gianfar: Fix portabilty issues for ethtool and ptp
[linux-2.6-block.git] / net / core / neighbour.c
... / ...
CommitLineData
1/*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/slab.h>
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/socket.h>
25#include <linux/netdevice.h>
26#include <linux/proc_fs.h>
27#ifdef CONFIG_SYSCTL
28#include <linux/sysctl.h>
29#endif
30#include <linux/times.h>
31#include <net/net_namespace.h>
32#include <net/neighbour.h>
33#include <net/dst.h>
34#include <net/sock.h>
35#include <net/netevent.h>
36#include <net/netlink.h>
37#include <linux/rtnetlink.h>
38#include <linux/random.h>
39#include <linux/string.h>
40#include <linux/log2.h>
41#include <linux/inetdevice.h>
42#include <net/addrconf.h>
43
44#define DEBUG
45#define NEIGH_DEBUG 1
46#define neigh_dbg(level, fmt, ...) \
47do { \
48 if (level <= NEIGH_DEBUG) \
49 pr_debug(fmt, ##__VA_ARGS__); \
50} while (0)
51
52#define PNEIGH_HASHMASK 0xF
53
54static void neigh_timer_handler(unsigned long arg);
55static void __neigh_notify(struct neighbour *n, int type, int flags);
56static void neigh_update_notify(struct neighbour *neigh);
57static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
58
59static struct neigh_table *neigh_tables;
60#ifdef CONFIG_PROC_FS
61static const struct file_operations neigh_stat_seq_fops;
62#endif
63
64/*
65 Neighbour hash table buckets are protected with rwlock tbl->lock.
66
67 - All the scans/updates to hash buckets MUST be made under this lock.
68 - NOTHING clever should be made under this lock: no callbacks
69 to protocol backends, no attempts to send something to network.
70 It will result in deadlocks, if backend/driver wants to use neighbour
71 cache.
72 - If the entry requires some non-trivial actions, increase
73 its reference count and release table lock.
74
75 Neighbour entries are protected:
76 - with reference count.
77 - with rwlock neigh->lock
78
79 Reference count prevents destruction.
80
81 neigh->lock mainly serializes ll address data and its validity state.
82 However, the same lock is used to protect another entry fields:
83 - timer
84 - resolution queue
85
86 Again, nothing clever shall be made under neigh->lock,
87 the most complicated procedure, which we allow is dev->hard_header.
88 It is supposed, that dev->hard_header is simplistic and does
89 not make callbacks to neighbour tables.
90
91 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
92 list of neighbour tables. This list is used only in process context,
93 */
94
95static DEFINE_RWLOCK(neigh_tbl_lock);
96
97static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
98{
99 kfree_skb(skb);
100 return -ENETDOWN;
101}
102
103static void neigh_cleanup_and_release(struct neighbour *neigh)
104{
105 if (neigh->parms->neigh_cleanup)
106 neigh->parms->neigh_cleanup(neigh);
107
108 __neigh_notify(neigh, RTM_DELNEIGH, 0);
109 neigh_release(neigh);
110}
111
112/*
113 * It is random distribution in the interval (1/2)*base...(3/2)*base.
114 * It corresponds to default IPv6 settings and is not overridable,
115 * because it is really reasonable choice.
116 */
117
118unsigned long neigh_rand_reach_time(unsigned long base)
119{
120 return base ? (prandom_u32() % base) + (base >> 1) : 0;
121}
122EXPORT_SYMBOL(neigh_rand_reach_time);
123
124
125static int neigh_forced_gc(struct neigh_table *tbl)
126{
127 int shrunk = 0;
128 int i;
129 struct neigh_hash_table *nht;
130
131 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
132
133 write_lock_bh(&tbl->lock);
134 nht = rcu_dereference_protected(tbl->nht,
135 lockdep_is_held(&tbl->lock));
136 for (i = 0; i < (1 << nht->hash_shift); i++) {
137 struct neighbour *n;
138 struct neighbour __rcu **np;
139
140 np = &nht->hash_buckets[i];
141 while ((n = rcu_dereference_protected(*np,
142 lockdep_is_held(&tbl->lock))) != NULL) {
143 /* Neighbour record may be discarded if:
144 * - nobody refers to it.
145 * - it is not permanent
146 */
147 write_lock(&n->lock);
148 if (atomic_read(&n->refcnt) == 1 &&
149 !(n->nud_state & NUD_PERMANENT)) {
150 rcu_assign_pointer(*np,
151 rcu_dereference_protected(n->next,
152 lockdep_is_held(&tbl->lock)));
153 n->dead = 1;
154 shrunk = 1;
155 write_unlock(&n->lock);
156 neigh_cleanup_and_release(n);
157 continue;
158 }
159 write_unlock(&n->lock);
160 np = &n->next;
161 }
162 }
163
164 tbl->last_flush = jiffies;
165
166 write_unlock_bh(&tbl->lock);
167
168 return shrunk;
169}
170
171static void neigh_add_timer(struct neighbour *n, unsigned long when)
172{
173 neigh_hold(n);
174 if (unlikely(mod_timer(&n->timer, when))) {
175 printk("NEIGH: BUG, double timer add, state is %x\n",
176 n->nud_state);
177 dump_stack();
178 }
179}
180
181static int neigh_del_timer(struct neighbour *n)
182{
183 if ((n->nud_state & NUD_IN_TIMER) &&
184 del_timer(&n->timer)) {
185 neigh_release(n);
186 return 1;
187 }
188 return 0;
189}
190
191static void pneigh_queue_purge(struct sk_buff_head *list)
192{
193 struct sk_buff *skb;
194
195 while ((skb = skb_dequeue(list)) != NULL) {
196 dev_put(skb->dev);
197 kfree_skb(skb);
198 }
199}
200
201static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
202{
203 int i;
204 struct neigh_hash_table *nht;
205
206 nht = rcu_dereference_protected(tbl->nht,
207 lockdep_is_held(&tbl->lock));
208
209 for (i = 0; i < (1 << nht->hash_shift); i++) {
210 struct neighbour *n;
211 struct neighbour __rcu **np = &nht->hash_buckets[i];
212
213 while ((n = rcu_dereference_protected(*np,
214 lockdep_is_held(&tbl->lock))) != NULL) {
215 if (dev && n->dev != dev) {
216 np = &n->next;
217 continue;
218 }
219 rcu_assign_pointer(*np,
220 rcu_dereference_protected(n->next,
221 lockdep_is_held(&tbl->lock)));
222 write_lock(&n->lock);
223 neigh_del_timer(n);
224 n->dead = 1;
225
226 if (atomic_read(&n->refcnt) != 1) {
227 /* The most unpleasant situation.
228 We must destroy neighbour entry,
229 but someone still uses it.
230
231 The destroy will be delayed until
232 the last user releases us, but
233 we must kill timers etc. and move
234 it to safe state.
