iwlwifi: don't include iwl-dev.h from iwl-devtrace.h
[linux-2.6-block.git] / net / core / neighbour.c
... / ...
CommitLineData
1/*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18#include <linux/types.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/socket.h>
22#include <linux/netdevice.h>
23#include <linux/proc_fs.h>
24#ifdef CONFIG_SYSCTL
25#include <linux/sysctl.h>
26#endif
27#include <linux/times.h>
28#include <net/net_namespace.h>
29#include <net/neighbour.h>
30#include <net/dst.h>
31#include <net/sock.h>
32#include <net/netevent.h>
33#include <net/netlink.h>
34#include <linux/rtnetlink.h>
35#include <linux/random.h>
36#include <linux/string.h>
37#include <linux/log2.h>
38
39#define NEIGH_DEBUG 1
40
41#define NEIGH_PRINTK(x...) printk(x)
42#define NEIGH_NOPRINTK(x...) do { ; } while(0)
43#define NEIGH_PRINTK0 NEIGH_PRINTK
44#define NEIGH_PRINTK1 NEIGH_NOPRINTK
45#define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47#if NEIGH_DEBUG >= 1
48#undef NEIGH_PRINTK1
49#define NEIGH_PRINTK1 NEIGH_PRINTK
50#endif
51#if NEIGH_DEBUG >= 2
52#undef NEIGH_PRINTK2
53#define NEIGH_PRINTK2 NEIGH_PRINTK
54#endif
55
56#define PNEIGH_HASHMASK 0xF
57
58static void neigh_timer_handler(unsigned long arg);
59static void __neigh_notify(struct neighbour *n, int type, int flags);
60static void neigh_update_notify(struct neighbour *neigh);
61static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63static struct neigh_table *neigh_tables;
64#ifdef CONFIG_PROC_FS
65static const struct file_operations neigh_stat_seq_fops;
66#endif
67
68/*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99static DEFINE_RWLOCK(neigh_tbl_lock);
100
101static int neigh_blackhole(struct sk_buff *skb)
102{
103 kfree_skb(skb);
104 return -ENETDOWN;
105}
106
107static void neigh_cleanup_and_release(struct neighbour *neigh)
108{
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114}
115
116/*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122unsigned long neigh_rand_reach_time(unsigned long base)
123{
124 return (base ? (net_random() % base) + (base >> 1) : 0);
125}
126EXPORT_SYMBOL(neigh_rand_reach_time);
127
128
129static int neigh_forced_gc(struct neigh_table *tbl)
130{
131 int shrunk = 0;
132 int i;
133
134 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
135
136 write_lock_bh(&tbl->lock);
137 for (i = 0; i <= tbl->hash_mask; i++) {
138 struct neighbour *n, **np;
139
140 np = &tbl->hash_buckets[i];
141 while ((n = *np) != NULL) {
142 /* Neighbour record may be discarded if:
143 * - nobody refers to it.
144 * - it is not permanent
145 */
146 write_lock(&n->lock);
147 if (atomic_read(&n->refcnt) == 1 &&
148 !(n->nud_state & NUD_PERMANENT)) {
149 *np = n->next;
150 n->dead = 1;
151 shrunk = 1;
152 write_unlock(&n->lock);
153 neigh_cleanup_and_release(n);
154 continue;
155 }
156 write_unlock(&n->lock);
157 np = &n->next;
158 }
159 }
160
161 tbl->last_flush = jiffies;
162
163 write_unlock_bh(&tbl->lock);
164
165 return shrunk;
166}
167
168static void neigh_add_timer(struct neighbour *n, unsigned long when)
169{
170 neigh_hold(n);
171 if (unlikely(mod_timer(&n->timer, when))) {
172 printk("NEIGH: BUG, double timer add, state is %x\n",
173 n->nud_state);
174 dump_stack();
175 }
176}
177
178static int neigh_del_timer(struct neighbour *n)
179{
180 if ((n->nud_state & NUD_IN_TIMER) &&
181 del_timer(&n->timer)) {
182 neigh_release(n);
183 return 1;
184 }
185 return 0;
186}
187
188static void pneigh_queue_purge(struct sk_buff_head *list)
189{
190 struct sk_buff *skb;
191
192 while ((skb = skb_dequeue(list)) != NULL) {
193 dev_put(skb->dev);
194 kfree_skb(skb);
195 }
196}
197
198static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
199{
200 int i;
201
202 for (i = 0; i <= tbl->hash_mask; i++) {
203 struct neighbour *n, **np = &tbl->hash_buckets[i];
204
205 while ((n = *np) != NULL) {
206 if (dev && n->dev != dev) {
207 np = &n->next;
208 continue;
209 }
210 *np = n->next;
211 write_lock(&n->lock);
212 neigh_del_timer(n);
213 n->dead = 1;
214
215 if (atomic_read(&n->refcnt) != 1) {
216 /* The most unpleasant situation.
217 We must destroy neighbour entry,
218 but someone still uses it.
219
220 The destroy will be delayed until
221 the last user releases us, but
222 we must kill timers etc. and move
223 it to safe state.
224 */
225 skb_queue_purge(&n->arp_queue);
226 n->output = neigh_blackhole;
227 if (n->nud_state & NUD_VALID)
228 n->nud_state = NUD_NOARP;
229 else
230 n->nud_state = NUD_NONE;
231 NEIGH_PRINTK2("neigh %p is stray.\n", n);
232 }
233 write_unlock(&n->lock);
234 neigh_cleanup_and_release(n);
235 }
236 }
237}
238
239void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
240{
241 write_lock_bh(&tbl->lock);
242 neigh_flush_dev(tbl, dev);
243 write_unlock_bh(&tbl->lock);
244}
245EXPORT_SYMBOL(neigh_changeaddr);
246
247int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
248{
249 write_lock_bh(&tbl->lock);
250 neigh_flush_dev(tbl, dev);
251 pneigh_ifdown(tbl, dev);
252 write_unlock_bh(&tbl->lock);
253
254 del_timer_sync(&tbl->proxy_timer);
255 pneigh_queue_purge(&tbl->proxy_queue);
256 return 0;
257}
258EXPORT_SYMBOL(neigh_ifdown);
259
260static struct neighbour *neigh_alloc(struct neigh_table *tbl)
261{
262 struct neighbour *n = NULL;
263 unsigned long now = jiffies;
264 int entries;
265
266 entries = atomic_inc_return(&tbl->entries) - 1;
267 if (entries >= tbl->gc_thresh3 ||
268 (entries >= tbl->gc_thresh2 &&
269 time_after(now, tbl->last_flush + 5 * HZ))) {
270 if (!neigh_forced_gc(tbl) &&
271 entries >= tbl->gc_thresh3)
272 goto out_entries;
273 }
274
275 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
276 if (!n)
277 goto out_entries;
278
279 skb_queue_head_init(&n->arp_queue);
280 rwlock_init(&n->lock);
281 n->updated = n->used = now;
282 n->nud_state = NUD_NONE;
283 n->output = neigh_blackhole;
284 n->parms = neigh_parms_clone(&tbl->parms);
285 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
286
287 NEIGH_CACHE_STAT_INC(tbl, allocs);
288 n->tbl = tbl;
289 atomic_set(&n->refcnt, 1);
290 n->dead = 1;
291out:
292 return n;
293
294out_entries:
295 atomic_dec(&tbl->entries);
296 goto out;
297}
298
299static struct neighbour **neigh_hash_alloc(unsigned int entries)
300{
301 unsigned long size = entries * sizeof(struct neighbour *);
302 struct neighbour **ret;
303
304 if (size <= PAGE_SIZE) {
305 ret = kzalloc(size, GFP_ATOMIC);
306 } else {
307 ret = (struct neighbour **)
308 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
309 }
310 return ret;
311}
312
313static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
314{
315 unsigned long size = entries * sizeof(struct neighbour *);
316
317 if (size <= PAGE_SIZE)
318 kfree(hash);
319 else
320 free_pages((unsigned long)hash, get_order(size));
321}
322
323static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
324{
325 struct neighbour **new_hash, **old_hash;
326 unsigned int i, new_hash_mask, old_entries;
327
328 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
329
330 BUG_ON(!is_power_of_2(new_entries));
331 new_hash = neigh_hash_alloc(new_entries);
332 if (!new_hash)
333 return;
334
335 old_entries = tbl->hash_mask + 1;
336 new_hash_mask = new_entries - 1;
337 old_hash = tbl->hash_buckets;
338
339 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
340 for (i = 0; i < old_entries; i++) {
341 struct neighbour *n, *next;
342
343 for (n = old_hash[i]; n; n = next) {
344 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
345
346 hash_val &= new_hash_mask;
347 next = n->next;
348
349 n->next = new_hash[hash_val];
350 new_hash[hash_val] = n;
351 }
352 }
353 tbl->hash_buckets = new_hash;
354 tbl->hash_mask = new_hash_mask;
355
356 neigh_hash_free(old_hash, old_entries);
357}
358
359struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
360 struct net_device *dev)
361{
362 struct neighbour *n;
363 int key_len = tbl->key_len;
364 u32 hash_val;
365
366 NEIGH_CACHE_STAT_INC(tbl, lookups);
367
368 read_lock_bh(&tbl->lock);
369 hash_val = tbl->hash(pkey, dev);
370 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
371 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
372 neigh_hold(n);
373 NEIGH_CACHE_STAT_INC(tbl, hits);
374 break;
375 }
376 }
377 read_unlock_bh(&tbl->lock);
378 return n;
379}
380EXPORT_SYMBOL(neigh_lookup);
381
382struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
383 const void *pkey)
384{
385 struct neighbour *n;
386 int key_len = tbl->key_len;
387 u32 hash_val;
388
389 NEIGH_CACHE_STAT_INC(tbl, lookups);
390
391 read_lock_bh(&tbl->lock);
392 hash_val = tbl->hash(pkey, NULL);
393 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
394 if (!memcmp(n->primary_key, pkey, key_len) &&
395 net_eq(dev_net(n->dev), net)) {
396 neigh_hold(n);
