Merge tag 'riscv-for-linus-6.16-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / net / core / page_pool.c
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0
2 *
3 * page_pool.c
4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5 * Copyright (C) 2016 Red Hat, Inc.
6 */
7
8#include <linux/error-injection.h>
9#include <linux/types.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/device.h>
13
14#include <net/netdev_lock.h>
15#include <net/netdev_rx_queue.h>
16#include <net/page_pool/helpers.h>
17#include <net/page_pool/memory_provider.h>
18#include <net/xdp.h>
19
20#include <linux/dma-direction.h>
21#include <linux/dma-mapping.h>
22#include <linux/page-flags.h>
23#include <linux/mm.h> /* for put_page() */
24#include <linux/poison.h>
25#include <linux/ethtool.h>
26#include <linux/netdevice.h>
27
28#include <trace/events/page_pool.h>
29
30#include "dev.h"
31#include "mp_dmabuf_devmem.h"
32#include "netmem_priv.h"
33#include "page_pool_priv.h"
34
35DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers);
36
37#define DEFER_TIME (msecs_to_jiffies(1000))
38#define DEFER_WARN_INTERVAL (60 * HZ)
39
40#define BIAS_MAX (LONG_MAX >> 1)
41
42#ifdef CONFIG_PAGE_POOL_STATS
43static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats);
44
45/* alloc_stat_inc is intended to be used in softirq context */
46#define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++)
47/* recycle_stat_inc is safe to use when preemption is possible. */
48#define recycle_stat_inc(pool, __stat) \
49 do { \
50 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
51 this_cpu_inc(s->__stat); \
52 } while (0)
53
54#define recycle_stat_add(pool, __stat, val) \
55 do { \
56 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
57 this_cpu_add(s->__stat, val); \
58 } while (0)
59
60static const char pp_stats[][ETH_GSTRING_LEN] = {
61 "rx_pp_alloc_fast",
62 "rx_pp_alloc_slow",
63 "rx_pp_alloc_slow_ho",
64 "rx_pp_alloc_empty",
65 "rx_pp_alloc_refill",
66 "rx_pp_alloc_waive",
67 "rx_pp_recycle_cached",
68 "rx_pp_recycle_cache_full",
69 "rx_pp_recycle_ring",
70 "rx_pp_recycle_ring_full",
71 "rx_pp_recycle_released_ref",
72};
73
74/**
75 * page_pool_get_stats() - fetch page pool stats
76 * @pool: pool from which page was allocated
77 * @stats: struct page_pool_stats to fill in
78 *
79 * Retrieve statistics about the page_pool. This API is only available
80 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
81 * A pointer to a caller allocated struct page_pool_stats structure
82 * is passed to this API which is filled in. The caller can then report
83 * those stats to the user (perhaps via ethtool, debugfs, etc.).
84 */
85bool page_pool_get_stats(const struct page_pool *pool,
86 struct page_pool_stats *stats)
87{
88 int cpu = 0;
89
90 if (!stats)
91 return false;
92
93 /* The caller is responsible to initialize stats. */
94 stats->alloc_stats.fast += pool->alloc_stats.fast;
95 stats->alloc_stats.slow += pool->alloc_stats.slow;
96 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
97 stats->alloc_stats.empty += pool->alloc_stats.empty;
98 stats->alloc_stats.refill += pool->alloc_stats.refill;
99 stats->alloc_stats.waive += pool->alloc_stats.waive;
100
101 for_each_possible_cpu(cpu) {
102 const struct page_pool_recycle_stats *pcpu =
103 per_cpu_ptr(pool->recycle_stats, cpu);
104
105 stats->recycle_stats.cached += pcpu->cached;
106 stats->recycle_stats.cache_full += pcpu->cache_full;
107 stats->recycle_stats.ring += pcpu->ring;
108 stats->recycle_stats.ring_full += pcpu->ring_full;
109 stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
110 }
111
112 return true;
113}
114EXPORT_SYMBOL(page_pool_get_stats);
115
116u8 *page_pool_ethtool_stats_get_strings(u8 *data)
117{
118 int i;
119
120 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
121 memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
122 data += ETH_GSTRING_LEN;
123 }
124
125 return data;
126}
127EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
128
129int page_pool_ethtool_stats_get_count(void)
130{
131 return ARRAY_SIZE(pp_stats);
132}
133EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
134
135u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
136{
137 const struct page_pool_stats *pool_stats = stats;
138
139 *data++ = pool_stats->alloc_stats.fast;
140 *data++ = pool_stats->alloc_stats.slow;
141 *data++ = pool_stats->alloc_stats.slow_high_order;
142 *data++ = pool_stats->alloc_stats.empty;
143 *data++ = pool_stats->alloc_stats.refill;
144 *data++ = pool_stats->alloc_stats.waive;
145 *data++ = pool_stats->recycle_stats.cached;
146 *data++ = pool_stats->recycle_stats.cache_full;
147 *data++ = pool_stats->recycle_stats.ring;
148 *data++ = pool_stats->recycle_stats.ring_full;
149 *data++ = pool_stats->recycle_stats.released_refcnt;
150
151 return data;
152}
153EXPORT_SYMBOL(page_pool_ethtool_stats_get);