235 */
236 __skb_queue_purge(&n->arp_queue);
237 n->arp_queue_len_bytes = 0;
238 n->output = neigh_blackhole;
239 if (n->nud_state & NUD_VALID)
240 n->nud_state = NUD_NOARP;
241 else
242 n->nud_state = NUD_NONE;
243 neigh_dbg(2, "neigh %p is stray\n", n);
244 }
245 write_unlock(&n->lock);
246 neigh_cleanup_and_release(n);
247 }
248 }
249}
250
251void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
252{
253 write_lock_bh(&tbl->lock);
254 neigh_flush_dev(tbl, dev);
255 write_unlock_bh(&tbl->lock);
256}
257EXPORT_SYMBOL(neigh_changeaddr);
258
259int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
260{
261 write_lock_bh(&tbl->lock);
262 neigh_flush_dev(tbl, dev);
263 pneigh_ifdown(tbl, dev);
264 write_unlock_bh(&tbl->lock);
265
266 del_timer_sync(&tbl->proxy_timer);
267 pneigh_queue_purge(&tbl->proxy_queue);
268 return 0;
269}
270EXPORT_SYMBOL(neigh_ifdown);
271
272static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
273{
274 struct neighbour *n = NULL;
275 unsigned long now = jiffies;
276 int entries;
277
278 entries = atomic_inc_return(&tbl->entries) - 1;
279 if (entries >= tbl->gc_thresh3 ||
280 (entries >= tbl->gc_thresh2 &&
281 time_after(now, tbl->last_flush + 5 * HZ))) {
282 if (!neigh_forced_gc(tbl) &&
283 entries >= tbl->gc_thresh3)
284 goto out_entries;
285 }
286
287 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
288 if (!n)
289 goto out_entries;
290
291 __skb_queue_head_init(&n->arp_queue);
292 rwlock_init(&n->lock);
293 seqlock_init(&n->ha_lock);
294 n->updated = n->used = now;
295 n->nud_state = NUD_NONE;
296 n->output = neigh_blackhole;
297 seqlock_init(&n->hh.hh_lock);
298 n->parms = neigh_parms_clone(&tbl->parms);
299 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
300
301 NEIGH_CACHE_STAT_INC(tbl, allocs);
302 n->tbl = tbl;
303 atomic_set(&n->refcnt, 1);
304 n->dead = 1;
305out:
306 return n;
307
308out_entries:
309 atomic_dec(&tbl->entries);
310 goto out;
311}
312
313static void neigh_get_hash_rnd(u32 *x)
314{
315 get_random_bytes(x, sizeof(*x));
316 *x |= 1;
317}
318
319static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
320{
321 size_t size = (1 << shift) * sizeof(struct neighbour *);
322 struct neigh_hash_table *ret;
323 struct neighbour __rcu **buckets;
324 int i;
325
326 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
327 if (!ret)
328 return NULL;
329 if (size <= PAGE_SIZE)
330 buckets = kzalloc(size, GFP_ATOMIC);
331 else
332 buckets = (struct neighbour __rcu **)
333 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
334 get_order(size));
335 if (!buckets) {
336 kfree(ret);
337 return NULL;
338 }
339 ret->hash_buckets = buckets;
340 ret->hash_shift = shift;
341 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
342 neigh_get_hash_rnd(&ret->hash_rnd[i]);
343 return ret;
344}
345
346static void neigh_hash_free_rcu(struct rcu_head *head)
347{
348 struct neigh_hash_table *nht = container_of(head,
349 struct neigh_hash_table,
350 rcu);
351 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
352 struct neighbour __rcu **buckets = nht->hash_buckets;
353
354 if (size <= PAGE_SIZE)
355 kfree(buckets);
356 else
357 free_pages((unsigned long)buckets, get_order(size));
358 kfree(nht);
359}
360
361static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
362 unsigned long new_shift)
363{
364 unsigned int i, hash;
365 struct neigh_hash_table *new_nht, *old_nht;
366
367 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
368
369 old_nht = rcu_dereference_protected(tbl->nht,
370 lockdep_is_held(&tbl->lock));
371 new_nht = neigh_hash_alloc(new_shift);
372 if (!new_nht)
373 return old_nht;
374
375 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
376 struct neighbour *n, *next;
377
378 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
379 lockdep_is_held(&tbl->lock));
380 n != NULL;
381 n = next) {
382 hash = tbl->hash(n->primary_key, n->dev,
383 new_nht->hash_rnd);
384
385 hash >>= (32 - new_nht->hash_shift);
386 next = rcu_dereference_protected(n->next,
387 lockdep_is_held(&tbl->lock));
388
389 rcu_assign_pointer(n->next,
390 rcu_dereference_protected(
391 new_nht->hash_buckets[hash],
392 lockdep_is_held(&tbl->lock)));
393 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
394 }
395 }
396
397 rcu_assign_pointer(tbl->nht, new_nht);
398 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
399 return new_nht;
400}
401
402struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
403 struct net_device *dev)
404{
405 struct neighbour *n;
406 int key_len = tbl->key_len;
407 u32 hash_val;
408 struct neigh_hash_table *nht;
409
410 NEIGH_CACHE_STAT_INC(tbl, lookups);
411
412 rcu_read_lock_bh();
413 nht = rcu_dereference_bh(tbl->nht);
414 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
415
416 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
417 n != NULL;
418 n = rcu_dereference_bh(n->next)) {
419 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
420 if (!atomic_inc_not_zero(&n->refcnt))
421 n = NULL;
422 NEIGH_CACHE_STAT_INC(tbl, hits);
423 break;
424 }
425 }
426
427 rcu_read_unlock_bh();
428 return n;
429}
430EXPORT_SYMBOL(neigh_lookup);
431
432struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
433 const void *pkey)
434{
435 struct neighbour *n;
436 int key_len = tbl->key_len;
437 u32 hash_val;
438 struct neigh_hash_table *nht;
439
440 NEIGH_CACHE_STAT_INC(tbl, lookups);
441
442 rcu_read_lock_bh();
443 nht = rcu_dereference_bh(tbl->nht);
444 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
445
446 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
447 n != NULL;
448 n = rcu_dereference_bh(n->next)) {
449 if (!memcmp(n->primary_key, pkey, key_len) &&
450 net_eq(dev_net(n->dev), net)) {
451 if (!atomic_inc_not_zero(&n->refcnt))
452 n = NULL;
453 NEIGH_CACHE_STAT_INC(tbl, hits);
454 break;
455 }
456 }
457
458 rcu_read_unlock_bh();
459 return n;
460}
461EXPORT_SYMBOL(neigh_lookup_nodev);
462
463struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
464 struct net_device *dev, bool want_ref)
465{
466 u32 hash_val;
467 int key_len = tbl->key_len;
468 int error;
469 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
470 struct neigh_hash_table *nht;
471
472 if (!n) {
473 rc = ERR_PTR(-ENOBUFS);
474 goto out;
475 }
476
477 memcpy(n->primary_key, pkey, key_len);
478 n->dev = dev;
479 dev_hold(dev);
480
481 /* Protocol specific setup. */
482 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
483 rc = ERR_PTR(error);
484 goto out_neigh_release;
485 }
486
487 if (dev->netdev_ops->ndo_neigh_construct) {
488 error = dev->netdev_ops->ndo_neigh_construct(n);
489 if (error < 0) {
490 rc = ERR_PTR(error);
491 goto out_neigh_release;
492 }
493 }
494
495 /* Device specific setup. */
496 if (n->parms->neigh_setup &&
497 (error = n->parms->neigh_setup(n)) < 0) {
498 rc = ERR_PTR(error);
499 goto out_neigh_release;
500 }
501
502 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
503
504 write_lock_bh(&tbl->lock);
505 nht = rcu_dereference_protected(tbl->nht,
506 lockdep_is_held(&tbl->lock));
507
508 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
509 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
510
511 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
512
513 if (n->parms->dead) {
514 rc = ERR_PTR(-EINVAL);
515 goto out_tbl_unlock;
516 }
517
518 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
519 lockdep_is_held(&tbl->lock));
520 n1 != NULL;
521 n1 = rcu_dereference_protected(n1->next,
522 lockdep_is_held(&tbl->lock))) {
523 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
524 if (want_ref)
525 neigh_hold(n1);
526 rc = n1;
527 goto out_tbl_unlock;
528 }
529 }
530
531 n->dead = 0;
532 if (want_ref)
533 neigh_hold(n);
534 rcu_assign_pointer(n->next,
535 rcu_dereference_protected(nht->hash_buckets[hash_val],
536 lockdep_is_held(&tbl->lock)));
537 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
538 write_unlock_bh(&tbl->lock);
539 neigh_dbg(2, "neigh %p is created\n", n);
540 rc = n;
541out:
542 return rc;
543out_tbl_unlock:
544 write_unlock_bh(&tbl->lock);
545out_neigh_release:
546 neigh_release(n);
547 goto out;
548}
549EXPORT_SYMBOL(__neigh_create);
550
551static u32 pneigh_hash(const void *pkey, int key_len)
552{
553 u32 hash_val = *(u32 *)(pkey + key_len - 4);
554 hash_val ^= (hash_val >> 16);
555 hash_val ^= hash_val >> 8;
556 hash_val ^= hash_val >> 4;
557 hash_val &= PNEIGH_HASHMASK;
558 return hash_val;
559}
560
561static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
562 struct net *net,
563 const void *pkey,
564 int key_len,
565 struct net_device *dev)
566{
567 while (n) {
568 if (!memcmp(n->key, pkey, key_len) &&
569 net_eq(pneigh_net(n), net) &&
570 (n->dev == dev || !n->dev))
571 return n;
572 n = n->next;
573 }
574 return NULL;
575}
576
577struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
578 struct net *net, const void *pkey, struct net_device *dev)
579{
580 int key_len = tbl->key_len;
581 u32 hash_val = pneigh_hash(pkey, key_len);
582
583 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
584 net, pkey, key_len, dev);
585}
586EXPORT_SYMBOL_GPL(__pneigh_lookup);
587
588struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
589 struct net *net, const void *pkey,
590 struct net_device *dev, int creat)
591{
592 struct pneigh_entry *n;
593 int key_len = tbl->key_len;
594 u32 hash_val = pneigh_hash(pkey, key_len);
595
596 read_lock_bh(&tbl->lock);
597 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
598 net, pkey, key_len, dev);
599 read_unlock_bh(&tbl->lock);
600
601 if (n || !creat)
602 goto out;
603
604 ASSERT_RTNL();
605
606 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
607 if (!n)
608 goto out;
609
610 write_pnet(&n->net, hold_net(net));
611 memcpy(n->key, pkey, key_len);
612 n->dev = dev;
613 if (dev)
614 dev_hold(dev);
615
616 if (tbl->pconstructor && tbl->pconstructor(n)) {
617 if (dev)
618 dev_put(dev);
619 release_net(net);
620 kfree(n);
621 n = NULL;
622 goto out;
623 }
624
625 write_lock_bh(&tbl->lock);
626 n->next = tbl->phash_buckets[hash_val];
627 tbl->phash_buckets[hash_val] = n;
628 write_unlock_bh(&tbl->lock);
629out:
630 return n;
631}
632EXPORT_SYMBOL(pneigh_lookup);
633
634
635int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
636 struct net_device *dev)
637{
638 struct pneigh_entry *n, **np;
639 int key_len = tbl->key_len;
640 u32 hash_val = pneigh_hash(pkey, key_len);
641
642 write_lock_bh(&tbl->lock);
643 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
644 np = &n->next) {
645 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
646 net_eq(pneigh_net(n), net)) {
647 *np = n->next;
648 write_unlock_bh(&tbl->lock);
649 if (tbl->pdestructor)
650 tbl->pdestructor(n);
651 if (n->dev)
652 dev_put(n->dev);
653 release_net(pneigh_net(n));
654 kfree(n);
655 return 0;
656 }
657 }
658 write_unlock_bh(&tbl->lock);
659 return -ENOENT;
660}
661
662static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
663{
664 struct pneigh_entry *n, **np;
665 u32 h;
666
667 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
668 np = &tbl->phash_buckets[h];
669 while ((n = *np) != NULL) {
670 if (!dev || n->dev == dev) {
671 *np = n->next;
672 if (tbl->pdestructor)
673 tbl->pdestructor(n);
674 if (n->dev)
675 dev_put(n->dev);
676 release_net(pneigh_net(n));
677 kfree(n);
678 continue;
679 }
680 np = &n->next;
681 }
682 }
683 return -ENOENT;
684}
685
686static void neigh_parms_destroy(struct neigh_parms *parms);
687
688static inline void neigh_parms_put(struct neigh_parms *parms)
689{
690 if (atomic_dec_and_test(&parms->refcnt))
691 neigh_parms_destroy(parms);
692}
693
694/*
695 * neighbour must already be out of the table;
696 *
697 */
698void neigh_destroy(struct neighbour *neigh)
699{
700 struct net_device *dev = neigh->dev;
701
702 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
703
704 if (!neigh->dead) {
705 pr_warn("Destroying alive neighbour %p\n", neigh);
706 dump_stack();
707 return;
708 }
709
710 if (neigh_del_timer(neigh))
711 pr_warn("Impossible event\n");
712
713 write_lock_bh(&neigh->lock);
714 __skb_queue_purge(&neigh->arp_queue);
715 write_unlock_bh(&neigh->lock);
716 neigh->arp_queue_len_bytes = 0;
717
718 if (dev->netdev_ops->ndo_neigh_destroy)
719 dev->netdev_ops->ndo_neigh_destroy(neigh);
720
721 dev_put(dev);
722 neigh_parms_put(neigh->parms);
723
724 neigh_dbg(2, "neigh %p is destroyed\n", neigh);
725
726 atomic_dec(&neigh->tbl->entries);
727 kfree_rcu(neigh, rcu);
728}
729EXPORT_SYMBOL(neigh_destroy);
730
731/* Neighbour state is suspicious;
732 disable fast path.