397 NEIGH_CACHE_STAT_INC(tbl, hits);
398 break;
399 }
400 }
401 read_unlock_bh(&tbl->lock);
402 return n;
403}
404EXPORT_SYMBOL(neigh_lookup_nodev);
405
406struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
407 struct net_device *dev)
408{
409 u32 hash_val;
410 int key_len = tbl->key_len;
411 int error;
412 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
413
414 if (!n) {
415 rc = ERR_PTR(-ENOBUFS);
416 goto out;
417 }
418
419 memcpy(n->primary_key, pkey, key_len);
420 n->dev = dev;
421 dev_hold(dev);
422
423 /* Protocol specific setup. */
424 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
425 rc = ERR_PTR(error);
426 goto out_neigh_release;
427 }
428
429 /* Device specific setup. */
430 if (n->parms->neigh_setup &&
431 (error = n->parms->neigh_setup(n)) < 0) {
432 rc = ERR_PTR(error);
433 goto out_neigh_release;
434 }
435
436 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
437
438 write_lock_bh(&tbl->lock);
439
440 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
441 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
442
443 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
444
445 if (n->parms->dead) {
446 rc = ERR_PTR(-EINVAL);
447 goto out_tbl_unlock;
448 }
449
450 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
451 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
452 neigh_hold(n1);
453 rc = n1;
454 goto out_tbl_unlock;
455 }
456 }
457
458 n->next = tbl->hash_buckets[hash_val];
459 tbl->hash_buckets[hash_val] = n;
460 n->dead = 0;
461 neigh_hold(n);
462 write_unlock_bh(&tbl->lock);
463 NEIGH_PRINTK2("neigh %p is created.\n", n);
464 rc = n;
465out:
466 return rc;
467out_tbl_unlock:
468 write_unlock_bh(&tbl->lock);
469out_neigh_release:
470 neigh_release(n);
471 goto out;
472}
473EXPORT_SYMBOL(neigh_create);
474
475static u32 pneigh_hash(const void *pkey, int key_len)
476{
477 u32 hash_val = *(u32 *)(pkey + key_len - 4);
478 hash_val ^= (hash_val >> 16);
479 hash_val ^= hash_val >> 8;
480 hash_val ^= hash_val >> 4;
481 hash_val &= PNEIGH_HASHMASK;
482 return hash_val;
483}
484
485static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
486 struct net *net,
487 const void *pkey,
488 int key_len,
489 struct net_device *dev)
490{
491 while (n) {
492 if (!memcmp(n->key, pkey, key_len) &&
493 net_eq(pneigh_net(n), net) &&
494 (n->dev == dev || !n->dev))
495 return n;
496 n = n->next;
497 }
498 return NULL;
499}
500
501struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
502 struct net *net, const void *pkey, struct net_device *dev)
503{
504 int key_len = tbl->key_len;
505 u32 hash_val = pneigh_hash(pkey, key_len);
506
507 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
508 net, pkey, key_len, dev);
509}
510EXPORT_SYMBOL_GPL(__pneigh_lookup);
511
512struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
513 struct net *net, const void *pkey,
514 struct net_device *dev, int creat)
515{
516 struct pneigh_entry *n;
517 int key_len = tbl->key_len;
518 u32 hash_val = pneigh_hash(pkey, key_len);
519
520 read_lock_bh(&tbl->lock);
521 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
522 net, pkey, key_len, dev);
523 read_unlock_bh(&tbl->lock);
524
525 if (n || !creat)
526 goto out;
527
528 ASSERT_RTNL();
529
530 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
531 if (!n)
532 goto out;
533
534 write_pnet(&n->net, hold_net(net));
535 memcpy(n->key, pkey, key_len);
536 n->dev = dev;
537 if (dev)
538 dev_hold(dev);
539
540 if (tbl->pconstructor && tbl->pconstructor(n)) {
541 if (dev)
542 dev_put(dev);
543 release_net(net);
544 kfree(n);
545 n = NULL;
546 goto out;
547 }
548
549 write_lock_bh(&tbl->lock);
550 n->next = tbl->phash_buckets[hash_val];
551 tbl->phash_buckets[hash_val] = n;
552 write_unlock_bh(&tbl->lock);
553out:
554 return n;
555}
556EXPORT_SYMBOL(pneigh_lookup);
557
558
559int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
560 struct net_device *dev)
561{
562 struct pneigh_entry *n, **np;
563 int key_len = tbl->key_len;
564 u32 hash_val = pneigh_hash(pkey, key_len);
565
566 write_lock_bh(&tbl->lock);
567 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
568 np = &n->next) {
569 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
570 net_eq(pneigh_net(n), net)) {
571 *np = n->next;
572 write_unlock_bh(&tbl->lock);
573 if (tbl->pdestructor)
574 tbl->pdestructor(n);
575 if (n->dev)
576 dev_put(n->dev);
577 release_net(pneigh_net(n));
578 kfree(n);
579 return 0;
580 }
581 }
582 write_unlock_bh(&tbl->lock);
583 return -ENOENT;
584}
585
586static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
587{
588 struct pneigh_entry *n, **np;
589 u32 h;
590
591 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
592 np = &tbl->phash_buckets[h];
593 while ((n = *np) != NULL) {
594 if (!dev || n->dev == dev) {
595 *np = n->next;
596 if (tbl->pdestructor)
597 tbl->pdestructor(n);
598 if (n->dev)
599 dev_put(n->dev);
600 release_net(pneigh_net(n));
601 kfree(n);
602 continue;
603 }
604 np = &n->next;
605 }
606 }
607 return -ENOENT;
608}
609
610static void neigh_parms_destroy(struct neigh_parms *parms);
611
612static inline void neigh_parms_put(struct neigh_parms *parms)
613{
614 if (atomic_dec_and_test(&parms->refcnt))
615 neigh_parms_destroy(parms);
616}
617
618/*
619 * neighbour must already be out of the table;
620 *
621 */
622void neigh_destroy(struct neighbour *neigh)
623{
624 struct hh_cache *hh;
625
626 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
627
628 if (!neigh->dead) {
629 printk(KERN_WARNING
630 "Destroying alive neighbour %p\n", neigh);
631 dump_stack();
632 return;
633 }
634
635 if (neigh_del_timer(neigh))
636 printk(KERN_WARNING "Impossible event.\n");
637
638 while ((hh = neigh->hh) != NULL) {
639 neigh->hh = hh->hh_next;
640 hh->hh_next = NULL;
641
642 write_seqlock_bh(&hh->hh_lock);
643 hh->hh_output = neigh_blackhole;
644 write_sequnlock_bh(&hh->hh_lock);
645 if (atomic_dec_and_test(&hh->hh_refcnt))
646 kfree(hh);
647 }
648
649 skb_queue_purge(&neigh->arp_queue);
650
651 dev_put(neigh->dev);
652 neigh_parms_put(neigh->parms);
653
654 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
655
656 atomic_dec(&neigh->tbl->entries);
657 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
658}
659EXPORT_SYMBOL(neigh_destroy);
660
661/* Neighbour state is suspicious;
662 disable fast path.
663
664 Called with write_locked neigh.
665 */
666static void neigh_suspect(struct neighbour *neigh)
667{
668 struct hh_cache *hh;
669
670 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
671
672 neigh->output = neigh->ops->output;
673
674 for (hh = neigh->hh; hh; hh = hh->hh_next)
675 hh->hh_output = neigh->ops->output;
676}
677
678/* Neighbour state is OK;
679 enable fast path.
680
681 Called with write_locked neigh.
682 */
683static void neigh_connect(struct neighbour *neigh)
684{
685 struct hh_cache *hh;
686
687 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
688
689 neigh->output = neigh->ops->connected_output;
690
691 for (hh = neigh->hh; hh; hh = hh->hh_next)
692 hh->hh_output = neigh->ops->hh_output;
693}
694
695static void neigh_periodic_work(struct work_struct *work)
696{
697 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
698 struct neighbour *n, **np;
699 unsigned int i;
700
701 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
702
703 write_lock_bh(&tbl->lock);
704
705 /*
706 * periodically recompute ReachableTime from random function
707 */
708
709 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
710 struct neigh_parms *p;
711 tbl->last_rand = jiffies;
712 for (p = &tbl->parms; p; p = p->next)
713 p->reachable_time =
714 neigh_rand_reach_time(p->base_reachable_time);
715 }
716
717 for (i = 0 ; i <= tbl->hash_mask; i++) {
718 np = &tbl->hash_buckets[i];
719
720 while ((n = *np) != NULL) {
721 unsigned int state;
722
723 write_lock(&n->lock);
724
725 state = n->nud_state;
726 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
727 write_unlock(&n->lock);
728 goto next_elt;
729 }
730
731 if (time_before(n->used, n->confirmed))
732 n->used = n->confirmed;
733
734 if (atomic_read(&n->refcnt) == 1 &&
735 (state == NUD_FAILED ||
736 time_after(jiffies, n->used + n->parms->gc_staletime))) {
737 *np = n->next;
738 n->dead = 1;
739 write_unlock(&n->lock);
740 neigh_cleanup_and_release(n);
741 continue;
742 }
743 write_unlock(&n->lock);
744
745next_elt:
746 np = &n->next;
747 }
748 /*
749 * It's fine to release lock here, even if hash table
750 * grows while we are preempted.
751 */
752 write_unlock_bh(&tbl->lock);
753 cond_resched();
754 write_lock_bh(&tbl->lock);
755 }
756 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
757 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
758 * base_reachable_time.