154
155#else
156#define alloc_stat_inc(...) do { } while (0)
157#define recycle_stat_inc(...) do { } while (0)
158#define recycle_stat_add(...) do { } while (0)
159#endif
160
161static bool page_pool_producer_lock(struct page_pool *pool)
162 __acquires(&pool->ring.producer_lock)
163{
164 bool in_softirq = in_softirq();
165
166 if (in_softirq)
167 spin_lock(&pool->ring.producer_lock);
168 else
169 spin_lock_bh(&pool->ring.producer_lock);
170
171 return in_softirq;
172}
173
174static void page_pool_producer_unlock(struct page_pool *pool,
175 bool in_softirq)
176 __releases(&pool->ring.producer_lock)
177{
178 if (in_softirq)
179 spin_unlock(&pool->ring.producer_lock);
180 else
181 spin_unlock_bh(&pool->ring.producer_lock);
182}
183
184static void page_pool_struct_check(void)
185{
186 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users);
187 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page);
188 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset);
189 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag,
190 PAGE_POOL_FRAG_GROUP_ALIGN);
191}
192
193static int page_pool_init(struct page_pool *pool,
194 const struct page_pool_params *params,
195 int cpuid)
196{
197 unsigned int ring_qsize = 1024; /* Default */
198 struct netdev_rx_queue *rxq;
199 int err;
200
201 page_pool_struct_check();
202
203 memcpy(&pool->p, &params->fast, sizeof(pool->p));
204 memcpy(&pool->slow, &params->slow, sizeof(pool->slow));
205
206 pool->cpuid = cpuid;
207 pool->dma_sync_for_cpu = true;
208
209 /* Validate only known flags were used */
210 if (pool->slow.flags & ~PP_FLAG_ALL)
211 return -EINVAL;
212
213 if (pool->p.pool_size)
214 ring_qsize = pool->p.pool_size;
215
216 /* Sanity limit mem that can be pinned down */
217 if (ring_qsize > 32768)
218 return -E2BIG;
219
220 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
221 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
222 * which is the XDP_TX use-case.
223 */
224 if (pool->slow.flags & PP_FLAG_DMA_MAP) {
225 if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
226 (pool->p.dma_dir != DMA_BIDIRECTIONAL))
227 return -EINVAL;
228
229 pool->dma_map = true;
230 }
231
232 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) {
233 /* In order to request DMA-sync-for-device the page
234 * needs to be mapped
235 */
236 if (!(pool->slow.flags & PP_FLAG_DMA_MAP))
237 return -EINVAL;
238
239 if (!pool->p.max_len)
240 return -EINVAL;
241
242 pool->dma_sync = true;
243
244 /* pool->p.offset has to be set according to the address
245 * offset used by the DMA engine to start copying rx data
246 */
247 }
248
249 pool->has_init_callback = !!pool->slow.init_callback;
250
251#ifdef CONFIG_PAGE_POOL_STATS
252 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) {
253 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
254 if (!pool->recycle_stats)
255 return -ENOMEM;
256 } else {
257 /* For system page pool instance we use a singular stats object
258 * instead of allocating a separate percpu variable for each
259 * (also percpu) page pool instance.
260 */
261 pool->recycle_stats = &pp_system_recycle_stats;
262 pool->system = true;
263 }
264#endif
265
266 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
267#ifdef CONFIG_PAGE_POOL_STATS
268 if (!pool->system)
269 free_percpu(pool->recycle_stats);
270#endif
271 return -ENOMEM;
272 }
273
274 atomic_set(&pool->pages_state_release_cnt, 0);
275
276 /* Driver calling page_pool_create() also call page_pool_destroy() */
277 refcount_set(&pool->user_cnt, 1);
278
279 xa_init_flags(&pool->dma_mapped, XA_FLAGS_ALLOC1);
280
281 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) {
282 netdev_assert_locked(pool->slow.netdev);
283 rxq = __netif_get_rx_queue(pool->slow.netdev,
284 pool->slow.queue_idx);
285 pool->mp_priv = rxq->mp_params.mp_priv;
286 pool->mp_ops = rxq->mp_params.mp_ops;
287 }
288
289 if (pool->mp_ops) {
290 if (!pool->dma_map || !pool->dma_sync)
291 return -EOPNOTSUPP;
292
293 if (WARN_ON(!is_kernel_rodata((unsigned long)pool->mp_ops))) {
294 err = -EFAULT;
295 goto free_ptr_ring;
296 }
297
298 err = pool->mp_ops->init(pool);
299 if (err) {
300 pr_warn("%s() mem-provider init failed %d\n", __func__,
301 err);
302 goto free_ptr_ring;
303 }
304
305 static_branch_inc(&page_pool_mem_providers);
306 }
307
308 return 0;
309
310free_ptr_ring:
311 ptr_ring_cleanup(&pool->ring, NULL);
312#ifdef CONFIG_PAGE_POOL_STATS
313 if (!pool->system)
314 free_percpu(pool->recycle_stats);
315#endif
316 return err;
317}
318
319static void page_pool_uninit(struct page_pool *pool)
320{
321 ptr_ring_cleanup(&pool->ring, NULL);
322 xa_destroy(&pool->dma_mapped);
323
324#ifdef CONFIG_PAGE_POOL_STATS
325 if (!pool->system)
326 free_percpu(pool->recycle_stats);
327#endif
328}
329
330/**
331 * page_pool_create_percpu() - create a page pool for a given cpu.