733
734 Called with write_locked neigh.
735 */
736static void neigh_suspect(struct neighbour *neigh)
737{
738 neigh_dbg(2, "neigh %p is suspected\n", neigh);
739
740 neigh->output = neigh->ops->output;
741}
742
743/* Neighbour state is OK;
744 enable fast path.
745
746 Called with write_locked neigh.
747 */
748static void neigh_connect(struct neighbour *neigh)
749{
750 neigh_dbg(2, "neigh %p is connected\n", neigh);
751
752 neigh->output = neigh->ops->connected_output;
753}
754
755static void neigh_periodic_work(struct work_struct *work)
756{
757 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
758 struct neighbour *n;
759 struct neighbour __rcu **np;
760 unsigned int i;
761 struct neigh_hash_table *nht;
762
763 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
764
765 write_lock_bh(&tbl->lock);
766 nht = rcu_dereference_protected(tbl->nht,
767 lockdep_is_held(&tbl->lock));
768
769 if (atomic_read(&tbl->entries) < tbl->gc_thresh1)
770 goto out;
771
772 /*
773 * periodically recompute ReachableTime from random function
774 */
775
776 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
777 struct neigh_parms *p;
778 tbl->last_rand = jiffies;
779 for (p = &tbl->parms; p; p = p->next)
780 p->reachable_time =
781 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
782 }
783
784 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
785 np = &nht->hash_buckets[i];
786
787 while ((n = rcu_dereference_protected(*np,
788 lockdep_is_held(&tbl->lock))) != NULL) {
789 unsigned int state;
790
791 write_lock(&n->lock);
792
793 state = n->nud_state;
794 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
795 write_unlock(&n->lock);
796 goto next_elt;
797 }
798
799 if (time_before(n->used, n->confirmed))
800 n->used = n->confirmed;
801
802 if (atomic_read(&n->refcnt) == 1 &&
803 (state == NUD_FAILED ||
804 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
805 *np = n->next;
806 n->dead = 1;
807 write_unlock(&n->lock);
808 neigh_cleanup_and_release(n);
809 continue;
810 }
811 write_unlock(&n->lock);
812
813next_elt:
814 np = &n->next;
815 }
816 /*
817 * It's fine to release lock here, even if hash table
818 * grows while we are preempted.
819 */
820 write_unlock_bh(&tbl->lock);
821 cond_resched();
822 write_lock_bh(&tbl->lock);
823 nht = rcu_dereference_protected(tbl->nht,
824 lockdep_is_held(&tbl->lock));
825 }
826out:
827 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
828 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
829 * BASE_REACHABLE_TIME.
830 */
831 schedule_delayed_work(&tbl->gc_work,
832 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
833 write_unlock_bh(&tbl->lock);
834}
835
836static __inline__ int neigh_max_probes(struct neighbour *n)
837{
838 struct neigh_parms *p = n->parms;
839 return (n->nud_state & NUD_PROBE) ?
840 NEIGH_VAR(p, UCAST_PROBES) :
841 NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
842 NEIGH_VAR(p, MCAST_PROBES);
843}
844
845static void neigh_invalidate(struct neighbour *neigh)
846 __releases(neigh->lock)
847 __acquires(neigh->lock)
848{
849 struct sk_buff *skb;
850
851 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
852 neigh_dbg(2, "neigh %p is failed\n", neigh);
853 neigh->updated = jiffies;
854
855 /* It is very thin place. report_unreachable is very complicated
856 routine. Particularly, it can hit the same neighbour entry!
857
858 So that, we try to be accurate and avoid dead loop. --ANK
859 */
860 while (neigh->nud_state == NUD_FAILED &&
861 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
862 write_unlock(&neigh->lock);
863 neigh->ops->error_report(neigh, skb);
864 write_lock(&neigh->lock);
865 }
866 __skb_queue_purge(&neigh->arp_queue);
867 neigh->arp_queue_len_bytes = 0;
868}
869
870static void neigh_probe(struct neighbour *neigh)
871 __releases(neigh->lock)
872{
873 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
874 /* keep skb alive even if arp_queue overflows */
875 if (skb)
876 skb = skb_copy(skb, GFP_ATOMIC);
877 write_unlock(&neigh->lock);
878 neigh->ops->solicit(neigh, skb);
879 atomic_inc(&neigh->probes);
880 kfree_skb(skb);
881}
882
883/* Called when a timer expires for a neighbour entry. */
884
885static void neigh_timer_handler(unsigned long arg)
886{
887 unsigned long now, next;
888 struct neighbour *neigh = (struct neighbour *)arg;
889 unsigned int state;
890 int notify = 0;
891
892 write_lock(&neigh->lock);
893
894 state = neigh->nud_state;
895 now = jiffies;
896 next = now + HZ;
897
898 if (!(state & NUD_IN_TIMER))
899 goto out;
900
901 if (state & NUD_REACHABLE) {
902 if (time_before_eq(now,
903 neigh->confirmed + neigh->parms->reachable_time)) {
904 neigh_dbg(2, "neigh %p is still alive\n", neigh);
905 next = neigh->confirmed + neigh->parms->reachable_time;
906 } else if (time_before_eq(now,
907 neigh->used +
908 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
909 neigh_dbg(2, "neigh %p is delayed\n", neigh);
910 neigh->nud_state = NUD_DELAY;
911 neigh->updated = jiffies;
912 neigh_suspect(neigh);
913 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
914 } else {
915 neigh_dbg(2, "neigh %p is suspected\n", neigh);
916 neigh->nud_state = NUD_STALE;
917 neigh->updated = jiffies;
918 neigh_suspect(neigh);
919 notify = 1;
920 }
921 } else if (state & NUD_DELAY) {
922 if (time_before_eq(now,
923 neigh->confirmed +
924 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
925 neigh_dbg(2, "neigh %p is now reachable\n", neigh);
926 neigh->nud_state = NUD_REACHABLE;
927 neigh->updated = jiffies;
928 neigh_connect(neigh);
929 notify = 1;
930 next = neigh->confirmed + neigh->parms->reachable_time;
931 } else {
932 neigh_dbg(2, "neigh %p is probed\n", neigh);
933 neigh->nud_state = NUD_PROBE;
934 neigh->updated = jiffies;
935 atomic_set(&neigh->probes, 0);
936 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
937 }
938 } else {
939 /* NUD_PROBE|NUD_INCOMPLETE */
940 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
941 }
942
943 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
944 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
945 neigh->nud_state = NUD_FAILED;
946 notify = 1;
947 neigh_invalidate(neigh);
948 }
949
950 if (neigh->nud_state & NUD_IN_TIMER) {
951 if (time_before(next, jiffies + HZ/2))
952 next = jiffies + HZ/2;
953 if (!mod_timer(&neigh->timer, next))
954 neigh_hold(neigh);
955 }
956 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
957 neigh_probe(neigh);
958 } else {
959out:
960 write_unlock(&neigh->lock);
961 }
962
963 if (notify)
964 neigh_update_notify(neigh);
965
966 neigh_release(neigh);
967}
968
969int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
970{
971 int rc;
972 bool immediate_probe = false;
973
974 write_lock_bh(&neigh->lock);
975
976 rc = 0;
977 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
978 goto out_unlock_bh;
979
980 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
981 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
982 NEIGH_VAR(neigh->parms, APP_PROBES)) {
983 unsigned long next, now = jiffies;
984
985 atomic_set(&neigh->probes,
986 NEIGH_VAR(neigh->parms, UCAST_PROBES));
987 neigh->nud_state = NUD_INCOMPLETE;
988 neigh->updated = now;
989 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
990 HZ/2);
991 neigh_add_timer(neigh, next);
992 immediate_probe = true;
993 } else {
994 neigh->nud_state = NUD_FAILED;
995 neigh->updated = jiffies;
996 write_unlock_bh(&neigh->lock);
997
998 kfree_skb(skb);
999 return 1;
1000 }
1001 } else if (neigh->nud_state & NUD_STALE) {
1002 neigh_dbg(2, "neigh %p is delayed\n", neigh);
1003 neigh->nud_state = NUD_DELAY;
1004 neigh->updated = jiffies;
1005 neigh_add_timer(neigh, jiffies +
1006 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1007 }
1008
1009 if (neigh->nud_state == NUD_INCOMPLETE) {
1010 if (skb) {
1011 while (neigh->arp_queue_len_bytes + skb->truesize >
1012 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1013 struct sk_buff *buff;
1014
1015 buff = __skb_dequeue(&neigh->arp_queue);
1016 if (!buff)
1017 break;
1018 neigh->arp_queue_len_bytes -= buff->truesize;
1019 kfree_skb(buff);
1020 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1021 }
1022 skb_dst_force(skb);
1023 __skb_queue_tail(&neigh->arp_queue, skb);
1024 neigh->arp_queue_len_bytes += skb->truesize;
1025 }
1026 rc = 1;
1027 }
1028out_unlock_bh:
1029 if (immediate_probe)
1030 neigh_probe(neigh);
1031 else
1032 write_unlock(&neigh->lock);
1033 local_bh_enable();
1034 return rc;
1035}
1036EXPORT_SYMBOL(__neigh_event_send);
1037
1038static void neigh_update_hhs(struct neighbour *neigh)
1039{
1040 struct hh_cache *hh;
1041 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1042 = NULL;
1043
1044 if (neigh->dev->header_ops)
1045 update = neigh->dev->header_ops->cache_update;
1046
1047 if (update) {
1048 hh = &neigh->hh;
1049 if (hh->hh_len) {
1050 write_seqlock_bh(&hh->hh_lock);
1051 update(hh, neigh->dev, neigh->ha);
1052 write_sequnlock_bh(&hh->hh_lock);
1053 }
1054 }
1055}
1056
1057
1058
1059/* Generic update routine.
