if (copy > len)
4898 copy = len;
4899 sg_set_buf(sg, skb->data + offset, copy);
4900 elt++;
4901 if ((len -= copy) == 0)
4902 return elt;
4903 offset += copy;
4904 }
4905
4906 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4907 int end;
4908
4909 WARN_ON(start > offset + len);
4910
4911 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4912 if ((copy = end - offset) > 0) {
4913 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4914 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4915 return -EMSGSIZE;
4916
4917 if (copy > len)
4918 copy = len;
4919 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4920 skb_frag_off(frag) + offset - start);
4921 elt++;
4922 if (!(len -= copy))
4923 return elt;
4924 offset += copy;
4925 }
4926 start = end;
4927 }
4928
4929 skb_walk_frags(skb, frag_iter) {
4930 int end, ret;
4931
4932 WARN_ON(start > offset + len);
4933
4934 end = start + frag_iter->len;
4935 if ((copy = end - offset) > 0) {
4936 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4937 return -EMSGSIZE;
4938
4939 if (copy > len)
4940 copy = len;
4941 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4942 copy, recursion_level + 1);
4943 if (unlikely(ret < 0))
4944 return ret;
4945 elt += ret;
4946 if ((len -= copy) == 0)
4947 return elt;
4948 offset += copy;
4949 }
4950 start = end;
4951 }
4952 BUG_ON(len);
4953 return elt;
4954}
4955
4956/**
4957 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4958 * @skb: Socket buffer containing the buffers to be mapped
4959 * @sg: The scatter-gather list to map into
4960 * @offset: The offset into the buffer's contents to start mapping
4961 * @len: Length of buffer space to be mapped
4962 *
4963 * Fill the specified scatter-gather list with mappings/pointers into a
4964 * region of the buffer space attached to a socket buffer. Returns either
4965 * the number of scatterlist items used, or -EMSGSIZE if the contents
4966 * could not fit.
4967 */
4968int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4969{
4970 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4971
4972 if (nsg <= 0)
4973 return nsg;
4974
4975 sg_mark_end(&sg[nsg - 1]);
4976
4977 return nsg;
4978}
4979EXPORT_SYMBOL_GPL(skb_to_sgvec);
4980
4981/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4982 * sglist without mark the sg which contain last skb data as the end.
4983 * So the caller can mannipulate sg list as will when padding new data after
4984 * the first call without calling sg_unmark_end to expend sg list.
4985 *
4986 * Scenario to use skb_to_sgvec_nomark:
4987 * 1. sg_init_table
4988 * 2. skb_to_sgvec_nomark(payload1)
4989 * 3. skb_to_sgvec_nomark(payload2)
4990 *
4991 * This is equivalent to:
4992 * 1. sg_init_table
4993 * 2. skb_to_sgvec(payload1)
4994 * 3. sg_unmark_end
4995 * 4. skb_to_sgvec(payload2)
4996 *
4997 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4998 * is more preferable.
4999 */
5000int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5001 int offset, int len)
5002{
5003 return __skb_to_sgvec(skb, sg, offset, len, 0);
5004}
5005EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5006
5007
5008
5009/**
5010 * skb_cow_data - Check that a socket buffer's data buffers are writable
5011 * @skb: The socket buffer to check.
5012 * @tailbits: Amount of trailing space to be added
5013 * @trailer: Returned pointer to the skb where the @tailbits space begins
5014 *
5015 * Make sure that the data buffers attached to a socket buffer are
5016 * writable. If they are not, private copies are made of the data buffers
5017 * and the socket buffer is set to use these instead.
5018 *
5019 * If @tailbits is given, make sure that there is space to write @tailbits
5020 * bytes of data beyond current end of socket buffer. @trailer will be
5021 * set to point to the skb in which this space begins.
5022 *
5023 * The number of scatterlist elements required to completely map the
5024 * COW'd and extended socket buffer will be returned.
5025 */
5026int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5027{
5028 int copyflag;
5029 int elt;
5030 struct sk_buff *skb1, **skb_p;
5031
5032 /* If skb is cloned or its head is paged, reallocate
5033 * head pulling out all the pages (pages are considered not writable
5034 * at the moment even if they are anonymous).
5035 */
5036 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5037 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5038 return -ENOMEM;
5039
5040 /* Easy case. Most of packets will go this way. */
5041 if (!skb_has_frag_list(skb)) {
5042 /* A little of trouble, not enough of space for trailer.
5043 * This should not happen, when stack is tuned to generate
5044 * good frames. OK, on miss we reallocate and reserve even more
5045 * space, 128 bytes is fair. */
5046
5047 if (skb_tailroom(skb) < tailbits &&
5048 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5049 return -ENOMEM;
5050
5051 /* Voila! */
5052 *trailer = skb;
5053 return 1;
5054 }
5055
5056 /* Misery. We are in troubles, going to mincer fragments... */
5057
5058 elt = 1;
5059 skb_p = &skb_shinfo(skb)->frag_list;
5060 copyflag = 0;
5061
5062 while ((skb1 = *skb_p) != NULL) {
5063 int ntail = 0;
5064
5065 /* The fragment is partially pulled by someone,
5066 * this can happen on input. Copy it and everything
5067 * after it. */
5068
5069 if (skb_shared(skb1))
5070 copyflag = 1;
5071
5072 /* If the skb is the last, worry about trailer. */
5073
5074 if (skb1->next == NULL && tailbits) {
5075 if (skb_shinfo(skb1)->nr_frags ||
5076 skb_has_frag_list(skb1) ||
5077 skb_tailroom(skb1) < tailbits)
5078 ntail = tailbits + 128;
5079 }
5080
5081 if (copyflag ||
5082 skb_cloned(skb1) ||
5083 ntail ||
5084 skb_shinfo(skb1)->nr_frags ||
5085 skb_has_frag_list(skb1)) {
5086 struct sk_buff *skb2;
5087
5088 /* Fuck, we are miserable poor guys... */
5089 if (ntail == 0)
5090 skb2 = skb_copy(skb1, GFP_ATOMIC);
5091 else
5092 skb2 = skb_copy_expand(skb1,
5093 skb_headroom(skb1),
5094 ntail,
5095 GFP_ATOMIC);
5096 if (unlikely(skb2 == NULL))
5097 return -ENOMEM;
5098
5099 if (skb1->sk)
5100 skb_set_owner_w(skb2, skb1->sk);
5101
5102 /* Looking around. Are we still alive?
5103 * OK, link new skb, drop old one */
5104
5105 skb2->next = skb1->next;
5106 *skb_p = skb2;
5107 kfree_skb(skb1);
5108 skb1 = skb2;
5109 }
5110 elt++;
5111 *trailer = skb1;
5112 skb_p = &skb1->next;
5113 }
5114
5115 return elt;
5116}
5117EXPORT_SYMBOL_GPL(skb_cow_data);
5118
5119static void sock_rmem_free(struct sk_buff *skb)
5120{
5121 struct sock *sk = skb->sk;
5122
5123 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5124}
5125
5126static void skb_set_err_queue(struct sk_buff *skb)
5127{
5128 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5129 * So, it is safe to (mis)use it to mark skbs on the error queue.