759 */
760 schedule_delayed_work(&tbl->gc_work,
761 tbl->parms.base_reachable_time >> 1);
762 write_unlock_bh(&tbl->lock);
763}
764
765static __inline__ int neigh_max_probes(struct neighbour *n)
766{
767 struct neigh_parms *p = n->parms;
768 return (n->nud_state & NUD_PROBE ?
769 p->ucast_probes :
770 p->ucast_probes + p->app_probes + p->mcast_probes);
771}
772
773static void neigh_invalidate(struct neighbour *neigh)
774 __releases(neigh->lock)
775 __acquires(neigh->lock)
776{
777 struct sk_buff *skb;
778
779 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
780 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
781 neigh->updated = jiffies;
782
783 /* It is very thin place. report_unreachable is very complicated
784 routine. Particularly, it can hit the same neighbour entry!
785
786 So that, we try to be accurate and avoid dead loop. --ANK
787 */
788 while (neigh->nud_state == NUD_FAILED &&
789 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
790 write_unlock(&neigh->lock);
791 neigh->ops->error_report(neigh, skb);
792 write_lock(&neigh->lock);
793 }
794 skb_queue_purge(&neigh->arp_queue);
795}
796
797/* Called when a timer expires for a neighbour entry. */
798
799static void neigh_timer_handler(unsigned long arg)
800{
801 unsigned long now, next;
802 struct neighbour *neigh = (struct neighbour *)arg;
803 unsigned state;
804 int notify = 0;
805
806 write_lock(&neigh->lock);
807
808 state = neigh->nud_state;
809 now = jiffies;
810 next = now + HZ;
811
812 if (!(state & NUD_IN_TIMER)) {
813#ifndef CONFIG_SMP
814 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
815#endif
816 goto out;
817 }
818
819 if (state & NUD_REACHABLE) {
820 if (time_before_eq(now,
821 neigh->confirmed + neigh->parms->reachable_time)) {
822 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
823 next = neigh->confirmed + neigh->parms->reachable_time;
824 } else if (time_before_eq(now,
825 neigh->used + neigh->parms->delay_probe_time)) {
826 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
827 neigh->nud_state = NUD_DELAY;
828 neigh->updated = jiffies;
829 neigh_suspect(neigh);
830 next = now + neigh->parms->delay_probe_time;
831 } else {
832 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
833 neigh->nud_state = NUD_STALE;
834 neigh->updated = jiffies;
835 neigh_suspect(neigh);
836 notify = 1;
837 }
838 } else if (state & NUD_DELAY) {
839 if (time_before_eq(now,
840 neigh->confirmed + neigh->parms->delay_probe_time)) {
841 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
842 neigh->nud_state = NUD_REACHABLE;
843 neigh->updated = jiffies;
844 neigh_connect(neigh);
845 notify = 1;
846 next = neigh->confirmed + neigh->parms->reachable_time;
847 } else {
848 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
849 neigh->nud_state = NUD_PROBE;
850 neigh->updated = jiffies;
851 atomic_set(&neigh->probes, 0);
852 next = now + neigh->parms->retrans_time;
853 }
854 } else {
855 /* NUD_PROBE|NUD_INCOMPLETE */
856 next = now + neigh->parms->retrans_time;
857 }
858
859 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
860 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
861 neigh->nud_state = NUD_FAILED;
862 notify = 1;
863 neigh_invalidate(neigh);
864 }
865
866 if (neigh->nud_state & NUD_IN_TIMER) {
867 if (time_before(next, jiffies + HZ/2))
868 next = jiffies + HZ/2;
869 if (!mod_timer(&neigh->timer, next))
870 neigh_hold(neigh);
871 }
872 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
873 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
874 /* keep skb alive even if arp_queue overflows */
875 if (skb)
876 skb = skb_copy(skb, GFP_ATOMIC);
877 write_unlock(&neigh->lock);
878 neigh->ops->solicit(neigh, skb);
879 atomic_inc(&neigh->probes);
880 kfree_skb(skb);
881 } else {
882out:
883 write_unlock(&neigh->lock);
884 }
885
886 if (notify)
887 neigh_update_notify(neigh);
888
889 neigh_release(neigh);
890}
891
892int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
893{
894 int rc;
895 unsigned long now;
896
897 write_lock_bh(&neigh->lock);
898
899 rc = 0;
900 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
901 goto out_unlock_bh;
902
903 now = jiffies;
904
905 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
906 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
907 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
908 neigh->nud_state = NUD_INCOMPLETE;
909 neigh->updated = jiffies;
910 neigh_add_timer(neigh, now + 1);
911 } else {
912 neigh->nud_state = NUD_FAILED;
913 neigh->updated = jiffies;
914 write_unlock_bh(&neigh->lock);
915
916 kfree_skb(skb);
917 return 1;
918 }
919 } else if (neigh->nud_state & NUD_STALE) {
920 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
921 neigh->nud_state = NUD_DELAY;
922 neigh->updated = jiffies;
923 neigh_add_timer(neigh,
924 jiffies + neigh->parms->delay_probe_time);
925 }
926
927 if (neigh->nud_state == NUD_INCOMPLETE) {
928 if (skb) {
929 if (skb_queue_len(&neigh->arp_queue) >=
930 neigh->parms->queue_len) {
931 struct sk_buff *buff;
932 buff = __skb_dequeue(&neigh->arp_queue);
933 kfree_skb(buff);
934 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
935 }
936 __skb_queue_tail(&neigh->arp_queue, skb);
937 }
938 rc = 1;
939 }
940out_unlock_bh:
941 write_unlock_bh(&neigh->lock);
942 return rc;
943}
944EXPORT_SYMBOL(__neigh_event_send);
945
946static void neigh_update_hhs(struct neighbour *neigh)
947{
948 struct hh_cache *hh;
949 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
950 = neigh->dev->header_ops->cache_update;
951
952 if (update) {
953 for (hh = neigh->hh; hh; hh = hh->hh_next) {
954 write_seqlock_bh(&hh->hh_lock);
955 update(hh, neigh->dev, neigh->ha);
956 write_sequnlock_bh(&hh->hh_lock);
957 }
958 }
959}
960
961
962
963/* Generic update routine.
964 -- lladdr is new lladdr or NULL, if it is not supplied.
965 -- new is new state.
966 -- flags
967 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
968 if it is different.
969 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
970 lladdr instead of overriding it
971 if it is different.
972 It also allows to retain current state
973 if lladdr is unchanged.
974 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
975
976 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
977 NTF_ROUTER flag.
978 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
979 a router.
980
981 Caller MUST hold reference count on the entry.
982 */
983
984int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
985 u32 flags)
986{
987 u8 old;
988 int err;
989 int notify = 0;
990 struct net_device *dev;
991 int update_isrouter = 0;
992
993 write_lock_bh(&neigh->lock);
994
995 dev = neigh->dev;
996 old = neigh->nud_state;
997 err = -EPERM;
998
999 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1000 (old & (NUD_NOARP | NUD_PERMANENT)))
1001 goto out;
1002
1003 if (!(new & NUD_VALID)) {
1004 neigh_del_timer(neigh);
1005 if (old & NUD_CONNECTED)
1006 neigh_suspect(neigh);
1007 neigh->nud_state = new;
1008 err = 0;
1009 notify = old & NUD_VALID;
1010 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1011 (new & NUD_FAILED)) {
1012 neigh_invalidate(neigh);
1013 notify = 1;
1014 }
1015 goto out;
1016 }
1017
1018 /* Compare new lladdr with cached one */
1019 if (!dev->addr_len) {
1020 /* First case: device needs no address. */
1021 lladdr = neigh->ha;
1022 } else if (lladdr) {
1023 /* The second case: if something is already cached
1024 and a new address is proposed:
1025 - compare new & old
1026 - if they are different, check override flag
1027 */
1028 if ((old & NUD_VALID) &&
1029 !memcmp(lladdr, neigh->ha, dev->addr_len))
1030 lladdr = neigh->ha;
1031 } else {
1032 /* No address is supplied; if we know something,
1033 use it, otherwise discard the request.
1034 */
1035 err = -EINVAL;
1036 if (!(old & NUD_VALID))
1037 goto out;
1038 lladdr = neigh->ha;
1039 }
1040
1041 if (new & NUD_CONNECTED)
1042 neigh->confirmed = jiffies;
1043 neigh->updated = jiffies;
1044
1045 /* If entry was valid and address is not changed,
1046 do not change entry state, if new one is STALE.
1047 */
1048 err = 0;
1049 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1050 if (old & NUD_VALID) {
1051 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1052 update_isrouter = 0;
1053 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1054 (old & NUD_CONNECTED)) {
1055 lladdr = neigh->ha;
1056 new = NUD_STALE;
1057 } else
1058 goto out;
1059 } else {
1060 if (lladdr == neigh->ha && new == NUD_STALE &&
1061 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1062 (old & NUD_CONNECTED))
1063 )
1064 new = old;
1065 }
1066 }
1067
1068 if (new != old) {
1069 neigh_del_timer(neigh);
1070 if (new & NUD_IN_TIMER)
1071 neigh_add_timer(neigh, (jiffies +
1072 ((new & NUD_REACHABLE) ?