1060 -- lladdr is new lladdr or NULL, if it is not supplied.
1061 -- new is new state.
1062 -- flags
1063 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1064 if it is different.
1065 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1066 lladdr instead of overriding it
1067 if it is different.
1068 It also allows to retain current state
1069 if lladdr is unchanged.
1070 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1071
1072 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1073 NTF_ROUTER flag.
1074 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1075 a router.
1076
1077 Caller MUST hold reference count on the entry.
1078 */
1079
1080int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1081 u32 flags)
1082{
1083 u8 old;
1084 int err;
1085 int notify = 0;
1086 struct net_device *dev;
1087 int update_isrouter = 0;
1088
1089 write_lock_bh(&neigh->lock);
1090
1091 dev = neigh->dev;
1092 old = neigh->nud_state;
1093 err = -EPERM;
1094
1095 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1096 (old & (NUD_NOARP | NUD_PERMANENT)))
1097 goto out;
1098
1099 if (!(new & NUD_VALID)) {
1100 neigh_del_timer(neigh);
1101 if (old & NUD_CONNECTED)
1102 neigh_suspect(neigh);
1103 neigh->nud_state = new;
1104 err = 0;
1105 notify = old & NUD_VALID;
1106 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1107 (new & NUD_FAILED)) {
1108 neigh_invalidate(neigh);
1109 notify = 1;
1110 }
1111 goto out;
1112 }
1113
1114 /* Compare new lladdr with cached one */
1115 if (!dev->addr_len) {
1116 /* First case: device needs no address. */
1117 lladdr = neigh->ha;
1118 } else if (lladdr) {
1119 /* The second case: if something is already cached
1120 and a new address is proposed:
1121 - compare new & old
1122 - if they are different, check override flag
1123 */
1124 if ((old & NUD_VALID) &&
1125 !memcmp(lladdr, neigh->ha, dev->addr_len))
1126 lladdr = neigh->ha;
1127 } else {
1128 /* No address is supplied; if we know something,
1129 use it, otherwise discard the request.
1130 */
1131 err = -EINVAL;
1132 if (!(old & NUD_VALID))
1133 goto out;
1134 lladdr = neigh->ha;
1135 }
1136
1137 if (new & NUD_CONNECTED)
1138 neigh->confirmed = jiffies;
1139 neigh->updated = jiffies;
1140
1141 /* If entry was valid and address is not changed,
1142 do not change entry state, if new one is STALE.
1143 */
1144 err = 0;
1145 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1146 if (old & NUD_VALID) {
1147 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1148 update_isrouter = 0;
1149 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1150 (old & NUD_CONNECTED)) {
1151 lladdr = neigh->ha;
1152 new = NUD_STALE;
1153 } else
1154 goto out;
1155 } else {
1156 if (lladdr == neigh->ha && new == NUD_STALE &&
1157 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1158 (old & NUD_CONNECTED))
1159 )
1160 new = old;
1161 }
1162 }
1163
1164 if (new != old) {
1165 neigh_del_timer(neigh);
1166 if (new & NUD_IN_TIMER)
1167 neigh_add_timer(neigh, (jiffies +
1168 ((new & NUD_REACHABLE) ?
1169 neigh->parms->reachable_time :
1170 0)));
1171 neigh->nud_state = new;
1172 notify = 1;
1173 }
1174
1175 if (lladdr != neigh->ha) {
1176 write_seqlock(&neigh->ha_lock);
1177 memcpy(&neigh->ha, lladdr, dev->addr_len);
1178 write_sequnlock(&neigh->ha_lock);
1179 neigh_update_hhs(neigh);
1180 if (!(new & NUD_CONNECTED))
1181 neigh->confirmed = jiffies -
1182 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1183 notify = 1;
1184 }
1185 if (new == old)
1186 goto out;
1187 if (new & NUD_CONNECTED)
1188 neigh_connect(neigh);
1189 else
1190 neigh_suspect(neigh);
1191 if (!(old & NUD_VALID)) {
1192 struct sk_buff *skb;
1193
1194 /* Again: avoid dead loop if something went wrong */
1195
1196 while (neigh->nud_state & NUD_VALID &&
1197 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1198 struct dst_entry *dst = skb_dst(skb);
1199 struct neighbour *n2, *n1 = neigh;
1200 write_unlock_bh(&neigh->lock);
1201
1202 rcu_read_lock();
1203
1204 /* Why not just use 'neigh' as-is? The problem is that
1205 * things such as shaper, eql, and sch_teql can end up
1206 * using alternative, different, neigh objects to output
1207 * the packet in the output path. So what we need to do
1208 * here is re-lookup the top-level neigh in the path so
1209 * we can reinject the packet there.
1210 */
1211 n2 = NULL;
1212 if (dst) {
1213 n2 = dst_neigh_lookup_skb(dst, skb);
1214 if (n2)
1215 n1 = n2;
1216 }
1217 n1->output(n1, skb);
1218 if (n2)
1219 neigh_release(n2);
1220 rcu_read_unlock();
1221
1222 write_lock_bh(&neigh->lock);
1223 }
1224 __skb_queue_purge(&neigh->arp_queue);
1225 neigh->arp_queue_len_bytes = 0;
1226 }
1227out:
1228 if (update_isrouter) {
1229 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1230 (neigh->flags | NTF_ROUTER) :
1231 (neigh->flags & ~NTF_ROUTER);
1232 }
1233 write_unlock_bh(&neigh->lock);
1234
1235 if (notify)
1236 neigh_update_notify(neigh);
1237
1238 return err;
1239}
1240EXPORT_SYMBOL(neigh_update);
1241
1242/* Update the neigh to listen temporarily for probe responses, even if it is
1243 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1244 */
1245void __neigh_set_probe_once(struct neighbour *neigh)
1246{
1247 neigh->updated = jiffies;
1248 if (!(neigh->nud_state & NUD_FAILED))
1249 return;
1250 neigh->nud_state = NUD_PROBE;
1251 atomic_set(&neigh->probes, NEIGH_VAR(neigh->parms, UCAST_PROBES));
1252 neigh_add_timer(neigh,
1253 jiffies + NEIGH_VAR(neigh->parms, RETRANS_TIME));
1254}
1255EXPORT_SYMBOL(__neigh_set_probe_once);
1256
1257struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1258 u8 *lladdr, void *saddr,
1259 struct net_device *dev)
1260{
1261 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1262 lladdr || !dev->addr_len);
1263 if (neigh)
1264 neigh_update(neigh, lladdr, NUD_STALE,
1265 NEIGH_UPDATE_F_OVERRIDE);
1266 return neigh;
1267}
1268EXPORT_SYMBOL(neigh_event_ns);
1269
1270/* called with read_lock_bh(&n->lock); */
1271static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1272{
1273 struct net_device *dev = dst->dev;
1274 __be16 prot = dst->ops->protocol;
1275 struct hh_cache *hh = &n->hh;
1276
1277 write_lock_bh(&n->lock);
1278
1279 /* Only one thread can come in here and initialize the
1280 * hh_cache entry.
1281 */
1282 if (!hh->hh_len)
1283 dev->header_ops->cache(n, hh, prot);
1284
1285 write_unlock_bh(&n->lock);
1286}
1287
1288/* This function can be used in contexts, where only old dev_queue_xmit
1289 * worked, f.e. if you want to override normal output path (eql, shaper),
1290 * but resolution is not made yet.