5130 */
5131 skb->pkt_type = PACKET_OUTGOING;
5132 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5133}
5134
5135/*
5136 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5137 */
5138int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5139{
5140 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5141 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5142 return -ENOMEM;
5143
5144 skb_orphan(skb);
5145 skb->sk = sk;
5146 skb->destructor = sock_rmem_free;
5147 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5148 skb_set_err_queue(skb);
5149
5150 /* before exiting rcu section, make sure dst is refcounted */
5151 skb_dst_force(skb);
5152
5153 skb_queue_tail(&sk->sk_error_queue, skb);
5154 if (!sock_flag(sk, SOCK_DEAD))
5155 sk_error_report(sk);
5156 return 0;
5157}
5158EXPORT_SYMBOL(sock_queue_err_skb);
5159
5160static bool is_icmp_err_skb(const struct sk_buff *skb)
5161{
5162 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5163 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5164}
5165
5166struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5167{
5168 struct sk_buff_head *q = &sk->sk_error_queue;
5169 struct sk_buff *skb, *skb_next = NULL;
5170 bool icmp_next = false;
5171 unsigned long flags;
5172
5173 if (skb_queue_empty_lockless(q))
5174 return NULL;
5175
5176 spin_lock_irqsave(&q->lock, flags);
5177 skb = __skb_dequeue(q);
5178 if (skb && (skb_next = skb_peek(q))) {
5179 icmp_next = is_icmp_err_skb(skb_next);
5180 if (icmp_next)
5181 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5182 }
5183 spin_unlock_irqrestore(&q->lock, flags);
5184
5185 if (is_icmp_err_skb(skb) && !icmp_next)
5186 sk->sk_err = 0;
5187
5188 if (skb_next)
5189 sk_error_report(sk);
5190
5191 return skb;
5192}
5193EXPORT_SYMBOL(sock_dequeue_err_skb);
5194
5195/**
5196 * skb_clone_sk - create clone of skb, and take reference to socket
5197 * @skb: the skb to clone
5198 *
5199 * This function creates a clone of a buffer that holds a reference on
5200 * sk_refcnt. Buffers created via this function are meant to be
5201 * returned using sock_queue_err_skb, or free via kfree_skb.
5202 *
5203 * When passing buffers allocated with this function to sock_queue_err_skb
5204 * it is necessary to wrap the call with sock_hold/sock_put in order to
5205 * prevent the socket from being released prior to being enqueued on
5206 * the sk_error_queue.
5207 */
5208struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5209{
5210 struct sock *sk = skb->sk;
5211 struct sk_buff *clone;
5212
5213 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5214 return NULL;
5215
5216 clone = skb_clone(skb, GFP_ATOMIC);
5217 if (!clone) {
5218 sock_put(sk);
5219 return NULL;
5220 }
5221
5222 clone->sk = sk;
5223 clone->destructor = sock_efree;
5224
5225 return clone;
5226}
5227EXPORT_SYMBOL(skb_clone_sk);
5228
5229static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5230 struct sock *sk,
5231 int tstype,
5232 bool opt_stats)
5233{
5234 struct sock_exterr_skb *serr;
5235 int err;
5236
5237 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5238
5239 serr = SKB_EXT_ERR(skb);
5240 memset(serr, 0, sizeof(*serr));
5241 serr->ee.ee_errno = ENOMSG;
5242 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5243 serr->ee.ee_info = tstype;
5244 serr->opt_stats = opt_stats;
5245 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5246 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5247 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5248 if (sk_is_tcp(sk))
5249 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5250 }
5251
5252 err = sock_queue_err_skb(sk, skb);
5253
5254 if (err)
5255 kfree_skb(skb);
5256}
5257
5258static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5259{
5260 bool ret;
5261
5262 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5263 return true;
5264
5265 read_lock_bh(&sk->sk_callback_lock);
5266 ret = sk->sk_socket && sk->sk_socket->file &&
5267 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5268 read_unlock_bh(&sk->sk_callback_lock);
5269 return ret;
5270}
5271
5272void skb_complete_tx_timestamp(struct sk_buff *skb,
5273 struct skb_shared_hwtstamps *hwtstamps)
5274{
5275 struct sock *sk = skb->sk;
5276
5277 if (!skb_may_tx_timestamp(sk, false))
5278 goto err;
5279
5280 /* Take a reference to prevent skb_orphan() from freeing the socket,
5281 * but only if the socket refcount is not zero.
5282 */
5283 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5284 *skb_hwtstamps(skb) = *hwtstamps;
5285 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5286 sock_put(sk);
5287 return;
5288 }
5289
5290err:
5291 kfree_skb(skb);
5292}
5293EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5294
5295void __skb_tstamp_tx(struct sk_buff *orig_skb,
5296 const struct sk_buff *ack_skb,
5297 struct skb_shared_hwtstamps *hwtstamps,
5298 struct sock *sk, int tstype)
5299{
5300 struct sk_buff *skb;
5301 bool tsonly, opt_stats = false;
5302 u32 tsflags;
5303
5304 if (!sk)
5305 return;
5306
5307 tsflags = READ_ONCE(sk->sk_tsflags);
5308 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5309 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5310 return;
5311
5312 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5313 if (!skb_may_tx_timestamp(sk, tsonly))
5314 return;
5315
5316 if (tsonly) {
5317#ifdef CONFIG_INET
5318 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5319 sk_is_tcp(sk)) {
5320 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5321 ack_skb);
5322 opt_stats = true;
5323 } else
5324#endif
5325 skb = alloc_skb(0, GFP_ATOMIC);
5326 } else {
5327 skb = skb_clone(orig_skb, GFP_ATOMIC);
5328
5329 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5330 kfree_skb(skb);
5331 return;
5332 }
5333 }
5334 if (!skb)
5335 return;
5336
5337 if (tsonly) {
5338 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5339 SKBTX_ANY_TSTAMP;
5340 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5341 }
5342
5343 if (hwtstamps)
5344 *skb_hwtstamps(skb) = *hwtstamps;
5345 else
5346 __net_timestamp(skb);
5347
5348 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5349}
5350EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5351
5352void skb_tstamp_tx(struct sk_buff *orig_skb,
5353 struct skb_shared_hwtstamps *hwtstamps)
5354{
5355 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5356 SCM_TSTAMP_SND);
5357}
5358EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5359
5360#ifdef CONFIG_WIRELESS
5361void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5362{
5363 struct sock *sk = skb->sk;
5364 struct sock_exterr_skb *serr;
5365 int err = 1;
5366
5367 skb->wifi_acked_valid = 1;
5368 skb->wifi_acked = acked;
5369
5370 serr = SKB_EXT_ERR(skb);
5371 memset(serr, 0, sizeof(*serr));
5372 serr->ee.ee_errno = ENOMSG;
5373 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5374
5375 /* Take a reference to prevent skb_orphan() from freeing the socket,
5376 * but only if the socket refcount is not zero.
5377 */
5378 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5379 err = sock_queue_err_skb(sk, skb);
5380 sock_put(sk);
5381 }
5382 if (err)
5383 kfree_skb(skb);
5384}
5385EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5386#endif /* CONFIG_WIRELESS */
5387
5388/**
5389 * skb_partial_csum_set - set up and verify partial csum values for packet
5390 * @skb: the skb to set
5391 * @start: the number of bytes after skb->data to start checksumming.
5392 * @off: the offset from start to place the checksum.
5393 *
5394 * For untrusted partially-checksummed packets, we need to make sure the values
5395 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5396 *
5397 * This function checks and sets those values and skb->ip_summed: if this
5398 * returns false you should drop the packet.
5399 */
5400bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5401{
5402 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5403 u32 csum_start = skb_headroom(skb) + (u32)start;
5404
5405 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5406 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5407 start, off, skb_headroom(skb), skb_headlen(skb));
5408 return false;
5409 }
5410 skb->ip_summed = CHECKSUM_PARTIAL;
5411 skb->csum_start = csum_start;
5412 skb->csum_offset = off;
5413 skb->transport_header = csum_start;
5414 return true;
5415}
5416EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5417
5418static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5419 unsigned int max)
5420{
5421 if (skb_headlen(skb) >= len)
5422 return 0;
5423
5424 /* If we need to pullup then pullup to the max, so we
5425 * won't need to do it again.