1073 neigh->parms->reachable_time :
1074 0)));
1075 neigh->nud_state = new;
1076 }
1077
1078 if (lladdr != neigh->ha) {
1079 memcpy(&neigh->ha, lladdr, dev->addr_len);
1080 neigh_update_hhs(neigh);
1081 if (!(new & NUD_CONNECTED))
1082 neigh->confirmed = jiffies -
1083 (neigh->parms->base_reachable_time << 1);
1084 notify = 1;
1085 }
1086 if (new == old)
1087 goto out;
1088 if (new & NUD_CONNECTED)
1089 neigh_connect(neigh);
1090 else
1091 neigh_suspect(neigh);
1092 if (!(old & NUD_VALID)) {
1093 struct sk_buff *skb;
1094
1095 /* Again: avoid dead loop if something went wrong */
1096
1097 while (neigh->nud_state & NUD_VALID &&
1098 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1099 struct neighbour *n1 = neigh;
1100 write_unlock_bh(&neigh->lock);
1101 /* On shaper/eql skb->dst->neighbour != neigh :( */
1102 if (skb_dst(skb) && skb_dst(skb)->neighbour)
1103 n1 = skb_dst(skb)->neighbour;
1104 n1->output(skb);
1105 write_lock_bh(&neigh->lock);
1106 }
1107 skb_queue_purge(&neigh->arp_queue);
1108 }
1109out:
1110 if (update_isrouter) {
1111 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1112 (neigh->flags | NTF_ROUTER) :
1113 (neigh->flags & ~NTF_ROUTER);
1114 }
1115 write_unlock_bh(&neigh->lock);
1116
1117 if (notify)
1118 neigh_update_notify(neigh);
1119
1120 return err;
1121}
1122EXPORT_SYMBOL(neigh_update);
1123
1124struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1125 u8 *lladdr, void *saddr,
1126 struct net_device *dev)
1127{
1128 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1129 lladdr || !dev->addr_len);
1130 if (neigh)
1131 neigh_update(neigh, lladdr, NUD_STALE,
1132 NEIGH_UPDATE_F_OVERRIDE);
1133 return neigh;
1134}
1135EXPORT_SYMBOL(neigh_event_ns);
1136
1137static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1138 __be16 protocol)
1139{
1140 struct hh_cache *hh;
1141 struct net_device *dev = dst->dev;
1142
1143 for (hh = n->hh; hh; hh = hh->hh_next)
1144 if (hh->hh_type == protocol)
1145 break;
1146
1147 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1148 seqlock_init(&hh->hh_lock);
1149 hh->hh_type = protocol;
1150 atomic_set(&hh->hh_refcnt, 0);
1151 hh->hh_next = NULL;
1152
1153 if (dev->header_ops->cache(n, hh)) {
1154 kfree(hh);
1155 hh = NULL;
1156 } else {
1157 atomic_inc(&hh->hh_refcnt);
1158 hh->hh_next = n->hh;
1159 n->hh = hh;
1160 if (n->nud_state & NUD_CONNECTED)
1161 hh->hh_output = n->ops->hh_output;
1162 else
1163 hh->hh_output = n->ops->output;
1164 }
1165 }
1166 if (hh) {
1167 atomic_inc(&hh->hh_refcnt);
1168 dst->hh = hh;
1169 }
1170}
1171
1172/* This function can be used in contexts, where only old dev_queue_xmit
1173 worked, f.e. if you want to override normal output path (eql, shaper),
1174 but resolution is not made yet.
1175 */
1176
1177int neigh_compat_output(struct sk_buff *skb)
1178{
1179 struct net_device *dev = skb->dev;
1180
1181 __skb_pull(skb, skb_network_offset(skb));
1182
1183 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1184 skb->len) < 0 &&
1185 dev->header_ops->rebuild(skb))
1186 return 0;
1187
1188 return dev_queue_xmit(skb);
1189}
1190EXPORT_SYMBOL(neigh_compat_output);
1191
1192/* Slow and careful. */
1193
1194int neigh_resolve_output(struct sk_buff *skb)
1195{
1196 struct dst_entry *dst = skb_dst(skb);
1197 struct neighbour *neigh;
1198 int rc = 0;
1199
1200 if (!dst || !(neigh = dst->neighbour))
1201 goto discard;
1202
1203 __skb_pull(skb, skb_network_offset(skb));
1204
1205 if (!neigh_event_send(neigh, skb)) {
1206 int err;
1207 struct net_device *dev = neigh->dev;
1208 if (dev->header_ops->cache && !dst->hh) {
1209 write_lock_bh(&neigh->lock);
1210 if (!dst->hh)
1211 neigh_hh_init(neigh, dst, dst->ops->protocol);
1212 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1213 neigh->ha, NULL, skb->len);
1214 write_unlock_bh(&neigh->lock);
1215 } else {
1216 read_lock_bh(&neigh->lock);
1217 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1218 neigh->ha, NULL, skb->len);
1219 read_unlock_bh(&neigh->lock);
1220 }
1221 if (err >= 0)
1222 rc = neigh->ops->queue_xmit(skb);
1223 else
1224 goto out_kfree_skb;
1225 }
1226out:
1227 return rc;
1228discard:
1229 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1230 dst, dst ? dst->neighbour : NULL);
1231out_kfree_skb:
1232 rc = -EINVAL;
1233 kfree_skb(skb);
1234 goto out;
1235}
1236EXPORT_SYMBOL(neigh_resolve_output);
1237
1238/* As fast as possible without hh cache */
1239
1240int neigh_connected_output(struct sk_buff *skb)
1241{
1242 int err;
1243 struct dst_entry *dst = skb_dst(skb);
1244 struct neighbour *neigh = dst->neighbour;
1245 struct net_device *dev = neigh->dev;
1246
1247 __skb_pull(skb, skb_network_offset(skb));
1248
1249 read_lock_bh(&neigh->lock);
1250 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1251 neigh->ha, NULL, skb->len);
1252 read_unlock_bh(&neigh->lock);
1253 if (err >= 0)
1254 err = neigh->ops->queue_xmit(skb);
1255 else {
1256 err = -EINVAL;
1257 kfree_skb(skb);
1258 }
1259 return err;
1260}
1261EXPORT_SYMBOL(neigh_connected_output);
1262
1263static void neigh_proxy_process(unsigned long arg)
1264{
1265 struct neigh_table *tbl = (struct neigh_table *)arg;
1266 long sched_next = 0;
1267 unsigned long now = jiffies;
1268 struct sk_buff *skb, *n;
1269
1270 spin_lock(&tbl->proxy_queue.lock);
1271
1272 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1273 long tdif = NEIGH_CB(skb)->sched_next - now;
1274
1275 if (tdif <= 0) {
1276 struct net_device *dev = skb->dev;
1277 __skb_unlink(skb, &tbl->proxy_queue);
1278 if (tbl->proxy_redo && netif_running(dev))
1279 tbl->proxy_redo(skb);
1280 else
1281 kfree_skb(skb);
1282
1283 dev_put(dev);
1284 } else if (!sched_next || tdif < sched_next)
1285 sched_next = tdif;
1286 }
1287 del_timer(&tbl->proxy_timer);
1288 if (sched_next)
1289 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1290 spin_unlock(&tbl->proxy_queue.lock);
1291}
1292
1293void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1294 struct sk_buff *skb)
1295{
1296 unsigned long now = jiffies;
1297 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1298
1299 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1300 kfree_skb(skb);
1301 return;
1302 }
1303
1304 NEIGH_CB(skb)->sched_next = sched_next;
1305 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1306
1307 spin_lock(&tbl->proxy_queue.lock);
1308 if (del_timer(&tbl->proxy_timer)) {
1309 if (time_before(tbl->proxy_timer.expires, sched_next))
1310 sched_next = tbl->proxy_timer.expires;
1311 }
1312 skb_dst_drop(skb);
1313 dev_hold(skb->dev);
1314 __skb_queue_tail(&tbl->proxy_queue, skb);
1315 mod_timer(&tbl->proxy_timer, sched_next);
1316 spin_unlock(&tbl->proxy_queue.lock);
1317}
1318EXPORT_SYMBOL(pneigh_enqueue);
1319
1320static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1321 struct net *net, int ifindex)
1322{
1323 struct neigh_parms *p;
1324
1325 for (p = &tbl->parms; p; p = p->next) {
1326 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1327 (!p->dev && !ifindex))
1328 return p;
1329 }
1330
1331 return NULL;
1332}
1333
1334struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1335 struct neigh_table *tbl)
1336{
1337 struct neigh_parms *p, *ref;
1338 struct net *net = dev_net(dev);
1339 const struct net_device_ops *ops = dev->netdev_ops;
1340
1341 ref = lookup_neigh_parms(tbl, net, 0);
1342 if (!ref)
1343 return NULL;
1344
1345 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1346 if (p) {
1347 p->tbl = tbl;
1348 atomic_set(&p->refcnt, 1);
1349 p->reachable_time =
1350 neigh_rand_reach_time(p->base_reachable_time);
1351
1352 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1353 kfree(p);
1354 return NULL;
1355 }
1356
1357 dev_hold(dev);
1358 p->dev = dev;
1359 write_pnet(&p->net, hold_net(net));
1360 p->sysctl_table = NULL;
1361 write_lock_bh(&tbl->lock);
1362 p->next = tbl->parms.next;
1363 tbl->parms.next = p;
1364 write_unlock_bh(&tbl->lock);
1365 }
1366 return p;
1367}
1368EXPORT_SYMBOL(neigh_parms_alloc);
1369
1370static void neigh_rcu_free_parms(struct rcu_head *head)
1371{
1372 struct neigh_parms *parms =
1373 container_of(head, struct neigh_parms, rcu_head);
1374
1375 neigh_parms_put(parms);
1376}
1377
1378void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1379{
1380 struct neigh_parms **p;
1381
1382 if (!parms || parms == &tbl->parms)
1383 return;
1384 write_lock_bh(&tbl->lock);
1385 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1386 if (*p == parms) {
1387 *p = parms->next;
1388 parms->dead = 1;
1389 write_unlock_bh(&tbl->lock);
1390 if (parms->dev)
1391 dev_put(parms->dev);
1392 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1393 return;
1394 }
1395 }
1396 write_unlock_bh(&tbl->lock);
1397 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1398}
1399EXPORT_SYMBOL(neigh_parms_release);
1400
1401static void neigh_parms_destroy(struct neigh_parms *parms)
1402{
1403 release_net(neigh_parms_net(parms));
1404 kfree(parms);
1405}
1406
1407static struct lock_class_key neigh_table_proxy_queue_class;
1408
1409void neigh_table_init_no_netlink(struct neigh_table *tbl)
1410{
1411 unsigned long now = jiffies;
1412 unsigned long phsize;
1413
1414 write_pnet(&tbl->parms.net, &init_net);