332 * @params: parameters, see struct page_pool_params
333 * @cpuid: cpu identifier
334 */
335struct page_pool *
336page_pool_create_percpu(const struct page_pool_params *params, int cpuid)
337{
338 struct page_pool *pool;
339 int err;
340
341 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
342 if (!pool)
343 return ERR_PTR(-ENOMEM);
344
345 err = page_pool_init(pool, params, cpuid);
346 if (err < 0)
347 goto err_free;
348
349 err = page_pool_list(pool);
350 if (err)
351 goto err_uninit;
352
353 return pool;
354
355err_uninit:
356 page_pool_uninit(pool);
357err_free:
358 pr_warn("%s() gave up with errno %d\n", __func__, err);
359 kfree(pool);
360 return ERR_PTR(err);
361}
362EXPORT_SYMBOL(page_pool_create_percpu);
363
364/**
365 * page_pool_create() - create a page pool
366 * @params: parameters, see struct page_pool_params
367 */
368struct page_pool *page_pool_create(const struct page_pool_params *params)
369{
370 return page_pool_create_percpu(params, -1);
371}
372EXPORT_SYMBOL(page_pool_create);
373
374static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem);
375
376static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool)
377{
378 struct ptr_ring *r = &pool->ring;
379 netmem_ref netmem;
380 int pref_nid; /* preferred NUMA node */
381
382 /* Quicker fallback, avoid locks when ring is empty */
383 if (__ptr_ring_empty(r)) {
384 alloc_stat_inc(pool, empty);
385 return 0;
386 }
387
388 /* Softirq guarantee CPU and thus NUMA node is stable. This,
389 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
390 */
391#ifdef CONFIG_NUMA
392 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
393#else
394 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
395 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
396#endif
397
398 /* Refill alloc array, but only if NUMA match */
399 do {
400 netmem = (__force netmem_ref)__ptr_ring_consume(r);
401 if (unlikely(!netmem))
402 break;
403
404 if (likely(netmem_is_pref_nid(netmem, pref_nid))) {
405 pool->alloc.cache[pool->alloc.count++] = netmem;
406 } else {
407 /* NUMA mismatch;
408 * (1) release 1 page to page-allocator and
409 * (2) break out to fallthrough to alloc_pages_node.
410 * This limit stress on page buddy alloactor.
411 */
412 page_pool_return_page(pool, netmem);
413 alloc_stat_inc(pool, waive);
414 netmem = 0;
415 break;
416 }
417 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
418
419 /* Return last page */
420 if (likely(pool->alloc.count > 0)) {
421 netmem = pool->alloc.cache[--pool->alloc.count];
422 alloc_stat_inc(pool, refill);
423 }
424
425 return netmem;
426}
427
428/* fast path */
429static netmem_ref __page_pool_get_cached(struct page_pool *pool)
430{
431 netmem_ref netmem;
432
433 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
434 if (likely(pool->alloc.count)) {
435 /* Fast-path */
436 netmem = pool->alloc.cache[--pool->alloc.count];
437 alloc_stat_inc(pool, fast);
438 } else {
439 netmem = page_pool_refill_alloc_cache(pool);
440 }
441
442 return netmem;
443}
444
445static void __page_pool_dma_sync_for_device(const struct page_pool *pool,
446 netmem_ref netmem,
447 u32 dma_sync_size)
448{
449#if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
450 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem);
451
452 dma_sync_size = min(dma_sync_size, pool->p.max_len);
453 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset,
454 dma_sync_size, pool->p.dma_dir);
455#endif
456}
457
458static __always_inline void
459page_pool_dma_sync_for_device(const struct page_pool *pool,
460 netmem_ref netmem,
461 u32 dma_sync_size)
462{
463 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) {
464 rcu_read_lock();
465 /* re-check under rcu_read_lock() to sync with page_pool_scrub() */
466 if (pool->dma_sync)
467 __page_pool_dma_sync_for_device(pool, netmem,
468 dma_sync_size);
469 rcu_read_unlock();
470 }
471}
472
473static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem, gfp_t gfp)
474{
475 dma_addr_t dma;
476 int err;
477 u32 id;
478
479 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
480 * since dma_addr_t can be either 32 or 64 bits and does not always fit
481 * into page private data (i.e 32bit cpu with 64bit DMA caps)
482 * This mapping is kept for lifetime of page, until leaving pool.