5426 */
5427 if (max > skb->len)
5428 max = skb->len;
5429
5430 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5431 return -ENOMEM;
5432
5433 if (skb_headlen(skb) < len)
5434 return -EPROTO;
5435
5436 return 0;
5437}
5438
5439#define MAX_TCP_HDR_LEN (15 * 4)
5440
5441static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5442 typeof(IPPROTO_IP) proto,
5443 unsigned int off)
5444{
5445 int err;
5446
5447 switch (proto) {
5448 case IPPROTO_TCP:
5449 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5450 off + MAX_TCP_HDR_LEN);
5451 if (!err && !skb_partial_csum_set(skb, off,
5452 offsetof(struct tcphdr,
5453 check)))
5454 err = -EPROTO;
5455 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5456
5457 case IPPROTO_UDP:
5458 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5459 off + sizeof(struct udphdr));
5460 if (!err && !skb_partial_csum_set(skb, off,
5461 offsetof(struct udphdr,
5462 check)))
5463 err = -EPROTO;
5464 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5465 }
5466
5467 return ERR_PTR(-EPROTO);
5468}
5469
5470/* This value should be large enough to cover a tagged ethernet header plus
5471 * maximally sized IP and TCP or UDP headers.
5472 */
5473#define MAX_IP_HDR_LEN 128
5474
5475static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5476{
5477 unsigned int off;
5478 bool fragment;
5479 __sum16 *csum;
5480 int err;
5481
5482 fragment = false;
5483
5484 err = skb_maybe_pull_tail(skb,
5485 sizeof(struct iphdr),
5486 MAX_IP_HDR_LEN);
5487 if (err < 0)
5488 goto out;
5489
5490 if (ip_is_fragment(ip_hdr(skb)))
5491 fragment = true;
5492
5493 off = ip_hdrlen(skb);
5494
5495 err = -EPROTO;
5496
5497 if (fragment)
5498 goto out;
5499
5500 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5501 if (IS_ERR(csum))
5502 return PTR_ERR(csum);
5503
5504 if (recalculate)
5505 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5506 ip_hdr(skb)->daddr,
5507 skb->len - off,
5508 ip_hdr(skb)->protocol, 0);
5509 err = 0;
5510
5511out:
5512 return err;
5513}
5514
5515/* This value should be large enough to cover a tagged ethernet header plus
5516 * an IPv6 header, all options, and a maximal TCP or UDP header.
5517 */
5518#define MAX_IPV6_HDR_LEN 256
5519
5520#define OPT_HDR(type, skb, off) \
5521 (type *)(skb_network_header(skb) + (off))
5522
5523static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5524{
5525 int err;
5526 u8 nexthdr;
5527 unsigned int off;
5528 unsigned int len;
5529 bool fragment;
5530 bool done;
5531 __sum16 *csum;
5532
5533 fragment = false;
5534 done = false;
5535
5536 off = sizeof(struct ipv6hdr);
5537
5538 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5539 if (err < 0)
5540 goto out;
5541
5542 nexthdr = ipv6_hdr(skb)->nexthdr;
5543
5544 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5545 while (off <= len && !done) {
5546 switch (nexthdr) {
5547 case IPPROTO_DSTOPTS:
5548 case IPPROTO_HOPOPTS:
5549 case IPPROTO_ROUTING: {
5550 struct ipv6_opt_hdr *hp;
5551
5552 err = skb_maybe_pull_tail(skb,
5553 off +
5554 sizeof(struct ipv6_opt_hdr),
5555 MAX_IPV6_HDR_LEN);
5556 if (err < 0)
5557 goto out;
5558
5559 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5560 nexthdr = hp->nexthdr;
5561 off += ipv6_optlen(hp);
5562 break;
5563 }
5564 case IPPROTO_AH: {
5565 struct ip_auth_hdr *hp;
5566
5567 err = skb_maybe_pull_tail(skb,
5568 off +
5569 sizeof(struct ip_auth_hdr),
5570 MAX_IPV6_HDR_LEN);
5571 if (err < 0)
5572 goto out;
5573
5574 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5575 nexthdr = hp->nexthdr;
5576 off += ipv6_authlen(hp);
5577 break;
5578 }
5579 case IPPROTO_FRAGMENT: {
5580 struct frag_hdr *hp;
5581
5582 err = skb_maybe_pull_tail(skb,
5583 off +
5584 sizeof(struct frag_hdr),
5585 MAX_IPV6_HDR_LEN);
5586 if (err < 0)
5587 goto out;
5588
5589 hp = OPT_HDR(struct frag_hdr, skb, off);
5590
5591 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5592 fragment = true;
5593
5594 nexthdr = hp->nexthdr;
5595 off += sizeof(struct frag_hdr);
5596 break;
5597 }
5598 default:
5599 done = true;
5600 break;
5601 }
5602 }
5603
5604 err = -EPROTO;
5605
5606 if (!done || fragment)
5607 goto out;
5608
5609 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5610 if (IS_ERR(csum))
5611 return PTR_ERR(csum);
5612
5613 if (recalculate)
5614 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5615 &ipv6_hdr(skb)->daddr,
5616 skb->len - off, nexthdr, 0);
5617 err = 0;
5618
5619out:
5620 return err;
5621}
5622
5623/**
5624 * skb_checksum_setup - set up partial checksum offset
5625 * @skb: the skb to set up
5626 * @recalculate: if true the pseudo-header checksum will be recalculated
5627 */
5628int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5629{
5630 int err;
5631
5632 switch (skb->protocol) {
5633 case htons(ETH_P_IP):
5634 err = skb_checksum_setup_ipv4(skb, recalculate);
5635 break;
5636
5637 case htons(ETH_P_IPV6):
5638 err = skb_checksum_setup_ipv6(skb, recalculate);
5639 break;
5640
5641 default:
5642 err = -EPROTO;
5643 break;
5644 }
5645
5646 return err;
5647}
5648EXPORT_SYMBOL(skb_checksum_setup);
5649
5650/**
5651 * skb_checksum_maybe_trim - maybe trims the given skb
5652 * @skb: the skb to check
5653 * @transport_len: the data length beyond the network header
5654 *
5655 * Checks whether the given skb has data beyond the given transport length.
5656 * If so, returns a cloned skb trimmed to this transport length.
5657 * Otherwise returns the provided skb. Returns NULL in error cases
5658 * (e.g. transport_len exceeds skb length or out-of-memory).
5659 *
5660 * Caller needs to set the skb transport header and free any returned skb if it
5661 * differs from the provided skb.
5662 */
5663static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5664 unsigned int transport_len)
5665{
5666 struct sk_buff *skb_chk;
5667 unsigned int len = skb_transport_offset(skb) + transport_len;
5668 int ret;
5669
5670 if (skb->len < len)
5671 return NULL;
5672 else if (skb->len == len)
5673 return skb;
5674
5675 skb_chk = skb_clone(skb, GFP_ATOMIC);
5676 if (!skb_chk)
5677 return NULL;
5678
5679 ret = pskb_trim_rcsum(skb_chk, len);
5680 if (ret) {
5681 kfree_skb(skb_chk);
5682 return NULL;
5683 }
5684
5685 return skb_chk;
5686}
5687
5688/**
5689 * skb_checksum_trimmed - validate checksum of an skb
5690 * @skb: the skb to check
5691 * @transport_len: the data length beyond the network header
5692 * @skb_chkf: checksum function to use
5693 *
5694 * Applies the given checksum function skb_chkf to the provided skb.
5695 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5696 *
5697 * If the skb has data beyond the given transport length, then a
5698 * trimmed & cloned skb is checked and returned.