1415 atomic_set(&tbl->parms.refcnt, 1);
1416 tbl->parms.reachable_time =
1417 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1418
1419 if (!tbl->kmem_cachep)
1420 tbl->kmem_cachep =
1421 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1422 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1423 NULL);
1424 tbl->stats = alloc_percpu(struct neigh_statistics);
1425 if (!tbl->stats)
1426 panic("cannot create neighbour cache statistics");
1427
1428#ifdef CONFIG_PROC_FS
1429 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1430 &neigh_stat_seq_fops, tbl))
1431 panic("cannot create neighbour proc dir entry");
1432#endif
1433
1434 tbl->hash_mask = 1;
1435 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1436
1437 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1438 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1439
1440 if (!tbl->hash_buckets || !tbl->phash_buckets)
1441 panic("cannot allocate neighbour cache hashes");
1442
1443 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1444
1445 rwlock_init(&tbl->lock);
1446 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1447 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1448 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1449 skb_queue_head_init_class(&tbl->proxy_queue,
1450 &neigh_table_proxy_queue_class);
1451
1452 tbl->last_flush = now;
1453 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1454}
1455EXPORT_SYMBOL(neigh_table_init_no_netlink);
1456
1457void neigh_table_init(struct neigh_table *tbl)
1458{
1459 struct neigh_table *tmp;
1460
1461 neigh_table_init_no_netlink(tbl);
1462 write_lock(&neigh_tbl_lock);
1463 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1464 if (tmp->family == tbl->family)
1465 break;
1466 }
1467 tbl->next = neigh_tables;
1468 neigh_tables = tbl;
1469 write_unlock(&neigh_tbl_lock);
1470
1471 if (unlikely(tmp)) {
1472 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1473 "family %d\n", tbl->family);
1474 dump_stack();
1475 }
1476}
1477EXPORT_SYMBOL(neigh_table_init);
1478
1479int neigh_table_clear(struct neigh_table *tbl)
1480{
1481 struct neigh_table **tp;
1482
1483 /* It is not clean... Fix it to unload IPv6 module safely */
1484 cancel_delayed_work(&tbl->gc_work);
1485 flush_scheduled_work();
1486 del_timer_sync(&tbl->proxy_timer);
1487 pneigh_queue_purge(&tbl->proxy_queue);
1488 neigh_ifdown(tbl, NULL);
1489 if (atomic_read(&tbl->entries))
1490 printk(KERN_CRIT "neighbour leakage\n");
1491 write_lock(&neigh_tbl_lock);
1492 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1493 if (*tp == tbl) {
1494 *tp = tbl->next;
1495 break;
1496 }
1497 }
1498 write_unlock(&neigh_tbl_lock);
1499
1500 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1501 tbl->hash_buckets = NULL;
1502
1503 kfree(tbl->phash_buckets);
1504 tbl->phash_buckets = NULL;
1505
1506 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1507
1508 free_percpu(tbl->stats);
1509 tbl->stats = NULL;
1510
1511 kmem_cache_destroy(tbl->kmem_cachep);
1512 tbl->kmem_cachep = NULL;
1513
1514 return 0;
1515}
1516EXPORT_SYMBOL(neigh_table_clear);
1517
1518static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1519{
1520 struct net *net = sock_net(skb->sk);
1521 struct ndmsg *ndm;
1522 struct nlattr *dst_attr;
1523 struct neigh_table *tbl;
1524 struct net_device *dev = NULL;
1525 int err = -EINVAL;
1526
1527 if (nlmsg_len(nlh) < sizeof(*ndm))
1528 goto out;
1529
1530 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1531 if (dst_attr == NULL)
1532 goto out;
1533
1534 ndm = nlmsg_data(nlh);
1535 if (ndm->ndm_ifindex) {
1536 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1537 if (dev == NULL) {
1538 err = -ENODEV;
1539 goto out;
1540 }
1541 }
1542
1543 read_lock(&neigh_tbl_lock);
1544 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1545 struct neighbour *neigh;
1546
1547 if (tbl->family != ndm->ndm_family)
1548 continue;
1549 read_unlock(&neigh_tbl_lock);
1550
1551 if (nla_len(dst_attr) < tbl->key_len)
1552 goto out_dev_put;
1553
1554 if (ndm->ndm_flags & NTF_PROXY) {
1555 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1556 goto out_dev_put;
1557 }
1558
1559 if (dev == NULL)
1560 goto out_dev_put;
1561
1562 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1563 if (neigh == NULL) {
1564 err = -ENOENT;
1565 goto out_dev_put;
1566 }
1567
1568 err = neigh_update(neigh, NULL, NUD_FAILED,
1569 NEIGH_UPDATE_F_OVERRIDE |
1570 NEIGH_UPDATE_F_ADMIN);
1571 neigh_release(neigh);
1572 goto out_dev_put;
1573 }
1574 read_unlock(&neigh_tbl_lock);
1575 err = -EAFNOSUPPORT;
1576
1577out_dev_put:
1578 if (dev)
1579 dev_put(dev);
1580out:
1581 return err;
1582}
1583
1584static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1585{
1586 struct net *net = sock_net(skb->sk);
1587 struct ndmsg *ndm;
1588 struct nlattr *tb[NDA_MAX+1];
1589 struct neigh_table *tbl;
1590 struct net_device *dev = NULL;
1591 int err;
1592
1593 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1594 if (err < 0)
1595 goto out;
1596
1597 err = -EINVAL;
1598 if (tb[NDA_DST] == NULL)
1599 goto out;
1600
1601 ndm = nlmsg_data(nlh);
1602 if (ndm->ndm_ifindex) {
1603 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1604 if (dev == NULL) {
1605 err = -ENODEV;
1606 goto out;
1607 }
1608
1609 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1610 goto out_dev_put;
1611 }
1612
1613 read_lock(&neigh_tbl_lock);
1614 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1615 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1616 struct neighbour *neigh;
1617 void *dst, *lladdr;
1618
1619 if (tbl->family != ndm->ndm_family)
1620 continue;
1621 read_unlock(&neigh_tbl_lock);
1622
1623 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1624 goto out_dev_put;
1625 dst = nla_data(tb[NDA_DST]);
1626 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1627
1628 if (ndm->ndm_flags & NTF_PROXY) {
1629 struct pneigh_entry *pn;
1630
1631 err = -ENOBUFS;
1632 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1633 if (pn) {
1634 pn->flags = ndm->ndm_flags;
1635 err = 0;
1636 }
1637 goto out_dev_put;
1638 }
1639
1640 if (dev == NULL)
1641 goto out_dev_put;
1642
1643 neigh = neigh_lookup(tbl, dst, dev);
1644 if (neigh == NULL) {
1645 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1646 err = -ENOENT;
1647 goto out_dev_put;
1648 }
1649
1650 neigh = __neigh_lookup_errno(tbl, dst, dev);
1651 if (IS_ERR(neigh)) {
1652 err = PTR_ERR(neigh);
1653 goto out_dev_put;
1654 }
1655 } else {
1656 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1657 err = -EEXIST;
1658 neigh_release(neigh);
1659 goto out_dev_put;
1660 }
1661
1662 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1663 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1664 }
1665
1666 if (ndm->ndm_flags & NTF_USE) {
1667 neigh_event_send(neigh, NULL);
1668 err = 0;
1669 } else
1670 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1671 neigh_release(neigh);
1672 goto out_dev_put;
1673 }
1674
1675 read_unlock(&neigh_tbl_lock);
1676 err = -EAFNOSUPPORT;
1677
1678out_dev_put:
1679 if (dev)
1680 dev_put(dev);
1681out:
1682 return err;
1683}
1684
1685static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1686{
1687 struct nlattr *nest;
1688
1689 nest = nla_nest_start(skb, NDTA_PARMS);
1690 if (nest == NULL)
1691 return -ENOBUFS;
1692
1693 if (parms->dev)
1694 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1695
1696 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1697 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1698 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1699 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1700 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1701 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1702 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1703 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1704 parms->base_reachable_time);
1705 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1706 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1707 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1708 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1709 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1710 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1711
1712 return nla_nest_end(skb, nest);
1713
1714nla_put_failure:
1715 nla_nest_cancel(skb, nest);
1716 return -EMSGSIZE;
1717}
1718
1719static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1720 u32 pid, u32 seq, int type, int flags)
1721{
1722 struct nlmsghdr *nlh;
1723 struct ndtmsg *ndtmsg;
1724
1725 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1726 if (nlh == NULL)
1727 return -EMSGSIZE;
1728
1729 ndtmsg = nlmsg_data(nlh);
1730
1731 read_lock_bh(&tbl->lock);
1732 ndtmsg->ndtm_family = tbl->family;
1733 ndtmsg->ndtm_pad1 = 0;
1734 ndtmsg->ndtm_pad2 = 0;
1735
1736 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1737 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1738 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1739 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1740 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1741
1742 {
1743 unsigned long now = jiffies;