1291 */
1292
1293int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1294{
1295 struct net_device *dev = skb->dev;
1296
1297 __skb_pull(skb, skb_network_offset(skb));
1298
1299 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1300 skb->len) < 0 &&
1301 dev_rebuild_header(skb))
1302 return 0;
1303
1304 return dev_queue_xmit(skb);
1305}
1306EXPORT_SYMBOL(neigh_compat_output);
1307
1308/* Slow and careful. */
1309
1310int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1311{
1312 struct dst_entry *dst = skb_dst(skb);
1313 int rc = 0;
1314
1315 if (!dst)
1316 goto discard;
1317
1318 if (!neigh_event_send(neigh, skb)) {
1319 int err;
1320 struct net_device *dev = neigh->dev;
1321 unsigned int seq;
1322
1323 if (dev->header_ops->cache && !neigh->hh.hh_len)
1324 neigh_hh_init(neigh, dst);
1325
1326 do {
1327 __skb_pull(skb, skb_network_offset(skb));
1328 seq = read_seqbegin(&neigh->ha_lock);
1329 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1330 neigh->ha, NULL, skb->len);
1331 } while (read_seqretry(&neigh->ha_lock, seq));
1332
1333 if (err >= 0)
1334 rc = dev_queue_xmit(skb);
1335 else
1336 goto out_kfree_skb;
1337 }
1338out:
1339 return rc;
1340discard:
1341 neigh_dbg(1, "%s: dst=%p neigh=%p\n", __func__, dst, neigh);
1342out_kfree_skb:
1343 rc = -EINVAL;
1344 kfree_skb(skb);
1345 goto out;
1346}
1347EXPORT_SYMBOL(neigh_resolve_output);
1348
1349/* As fast as possible without hh cache */
1350
1351int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1352{
1353 struct net_device *dev = neigh->dev;
1354 unsigned int seq;
1355 int err;
1356
1357 do {
1358 __skb_pull(skb, skb_network_offset(skb));
1359 seq = read_seqbegin(&neigh->ha_lock);
1360 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1361 neigh->ha, NULL, skb->len);
1362 } while (read_seqretry(&neigh->ha_lock, seq));
1363
1364 if (err >= 0)
1365 err = dev_queue_xmit(skb);
1366 else {
1367 err = -EINVAL;
1368 kfree_skb(skb);
1369 }
1370 return err;
1371}
1372EXPORT_SYMBOL(neigh_connected_output);
1373
1374int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1375{
1376 return dev_queue_xmit(skb);
1377}
1378EXPORT_SYMBOL(neigh_direct_output);
1379
1380static void neigh_proxy_process(unsigned long arg)
1381{
1382 struct neigh_table *tbl = (struct neigh_table *)arg;
1383 long sched_next = 0;
1384 unsigned long now = jiffies;
1385 struct sk_buff *skb, *n;
1386
1387 spin_lock(&tbl->proxy_queue.lock);
1388
1389 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1390 long tdif = NEIGH_CB(skb)->sched_next - now;
1391
1392 if (tdif <= 0) {
1393 struct net_device *dev = skb->dev;
1394
1395 __skb_unlink(skb, &tbl->proxy_queue);
1396 if (tbl->proxy_redo && netif_running(dev)) {
1397 rcu_read_lock();
1398 tbl->proxy_redo(skb);
1399 rcu_read_unlock();
1400 } else {
1401 kfree_skb(skb);
1402 }
1403
1404 dev_put(dev);
1405 } else if (!sched_next || tdif < sched_next)
1406 sched_next = tdif;
1407 }
1408 del_timer(&tbl->proxy_timer);
1409 if (sched_next)
1410 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1411 spin_unlock(&tbl->proxy_queue.lock);
1412}
1413
1414void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1415 struct sk_buff *skb)
1416{
1417 unsigned long now = jiffies;
1418
1419 unsigned long sched_next = now + (prandom_u32() %
1420 NEIGH_VAR(p, PROXY_DELAY));
1421
1422 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1423 kfree_skb(skb);
1424 return;
1425 }
1426
1427 NEIGH_CB(skb)->sched_next = sched_next;
1428 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1429
1430 spin_lock(&tbl->proxy_queue.lock);
1431 if (del_timer(&tbl->proxy_timer)) {
1432 if (time_before(tbl->proxy_timer.expires, sched_next))
1433 sched_next = tbl->proxy_timer.expires;
1434 }
1435 skb_dst_drop(skb);
1436 dev_hold(skb->dev);
1437 __skb_queue_tail(&tbl->proxy_queue, skb);
1438 mod_timer(&tbl->proxy_timer, sched_next);
1439 spin_unlock(&tbl->proxy_queue.lock);
1440}
1441EXPORT_SYMBOL(pneigh_enqueue);
1442
1443static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1444 struct net *net, int ifindex)
1445{
1446 struct neigh_parms *p;
1447
1448 for (p = &tbl->parms; p; p = p->next) {
1449 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1450 (!p->dev && !ifindex && net_eq(net, &init_net)))
1451 return p;
1452 }
1453
1454 return NULL;
1455}
1456
1457struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1458 struct neigh_table *tbl)
1459{
1460 struct neigh_parms *p;
1461 struct net *net = dev_net(dev);
1462 const struct net_device_ops *ops = dev->netdev_ops;
1463
1464 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1465 if (p) {
1466 p->tbl = tbl;
1467 atomic_set(&p->refcnt, 1);
1468 p->reachable_time =
1469 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1470 dev_hold(dev);
1471 p->dev = dev;
1472 write_pnet(&p->net, hold_net(net));
1473 p->sysctl_table = NULL;
1474
1475 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1476 release_net(net);
1477 dev_put(dev);
1478 kfree(p);
1479 return NULL;
1480 }
1481
1482 write_lock_bh(&tbl->lock);
1483 p->next = tbl->parms.next;
1484 tbl->parms.next = p;
1485 write_unlock_bh(&tbl->lock);
1486
1487 neigh_parms_data_state_cleanall(p);
1488 }
1489 return p;
1490}
1491EXPORT_SYMBOL(neigh_parms_alloc);
1492
1493static void neigh_rcu_free_parms(struct rcu_head *head)
1494{
1495 struct neigh_parms *parms =
1496 container_of(head, struct neigh_parms, rcu_head);
1497
1498 neigh_parms_put(parms);
1499}
1500
1501void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1502{
1503 struct neigh_parms **p;
1504
1505 if (!parms || parms == &tbl->parms)
1506 return;
1507 write_lock_bh(&tbl->lock);
1508 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1509 if (*p == parms) {
1510 *p = parms->next;
1511 parms->dead = 1;
1512 write_unlock_bh(&tbl->lock);
1513 if (parms->dev)
1514 dev_put(parms->dev);
1515 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1516 return;
1517 }
1518 }
1519 write_unlock_bh(&tbl->lock);
1520 neigh_dbg(1, "%s: not found\n", __func__);
1521}
1522EXPORT_SYMBOL(neigh_parms_release);
1523
1524static void neigh_parms_destroy(struct neigh_parms *parms)
1525{
1526 release_net(neigh_parms_net(parms));
1527 kfree(parms);
1528}
1529
1530static struct lock_class_key neigh_table_proxy_queue_class;
1531
1532static void neigh_table_init_no_netlink(struct neigh_table *tbl)
1533{
1534 unsigned long now = jiffies;
1535 unsigned long phsize;
1536
1537 write_pnet(&tbl->parms.net, &init_net);
1538 atomic_set(&tbl->parms.refcnt, 1);
1539 tbl->parms.reachable_time =
1540 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1541
1542 tbl->stats = alloc_percpu(struct neigh_statistics);
1543 if (!tbl->stats)
1544 panic("cannot create neighbour cache statistics");
1545
1546#ifdef CONFIG_PROC_FS
1547 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1548 &neigh_stat_seq_fops, tbl))
1549 panic("cannot create neighbour proc dir entry");
1550#endif
1551
1552 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1553
1554 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1555 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1556
1557 if (!tbl->nht || !tbl->phash_buckets)
1558 panic("cannot allocate neighbour cache hashes");
1559
1560 if (!tbl->entry_size)
1561 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1562 tbl->key_len, NEIGH_PRIV_ALIGN);
1563 else
1564 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1565
1566 rwlock_init(&tbl->lock);
1567 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1568 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1569 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1570 skb_queue_head_init_class(&tbl->proxy_queue,
1571 &neigh_table_proxy_queue_class);
1572
1573 tbl->last_flush = now;
1574 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1575}
1576
1577void neigh_table_init(struct neigh_table *tbl)
1578{
1579 struct neigh_table *tmp;
1580
1581 neigh_table_init_no_netlink(tbl);
1582 write_lock(&neigh_tbl_lock);
1583 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1584 if (tmp->family == tbl->family)
1585 break;
1586 }
1587 tbl->next = neigh_tables;
1588 neigh_tables = tbl;
1589 write_unlock(&neigh_tbl_lock);
1590
1591 if (unlikely(tmp)) {
1592 pr_err("Registering multiple tables for family %d\n",
1593 tbl->family);
1594 dump_stack();
1595 }
1596}
1597EXPORT_SYMBOL(neigh_table_init);
1598
1599int neigh_table_clear(struct neigh_table *tbl)
1600{
1601 struct neigh_table **tp;
1602
1603 /* It is not clean... Fix it to unload IPv6 module safely */
1604 cancel_delayed_work_sync(&tbl->gc_work);
1605 del_timer_sync(&tbl->proxy_timer);
1606 pneigh_queue_purge(&tbl->proxy_queue);
1607 neigh_ifdown(tbl, NULL);
1608 if (atomic_read(&tbl->entries))
1609 pr_crit("neighbour leakage\n");
1610 write_lock(&neigh_tbl_lock);
1611 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1612 if (*tp == tbl) {
1613 *tp = tbl->next;
1614 break;
1615 }
1616 }
1617 write_unlock(&neigh_tbl_lock);
1618
1619 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1620 neigh_hash_free_rcu);
1621 tbl->nht = NULL;
1622
1623 kfree(tbl->phash_buckets);
1624 tbl->phash_buckets = NULL;
1625
1626 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1627
1628 free_percpu(tbl->stats);
1629 tbl->stats = NULL;
1630
1631 return 0;
1632}
1633EXPORT_SYMBOL(neigh_table_clear);
1634
1635static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh)
1636{
1637 struct net *net = sock_net(skb->sk);
1638 struct ndmsg *ndm;
1639 struct nlattr *dst_attr;
1640 struct neigh_table *tbl;
1641 struct net_device *dev = NULL;
1642 int err = -EINVAL;
1643
1644 ASSERT_RTNL();
1645 if (nlmsg_len(nlh) < sizeof(*ndm))
1646 goto out;
1647
1648 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1649 if (dst_attr == NULL)
1650 goto out;
1651
1652 ndm = nlmsg_data(nlh);
1653 if (ndm->ndm_ifindex) {
1654 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1655 if (dev == NULL) {
1656 err = -ENODEV;
1657 goto out;
1658 }
1659 }
1660
1661 read_lock(&neigh_tbl_lock);
1662 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1663 struct neighbour *neigh;
1664
1665 if (tbl->family != ndm->ndm_family)
1666 continue;
1667 read_unlock(&neigh_tbl_lock);
1668
1669 if (nla_len(dst_attr) < tbl->key_len)
1670 goto out;
1671
1672 if (ndm->ndm_flags & NTF_PROXY) {