5699 *
5700 * Caller needs to set the skb transport header and free any returned skb if it
5701 * differs from the provided skb.
5702 */
5703struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5704 unsigned int transport_len,
5705 __sum16(*skb_chkf)(struct sk_buff *skb))
5706{
5707 struct sk_buff *skb_chk;
5708 unsigned int offset = skb_transport_offset(skb);
5709 __sum16 ret;
5710
5711 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5712 if (!skb_chk)
5713 goto err;
5714
5715 if (!pskb_may_pull(skb_chk, offset))
5716 goto err;
5717
5718 skb_pull_rcsum(skb_chk, offset);
5719 ret = skb_chkf(skb_chk);
5720 skb_push_rcsum(skb_chk, offset);
5721
5722 if (ret)
5723 goto err;
5724
5725 return skb_chk;
5726
5727err:
5728 if (skb_chk && skb_chk != skb)
5729 kfree_skb(skb_chk);
5730
5731 return NULL;
5732
5733}
5734EXPORT_SYMBOL(skb_checksum_trimmed);
5735
5736void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5737{
5738 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5739 skb->dev->name);
5740}
5741EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5742
5743void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5744{
5745 if (head_stolen) {
5746 skb_release_head_state(skb);
5747 kmem_cache_free(skbuff_cache, skb);
5748 } else {
5749 __kfree_skb(skb);
5750 }
5751}
5752EXPORT_SYMBOL(kfree_skb_partial);
5753
5754/**
5755 * skb_try_coalesce - try to merge skb to prior one
5756 * @to: prior buffer
5757 * @from: buffer to add
5758 * @fragstolen: pointer to boolean
5759 * @delta_truesize: how much more was allocated than was requested
5760 */
5761bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5762 bool *fragstolen, int *delta_truesize)
5763{
5764 struct skb_shared_info *to_shinfo, *from_shinfo;
5765 int i, delta, len = from->len;
5766
5767 *fragstolen = false;
5768
5769 if (skb_cloned(to))
5770 return false;
5771
5772 /* In general, avoid mixing page_pool and non-page_pool allocated
5773 * pages within the same SKB. Additionally avoid dealing with clones
5774 * with page_pool pages, in case the SKB is using page_pool fragment
5775 * references (page_pool_alloc_frag()). Since we only take full page
5776 * references for cloned SKBs at the moment that would result in
5777 * inconsistent reference counts.
5778 * In theory we could take full references if @from is cloned and
5779 * !@to->pp_recycle but its tricky (due to potential race with
5780 * the clone disappearing) and rare, so not worth dealing with.
5781 */
5782 if (to->pp_recycle != from->pp_recycle ||
5783 (from->pp_recycle && skb_cloned(from)))
5784 return false;
5785
5786 if (len <= skb_tailroom(to)) {
5787 if (len)
5788 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5789 *delta_truesize = 0;
5790 return true;
5791 }
5792
5793 to_shinfo = skb_shinfo(to);
5794 from_shinfo = skb_shinfo(from);
5795 if (to_shinfo->frag_list || from_shinfo->frag_list)
5796 return false;
5797 if (skb_zcopy(to) || skb_zcopy(from))
5798 return false;
5799
5800 if (skb_headlen(from) != 0) {
5801 struct page *page;
5802 unsigned int offset;
5803
5804 if (to_shinfo->nr_frags +
5805 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5806 return false;
5807
5808 if (skb_head_is_locked(from))
5809 return false;
5810
5811 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5812
5813 page = virt_to_head_page(from->head);
5814 offset = from->data - (unsigned char *)page_address(page);
5815
5816 skb_fill_page_desc(to, to_shinfo->nr_frags,
5817 page, offset, skb_headlen(from));
5818 *fragstolen = true;
5819 } else {
5820 if (to_shinfo->nr_frags +
5821 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5822 return false;
5823
5824 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5825 }
5826
5827 WARN_ON_ONCE(delta < len);
5828
5829 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5830 from_shinfo->frags,
5831 from_shinfo->nr_frags * sizeof(skb_frag_t));
5832 to_shinfo->nr_frags += from_shinfo->nr_frags;
5833
5834 if (!skb_cloned(from))
5835 from_shinfo->nr_frags = 0;
5836
5837 /* if the skb is not cloned this does nothing
5838 * since we set nr_frags to 0.
5839 */
5840 for (i = 0; i < from_shinfo->nr_frags; i++)
5841 __skb_frag_ref(&from_shinfo->frags[i]);
5842
5843 to->truesize += delta;
5844 to->len += len;
5845 to->data_len += len;
5846
5847 *delta_truesize = delta;
5848 return true;
5849}
5850EXPORT_SYMBOL(skb_try_coalesce);
5851
5852/**
5853 * skb_scrub_packet - scrub an skb
5854 *
5855 * @skb: buffer to clean
5856 * @xnet: packet is crossing netns
5857 *
5858 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5859 * into/from a tunnel. Some information have to be cleared during these
5860 * operations.
5861 * skb_scrub_packet can also be used to clean a skb before injecting it in
5862 * another namespace (@xnet == true). We have to clear all information in the
5863 * skb that could impact namespace isolation.
5864 */
5865void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5866{
5867 skb->pkt_type = PACKET_HOST;
5868 skb->skb_iif = 0;
5869 skb->ignore_df = 0;
5870 skb_dst_drop(skb);
5871 skb_ext_reset(skb);
5872 nf_reset_ct(skb);
5873 nf_reset_trace(skb);
5874
5875#ifdef CONFIG_NET_SWITCHDEV
5876 skb->offload_fwd_mark = 0;
5877 skb->offload_l3_fwd_mark = 0;
5878#endif
5879
5880 if (!xnet)
5881 return;
5882
5883 ipvs_reset(skb);
5884 skb->mark = 0;
5885 skb_clear_tstamp(skb);
5886}
5887EXPORT_SYMBOL_GPL(skb_scrub_packet);
5888
5889static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5890{
5891 int mac_len, meta_len;
5892 void *meta;
5893
5894 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5895 kfree_skb(skb);
5896 return NULL;
5897 }
5898
5899 mac_len = skb->data - skb_mac_header(skb);
5900 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5901 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5902 mac_len - VLAN_HLEN - ETH_TLEN);
5903 }
5904
5905 meta_len = skb_metadata_len(skb);
5906 if (meta_len) {
5907 meta = skb_metadata_end(skb) - meta_len;
5908 memmove(meta + VLAN_HLEN, meta, meta_len);
5909 }
5910
5911 skb->mac_header += VLAN_HLEN;
5912 return skb;
5913}
5914
5915struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5916{
5917 struct vlan_hdr *vhdr;
5918 u16 vlan_tci;
5919
5920 if (unlikely(skb_vlan_tag_present(skb))) {
5921 /* vlan_tci is already set-up so leave this for another time */
5922 return skb;
5923 }
5924
5925 skb = skb_share_check(skb, GFP_ATOMIC);
5926 if (unlikely(!skb))
5927 goto err_free;
5928 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5929 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5930 goto err_free;
5931
5932 vhdr = (struct vlan_hdr *)skb->data;
5933 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5934 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5935
5936 skb_pull_rcsum(skb, VLAN_HLEN);
5937 vlan_set_encap_proto(skb, vhdr);
5938
5939 skb = skb_reorder_vlan_header(skb);
5940 if (unlikely(!skb))
5941 goto err_free;
5942
5943 skb_reset_network_header(skb);
5944 if (!skb_transport_header_was_set(skb))
5945 skb_reset_transport_header(skb);
5946 skb_reset_mac_len(skb);
5947
5948 return skb;
5949
5950err_free:
5951 kfree_skb(skb);
5952 return NULL;
5953}
5954EXPORT_SYMBOL(skb_vlan_untag);
5955
5956int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5957{
5958 if (!pskb_may_pull(skb, write_len))
5959 return -ENOMEM;
5960
5961 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5962 return 0;
5963
5964 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5965}
5966EXPORT_SYMBOL(skb_ensure_writable);
5967
5968/* remove VLAN header from packet and update csum accordingly.