483 */
484 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0,
485 (PAGE_SIZE << pool->p.order), pool->p.dma_dir,
486 DMA_ATTR_SKIP_CPU_SYNC |
487 DMA_ATTR_WEAK_ORDERING);
488 if (dma_mapping_error(pool->p.dev, dma))
489 return false;
490
491 if (page_pool_set_dma_addr_netmem(netmem, dma)) {
492 WARN_ONCE(1, "unexpected DMA address, please report to netdev@");
493 goto unmap_failed;
494 }
495
496 if (in_softirq())
497 err = xa_alloc(&pool->dma_mapped, &id, netmem_to_page(netmem),
498 PP_DMA_INDEX_LIMIT, gfp);
499 else
500 err = xa_alloc_bh(&pool->dma_mapped, &id, netmem_to_page(netmem),
501 PP_DMA_INDEX_LIMIT, gfp);
502 if (err) {
503 WARN_ONCE(err != -ENOMEM, "couldn't track DMA mapping, please report to netdev@");
504 goto unset_failed;
505 }
506
507 netmem_set_dma_index(netmem, id);
508 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len);
509
510 return true;
511
512unset_failed:
513 page_pool_set_dma_addr_netmem(netmem, 0);
514unmap_failed:
515 dma_unmap_page_attrs(pool->p.dev, dma,
516 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
517 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
518 return false;
519}
520
521static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
522 gfp_t gfp)
523{
524 struct page *page;
525
526 gfp |= __GFP_COMP;
527 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
528 if (unlikely(!page))
529 return NULL;
530
531 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page), gfp))) {
532 put_page(page);
533 return NULL;
534 }
535
536 alloc_stat_inc(pool, slow_high_order);
537 page_pool_set_pp_info(pool, page_to_netmem(page));
538
539 /* Track how many pages are held 'in-flight' */
540 pool->pages_state_hold_cnt++;
541 trace_page_pool_state_hold(pool, page_to_netmem(page),
542 pool->pages_state_hold_cnt);
543 return page;
544}
545
546/* slow path */
547static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool,
548 gfp_t gfp)
549{
550 const int bulk = PP_ALLOC_CACHE_REFILL;
551 unsigned int pp_order = pool->p.order;
552 bool dma_map = pool->dma_map;
553 netmem_ref netmem;
554 int i, nr_pages;
555
556 /* Don't support bulk alloc for high-order pages */
557 if (unlikely(pp_order))
558 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp));
559
560 /* Unnecessary as alloc cache is empty, but guarantees zero count */
561 if (unlikely(pool->alloc.count > 0))
562 return pool->alloc.cache[--pool->alloc.count];
563
564 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk */
565 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
566
567 nr_pages = alloc_pages_bulk_node(gfp, pool->p.nid, bulk,
568 (struct page **)pool->alloc.cache);
569 if (unlikely(!nr_pages))
570 return 0;
571
572 /* Pages have been filled into alloc.cache array, but count is zero and
573 * page element have not been (possibly) DMA mapped.
574 */
575 for (i = 0; i < nr_pages; i++) {
576 netmem = pool->alloc.cache[i];
577 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem, gfp))) {
578 put_page(netmem_to_page(netmem));
579 continue;
580 }
581
582 page_pool_set_pp_info(pool, netmem);
583 pool->alloc.cache[pool->alloc.count++] = netmem;
584 /* Track how many pages are held 'in-flight' */
585 pool->pages_state_hold_cnt++;
586 trace_page_pool_state_hold(pool, netmem,
587 pool->pages_state_hold_cnt);
588 }
589
590 /* Return last page */
591 if (likely(pool->alloc.count > 0)) {
592 netmem = pool->alloc.cache[--pool->alloc.count];
593 alloc_stat_inc(pool, slow);
594 } else {
595 netmem = 0;
596 }
597
598 /* When page just alloc'ed is should/must have refcnt 1. */
599 return netmem;
600}
601
602/* For using page_pool replace: alloc_pages() API calls, but provide
603 * synchronization guarantee for allocation side.
604 */
605netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp)
606{
607 netmem_ref netmem;
608
609 /* Fast-path: Get a page from cache */
610 netmem = __page_pool_get_cached(pool);
611 if (netmem)
612 return netmem;
613
614 /* Slow-path: cache empty, do real allocation */
615 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
616 netmem = pool->mp_ops->alloc_netmems(pool, gfp);
617 else
618 netmem = __page_pool_alloc_pages_slow(pool, gfp);
619 return netmem;
620}
621EXPORT_SYMBOL(page_pool_alloc_netmems);
622ALLOW_ERROR_INJECTION(page_pool_alloc_netmems, NULL);
623
624struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
625{
626 return netmem_to_page(page_pool_alloc_netmems(pool, gfp));
627}
628EXPORT_SYMBOL(page_pool_alloc_pages);
629
630/* Calculate distance between two u32 values, valid if distance is below 2^(31)
631 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
632 */
633#define _distance(a, b) (s32)((a) - (b))
634
635s32 page_pool_inflight(const struct page_pool *pool, bool strict)
636{
637 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
638 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
639 s32 inflight;
640
641 inflight = _distance(hold_cnt, release_cnt);
642
643 if (strict) {
644 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
645 WARN(inflight < 0, "Negative(%d) inflight packet-pages",
646 inflight);
647 } else {
648 inflight = max(0, inflight);
649 }
650
651 return inflight;
652}
653
654void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem)
655{
656 netmem_set_pp(netmem, pool);
657 netmem_or_pp_magic(netmem, PP_SIGNATURE);
658
659 /* Ensuring all pages have been split into one fragment initially:
660 * page_pool_set_pp_info() is only called once for every page when it
661 * is allocated from the page allocator and page_pool_fragment_page()
662 * is dirtying the same cache line as the page->pp_magic above, so
663 * the overhead is negligible.