1744 unsigned int flush_delta = now - tbl->last_flush;
1745 unsigned int rand_delta = now - tbl->last_rand;
1746
1747 struct ndt_config ndc = {
1748 .ndtc_key_len = tbl->key_len,
1749 .ndtc_entry_size = tbl->entry_size,
1750 .ndtc_entries = atomic_read(&tbl->entries),
1751 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1752 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1753 .ndtc_hash_rnd = tbl->hash_rnd,
1754 .ndtc_hash_mask = tbl->hash_mask,
1755 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1756 };
1757
1758 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1759 }
1760
1761 {
1762 int cpu;
1763 struct ndt_stats ndst;
1764
1765 memset(&ndst, 0, sizeof(ndst));
1766
1767 for_each_possible_cpu(cpu) {
1768 struct neigh_statistics *st;
1769
1770 st = per_cpu_ptr(tbl->stats, cpu);
1771 ndst.ndts_allocs += st->allocs;
1772 ndst.ndts_destroys += st->destroys;
1773 ndst.ndts_hash_grows += st->hash_grows;
1774 ndst.ndts_res_failed += st->res_failed;
1775 ndst.ndts_lookups += st->lookups;
1776 ndst.ndts_hits += st->hits;
1777 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1778 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1779 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1780 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1781 }
1782
1783 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1784 }
1785
1786 BUG_ON(tbl->parms.dev);
1787 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1788 goto nla_put_failure;
1789
1790 read_unlock_bh(&tbl->lock);
1791 return nlmsg_end(skb, nlh);
1792
1793nla_put_failure:
1794 read_unlock_bh(&tbl->lock);
1795 nlmsg_cancel(skb, nlh);
1796 return -EMSGSIZE;
1797}
1798
1799static int neightbl_fill_param_info(struct sk_buff *skb,
1800 struct neigh_table *tbl,
1801 struct neigh_parms *parms,
1802 u32 pid, u32 seq, int type,
1803 unsigned int flags)
1804{
1805 struct ndtmsg *ndtmsg;
1806 struct nlmsghdr *nlh;
1807
1808 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1809 if (nlh == NULL)
1810 return -EMSGSIZE;
1811
1812 ndtmsg = nlmsg_data(nlh);
1813
1814 read_lock_bh(&tbl->lock);
1815 ndtmsg->ndtm_family = tbl->family;
1816 ndtmsg->ndtm_pad1 = 0;
1817 ndtmsg->ndtm_pad2 = 0;
1818
1819 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1820 neightbl_fill_parms(skb, parms) < 0)
1821 goto errout;
1822
1823 read_unlock_bh(&tbl->lock);
1824 return nlmsg_end(skb, nlh);
1825errout:
1826 read_unlock_bh(&tbl->lock);
1827 nlmsg_cancel(skb, nlh);
1828 return -EMSGSIZE;
1829}
1830
1831static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1832 [NDTA_NAME] = { .type = NLA_STRING },
1833 [NDTA_THRESH1] = { .type = NLA_U32 },
1834 [NDTA_THRESH2] = { .type = NLA_U32 },
1835 [NDTA_THRESH3] = { .type = NLA_U32 },
1836 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1837 [NDTA_PARMS] = { .type = NLA_NESTED },
1838};
1839
1840static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1841 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1842 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1843 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1844 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1845 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1846 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1847 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1848 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1849 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1850 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1851 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1852 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1853 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1854};
1855
1856static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1857{
1858 struct net *net = sock_net(skb->sk);
1859 struct neigh_table *tbl;
1860 struct ndtmsg *ndtmsg;
1861 struct nlattr *tb[NDTA_MAX+1];
1862 int err;
1863
1864 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1865 nl_neightbl_policy);
1866 if (err < 0)
1867 goto errout;
1868
1869 if (tb[NDTA_NAME] == NULL) {
1870 err = -EINVAL;
1871 goto errout;
1872 }
1873
1874 ndtmsg = nlmsg_data(nlh);
1875 read_lock(&neigh_tbl_lock);
1876 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1877 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1878 continue;
1879
1880 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1881 break;
1882 }
1883
1884 if (tbl == NULL) {
1885 err = -ENOENT;
1886 goto errout_locked;
1887 }
1888
1889 /*
1890 * We acquire tbl->lock to be nice to the periodic timers and
1891 * make sure they always see a consistent set of values.
1892 */
1893 write_lock_bh(&tbl->lock);
1894
1895 if (tb[NDTA_PARMS]) {
1896 struct nlattr *tbp[NDTPA_MAX+1];
1897 struct neigh_parms *p;
1898 int i, ifindex = 0;
1899
1900 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1901 nl_ntbl_parm_policy);
1902 if (err < 0)
1903 goto errout_tbl_lock;
1904
1905 if (tbp[NDTPA_IFINDEX])
1906 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1907
1908 p = lookup_neigh_parms(tbl, net, ifindex);
1909 if (p == NULL) {
1910 err = -ENOENT;
1911 goto errout_tbl_lock;
1912 }
1913
1914 for (i = 1; i <= NDTPA_MAX; i++) {
1915 if (tbp[i] == NULL)
1916 continue;
1917
1918 switch (i) {
1919 case NDTPA_QUEUE_LEN:
1920 p->queue_len = nla_get_u32(tbp[i]);
1921 break;
1922 case NDTPA_PROXY_QLEN:
1923 p->proxy_qlen = nla_get_u32(tbp[i]);
1924 break;
1925 case NDTPA_APP_PROBES:
1926 p->app_probes = nla_get_u32(tbp[i]);
1927 break;
1928 case NDTPA_UCAST_PROBES:
1929 p->ucast_probes = nla_get_u32(tbp[i]);
1930 break;
1931 case NDTPA_MCAST_PROBES:
1932 p->mcast_probes = nla_get_u32(tbp[i]);
1933 break;
1934 case NDTPA_BASE_REACHABLE_TIME:
1935 p->base_reachable_time = nla_get_msecs(tbp[i]);
1936 break;
1937 case NDTPA_GC_STALETIME:
1938 p->gc_staletime = nla_get_msecs(tbp[i]);
1939 break;
1940 case NDTPA_DELAY_PROBE_TIME:
1941 p->delay_probe_time = nla_get_msecs(tbp[i]);
1942 break;
1943 case NDTPA_RETRANS_TIME:
1944 p->retrans_time = nla_get_msecs(tbp[i]);
1945 break;
1946 case NDTPA_ANYCAST_DELAY:
1947 p->anycast_delay = nla_get_msecs(tbp[i]);
1948 break;
1949 case NDTPA_PROXY_DELAY:
1950 p->proxy_delay = nla_get_msecs(tbp[i]);
1951 break;
1952 case NDTPA_LOCKTIME:
1953 p->locktime = nla_get_msecs(tbp[i]);
1954 break;
1955 }
1956 }
1957 }
1958
1959 if (tb[NDTA_THRESH1])
1960 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1961
1962 if (tb[NDTA_THRESH2])
1963 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1964
1965 if (tb[NDTA_THRESH3])
1966 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1967
1968 if (tb[NDTA_GC_INTERVAL])
1969 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1970
1971 err = 0;
1972
1973errout_tbl_lock:
1974 write_unlock_bh(&tbl->lock);
1975errout_locked:
1976 read_unlock(&neigh_tbl_lock);
1977errout:
1978 return err;
1979}
1980
1981static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1982{
1983 struct net *net = sock_net(skb->sk);
1984 int family, tidx, nidx = 0;
1985 int tbl_skip = cb->args[0];
1986 int neigh_skip = cb->args[1];
1987 struct neigh_table *tbl;
1988
1989 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1990
1991 read_lock(&neigh_tbl_lock);
1992 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1993 struct neigh_parms *p;
1994
1995 if (tidx < tbl_skip || (family && tbl->family != family))
1996 continue;
1997
1998 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1999 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2000 NLM_F_MULTI) <= 0)
2001 break;
2002
2003 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2004 if (!net_eq(neigh_parms_net(p), net))
2005 continue;
2006
2007 if (nidx < neigh_skip)
2008 goto next;
2009
2010 if (neightbl_fill_param_info(skb, tbl, p,
2011 NETLINK_CB(cb->skb).pid,
2012 cb->nlh->nlmsg_seq,
2013 RTM_NEWNEIGHTBL,
2014 NLM_F_MULTI) <= 0)
2015 goto out;
2016 next:
2017 nidx++;
2018 }
2019
2020 neigh_skip = 0;
2021 }
2022out:
2023 read_unlock(&neigh_tbl_lock);
2024 cb->args[0] = tidx;
2025 cb->args[1] = nidx;
2026
2027 return skb->len;
2028}
2029
2030static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2031 u32 pid, u32 seq, int type, unsigned int flags)
2032{
2033 unsigned long now = jiffies;
2034 struct nda_cacheinfo ci;
2035 struct nlmsghdr *nlh;
2036 struct ndmsg *ndm;
2037
2038 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2039 if (nlh == NULL)
2040 return -EMSGSIZE;
2041
2042 ndm = nlmsg_data(nlh);
2043 ndm->ndm_family = neigh->ops->family;
2044 ndm->ndm_pad1 = 0;
2045 ndm->ndm_pad2 = 0;
2046 ndm->ndm_flags = neigh->flags;
2047 ndm->ndm_type = neigh->type;
2048 ndm->ndm_ifindex = neigh->dev->ifindex;
2049
2050 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2051
2052 read_lock_bh(&neigh->lock);
2053 ndm->ndm_state = neigh->nud_state;
2054 if ((neigh->nud_state & NUD_VALID) &&
2055 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
2056 read_unlock_bh(&neigh->lock);
2057 goto nla_put_failure;
2058 }
2059
2060 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2061 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2062 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2063 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2064 read_unlock_bh(&neigh->lock);