5969 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5970 */
5971int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5972{
5973 int offset = skb->data - skb_mac_header(skb);
5974 int err;
5975
5976 if (WARN_ONCE(offset,
5977 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5978 offset)) {
5979 return -EINVAL;
5980 }
5981
5982 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5983 if (unlikely(err))
5984 return err;
5985
5986 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5987
5988 vlan_remove_tag(skb, vlan_tci);
5989
5990 skb->mac_header += VLAN_HLEN;
5991
5992 if (skb_network_offset(skb) < ETH_HLEN)
5993 skb_set_network_header(skb, ETH_HLEN);
5994
5995 skb_reset_mac_len(skb);
5996
5997 return err;
5998}
5999EXPORT_SYMBOL(__skb_vlan_pop);
6000
6001/* Pop a vlan tag either from hwaccel or from payload.
6002 * Expects skb->data at mac header.
6003 */
6004int skb_vlan_pop(struct sk_buff *skb)
6005{
6006 u16 vlan_tci;
6007 __be16 vlan_proto;
6008 int err;
6009
6010 if (likely(skb_vlan_tag_present(skb))) {
6011 __vlan_hwaccel_clear_tag(skb);
6012 } else {
6013 if (unlikely(!eth_type_vlan(skb->protocol)))
6014 return 0;
6015
6016 err = __skb_vlan_pop(skb, &vlan_tci);
6017 if (err)
6018 return err;
6019 }
6020 /* move next vlan tag to hw accel tag */
6021 if (likely(!eth_type_vlan(skb->protocol)))
6022 return 0;
6023
6024 vlan_proto = skb->protocol;
6025 err = __skb_vlan_pop(skb, &vlan_tci);
6026 if (unlikely(err))
6027 return err;
6028
6029 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6030 return 0;
6031}
6032EXPORT_SYMBOL(skb_vlan_pop);
6033
6034/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6035 * Expects skb->data at mac header.
6036 */
6037int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6038{
6039 if (skb_vlan_tag_present(skb)) {
6040 int offset = skb->data - skb_mac_header(skb);
6041 int err;
6042
6043 if (WARN_ONCE(offset,
6044 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6045 offset)) {
6046 return -EINVAL;
6047 }
6048
6049 err = __vlan_insert_tag(skb, skb->vlan_proto,
6050 skb_vlan_tag_get(skb));
6051 if (err)
6052 return err;
6053
6054 skb->protocol = skb->vlan_proto;
6055 skb->mac_len += VLAN_HLEN;
6056
6057 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6058 }
6059 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6060 return 0;
6061}
6062EXPORT_SYMBOL(skb_vlan_push);
6063
6064/**
6065 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6066 *
6067 * @skb: Socket buffer to modify
6068 *
6069 * Drop the Ethernet header of @skb.
6070 *
6071 * Expects that skb->data points to the mac header and that no VLAN tags are
6072 * present.
6073 *
6074 * Returns 0 on success, -errno otherwise.
6075 */
6076int skb_eth_pop(struct sk_buff *skb)
6077{
6078 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6079 skb_network_offset(skb) < ETH_HLEN)
6080 return -EPROTO;
6081
6082 skb_pull_rcsum(skb, ETH_HLEN);
6083 skb_reset_mac_header(skb);
6084 skb_reset_mac_len(skb);
6085
6086 return 0;
6087}
6088EXPORT_SYMBOL(skb_eth_pop);
6089
6090/**
6091 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6092 *
6093 * @skb: Socket buffer to modify
6094 * @dst: Destination MAC address of the new header
6095 * @src: Source MAC address of the new header
6096 *
6097 * Prepend @skb with a new Ethernet header.
6098 *
6099 * Expects that skb->data points to the mac header, which must be empty.
6100 *
6101 * Returns 0 on success, -errno otherwise.
6102 */
6103int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6104 const unsigned char *src)
6105{
6106 struct ethhdr *eth;
6107 int err;
6108
6109 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6110 return -EPROTO;
6111
6112 err = skb_cow_head(skb, sizeof(*eth));
6113 if (err < 0)
6114 return err;
6115
6116 skb_push(skb, sizeof(*eth));
6117 skb_reset_mac_header(skb);
6118 skb_reset_mac_len(skb);
6119
6120 eth = eth_hdr(skb);
6121 ether_addr_copy(eth->h_dest, dst);
6122 ether_addr_copy(eth->h_source, src);
6123 eth->h_proto = skb->protocol;
6124
6125 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6126
6127 return 0;
6128}
6129EXPORT_SYMBOL(skb_eth_push);
6130
6131/* Update the ethertype of hdr and the skb csum value if required. */
6132static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6133 __be16 ethertype)
6134{
6135 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6136 __be16 diff[] = { ~hdr->h_proto, ethertype };
6137
6138 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6139 }
6140
6141 hdr->h_proto = ethertype;
6142}
6143
6144/**
6145 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6146 * the packet
6147 *
6148 * @skb: buffer
6149 * @mpls_lse: MPLS label stack entry to push
6150 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6151 * @mac_len: length of the MAC header
6152 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6153 * ethernet
6154 *
6155 * Expects skb->data at mac header.
6156 *
6157 * Returns 0 on success, -errno otherwise.
6158 */
6159int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6160 int mac_len, bool ethernet)
6161{
6162 struct mpls_shim_hdr *lse;
6163 int err;
6164
6165 if (unlikely(!eth_p_mpls(mpls_proto)))
6166 return -EINVAL;
6167
6168 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6169 if (skb->encapsulation)
6170 return -EINVAL;
6171
6172 err = skb_cow_head(skb, MPLS_HLEN);
6173 if (unlikely(err))
6174 return err;
6175
6176 if (!skb->inner_protocol) {
6177 skb_set_inner_network_header(skb, skb_network_offset(skb));
6178 skb_set_inner_protocol(skb, skb->protocol);
6179 }
6180
6181 skb_push(skb, MPLS_HLEN);
6182 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6183 mac_len);
6184 skb_reset_mac_header(skb);
6185 skb_set_network_header(skb, mac_len);
6186 skb_reset_mac_len(skb);
6187
6188 lse = mpls_hdr(skb);
6189 lse->label_stack_entry = mpls_lse;
6190 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6191
6192 if (ethernet && mac_len >= ETH_HLEN)
6193 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6194 skb->protocol = mpls_proto;
6195
6196 return 0;
6197}
6198EXPORT_SYMBOL_GPL(skb_mpls_push);
6199
6200/**
6201 * skb_mpls_pop() - pop the outermost MPLS header
6202 *
6203 * @skb: buffer
6204 * @next_proto: ethertype of header after popped MPLS header
6205 * @mac_len: length of the MAC header
6206 * @ethernet: flag to indicate if the packet is ethernet
6207 *
6208 * Expects skb->data at mac header.
6209 *
6210 * Returns 0 on success, -errno otherwise.