1673 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1674 goto out;
1675 }
1676
1677 if (dev == NULL)
1678 goto out;
1679
1680 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1681 if (neigh == NULL) {
1682 err = -ENOENT;
1683 goto out;
1684 }
1685
1686 err = neigh_update(neigh, NULL, NUD_FAILED,
1687 NEIGH_UPDATE_F_OVERRIDE |
1688 NEIGH_UPDATE_F_ADMIN);
1689 neigh_release(neigh);
1690 goto out;
1691 }
1692 read_unlock(&neigh_tbl_lock);
1693 err = -EAFNOSUPPORT;
1694
1695out:
1696 return err;
1697}
1698
1699static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh)
1700{
1701 struct net *net = sock_net(skb->sk);
1702 struct ndmsg *ndm;
1703 struct nlattr *tb[NDA_MAX+1];
1704 struct neigh_table *tbl;
1705 struct net_device *dev = NULL;
1706 int err;
1707
1708 ASSERT_RTNL();
1709 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1710 if (err < 0)
1711 goto out;
1712
1713 err = -EINVAL;
1714 if (tb[NDA_DST] == NULL)
1715 goto out;
1716
1717 ndm = nlmsg_data(nlh);
1718 if (ndm->ndm_ifindex) {
1719 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1720 if (dev == NULL) {
1721 err = -ENODEV;
1722 goto out;
1723 }
1724
1725 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1726 goto out;
1727 }
1728
1729 read_lock(&neigh_tbl_lock);
1730 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1731 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1732 struct neighbour *neigh;
1733 void *dst, *lladdr;
1734
1735 if (tbl->family != ndm->ndm_family)
1736 continue;
1737 read_unlock(&neigh_tbl_lock);
1738
1739 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1740 goto out;
1741 dst = nla_data(tb[NDA_DST]);
1742 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1743
1744 if (ndm->ndm_flags & NTF_PROXY) {
1745 struct pneigh_entry *pn;
1746
1747 err = -ENOBUFS;
1748 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1749 if (pn) {
1750 pn->flags = ndm->ndm_flags;
1751 err = 0;
1752 }
1753 goto out;
1754 }
1755
1756 if (dev == NULL)
1757 goto out;
1758
1759 neigh = neigh_lookup(tbl, dst, dev);
1760 if (neigh == NULL) {
1761 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1762 err = -ENOENT;
1763 goto out;
1764 }
1765
1766 neigh = __neigh_lookup_errno(tbl, dst, dev);
1767 if (IS_ERR(neigh)) {
1768 err = PTR_ERR(neigh);
1769 goto out;
1770 }
1771 } else {
1772 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1773 err = -EEXIST;
1774 neigh_release(neigh);
1775 goto out;
1776 }
1777
1778 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1779 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1780 }
1781
1782 if (ndm->ndm_flags & NTF_USE) {
1783 neigh_event_send(neigh, NULL);
1784 err = 0;
1785 } else
1786 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1787 neigh_release(neigh);
1788 goto out;
1789 }
1790
1791 read_unlock(&neigh_tbl_lock);
1792 err = -EAFNOSUPPORT;
1793out:
1794 return err;
1795}
1796
1797static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1798{
1799 struct nlattr *nest;
1800
1801 nest = nla_nest_start(skb, NDTA_PARMS);
1802 if (nest == NULL)
1803 return -ENOBUFS;
1804
1805 if ((parms->dev &&
1806 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1807 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1808 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
1809 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
1810 /* approximative value for deprecated QUEUE_LEN (in packets) */
1811 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1812 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
1813 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
1814 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
1815 nla_put_u32(skb, NDTPA_UCAST_PROBES,
1816 NEIGH_VAR(parms, UCAST_PROBES)) ||
1817 nla_put_u32(skb, NDTPA_MCAST_PROBES,
1818 NEIGH_VAR(parms, MCAST_PROBES)) ||
1819 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) ||
1820 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1821 NEIGH_VAR(parms, BASE_REACHABLE_TIME)) ||
1822 nla_put_msecs(skb, NDTPA_GC_STALETIME,
1823 NEIGH_VAR(parms, GC_STALETIME)) ||
1824 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1825 NEIGH_VAR(parms, DELAY_PROBE_TIME)) ||
1826 nla_put_msecs(skb, NDTPA_RETRANS_TIME,
1827 NEIGH_VAR(parms, RETRANS_TIME)) ||
1828 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
1829 NEIGH_VAR(parms, ANYCAST_DELAY)) ||
1830 nla_put_msecs(skb, NDTPA_PROXY_DELAY,
1831 NEIGH_VAR(parms, PROXY_DELAY)) ||
1832 nla_put_msecs(skb, NDTPA_LOCKTIME,
1833 NEIGH_VAR(parms, LOCKTIME)))
1834 goto nla_put_failure;
1835 return nla_nest_end(skb, nest);
1836
1837nla_put_failure:
1838 nla_nest_cancel(skb, nest);
1839 return -EMSGSIZE;
1840}
1841
1842static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1843 u32 pid, u32 seq, int type, int flags)
1844{
1845 struct nlmsghdr *nlh;
1846 struct ndtmsg *ndtmsg;
1847
1848 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1849 if (nlh == NULL)
1850 return -EMSGSIZE;
1851
1852 ndtmsg = nlmsg_data(nlh);
1853
1854 read_lock_bh(&tbl->lock);
1855 ndtmsg->ndtm_family = tbl->family;
1856 ndtmsg->ndtm_pad1 = 0;
1857 ndtmsg->ndtm_pad2 = 0;
1858
1859 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1860 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) ||
1861 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1862 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1863 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1864 goto nla_put_failure;
1865 {
1866 unsigned long now = jiffies;
1867 unsigned int flush_delta = now - tbl->last_flush;
1868 unsigned int rand_delta = now - tbl->last_rand;
1869 struct neigh_hash_table *nht;
1870 struct ndt_config ndc = {
1871 .ndtc_key_len = tbl->key_len,
1872 .ndtc_entry_size = tbl->entry_size,
1873 .ndtc_entries = atomic_read(&tbl->entries),
1874 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1875 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1876 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1877 };
1878
1879 rcu_read_lock_bh();
1880 nht = rcu_dereference_bh(tbl->nht);
1881 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1882 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1883 rcu_read_unlock_bh();
1884
1885 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1886 goto nla_put_failure;
1887 }
1888
1889 {
1890 int cpu;
1891 struct ndt_stats ndst;
1892
1893 memset(&ndst, 0, sizeof(ndst));
1894
1895 for_each_possible_cpu(cpu) {
1896 struct neigh_statistics *st;
1897
1898 st = per_cpu_ptr(tbl->stats, cpu);
1899 ndst.ndts_allocs += st->allocs;
1900 ndst.ndts_destroys += st->destroys;
1901 ndst.ndts_hash_grows += st->hash_grows;
1902 ndst.ndts_res_failed += st->res_failed;
1903 ndst.ndts_lookups += st->lookups;
1904 ndst.ndts_hits += st->hits;
1905 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1906 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1907 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1908 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1909 }
1910
1911 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1912 goto nla_put_failure;
1913 }
1914
1915 BUG_ON(tbl->parms.dev);
1916 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1917 goto nla_put_failure;
1918
1919 read_unlock_bh(&tbl->lock);
1920 return nlmsg_end(skb, nlh);
1921
1922nla_put_failure:
1923 read_unlock_bh(&tbl->lock);
1924 nlmsg_cancel(skb, nlh);
1925 return -EMSGSIZE;
1926}
1927
1928static int neightbl_fill_param_info(struct sk_buff *skb,
1929 struct neigh_table *tbl,
1930 struct neigh_parms *parms,
1931 u32 pid, u32 seq, int type,
1932 unsigned int flags)
1933{
1934 struct ndtmsg *ndtmsg;
1935 struct nlmsghdr *nlh;
1936
1937 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1938 if (nlh == NULL)
1939 return -EMSGSIZE;
1940
1941 ndtmsg = nlmsg_data(nlh);
1942
1943 read_lock_bh(&tbl->lock);
1944 ndtmsg->ndtm_family = tbl->family;
1945 ndtmsg->ndtm_pad1 = 0;
1946 ndtmsg->ndtm_pad2 = 0;
1947
1948 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1949 neightbl_fill_parms(skb, parms) < 0)
1950 goto errout;
1951
1952 read_unlock_bh(&tbl->lock);
1953 return nlmsg_end(skb, nlh);
1954errout:
1955 read_unlock_bh(&tbl->lock);
1956 nlmsg_cancel(skb, nlh);
1957 return -EMSGSIZE;
1958}
1959
1960static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1961 [NDTA_NAME] = { .type = NLA_STRING },
1962 [NDTA_THRESH1] = { .type = NLA_U32 },
1963 [NDTA_THRESH2] = { .type = NLA_U32 },
1964 [NDTA_THRESH3] = { .type = NLA_U32 },
1965 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1966 [NDTA_PARMS] = { .type = NLA_NESTED },
1967};
1968
1969static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1970 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1971 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1972 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1973 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1974 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1975 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1976 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1977 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1978 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1979 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1980 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1981 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1982 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1983};
1984
1985static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh)
1986{
1987 struct net *net = sock_net(skb->sk);
1988 struct neigh_table *tbl;
1989 struct ndtmsg *ndtmsg;
1990 struct nlattr *tb[NDTA_MAX+1];
1991 int err;
1992
1993 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1994 nl_neightbl_policy);
1995 if (err < 0)
1996 goto errout;
1997
1998 if (tb[NDTA_NAME] == NULL) {
1999 err = -EINVAL;
2000 goto errout;
2001 }
2002
2003 ndtmsg = nlmsg_data(nlh);
2004 read_lock(&neigh_tbl_lock);
2005 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
2006 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
2007 continue;
2008
2009 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
2010 break;
2011 }
2012
2013 if (tbl == NULL) {
2014 err = -ENOENT;
2015 goto errout_locked;
2016 }
2017
2018 /*
2019 * We acquire tbl->lock to be nice to the periodic timers and
2020 * make sure they always see a consistent set of values.