664 */
665 page_pool_fragment_netmem(netmem, 1);
666 if (pool->has_init_callback)
667 pool->slow.init_callback(netmem, pool->slow.init_arg);
668}
669
670void page_pool_clear_pp_info(netmem_ref netmem)
671{
672 netmem_clear_pp_magic(netmem);
673 netmem_set_pp(netmem, NULL);
674}
675
676static __always_inline void __page_pool_release_page_dma(struct page_pool *pool,
677 netmem_ref netmem)
678{
679 struct page *old, *page = netmem_to_page(netmem);
680 unsigned long id;
681 dma_addr_t dma;
682
683 if (!pool->dma_map)
684 /* Always account for inflight pages, even if we didn't
685 * map them
686 */
687 return;
688
689 id = netmem_get_dma_index(netmem);
690 if (!id)
691 return;
692
693 if (in_softirq())
694 old = xa_cmpxchg(&pool->dma_mapped, id, page, NULL, 0);
695 else
696 old = xa_cmpxchg_bh(&pool->dma_mapped, id, page, NULL, 0);
697 if (old != page)
698 return;
699
700 dma = page_pool_get_dma_addr_netmem(netmem);
701
702 /* When page is unmapped, it cannot be returned to our pool */
703 dma_unmap_page_attrs(pool->p.dev, dma,
704 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
705 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
706 page_pool_set_dma_addr_netmem(netmem, 0);
707 netmem_set_dma_index(netmem, 0);
708}
709
710/* Disconnects a page (from a page_pool). API users can have a need
711 * to disconnect a page (from a page_pool), to allow it to be used as
712 * a regular page (that will eventually be returned to the normal
713 * page-allocator via put_page).
714 */
715void page_pool_return_page(struct page_pool *pool, netmem_ref netmem)
716{
717 int count;
718 bool put;
719
720 put = true;
721 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
722 put = pool->mp_ops->release_netmem(pool, netmem);
723 else
724 __page_pool_release_page_dma(pool, netmem);
725
726 /* This may be the last page returned, releasing the pool, so
727 * it is not safe to reference pool afterwards.
728 */
729 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
730 trace_page_pool_state_release(pool, netmem, count);
731
732 if (put) {
733 page_pool_clear_pp_info(netmem);
734 put_page(netmem_to_page(netmem));
735 }
736 /* An optimization would be to call __free_pages(page, pool->p.order)
737 * knowing page is not part of page-cache (thus avoiding a
738 * __page_cache_release() call).
739 */
740}
741
742static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem)
743{
744 bool in_softirq, ret;
745
746 /* BH protection not needed if current is softirq */
747 in_softirq = page_pool_producer_lock(pool);
748 ret = !__ptr_ring_produce(&pool->ring, (__force void *)netmem);
749 if (ret)
750 recycle_stat_inc(pool, ring);
751 page_pool_producer_unlock(pool, in_softirq);
752
753 return ret;
754}
755
756/* Only allow direct recycling in special circumstances, into the
757 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
758 *
759 * Caller must provide appropriate safe context.
760 */
761static bool page_pool_recycle_in_cache(netmem_ref netmem,
762 struct page_pool *pool)
763{
764 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
765 recycle_stat_inc(pool, cache_full);
766 return false;
767 }
768
769 /* Caller MUST have verified/know (page_ref_count(page) == 1) */
770 pool->alloc.cache[pool->alloc.count++] = netmem;
771 recycle_stat_inc(pool, cached);
772 return true;
773}
774
775static bool __page_pool_page_can_be_recycled(netmem_ref netmem)
776{
777 return netmem_is_net_iov(netmem) ||
778 (page_ref_count(netmem_to_page(netmem)) == 1 &&
779 !page_is_pfmemalloc(netmem_to_page(netmem)));
780}
781
782/* If the page refcnt == 1, this will try to recycle the page.
783 * If pool->dma_sync is set, we'll try to sync the DMA area for
784 * the configured size min(dma_sync_size, pool->max_len).
785 * If the page refcnt != 1, then the page will be returned to memory
786 * subsystem.
787 */
788static __always_inline netmem_ref
789__page_pool_put_page(struct page_pool *pool, netmem_ref netmem,
790 unsigned int dma_sync_size, bool allow_direct)
791{
792 lockdep_assert_no_hardirq();
793
794 /* This allocator is optimized for the XDP mode that uses
795 * one-frame-per-page, but have fallbacks that act like the
796 * regular page allocator APIs.
797 *
798 * refcnt == 1 means page_pool owns page, and can recycle it.
799 *
800 * page is NOT reusable when allocated when system is under
801 * some pressure. (page_is_pfmemalloc)
802 */
803 if (likely(__page_pool_page_can_be_recycled(netmem))) {
804 /* Read barrier done in page_ref_count / READ_ONCE */
805
806 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
807
808 if (allow_direct && page_pool_recycle_in_cache(netmem, pool))
809 return 0;
810
811 /* Page found as candidate for recycling */
812 return netmem;
813 }
814
815 /* Fallback/non-XDP mode: API user have elevated refcnt.