6211 */
6212int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6213 bool ethernet)
6214{
6215 int err;
6216
6217 if (unlikely(!eth_p_mpls(skb->protocol)))
6218 return 0;
6219
6220 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6221 if (unlikely(err))
6222 return err;
6223
6224 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6225 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6226 mac_len);
6227
6228 __skb_pull(skb, MPLS_HLEN);
6229 skb_reset_mac_header(skb);
6230 skb_set_network_header(skb, mac_len);
6231
6232 if (ethernet && mac_len >= ETH_HLEN) {
6233 struct ethhdr *hdr;
6234
6235 /* use mpls_hdr() to get ethertype to account for VLANs. */
6236 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6237 skb_mod_eth_type(skb, hdr, next_proto);
6238 }
6239 skb->protocol = next_proto;
6240
6241 return 0;
6242}
6243EXPORT_SYMBOL_GPL(skb_mpls_pop);
6244
6245/**
6246 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6247 *
6248 * @skb: buffer
6249 * @mpls_lse: new MPLS label stack entry to update to
6250 *
6251 * Expects skb->data at mac header.
6252 *
6253 * Returns 0 on success, -errno otherwise.
6254 */
6255int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6256{
6257 int err;
6258
6259 if (unlikely(!eth_p_mpls(skb->protocol)))
6260 return -EINVAL;
6261
6262 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6263 if (unlikely(err))
6264 return err;
6265
6266 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6267 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6268
6269 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6270 }
6271
6272 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6273
6274 return 0;
6275}
6276EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6277
6278/**
6279 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6280 *
6281 * @skb: buffer
6282 *
6283 * Expects skb->data at mac header.
6284 *
6285 * Returns 0 on success, -errno otherwise.
6286 */
6287int skb_mpls_dec_ttl(struct sk_buff *skb)
6288{
6289 u32 lse;
6290 u8 ttl;
6291
6292 if (unlikely(!eth_p_mpls(skb->protocol)))
6293 return -EINVAL;
6294
6295 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6296 return -ENOMEM;
6297
6298 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6299 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6300 if (!--ttl)
6301 return -EINVAL;
6302
6303 lse &= ~MPLS_LS_TTL_MASK;
6304 lse |= ttl << MPLS_LS_TTL_SHIFT;
6305
6306 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6307}
6308EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6309
6310/**
6311 * alloc_skb_with_frags - allocate skb with page frags
6312 *
6313 * @header_len: size of linear part
6314 * @data_len: needed length in frags
6315 * @order: max page order desired.
6316 * @errcode: pointer to error code if any
6317 * @gfp_mask: allocation mask
6318 *
6319 * This can be used to allocate a paged skb, given a maximal order for frags.
6320 */
6321struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6322 unsigned long data_len,
6323 int order,
6324 int *errcode,
6325 gfp_t gfp_mask)
6326{
6327 unsigned long chunk;
6328 struct sk_buff *skb;
6329 struct page *page;
6330 int nr_frags = 0;
6331
6332 *errcode = -EMSGSIZE;
6333 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6334 return NULL;
6335
6336 *errcode = -ENOBUFS;
6337 skb = alloc_skb(header_len, gfp_mask);
6338 if (!skb)
6339 return NULL;
6340
6341 while (data_len) {
6342 if (nr_frags == MAX_SKB_FRAGS - 1)
6343 goto failure;
6344 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6345 order--;
6346
6347 if (order) {
6348 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6349 __GFP_COMP |
6350 __GFP_NOWARN,
6351 order);
6352 if (!page) {
6353 order--;
6354 continue;
6355 }
6356 } else {
6357 page = alloc_page(gfp_mask);
6358 if (!page)
6359 goto failure;
6360 }
6361 chunk = min_t(unsigned long, data_len,
6362 PAGE_SIZE << order);
6363 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6364 nr_frags++;
6365 skb->truesize += (PAGE_SIZE << order);
6366 data_len -= chunk;
6367 }
6368 return skb;
6369
6370failure:
6371 kfree_skb(skb);
6372 return NULL;
6373}
6374EXPORT_SYMBOL(alloc_skb_with_frags);
6375
6376/* carve out the first off bytes from skb when off < headlen */
6377static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6378 const int headlen, gfp_t gfp_mask)
6379{
6380 int i;
6381 unsigned int size = skb_end_offset(skb);
6382 int new_hlen = headlen - off;
6383 u8 *data;
6384
6385 if (skb_pfmemalloc(skb))
6386 gfp_mask |= __GFP_MEMALLOC;
6387
6388 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6389 if (!data)
6390 return -ENOMEM;
6391 size = SKB_WITH_OVERHEAD(size);
6392
6393 /* Copy real data, and all frags */
6394 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6395 skb->len -= off;
6396
6397 memcpy((struct skb_shared_info *)(data + size),
6398 skb_shinfo(skb),
6399 offsetof(struct skb_shared_info,
6400 frags[skb_shinfo(skb)->nr_frags]));
6401 if (skb_cloned(skb)) {
6402 /* drop the old head gracefully */
6403 if (skb_orphan_frags(skb, gfp_mask)) {
6404 skb_kfree_head(data, size);
6405 return -ENOMEM;
6406 }
6407 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6408 skb_frag_ref(skb, i);
6409 if (skb_has_frag_list(skb))
6410 skb_clone_fraglist(skb);
6411 skb_release_data(skb, SKB_CONSUMED, false);
6412 } else {
6413 /* we can reuse existing recount- all we did was
6414 * relocate values
6415 */
6416 skb_free_head(skb, false);
6417 }
6418
6419 skb->head = data;
6420 skb->data = data;
6421 skb->head_frag = 0;
6422 skb_set_end_offset(skb, size);
6423 skb_set_tail_pointer(skb, skb_headlen(skb));
6424 skb_headers_offset_update(skb, 0);
6425 skb->cloned = 0;
6426 skb->hdr_len = 0;
6427 skb->nohdr = 0;
6428 atomic_set(&skb_shinfo(skb)->dataref, 1);
6429
6430 return 0;
6431}
6432
6433static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6434
6435/* carve out the first eat bytes from skb's frag_list. May recurse into
6436 * pskb_carve()
6437 */
6438static int pskb_carve_frag_list(struct sk_buff *skb,
6439 struct skb_shared_info *shinfo, int eat,
6440 gfp_t gfp_mask)
6441{
6442 struct sk_buff *list = shinfo->frag_list;
6443 struct sk_buff *clone = NULL;
6444 struct sk_buff *insp = NULL;
6445
6446 do {
6447 if (!list) {
6448 pr_err("Not enough bytes to eat. Want %d\n", eat);
6449 return -EFAULT;
6450 }
6451 if (list->len <= eat) {
6452 /* Eaten as whole. */
6453 eat -= list->len;
6454 list = list->next;
6455 insp = list;
6456 } else {
6457 /* Eaten partially. */
6458 if (skb_shared(list)) {
6459 clone = skb_clone(list, gfp_mask);
6460 if (!clone)
6461 return -ENOMEM;
6462 insp = list->next;
6463 list = clone;
6464 } else {
6465 /* This may be pulled without problems. */
6466 insp = list;
6467 }
6468 if (pskb_carve(list, eat, gfp_mask) < 0) {
6469 kfree_skb(clone);
6470 return -ENOMEM;
6471 }
6472 break;
6473 }
6474 } while (eat);
6475
6476 /* Free pulled out fragments. */
6477 while ((list = shinfo->frag_list) != insp) {
6478 shinfo->frag_list = list->next;
6479 consume_skb(list);
6480 }
6481 /* And insert new clone at head. */
6482 if (clone) {
6483 clone->next = list;
6484 shinfo->frag_list = clone;
6485 }
6486 return 0;
6487}
6488
6489/* carve off first len bytes from skb. Split line (off) is in the
6490 * non-linear part of skb
6491 */
6492static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6493 int pos, gfp_t gfp_mask)
6494{
6495 int i, k = 0;
6496 unsigned int size = skb_end_offset(skb);
6497 u8 *data;
6498 const int nfrags = skb_shinfo(skb)->nr_frags;
6499 struct skb_shared_info *shinfo;
6500
6501 if (skb_pfmemalloc(skb))
6502 gfp_mask |= __GFP_MEMALLOC;
6503
6504 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6505 if (!data)
6506 return -ENOMEM;
6507 size = SKB_WITH_OVERHEAD(size);
6508
6509 memcpy((struct skb_shared_info *)(data + size),
6510 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6511 if (skb_orphan_frags(skb, gfp_mask)) {
6512 skb_kfree_head(data, size);
6513 return -ENOMEM;
6514 }
6515 shinfo = (struct skb_shared_info *)(data + size);
6516 for (i = 0; i < nfrags; i++) {
6517 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6518
6519 if (pos + fsize > off) {
6520 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6521
6522 if (pos < off) {
6523 /* Split frag.