2021 */
2022 write_lock_bh(&tbl->lock);
2023
2024 if (tb[NDTA_PARMS]) {
2025 struct nlattr *tbp[NDTPA_MAX+1];
2026 struct neigh_parms *p;
2027 int i, ifindex = 0;
2028
2029 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
2030 nl_ntbl_parm_policy);
2031 if (err < 0)
2032 goto errout_tbl_lock;
2033
2034 if (tbp[NDTPA_IFINDEX])
2035 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2036
2037 p = lookup_neigh_parms(tbl, net, ifindex);
2038 if (p == NULL) {
2039 err = -ENOENT;
2040 goto errout_tbl_lock;
2041 }
2042
2043 for (i = 1; i <= NDTPA_MAX; i++) {
2044 if (tbp[i] == NULL)
2045 continue;
2046
2047 switch (i) {
2048 case NDTPA_QUEUE_LEN:
2049 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2050 nla_get_u32(tbp[i]) *
2051 SKB_TRUESIZE(ETH_FRAME_LEN));
2052 break;
2053 case NDTPA_QUEUE_LENBYTES:
2054 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2055 nla_get_u32(tbp[i]));
2056 break;
2057 case NDTPA_PROXY_QLEN:
2058 NEIGH_VAR_SET(p, PROXY_QLEN,
2059 nla_get_u32(tbp[i]));
2060 break;
2061 case NDTPA_APP_PROBES:
2062 NEIGH_VAR_SET(p, APP_PROBES,
2063 nla_get_u32(tbp[i]));
2064 break;
2065 case NDTPA_UCAST_PROBES:
2066 NEIGH_VAR_SET(p, UCAST_PROBES,
2067 nla_get_u32(tbp[i]));
2068 break;
2069 case NDTPA_MCAST_PROBES:
2070 NEIGH_VAR_SET(p, MCAST_PROBES,
2071 nla_get_u32(tbp[i]));
2072 break;
2073 case NDTPA_BASE_REACHABLE_TIME:
2074 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2075 nla_get_msecs(tbp[i]));
2076 break;
2077 case NDTPA_GC_STALETIME:
2078 NEIGH_VAR_SET(p, GC_STALETIME,
2079 nla_get_msecs(tbp[i]));
2080 break;
2081 case NDTPA_DELAY_PROBE_TIME:
2082 NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2083 nla_get_msecs(tbp[i]));
2084 break;
2085 case NDTPA_RETRANS_TIME:
2086 NEIGH_VAR_SET(p, RETRANS_TIME,
2087 nla_get_msecs(tbp[i]));
2088 break;
2089 case NDTPA_ANYCAST_DELAY:
2090 NEIGH_VAR_SET(p, ANYCAST_DELAY, nla_get_msecs(tbp[i]));
2091 break;
2092 case NDTPA_PROXY_DELAY:
2093 NEIGH_VAR_SET(p, PROXY_DELAY, nla_get_msecs(tbp[i]));
2094 break;
2095 case NDTPA_LOCKTIME:
2096 NEIGH_VAR_SET(p, LOCKTIME, nla_get_msecs(tbp[i]));
2097 break;
2098 }
2099 }
2100 }
2101
2102 err = -ENOENT;
2103 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2104 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2105 !net_eq(net, &init_net))
2106 goto errout_tbl_lock;
2107
2108 if (tb[NDTA_THRESH1])
2109 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2110
2111 if (tb[NDTA_THRESH2])
2112 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2113
2114 if (tb[NDTA_THRESH3])
2115 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2116
2117 if (tb[NDTA_GC_INTERVAL])
2118 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2119
2120 err = 0;
2121
2122errout_tbl_lock:
2123 write_unlock_bh(&tbl->lock);
2124errout_locked:
2125 read_unlock(&neigh_tbl_lock);
2126errout:
2127 return err;
2128}
2129
2130static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2131{
2132 struct net *net = sock_net(skb->sk);
2133 int family, tidx, nidx = 0;
2134 int tbl_skip = cb->args[0];
2135 int neigh_skip = cb->args[1];
2136 struct neigh_table *tbl;
2137
2138 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2139
2140 read_lock(&neigh_tbl_lock);
2141 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2142 struct neigh_parms *p;
2143
2144 if (tidx < tbl_skip || (family && tbl->family != family))
2145 continue;
2146
2147 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2148 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2149 NLM_F_MULTI) <= 0)
2150 break;
2151
2152 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2153 if (!net_eq(neigh_parms_net(p), net))
2154 continue;
2155
2156 if (nidx < neigh_skip)
2157 goto next;
2158
2159 if (neightbl_fill_param_info(skb, tbl, p,
2160 NETLINK_CB(cb->skb).portid,
2161 cb->nlh->nlmsg_seq,
2162 RTM_NEWNEIGHTBL,
2163 NLM_F_MULTI) <= 0)
2164 goto out;
2165 next:
2166 nidx++;
2167 }
2168
2169 neigh_skip = 0;
2170 }
2171out:
2172 read_unlock(&neigh_tbl_lock);
2173 cb->args[0] = tidx;
2174 cb->args[1] = nidx;
2175
2176 return skb->len;
2177}
2178
2179static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2180 u32 pid, u32 seq, int type, unsigned int flags)
2181{
2182 unsigned long now = jiffies;
2183 struct nda_cacheinfo ci;
2184 struct nlmsghdr *nlh;
2185 struct ndmsg *ndm;
2186
2187 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2188 if (nlh == NULL)
2189 return -EMSGSIZE;
2190
2191 ndm = nlmsg_data(nlh);
2192 ndm->ndm_family = neigh->ops->family;
2193 ndm->ndm_pad1 = 0;
2194 ndm->ndm_pad2 = 0;
2195 ndm->ndm_flags = neigh->flags;
2196 ndm->ndm_type = neigh->type;
2197 ndm->ndm_ifindex = neigh->dev->ifindex;
2198
2199 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2200 goto nla_put_failure;
2201
2202 read_lock_bh(&neigh->lock);
2203 ndm->ndm_state = neigh->nud_state;
2204 if (neigh->nud_state & NUD_VALID) {
2205 char haddr[MAX_ADDR_LEN];
2206
2207 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2208 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2209 read_unlock_bh(&neigh->lock);
2210 goto nla_put_failure;
2211 }
2212 }
2213
2214 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2215 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2216 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2217 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2218 read_unlock_bh(&neigh->lock);
2219
2220 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2221 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2222 goto nla_put_failure;
2223
2224 return nlmsg_end(skb, nlh);
2225
2226nla_put_failure:
2227 nlmsg_cancel(skb, nlh);
2228 return -EMSGSIZE;
2229}
2230
2231static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2232 u32 pid, u32 seq, int type, unsigned int flags,
2233 struct neigh_table *tbl)
2234{
2235 struct nlmsghdr *nlh;
2236 struct ndmsg *ndm;
2237
2238 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2239 if (nlh == NULL)
2240 return -EMSGSIZE;
2241
2242 ndm = nlmsg_data(nlh);
2243 ndm->ndm_family = tbl->family;
2244 ndm->ndm_pad1 = 0;
2245 ndm->ndm_pad2 = 0;
2246 ndm->ndm_flags = pn->flags | NTF_PROXY;
2247 ndm->ndm_type = NDA_DST;
2248 ndm->ndm_ifindex = pn->dev->ifindex;
2249 ndm->ndm_state = NUD_NONE;
2250
2251 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2252 goto nla_put_failure;
2253
2254 return nlmsg_end(skb, nlh);
2255
2256nla_put_failure:
2257 nlmsg_cancel(skb, nlh);
2258 return -EMSGSIZE;
2259}
2260
2261static void neigh_update_notify(struct neighbour *neigh)
2262{
2263 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2264 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2265}
2266
2267static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2268 struct netlink_callback *cb)
2269{
2270 struct net *net = sock_net(skb->sk);
2271 struct neighbour *n;
2272 int rc, h, s_h = cb->args[1];
2273 int idx, s_idx = idx = cb->args[2];
2274 struct neigh_hash_table *nht;
2275
2276 rcu_read_lock_bh();
2277 nht = rcu_dereference_bh(tbl->nht);
2278
2279 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2280 if (h > s_h)
2281 s_idx = 0;
2282 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2283 n != NULL;