2065
2066 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2067 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2068
2069 return nlmsg_end(skb, nlh);
2070
2071nla_put_failure:
2072 nlmsg_cancel(skb, nlh);
2073 return -EMSGSIZE;
2074}
2075
2076static void neigh_update_notify(struct neighbour *neigh)
2077{
2078 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2079 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2080}
2081
2082static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2083 struct netlink_callback *cb)
2084{
2085 struct net * net = sock_net(skb->sk);
2086 struct neighbour *n;
2087 int rc, h, s_h = cb->args[1];
2088 int idx, s_idx = idx = cb->args[2];
2089
2090 read_lock_bh(&tbl->lock);
2091 for (h = 0; h <= tbl->hash_mask; h++) {
2092 if (h < s_h)
2093 continue;
2094 if (h > s_h)
2095 s_idx = 0;
2096 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) {
2097 if (!net_eq(dev_net(n->dev), net))
2098 continue;
2099 if (idx < s_idx)
2100 goto next;
2101 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2102 cb->nlh->nlmsg_seq,
2103 RTM_NEWNEIGH,
2104 NLM_F_MULTI) <= 0) {
2105 read_unlock_bh(&tbl->lock);
2106 rc = -1;
2107 goto out;
2108 }
2109 next:
2110 idx++;
2111 }
2112 }
2113 read_unlock_bh(&tbl->lock);
2114 rc = skb->len;
2115out:
2116 cb->args[1] = h;
2117 cb->args[2] = idx;
2118 return rc;
2119}
2120
2121static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2122{
2123 struct neigh_table *tbl;
2124 int t, family, s_t;
2125
2126 read_lock(&neigh_tbl_lock);
2127 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2128 s_t = cb->args[0];
2129
2130 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2131 if (t < s_t || (family && tbl->family != family))
2132 continue;
2133 if (t > s_t)
2134 memset(&cb->args[1], 0, sizeof(cb->args) -
2135 sizeof(cb->args[0]));
2136 if (neigh_dump_table(tbl, skb, cb) < 0)
2137 break;
2138 }
2139 read_unlock(&neigh_tbl_lock);
2140
2141 cb->args[0] = t;
2142 return skb->len;
2143}
2144
2145void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2146{
2147 int chain;
2148
2149 read_lock_bh(&tbl->lock);
2150 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2151 struct neighbour *n;
2152
2153 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2154 cb(n, cookie);
2155 }
2156 read_unlock_bh(&tbl->lock);
2157}
2158EXPORT_SYMBOL(neigh_for_each);
2159
2160/* The tbl->lock must be held as a writer and BH disabled. */
2161void __neigh_for_each_release(struct neigh_table *tbl,
2162 int (*cb)(struct neighbour *))
2163{
2164 int chain;
2165
2166 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2167 struct neighbour *n, **np;
2168
2169 np = &tbl->hash_buckets[chain];
2170 while ((n = *np) != NULL) {
2171 int release;
2172
2173 write_lock(&n->lock);
2174 release = cb(n);
2175 if (release) {
2176 *np = n->next;
2177 n->dead = 1;
2178 } else
2179 np = &n->next;
2180 write_unlock(&n->lock);
2181 if (release)
2182 neigh_cleanup_and_release(n);
2183 }
2184 }
2185}
2186EXPORT_SYMBOL(__neigh_for_each_release);
2187
2188#ifdef CONFIG_PROC_FS
2189
2190static struct neighbour *neigh_get_first(struct seq_file *seq)
2191{
2192 struct neigh_seq_state *state = seq->private;
2193 struct net *net = seq_file_net(seq);
2194 struct neigh_table *tbl = state->tbl;
2195 struct neighbour *n = NULL;
2196 int bucket = state->bucket;
2197
2198 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2199 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2200 n = tbl->hash_buckets[bucket];
2201
2202 while (n) {
2203 if (!net_eq(dev_net(n->dev), net))
2204 goto next;
2205 if (state->neigh_sub_iter) {
2206 loff_t fakep = 0;
2207 void *v;
2208
2209 v = state->neigh_sub_iter(state, n, &fakep);
2210 if (!v)
2211 goto next;
2212 }
2213 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2214 break;
2215 if (n->nud_state & ~NUD_NOARP)
2216 break;
2217 next:
2218 n = n->next;
2219 }
2220
2221 if (n)
2222 break;
2223 }
2224 state->bucket = bucket;
2225
2226 return n;
2227}
2228
2229static struct neighbour *neigh_get_next(struct seq_file *seq,
2230 struct neighbour *n,
2231 loff_t *pos)
2232{
2233 struct neigh_seq_state *state = seq->private;
2234 struct net *net = seq_file_net(seq);
2235 struct neigh_table *tbl = state->tbl;
2236
2237 if (state->neigh_sub_iter) {
2238 void *v = state->neigh_sub_iter(state, n, pos);
2239 if (v)
2240 return n;
2241 }
2242 n = n->next;
2243
2244 while (1) {
2245 while (n) {
2246 if (!net_eq(dev_net(n->dev), net))
2247 goto next;
2248 if (state->neigh_sub_iter) {
2249 void *v = state->neigh_sub_iter(state, n, pos);
2250 if (v)
2251 return n;
2252 goto next;
2253 }
2254 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2255 break;
2256
2257 if (n->nud_state & ~NUD_NOARP)
2258 break;
2259 next:
2260 n = n->next;
2261 }
2262
2263 if (n)
2264 break;
2265
2266 if (++state->bucket > tbl->hash_mask)
2267 break;
2268
2269 n = tbl->hash_buckets[state->bucket];
2270 }
2271
2272 if (n && pos)
2273 --(*pos);
2274 return n;
2275}
2276
2277static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2278{
2279 struct neighbour *n = neigh_get_first(seq);
2280
2281 if (n) {
2282 --(*pos);
2283 while (*pos) {
2284 n = neigh_get_next(seq, n, pos);
2285 if (!n)
2286 break;
2287 }
2288 }
2289 return *pos ? NULL : n;
2290}
2291
2292static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2293{
2294 struct neigh_seq_state *state = seq->private;
2295 struct net *net = seq_file_net(seq);
2296 struct neigh_table *tbl = state->tbl;
2297 struct pneigh_entry *pn = NULL;
2298 int bucket = state->bucket;
2299
2300 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2301 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2302 pn = tbl->phash_buckets[bucket];
2303 while (pn && !net_eq(pneigh_net(pn), net))
2304 pn = pn->next;
2305 if (pn)
2306 break;
2307 }
2308 state->bucket = bucket;
2309
2310 return pn;
2311}
2312
2313static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2314 struct pneigh_entry *pn,
2315 loff_t *pos)
2316{
2317 struct neigh_seq_state *state = seq->private;
2318 struct net *net = seq_file_net(seq);
2319 struct neigh_table *tbl = state->tbl;
2320
2321 pn = pn->next;
2322 while (!pn) {
2323 if (++state->bucket > PNEIGH_HASHMASK)
2324 break;
2325 pn = tbl->phash_buckets[state->bucket];
2326 while (pn && !net_eq(pneigh_net(pn), net))
2327 pn = pn->next;
2328 if (pn)
2329 break;
2330 }
2331
2332 if (pn && pos)
2333 --(*pos);
2334
2335 return pn;
2336}
2337
2338static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2339{
2340 struct pneigh_entry *pn = pneigh_get_first(seq);
2341
2342 if (pn) {
2343 --(*pos);
2344 while (*pos) {
2345 pn = pneigh_get_next(seq, pn, pos);
2346 if (!pn)
2347 break;
2348 }
2349 }
2350 return *pos ? NULL : pn;
2351}
2352
2353static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2354{
2355 struct neigh_seq_state *state = seq->private;
2356 void *rc;
2357 loff_t idxpos = *pos;
2358
2359 rc = neigh_get_idx(seq, &idxpos);
2360 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2361 rc = pneigh_get_idx(seq, &idxpos);
2362
2363 return rc;
2364}
2365
2366void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2367 __acquires(tbl->lock)
2368{
2369 struct neigh_seq_state *state = seq->private;
2370
2371 state->tbl = tbl;
2372 state->bucket = 0;
2373 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2374
2375 read_lock_bh(&tbl->lock);
2376
2377 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2378}
2379EXPORT_SYMBOL(neigh_seq_start);
2380
2381void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2382{
2383 struct neigh_seq_state *state;
2384 void *rc;
2385
2386 if (v == SEQ_START_TOKEN) {
2387 rc = neigh_get_first(seq);
2388 goto out;
2389 }
2390
2391 state = seq->private;
2392 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2393 rc = neigh_get_next(seq, v, NULL);
2394 if (rc)
2395 goto out;
2396 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2397 rc = pneigh_get_first(seq);
2398 } else {
2399 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2400 rc = pneigh_get_next(seq, v, NULL);
2401 }
2402out:
2403 ++(*pos);
2404 return rc;
2405}
2406EXPORT_SYMBOL(neigh_seq_next);
2407
2408void neigh_seq_stop(struct seq_file *seq, void *v)
2409 __releases(tbl->lock)
2410{
2411 struct neigh_seq_state *state = seq->private;
2412 struct neigh_table *tbl = state->tbl;
2413
2414 read_unlock_bh(&tbl->lock);
2415}
2416EXPORT_SYMBOL(neigh_seq_stop);
2417
2418/* statistics via seq_file */
2419
2420static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2421{
2422 struct neigh_table *tbl = seq->private;
2423 int cpu;
2424
2425 if (*pos == 0)
2426 return SEQ_START_TOKEN;
2427
2428 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2429 if (!cpu_possible(cpu))
2430 continue;
2431 *pos = cpu+1;
2432 return per_cpu_ptr(tbl->stats, cpu);
2433 }
2434 return NULL;
2435}
2436
2437static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2438{
2439 struct neigh_table *tbl = seq->private;
2440 int cpu;
2441
2442 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2443 if (!cpu_possible(cpu))
2444 continue;
2445 *pos = cpu+1;