6524 * We have two variants in this case:
6525 * 1. Move all the frag to the second
6526 * part, if it is possible. F.e.
6527 * this approach is mandatory for TUX,
6528 * where splitting is expensive.
6529 * 2. Split is accurately. We make this.
6530 */
6531 skb_frag_off_add(&shinfo->frags[0], off - pos);
6532 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6533 }
6534 skb_frag_ref(skb, i);
6535 k++;
6536 }
6537 pos += fsize;
6538 }
6539 shinfo->nr_frags = k;
6540 if (skb_has_frag_list(skb))
6541 skb_clone_fraglist(skb);
6542
6543 /* split line is in frag list */
6544 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6545 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6546 if (skb_has_frag_list(skb))
6547 kfree_skb_list(skb_shinfo(skb)->frag_list);
6548 skb_kfree_head(data, size);
6549 return -ENOMEM;
6550 }
6551 skb_release_data(skb, SKB_CONSUMED, false);
6552
6553 skb->head = data;
6554 skb->head_frag = 0;
6555 skb->data = data;
6556 skb_set_end_offset(skb, size);
6557 skb_reset_tail_pointer(skb);
6558 skb_headers_offset_update(skb, 0);
6559 skb->cloned = 0;
6560 skb->hdr_len = 0;
6561 skb->nohdr = 0;
6562 skb->len -= off;
6563 skb->data_len = skb->len;
6564 atomic_set(&skb_shinfo(skb)->dataref, 1);
6565 return 0;
6566}
6567
6568/* remove len bytes from the beginning of the skb */
6569static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6570{
6571 int headlen = skb_headlen(skb);
6572
6573 if (len < headlen)
6574 return pskb_carve_inside_header(skb, len, headlen, gfp);
6575 else
6576 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6577}
6578
6579/* Extract to_copy bytes starting at off from skb, and return this in
6580 * a new skb
6581 */
6582struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6583 int to_copy, gfp_t gfp)
6584{
6585 struct sk_buff *clone = skb_clone(skb, gfp);
6586
6587 if (!clone)
6588 return NULL;
6589
6590 if (pskb_carve(clone, off, gfp) < 0 ||
6591 pskb_trim(clone, to_copy)) {
6592 kfree_skb(clone);
6593 return NULL;
6594 }
6595 return clone;
6596}
6597EXPORT_SYMBOL(pskb_extract);
6598
6599/**
6600 * skb_condense - try to get rid of fragments/frag_list if possible
6601 * @skb: buffer
6602 *
6603 * Can be used to save memory before skb is added to a busy queue.
6604 * If packet has bytes in frags and enough tail room in skb->head,
6605 * pull all of them, so that we can free the frags right now and adjust
6606 * truesize.
6607 * Notes:
6608 * We do not reallocate skb->head thus can not fail.
6609 * Caller must re-evaluate skb->truesize if needed.
6610 */
6611void skb_condense(struct sk_buff *skb)
6612{
6613 if (skb->data_len) {
6614 if (skb->data_len > skb->end - skb->tail ||
6615 skb_cloned(skb))
6616 return;
6617
6618 /* Nice, we can free page frag(s) right now */
6619 __pskb_pull_tail(skb, skb->data_len);
6620 }
6621 /* At this point, skb->truesize might be over estimated,
6622 * because skb had a fragment, and fragments do not tell
6623 * their truesize.
6624 * When we pulled its content into skb->head, fragment
6625 * was freed, but __pskb_pull_tail() could not possibly
6626 * adjust skb->truesize, not knowing the frag truesize.
6627 */
6628 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6629}
6630EXPORT_SYMBOL(skb_condense);
6631
6632#ifdef CONFIG_SKB_EXTENSIONS
6633static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6634{
6635 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6636}
6637
6638/**
6639 * __skb_ext_alloc - allocate a new skb extensions storage
6640 *
6641 * @flags: See kmalloc().
6642 *
6643 * Returns the newly allocated pointer. The pointer can later attached to a
6644 * skb via __skb_ext_set().
6645 * Note: caller must handle the skb_ext as an opaque data.
6646 */
6647struct skb_ext *__skb_ext_alloc(gfp_t flags)
6648{
6649 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6650
6651 if (new) {
6652 memset(new->offset, 0, sizeof(new->offset));
6653 refcount_set(&new->refcnt, 1);
6654 }
6655
6656 return new;
6657}
6658
6659static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6660 unsigned int old_active)
6661{
6662 struct skb_ext *new;
6663
6664 if (refcount_read(&old->refcnt) == 1)
6665 return old;
6666
6667 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6668 if (!new)
6669 return NULL;
6670
6671 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6672 refcount_set(&new->refcnt, 1);
6673
6674#ifdef CONFIG_XFRM
6675 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6676 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6677 unsigned int i;
6678
6679 for (i = 0; i < sp->len; i++)
6680 xfrm_state_hold(sp->xvec[i]);
6681 }
6682#endif
6683 __skb_ext_put(old);
6684 return new;
6685}
6686
6687/**
6688 * __skb_ext_set - attach the specified extension storage to this skb
6689 * @skb: buffer
6690 * @id: extension id
6691 * @ext: extension storage previously allocated via __skb_ext_alloc()
6692 *
6693 * Existing extensions, if any, are cleared.
6694 *
6695 * Returns the pointer to the extension.
6696 */
6697void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6698 struct skb_ext *ext)
6699{
6700 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6701
6702 skb_ext_put(skb);
6703 newlen = newoff + skb_ext_type_len[id];
6704 ext->chunks = newlen;
6705 ext->offset[id] = newoff;
6706 skb->extensions = ext;
6707 skb->active_extensions = 1 << id;
6708 return skb_ext_get_ptr(ext, id);
6709}
6710
6711/**
6712 * skb_ext_add - allocate space for given extension, COW if needed
6713 * @skb: buffer
6714 * @id: extension to allocate space for
6715 *
6716 * Allocates enough space for the given extension.
6717 * If the extension is already present, a pointer to that extension
6718 * is returned.
6719 *
6720 * If the skb was cloned, COW applies and the returned memory can be
6721 * modified without changing the extension space of clones buffers.
6722 *
6723 * Returns pointer to the extension or NULL on allocation failure.