816 *
817 * Many drivers split up the page into fragments, and some
818 * want to keep doing this to save memory and do refcnt based
819 * recycling. Support this use case too, to ease drivers
820 * switching between XDP/non-XDP.
821 *
822 * In-case page_pool maintains the DMA mapping, API user must
823 * call page_pool_put_page once. In this elevated refcnt
824 * case, the DMA is unmapped/released, as driver is likely
825 * doing refcnt based recycle tricks, meaning another process
826 * will be invoking put_page.
827 */
828 recycle_stat_inc(pool, released_refcnt);
829 page_pool_return_page(pool, netmem);
830
831 return 0;
832}
833
834static bool page_pool_napi_local(const struct page_pool *pool)
835{
836 const struct napi_struct *napi;
837 u32 cpuid;
838
839 /* On PREEMPT_RT the softirq can be preempted by the consumer */
840 if (IS_ENABLED(CONFIG_PREEMPT_RT))
841 return false;
842
843 if (unlikely(!in_softirq()))
844 return false;
845
846 /* Allow direct recycle if we have reasons to believe that we are
847 * in the same context as the consumer would run, so there's
848 * no possible race.
849 * __page_pool_put_page() makes sure we're not in hardirq context
850 * and interrupts are enabled prior to accessing the cache.
851 */
852 cpuid = smp_processor_id();
853 if (READ_ONCE(pool->cpuid) == cpuid)
854 return true;
855
856 napi = READ_ONCE(pool->p.napi);
857
858 return napi && READ_ONCE(napi->list_owner) == cpuid;
859}
860
861void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem,
862 unsigned int dma_sync_size, bool allow_direct)
863{
864 if (!allow_direct)
865 allow_direct = page_pool_napi_local(pool);
866
867 netmem = __page_pool_put_page(pool, netmem, dma_sync_size,
868 allow_direct);
869 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) {
870 /* Cache full, fallback to free pages */
871 recycle_stat_inc(pool, ring_full);
872 page_pool_return_page(pool, netmem);
873 }
874}
875EXPORT_SYMBOL(page_pool_put_unrefed_netmem);
876
877void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
878 unsigned int dma_sync_size, bool allow_direct)
879{
880 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size,
881 allow_direct);
882}
883EXPORT_SYMBOL(page_pool_put_unrefed_page);
884
885static void page_pool_recycle_ring_bulk(struct page_pool *pool,
886 netmem_ref *bulk,
887 u32 bulk_len)
888{
889 bool in_softirq;
890 u32 i;
891
892 /* Bulk produce into ptr_ring page_pool cache */
893 in_softirq = page_pool_producer_lock(pool);
894
895 for (i = 0; i < bulk_len; i++) {
896 if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) {
897 /* ring full */
898 recycle_stat_inc(pool, ring_full);
899 break;
900 }
901 }
902
903 page_pool_producer_unlock(pool, in_softirq);
904 recycle_stat_add(pool, ring, i);
905
906 /* Hopefully all pages were returned into ptr_ring */
907 if (likely(i == bulk_len))
908 return;
909
910 /*
911 * ptr_ring cache is full, free remaining pages outside producer lock
912 * since put_page() with refcnt == 1 can be an expensive operation.
913 */
914 for (; i < bulk_len; i++)
915 page_pool_return_page(pool, bulk[i]);
916}
917
918/**
919 * page_pool_put_netmem_bulk() - release references on multiple netmems
920 * @data: array holding netmem references
921 * @count: number of entries in @data
922 *
923 * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring
924 * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk()
925 * will release leftover netmems to the memory provider.
926 * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx
927 * completion loop for the XDP_REDIRECT use case.
928 *
929 * Please note the caller must not use data area after running
930 * page_pool_put_netmem_bulk(), as this function overwrites it.
931 */
932void page_pool_put_netmem_bulk(netmem_ref *data, u32 count)
933{
934 u32 bulk_len = 0;
935
936 for (u32 i = 0; i < count; i++) {
937 netmem_ref netmem = netmem_compound_head(data[i]);
938
939 if (page_pool_unref_and_test(netmem))
940 data[bulk_len++] = netmem;
941 }
942
943 count = bulk_len;
944 while (count) {
945 netmem_ref bulk[XDP_BULK_QUEUE_SIZE];
946 struct page_pool *pool = NULL;
947 bool allow_direct;
948 u32 foreign = 0;
949
950 bulk_len = 0;
951
952 for (u32 i = 0; i < count; i++) {
953 struct page_pool *netmem_pp;
954 netmem_ref netmem = data[i];
955
956 netmem_pp = netmem_get_pp(netmem);
957 if (unlikely(!pool)) {
958 pool = netmem_pp;
959 allow_direct = page_pool_napi_local(pool);
960 } else if (netmem_pp != pool) {
961 /*
962 * If the netmem belongs to a different
963 * page_pool, save it for another round.