2446 return per_cpu_ptr(tbl->stats, cpu);
2447 }
2448 return NULL;
2449}
2450
2451static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2452{
2453
2454}
2455
2456static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2457{
2458 struct neigh_table *tbl = seq->private;
2459 struct neigh_statistics *st = v;
2460
2461 if (v == SEQ_START_TOKEN) {
2462 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2463 return 0;
2464 }
2465
2466 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2467 "%08lx %08lx %08lx %08lx %08lx\n",
2468 atomic_read(&tbl->entries),
2469
2470 st->allocs,
2471 st->destroys,
2472 st->hash_grows,
2473
2474 st->lookups,
2475 st->hits,
2476
2477 st->res_failed,
2478
2479 st->rcv_probes_mcast,
2480 st->rcv_probes_ucast,
2481
2482 st->periodic_gc_runs,
2483 st->forced_gc_runs,
2484 st->unres_discards
2485 );
2486
2487 return 0;
2488}
2489
2490static const struct seq_operations neigh_stat_seq_ops = {
2491 .start = neigh_stat_seq_start,
2492 .next = neigh_stat_seq_next,
2493 .stop = neigh_stat_seq_stop,
2494 .show = neigh_stat_seq_show,
2495};
2496
2497static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2498{
2499 int ret = seq_open(file, &neigh_stat_seq_ops);
2500
2501 if (!ret) {
2502 struct seq_file *sf = file->private_data;
2503 sf->private = PDE(inode)->data;
2504 }
2505 return ret;
2506};
2507
2508static const struct file_operations neigh_stat_seq_fops = {
2509 .owner = THIS_MODULE,
2510 .open = neigh_stat_seq_open,
2511 .read = seq_read,
2512 .llseek = seq_lseek,
2513 .release = seq_release,
2514};
2515
2516#endif /* CONFIG_PROC_FS */
2517
2518static inline size_t neigh_nlmsg_size(void)
2519{
2520 return NLMSG_ALIGN(sizeof(struct ndmsg))
2521 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2522 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2523 + nla_total_size(sizeof(struct nda_cacheinfo))
2524 + nla_total_size(4); /* NDA_PROBES */
2525}
2526
2527static void __neigh_notify(struct neighbour *n, int type, int flags)
2528{
2529 struct net *net = dev_net(n->dev);
2530 struct sk_buff *skb;
2531 int err = -ENOBUFS;
2532
2533 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2534 if (skb == NULL)
2535 goto errout;
2536
2537 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2538 if (err < 0) {
2539 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2540 WARN_ON(err == -EMSGSIZE);
2541 kfree_skb(skb);
2542 goto errout;
2543 }
2544 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2545 return;
2546errout:
2547 if (err < 0)
2548 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2549}
2550
2551#ifdef CONFIG_ARPD
2552void neigh_app_ns(struct neighbour *n)
2553{
2554 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2555}
2556EXPORT_SYMBOL(neigh_app_ns);
2557#endif /* CONFIG_ARPD */
2558
2559#ifdef CONFIG_SYSCTL
2560
2561#define NEIGH_VARS_MAX 19
2562
2563static struct neigh_sysctl_table {
2564 struct ctl_table_header *sysctl_header;
2565 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2566 char *dev_name;
2567} neigh_sysctl_template __read_mostly = {
2568 .neigh_vars = {
2569 {
2570 .procname = "mcast_solicit",
2571 .maxlen = sizeof(int),
2572 .mode = 0644,
2573 .proc_handler = proc_dointvec,
2574 },
2575 {
2576 .procname = "ucast_solicit",
2577 .maxlen = sizeof(int),
2578 .mode = 0644,
2579 .proc_handler = proc_dointvec,
2580 },
2581 {
2582 .procname = "app_solicit",
2583 .maxlen = sizeof(int),
2584 .mode = 0644,
2585 .proc_handler = proc_dointvec,
2586 },
2587 {
2588 .procname = "retrans_time",
2589 .maxlen = sizeof(int),
2590 .mode = 0644,
2591 .proc_handler = proc_dointvec_userhz_jiffies,
2592 },
2593 {
2594 .procname = "base_reachable_time",
2595 .maxlen = sizeof(int),
2596 .mode = 0644,
2597 .proc_handler = proc_dointvec_jiffies,
2598 },
2599 {
2600 .procname = "delay_first_probe_time",
2601 .maxlen = sizeof(int),
2602 .mode = 0644,
2603 .proc_handler = proc_dointvec_jiffies,
2604 },
2605 {
2606 .procname = "gc_stale_time",
2607 .maxlen = sizeof(int),
2608 .mode = 0644,
2609 .proc_handler = proc_dointvec_jiffies,
2610 },
2611 {
2612 .procname = "unres_qlen",
2613 .maxlen = sizeof(int),
2614 .mode = 0644,
2615 .proc_handler = proc_dointvec,
2616 },
2617 {
2618 .procname = "proxy_qlen",
2619 .maxlen = sizeof(int),
2620 .mode = 0644,
2621 .proc_handler = proc_dointvec,
2622 },
2623 {
2624 .procname = "anycast_delay",
2625 .maxlen = sizeof(int),
2626 .mode = 0644,
2627 .proc_handler = proc_dointvec_userhz_jiffies,
2628 },
2629 {
2630 .procname = "proxy_delay",
2631 .maxlen = sizeof(int),
2632 .mode = 0644,
2633 .proc_handler = proc_dointvec_userhz_jiffies,
2634 },
2635 {
2636 .procname = "locktime",
2637 .maxlen = sizeof(int),
2638 .mode = 0644,
2639 .proc_handler = proc_dointvec_userhz_jiffies,
2640 },
2641 {
2642 .procname = "retrans_time_ms",
2643 .maxlen = sizeof(int),
2644 .mode = 0644,
2645 .proc_handler = proc_dointvec_ms_jiffies,
2646 },
2647 {
2648 .procname = "base_reachable_time_ms",
2649 .maxlen = sizeof(int),
2650 .mode = 0644,
2651 .proc_handler = proc_dointvec_ms_jiffies,
2652 },
2653 {
2654 .procname = "gc_interval",
2655 .maxlen = sizeof(int),
2656 .mode = 0644,
2657 .proc_handler = proc_dointvec_jiffies,
2658 },
2659 {
2660 .procname = "gc_thresh1",
2661 .maxlen = sizeof(int),
2662 .mode = 0644,
2663 .proc_handler = proc_dointvec,
2664 },
2665 {
2666 .procname = "gc_thresh2",
2667 .maxlen = sizeof(int),
2668 .mode = 0644,
2669 .proc_handler = proc_dointvec,
2670 },
2671 {
2672 .procname = "gc_thresh3",
2673 .maxlen = sizeof(int),
2674 .mode = 0644,
2675 .proc_handler = proc_dointvec,
2676 },
2677 {},
2678 },
2679};
2680
2681int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2682 char *p_name, proc_handler *handler)
2683{
2684 struct neigh_sysctl_table *t;
2685 const char *dev_name_source = NULL;
2686
2687#define NEIGH_CTL_PATH_ROOT 0
2688#define NEIGH_CTL_PATH_PROTO 1
2689#define NEIGH_CTL_PATH_NEIGH 2
2690#define NEIGH_CTL_PATH_DEV 3
2691
2692 struct ctl_path neigh_path[] = {
2693 { .procname = "net", },
2694 { .procname = "proto", },
2695 { .procname = "neigh", },
2696 { .procname = "default", },
2697 { },
2698 };
2699
2700 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2701 if (!t)
2702 goto err;
2703
2704 t->neigh_vars[0].data = &p->mcast_probes;
2705 t->neigh_vars[1].data = &p->ucast_probes;
2706 t->neigh_vars[2].data = &p->app_probes;
2707 t->neigh_vars[3].data = &p->retrans_time;
2708 t->neigh_vars[4].data = &p->base_reachable_time;
2709 t->neigh_vars[5].data = &p->delay_probe_time;
2710 t->neigh_vars[6].data = &p->gc_staletime;
2711 t->neigh_vars[7].data = &p->queue_len;
2712 t->neigh_vars[8].data = &p->proxy_qlen;
2713 t->neigh_vars[9].data = &p->anycast_delay;
2714 t->neigh_vars[10].data = &p->proxy_delay;
2715 t->neigh_vars[11].data = &p->locktime;
2716 t->neigh_vars[12].data = &p->retrans_time;
2717 t->neigh_vars[13].data = &p->base_reachable_time;
2718
2719 if (dev) {
2720 dev_name_source = dev->name;
2721 /* Terminate the table early */
2722 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2723 } else {
2724 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2725 t->neigh_vars[14].data = (int *)(p + 1);
2726 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2727 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2728 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2729 }
2730
2731
2732 if (handler) {
2733 /* RetransTime */
2734 t->neigh_vars[3].proc_handler = handler;
2735 t->neigh_vars[3].extra1 = dev;
2736 /* ReachableTime */
2737 t->neigh_vars[4].proc_handler = handler;
2738 t->neigh_vars[4].extra1 = dev;
2739 /* RetransTime (in milliseconds)*/
2740 t->neigh_vars[12].proc_handler = handler;
2741 t->neigh_vars[12].extra1 = dev;
2742 /* ReachableTime (in milliseconds) */
2743 t->neigh_vars[13].proc_handler = handler;
2744 t->neigh_vars[13].extra1 = dev;
2745 }
2746
2747 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2748 if (!t->dev_name)
2749 goto free;
2750
2751 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2752 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2753
2754 t->sysctl_header =
2755 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2756 if (!t->sysctl_header)
2757 goto free_procname;
2758
2759 p->sysctl_table = t;
2760 return 0;
2761
2762free_procname:
2763 kfree(t->dev_name);
2764free:
2765 kfree(t);
2766err:
2767 return -ENOBUFS;
2768}
2769EXPORT_SYMBOL(neigh_sysctl_register);
2770
2771void neigh_sysctl_unregister(struct neigh_parms *p)
2772{
2773 if (p->sysctl_table) {
2774 struct neigh_sysctl_table *t = p->sysctl_table;
2775 p->sysctl_table = NULL;
2776 unregister_sysctl_table(t->sysctl_header);
2777 kfree(t->dev_name);
2778 kfree(t);
2779 }
2780}
2781EXPORT_SYMBOL(neigh_sysctl_unregister);
2782
2783#endif /* CONFIG_SYSCTL */
2784
2785static int __init neigh_init(void)
2786{
2787 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2788 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2789 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2790
2791 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2792 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2793
2794 return 0;
2795}
2796
2797subsys_initcall(neigh_init);
2798