6724 */
6725void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6726{
6727 struct skb_ext *new, *old = NULL;
6728 unsigned int newlen, newoff;
6729
6730 if (skb->active_extensions) {
6731 old = skb->extensions;
6732
6733 new = skb_ext_maybe_cow(old, skb->active_extensions);
6734 if (!new)
6735 return NULL;
6736
6737 if (__skb_ext_exist(new, id))
6738 goto set_active;
6739
6740 newoff = new->chunks;
6741 } else {
6742 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6743
6744 new = __skb_ext_alloc(GFP_ATOMIC);
6745 if (!new)
6746 return NULL;
6747 }
6748
6749 newlen = newoff + skb_ext_type_len[id];
6750 new->chunks = newlen;
6751 new->offset[id] = newoff;
6752set_active:
6753 skb->slow_gro = 1;
6754 skb->extensions = new;
6755 skb->active_extensions |= 1 << id;
6756 return skb_ext_get_ptr(new, id);
6757}
6758EXPORT_SYMBOL(skb_ext_add);
6759
6760#ifdef CONFIG_XFRM
6761static void skb_ext_put_sp(struct sec_path *sp)
6762{
6763 unsigned int i;
6764
6765 for (i = 0; i < sp->len; i++)
6766 xfrm_state_put(sp->xvec[i]);
6767}
6768#endif
6769
6770#ifdef CONFIG_MCTP_FLOWS
6771static void skb_ext_put_mctp(struct mctp_flow *flow)
6772{
6773 if (flow->key)
6774 mctp_key_unref(flow->key);
6775}
6776#endif
6777
6778void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6779{
6780 struct skb_ext *ext = skb->extensions;
6781
6782 skb->active_extensions &= ~(1 << id);
6783 if (skb->active_extensions == 0) {
6784 skb->extensions = NULL;
6785 __skb_ext_put(ext);
6786#ifdef CONFIG_XFRM
6787 } else if (id == SKB_EXT_SEC_PATH &&
6788 refcount_read(&ext->refcnt) == 1) {
6789 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6790
6791 skb_ext_put_sp(sp);
6792 sp->len = 0;
6793#endif
6794 }
6795}
6796EXPORT_SYMBOL(__skb_ext_del);
6797
6798void __skb_ext_put(struct skb_ext *ext)
6799{
6800 /* If this is last clone, nothing can increment
6801 * it after check passes. Avoids one atomic op.
6802 */
6803 if (refcount_read(&ext->refcnt) == 1)
6804 goto free_now;
6805
6806 if (!refcount_dec_and_test(&ext->refcnt))
6807 return;
6808free_now:
6809#ifdef CONFIG_XFRM
6810 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6811 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6812#endif
6813#ifdef CONFIG_MCTP_FLOWS
6814 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6815 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6816#endif
6817
6818 kmem_cache_free(skbuff_ext_cache, ext);
6819}
6820EXPORT_SYMBOL(__skb_ext_put);
6821#endif /* CONFIG_SKB_EXTENSIONS */
6822
6823/**
6824 * skb_attempt_defer_free - queue skb for remote freeing
6825 * @skb: buffer
6826 *
6827 * Put @skb in a per-cpu list, using the cpu which
6828 * allocated the skb/pages to reduce false sharing
6829 * and memory zone spinlock contention.
6830 */
6831void skb_attempt_defer_free(struct sk_buff *skb)
6832{
6833 int cpu = skb->alloc_cpu;
6834 struct softnet_data *sd;
6835 unsigned int defer_max;
6836 bool kick;
6837
6838 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6839 !cpu_online(cpu) ||
6840 cpu == raw_smp_processor_id()) {
6841nodefer: __kfree_skb(skb);
6842 return;
6843 }
6844
6845 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6846 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6847
6848 sd = &per_cpu(softnet_data, cpu);
6849 defer_max = READ_ONCE(sysctl_skb_defer_max);
6850 if (READ_ONCE(sd->defer_count) >= defer_max)
6851 goto nodefer;
6852
6853 spin_lock_bh(&sd->defer_lock);
6854 /* Send an IPI every time queue reaches half capacity. */
6855 kick = sd->defer_count == (defer_max >> 1);
6856 /* Paired with the READ_ONCE() few lines above */
6857 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6858
6859 skb->next = sd->defer_list;
6860 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6861 WRITE_ONCE(sd->defer_list, skb);
6862 spin_unlock_bh(&sd->defer_lock);
6863
6864 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6865 * if we are unlucky enough (this seems very unlikely).
6866 */
6867 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6868 smp_call_function_single_async(cpu, &sd->defer_csd);
6869}
6870
6871static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6872 size_t offset, size_t len)
6873{
6874 const char *kaddr;
6875 __wsum csum;
6876
6877 kaddr = kmap_local_page(page);
6878 csum = csum_partial(kaddr + offset, len, 0);
6879 kunmap_local(kaddr);
6880 skb->csum = csum_block_add(skb->csum, csum, skb->len);
6881}
6882
6883/**
6884 * skb_splice_from_iter - Splice (or copy) pages to skbuff
6885 * @skb: The buffer to add pages to
6886 * @iter: Iterator representing the pages to be added
6887 * @maxsize: Maximum amount of pages to be added
6888 * @gfp: Allocation flags
6889 *
6890 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
6891 * extracts pages from an iterator and adds them to the socket buffer if
6892 * possible, copying them to fragments if not possible (such as if they're slab
6893 * pages).
6894 *
6895 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6896 * insufficient space in the buffer to transfer anything.
6897 */
6898ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6899 ssize_t maxsize, gfp_t gfp)
6900{
6901 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6902 struct page *pages[8], **ppages = pages;
6903 ssize_t spliced = 0, ret = 0;
6904 unsigned int i;
6905
6906 while (iter->count > 0) {
6907 ssize_t space, nr, len;
6908 size_t off;
6909
6910 ret = -EMSGSIZE;
6911 space = frag_limit - skb_shinfo(skb)->nr_frags;
6912 if (space < 0)
6913 break;
6914
6915 /* We might be able to coalesce without increasing nr_frags */
6916 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6917
6918 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6919 if (len <= 0) {
6920 ret = len ?: -EIO;
6921 break;
6922 }
6923
6924 i = 0;
6925 do {
6926 struct page *page = pages[i++];
6927 size_t part = min_t(size_t, PAGE_SIZE - off, len);
6928
6929 ret = -EIO;
6930 if (WARN_ON_ONCE(!sendpage_ok(page)))
6931 goto out;
6932
6933 ret = skb_append_pagefrags(skb, page, off, part,
6934 frag_limit);
6935 if (ret < 0) {
6936 iov_iter_revert(iter, len);
6937 goto out;
6938 }
6939
6940 if (skb->ip_summed == CHECKSUM_NONE)
6941 skb_splice_csum_page(skb, page, off, part);
6942
6943 off = 0;
6944 spliced += part;
6945 maxsize -= part;
6946 len -= part;
6947 } while (len > 0);
6948
6949 if (maxsize <= 0)
6950 break;
6951 }
6952
6953out:
6954 skb_len_add(skb, spliced);
6955 return spliced ?: ret;
6956}
6957EXPORT_SYMBOL(skb_splice_from_iter);
6958
6959static __always_inline
6960size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
6961 size_t len, void *to, void *priv2)
6962{
6963 __wsum *csum = priv2;
6964 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
6965
6966 *csum = csum_block_add(*csum, next, progress);
6967 return 0;
6968}
6969
6970static __always_inline
6971size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
6972 size_t len, void *to, void *priv2)
6973{
6974 __wsum next, *csum = priv2;
6975
6976 next = csum_and_copy_from_user(iter_from, to + progress, len);
6977 *csum = csum_block_add(*csum, next, progress);
6978 return next ? 0 : len;
6979}
6980
6981bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
6982 __wsum *csum, struct iov_iter *i)
6983{
6984 size_t copied;
6985
6986 if (WARN_ON_ONCE(!i->data_source))
6987 return false;
6988 copied = iterate_and_advance2(i, bytes, addr, csum,
6989 copy_from_user_iter_csum,
6990 memcpy_from_iter_csum);
6991 if (likely(copied == bytes))
6992 return true;
6993 iov_iter_revert(i, copied);
6994 return false;
6995}
6996EXPORT_SYMBOL(csum_and_copy_from_iter_full);