964 */
965 data[foreign++] = netmem;
966 continue;
967 }
968
969 netmem = __page_pool_put_page(pool, netmem, -1,
970 allow_direct);
971 /* Approved for bulk recycling in ptr_ring cache */
972 if (netmem)
973 bulk[bulk_len++] = netmem;
974 }
975
976 if (bulk_len)
977 page_pool_recycle_ring_bulk(pool, bulk, bulk_len);
978
979 count = foreign;
980 }
981}
982EXPORT_SYMBOL(page_pool_put_netmem_bulk);
983
984static netmem_ref page_pool_drain_frag(struct page_pool *pool,
985 netmem_ref netmem)
986{
987 long drain_count = BIAS_MAX - pool->frag_users;
988
989 /* Some user is still using the page frag */
990 if (likely(page_pool_unref_netmem(netmem, drain_count)))
991 return 0;
992
993 if (__page_pool_page_can_be_recycled(netmem)) {
994 page_pool_dma_sync_for_device(pool, netmem, -1);
995 return netmem;
996 }
997
998 page_pool_return_page(pool, netmem);
999 return 0;
1000}
1001
1002static void page_pool_free_frag(struct page_pool *pool)
1003{
1004 long drain_count = BIAS_MAX - pool->frag_users;
1005 netmem_ref netmem = pool->frag_page;
1006
1007 pool->frag_page = 0;
1008
1009 if (!netmem || page_pool_unref_netmem(netmem, drain_count))
1010 return;
1011
1012 page_pool_return_page(pool, netmem);
1013}
1014
1015netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool,
1016 unsigned int *offset, unsigned int size,
1017 gfp_t gfp)
1018{
1019 unsigned int max_size = PAGE_SIZE << pool->p.order;
1020 netmem_ref netmem = pool->frag_page;
1021
1022 if (WARN_ON(size > max_size))
1023 return 0;
1024
1025 size = ALIGN(size, dma_get_cache_alignment());
1026 *offset = pool->frag_offset;
1027
1028 if (netmem && *offset + size > max_size) {
1029 netmem = page_pool_drain_frag(pool, netmem);
1030 if (netmem) {
1031 recycle_stat_inc(pool, cached);
1032 alloc_stat_inc(pool, fast);
1033 goto frag_reset;
1034 }
1035 }
1036
1037 if (!netmem) {
1038 netmem = page_pool_alloc_netmems(pool, gfp);
1039 if (unlikely(!netmem)) {
1040 pool->frag_page = 0;
1041 return 0;
1042 }
1043
1044 pool->frag_page = netmem;
1045
1046frag_reset:
1047 pool->frag_users = 1;
1048 *offset = 0;
1049 pool->frag_offset = size;
1050 page_pool_fragment_netmem(netmem, BIAS_MAX);
1051 return netmem;
1052 }
1053
1054 pool->frag_users++;
1055 pool->frag_offset = *offset + size;
1056 return netmem;
1057}
1058EXPORT_SYMBOL(page_pool_alloc_frag_netmem);
1059
1060struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset,
1061 unsigned int size, gfp_t gfp)
1062{
1063 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size,
1064 gfp));
1065}
1066EXPORT_SYMBOL(page_pool_alloc_frag);
1067
1068static void page_pool_empty_ring(struct page_pool *pool)
1069{
1070 netmem_ref netmem;
1071
1072 /* Empty recycle ring */
1073 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) {
1074 /* Verify the refcnt invariant of cached pages */
1075 if (!(netmem_ref_count(netmem) == 1))
1076 pr_crit("%s() page_pool refcnt %d violation\n",
1077 __func__, netmem_ref_count(netmem));
1078
1079 page_pool_return_page(pool, netmem);
1080 }
1081}
1082
1083static void __page_pool_destroy(struct page_pool *pool)
1084{
1085 if (pool->disconnect)
1086 pool->disconnect(pool);
1087
1088 page_pool_unlist(pool);
1089 page_pool_uninit(pool);
1090
1091 if (pool->mp_ops) {
1092 pool->mp_ops->destroy(pool);
1093 static_branch_dec(&page_pool_mem_providers);
1094 }
1095
1096 kfree(pool);
1097}
1098
1099static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
1100{
1101 netmem_ref netmem;
1102
1103 if (pool->destroy_cnt)
1104 return;
1105
1106 /* Empty alloc cache, assume caller made sure this is
1107 * no-longer in use, and page_pool_alloc_pages() cannot be
1108 * call concurrently.
1109 */
1110 while (pool->alloc.count) {
1111 netmem = pool->alloc.cache[--pool->alloc.count];
1112 page_pool_return_page(pool, netmem);
1113 }
1114}
1115
1116static void page_pool_scrub(struct page_pool *pool)
1117{
1118 unsigned long id;
1119 void *ptr;
1120
1121 page_pool_empty_alloc_cache_once(pool);
1122 if (!pool->destroy_cnt++ && pool->dma_map) {
1123 if (pool->dma_sync) {
1124 /* Disable page_pool_dma_sync_for_device() */
1125 pool->dma_sync = false;
1126
1127 /* Make sure all concurrent returns that may see the old
1128 * value of dma_sync (and thus perform a sync) have
1129 * finished before doing the unmapping below. Skip the
1130 * wait if the device doesn't actually need syncing, or
1131 * if there are no outstanding mapped pages.
1132 */
1133 if (dma_dev_need_sync(pool->p.dev) &&
1134 !xa_empty(&pool->dma_mapped))
1135 synchronize_net();
1136 }
1137
1138 xa_for_each(&pool->dma_mapped, id, ptr)
1139 __page_pool_release_page_dma(pool, page_to_netmem(ptr));
1140 }
1141
1142 /* No more consumers should exist, but producers could still
1143 * be in-flight.
1144 */
1145 page_pool_empty_ring(pool);
1146}
1147
1148static int page_pool_release(struct page_pool *pool)
1149{
1150 bool in_softirq;
1151 int inflight;
1152
1153 page_pool_scrub(pool);
1154 inflight = page_pool_inflight(pool, true);
1155 /* Acquire producer lock to make sure producers have exited. */
1156 in_softirq = page_pool_producer_lock(pool);
1157 page_pool_producer_unlock(pool, in_softirq);
1158 if (!inflight)
1159 __page_pool_destroy(pool);
1160
1161 return inflight;
1162}
1163
1164static void page_pool_release_retry(struct work_struct *wq)
1165{
1166 struct delayed_work *dwq = to_delayed_work(wq);
1167 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
1168 void *netdev;
1169 int inflight;
1170
1171 inflight = page_pool_release(pool);
1172 /* In rare cases, a driver bug may cause inflight to go negative.
1173 * Don't reschedule release if inflight is 0 or negative.
1174 * - If 0, the page_pool has been destroyed
1175 * - if negative, we will never recover
1176 * in both cases no reschedule is necessary.
1177 */
1178 if (inflight <= 0)
1179 return;
1180
1181 /* Periodic warning for page pools the user can't see */
1182 netdev = READ_ONCE(pool->slow.netdev);
1183 if (time_after_eq(jiffies, pool->defer_warn) &&
1184 (!netdev || netdev == NET_PTR_POISON)) {
1185 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
1186
1187 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n",
1188 __func__, pool->user.id, inflight, sec);
1189 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1190 }
1191
1192 /* Still not ready to be disconnected, retry later */
1193 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1194}
1195
1196void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
1197 const struct xdp_mem_info *mem)
1198{
1199 refcount_inc(&pool->user_cnt);
1200 pool->disconnect = disconnect;
1201 pool->xdp_mem_id = mem->id;
1202}
1203
1204void page_pool_disable_direct_recycling(struct page_pool *pool)
1205{
1206 /* Disable direct recycling based on pool->cpuid.
1207 * Paired with READ_ONCE() in page_pool_napi_local().
1208 */
1209 WRITE_ONCE(pool->cpuid, -1);
1210
1211 if (!pool->p.napi)
1212 return;
1213
1214 napi_assert_will_not_race(pool->p.napi);
1215
1216 mutex_lock(&page_pools_lock);
1217 WRITE_ONCE(pool->p.napi, NULL);
1218 mutex_unlock(&page_pools_lock);
1219}
1220EXPORT_SYMBOL(page_pool_disable_direct_recycling);
1221
1222void page_pool_destroy(struct page_pool *pool)
1223{
1224 if (!pool)
1225 return;
1226
1227 if (!page_pool_put(pool))
1228 return;
1229
1230 page_pool_disable_direct_recycling(pool);
1231 page_pool_free_frag(pool);
1232
1233 if (!page_pool_release(pool))
1234 return;
1235
1236 page_pool_detached(pool);
1237 pool->defer_start = jiffies;
1238 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1239
1240 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
1241 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1242}
1243EXPORT_SYMBOL(page_pool_destroy);
1244
1245/* Caller must provide appropriate safe context, e.g. NAPI. */
1246void page_pool_update_nid(struct page_pool *pool, int new_nid)
1247{
1248 netmem_ref netmem;
1249
1250 trace_page_pool_update_nid(pool, new_nid);
1251 pool->p.nid = new_nid;
1252
1253 /* Flush pool alloc cache, as refill will check NUMA node */
1254 while (pool->alloc.count) {
1255 netmem = pool->alloc.cache[--pool->alloc.count];
1256 page_pool_return_page(pool, netmem);
1257 }
1258}
1259EXPORT_SYMBOL(page_pool_update_nid);
1260
1261bool net_mp_niov_set_dma_addr(struct net_iov *niov, dma_addr_t addr)
1262{
1263 return page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov), addr);
1264}
1265
1266/* Associate a niov with a page pool. Should follow with a matching
1267 * net_mp_niov_clear_page_pool()
1268 */
1269void net_mp_niov_set_page_pool(struct page_pool *pool, struct net_iov *niov)
1270{
1271 netmem_ref netmem = net_iov_to_netmem(niov);
1272
1273 page_pool_set_pp_info(pool, netmem);
1274
1275 pool->pages_state_hold_cnt++;
1276 trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt);
1277}
1278
1279/* Disassociate a niov from a page pool. Should only be used in the
1280 * ->release_netmem() path.
1281 */
1282void net_mp_niov_clear_page_pool(struct net_iov *niov)
1283{
1284 netmem_ref netmem = net_iov_to_netmem(niov);
1285
1286 page_pool_clear_pp_info(netmem);
1287}