2284 n = rcu_dereference_bh(n->next)) {
2285 if (!net_eq(dev_net(n->dev), net))
2286 continue;
2287 if (idx < s_idx)
2288 goto next;
2289 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2290 cb->nlh->nlmsg_seq,
2291 RTM_NEWNEIGH,
2292 NLM_F_MULTI) <= 0) {
2293 rc = -1;
2294 goto out;
2295 }
2296next:
2297 idx++;
2298 }
2299 }
2300 rc = skb->len;
2301out:
2302 rcu_read_unlock_bh();
2303 cb->args[1] = h;
2304 cb->args[2] = idx;
2305 return rc;
2306}
2307
2308static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2309 struct netlink_callback *cb)
2310{
2311 struct pneigh_entry *n;
2312 struct net *net = sock_net(skb->sk);
2313 int rc, h, s_h = cb->args[3];
2314 int idx, s_idx = idx = cb->args[4];
2315
2316 read_lock_bh(&tbl->lock);
2317
2318 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2319 if (h > s_h)
2320 s_idx = 0;
2321 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2322 if (dev_net(n->dev) != net)
2323 continue;
2324 if (idx < s_idx)
2325 goto next;
2326 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2327 cb->nlh->nlmsg_seq,
2328 RTM_NEWNEIGH,
2329 NLM_F_MULTI, tbl) <= 0) {
2330 read_unlock_bh(&tbl->lock);
2331 rc = -1;
2332 goto out;
2333 }
2334 next:
2335 idx++;
2336 }
2337 }
2338
2339 read_unlock_bh(&tbl->lock);
2340 rc = skb->len;
2341out:
2342 cb->args[3] = h;
2343 cb->args[4] = idx;
2344 return rc;
2345
2346}
2347
2348static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2349{
2350 struct neigh_table *tbl;
2351 int t, family, s_t;
2352 int proxy = 0;
2353 int err;
2354
2355 read_lock(&neigh_tbl_lock);
2356 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2357
2358 /* check for full ndmsg structure presence, family member is
2359 * the same for both structures
2360 */
2361 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2362 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2363 proxy = 1;
2364
2365 s_t = cb->args[0];
2366
2367 for (tbl = neigh_tables, t = 0; tbl;
2368 tbl = tbl->next, t++) {
2369 if (t < s_t || (family && tbl->family != family))
2370 continue;
2371 if (t > s_t)
2372 memset(&cb->args[1], 0, sizeof(cb->args) -
2373 sizeof(cb->args[0]));
2374 if (proxy)
2375 err = pneigh_dump_table(tbl, skb, cb);
2376 else
2377 err = neigh_dump_table(tbl, skb, cb);
2378 if (err < 0)
2379 break;
2380 }
2381 read_unlock(&neigh_tbl_lock);
2382
2383 cb->args[0] = t;
2384 return skb->len;
2385}
2386
2387void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2388{
2389 int chain;
2390 struct neigh_hash_table *nht;
2391
2392 rcu_read_lock_bh();
2393 nht = rcu_dereference_bh(tbl->nht);
2394
2395 read_lock(&tbl->lock); /* avoid resizes */
2396 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2397 struct neighbour *n;
2398
2399 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2400 n != NULL;
2401 n = rcu_dereference_bh(n->next))
2402 cb(n, cookie);
2403 }
2404 read_unlock(&tbl->lock);
2405 rcu_read_unlock_bh();
2406}
2407EXPORT_SYMBOL(neigh_for_each);
2408
2409/* The tbl->lock must be held as a writer and BH disabled. */
2410void __neigh_for_each_release(struct neigh_table *tbl,
2411 int (*cb)(struct neighbour *))
2412{
2413 int chain;
2414 struct neigh_hash_table *nht;
2415
2416 nht = rcu_dereference_protected(tbl->nht,
2417 lockdep_is_held(&tbl->lock));
2418 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2419 struct neighbour *n;
2420 struct neighbour __rcu **np;
2421
2422 np = &nht->hash_buckets[chain];
2423 while ((n = rcu_dereference_protected(*np,
2424 lockdep_is_held(&tbl->lock))) != NULL) {
2425 int release;
2426
2427 write_lock(&n->lock);
2428 release = cb(n);
2429 if (release) {
2430 rcu_assign_pointer(*np,
2431 rcu_dereference_protected(n->next,
2432 lockdep_is_held(&tbl->lock)));
2433 n->dead = 1;
2434 } else
2435 np = &n->next;
2436 write_unlock(&n->lock);
2437 if (release)
2438 neigh_cleanup_and_release(n);
2439 }
2440 }
2441}
2442EXPORT_SYMBOL(__neigh_for_each_release);
2443
2444#ifdef CONFIG_PROC_FS
2445
2446static struct neighbour *neigh_get_first(struct seq_file *seq)
2447{
2448 struct neigh_seq_state *state = seq->private;
2449 struct net *net = seq_file_net(seq);
2450 struct neigh_hash_table *nht = state->nht;
2451 struct neighbour *n = NULL;
2452 int bucket = state->bucket;
2453
2454 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2455 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2456 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2457
2458 while (n) {
2459 if (!net_eq(dev_net(n->dev), net))
2460 goto next;
2461 if (state->neigh_sub_iter) {
2462 loff_t fakep = 0;
2463 void *v;
2464
2465 v = state->neigh_sub_iter(state, n, &fakep);
2466 if (!v)
2467 goto next;
2468 }
2469 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2470 break;
2471 if (n->nud_state & ~NUD_NOARP)
2472 break;
2473next:
2474 n = rcu_dereference_bh(n->next);
2475 }
2476
2477 if (n)
2478 break;
2479 }
2480 state->bucket = bucket;
2481
2482 return n;
2483}
2484
2485static struct neighbour *neigh_get_next(struct seq_file *seq,
2486 struct neighbour *n,
2487 loff_t *pos)
2488{
2489 struct neigh_seq_state *state = seq->private;
2490 struct net *net = seq_file_net(seq);
2491 struct neigh_hash_table *nht = state->nht;
2492
2493 if (state->neigh_sub_iter) {
2494 void *v = state->neigh_sub_iter(state, n, pos);
2495 if (v)
2496 return n;
2497 }
2498 n = rcu_dereference_bh(n->next);
2499
2500 while (1) {
2501 while (n) {
2502 if (!net_eq(dev_net(n->dev), net))
2503 goto next;
2504 if (state->neigh_sub_iter) {
2505 void *v = state->neigh_sub_iter(state, n, pos);
2506 if (v)
2507 return n;
2508 goto next;
2509 }
2510 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2511 break;
2512
2513 if (n->nud_state & ~NUD_NOARP)
2514 break;
2515next:
2516 n = rcu_dereference_bh(n->next);
2517 }
2518
2519 if (n)
2520 break;
2521
2522 if (++state->bucket >= (1 << nht->hash_shift))
2523 break;
2524
2525 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2526 }
2527
2528 if (n && pos)
2529 --(*pos);
2530 return n;
2531}
2532
2533static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2534{
2535 struct neighbour *n = neigh_get_first(seq);
2536
2537 if (n) {
2538 --(*pos);
2539 while (*pos) {
2540 n = neigh_get_next(seq, n, pos);
2541 if (!n)
2542 break;
2543 }
2544 }
2545 return *pos ? NULL : n;
2546}
2547
2548static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2549{
2550 struct neigh_seq_state *state = seq->private;
2551 struct net *net = seq_file_net(seq);
2552 struct neigh_table *tbl = state->tbl;
2553 struct pneigh_entry *pn = NULL;
2554 int bucket = state->bucket;
2555
2556 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2557 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2558 pn = tbl->phash_buckets[bucket];
2559 while (pn && !net_eq(pneigh_net(pn), net))
2560 pn = pn->next;
2561 if (pn)
2562 break;
2563 }
2564 state->bucket = bucket;
2565
2566 return pn;
2567}
2568
2569static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2570 struct pneigh_entry *pn,
2571 loff_t *pos)
2572{
2573 struct neigh_seq_state *state = seq->private;
2574 struct net *net = seq_file_net(seq);
2575 struct neigh_table *tbl = state->tbl;
2576
2577 do {
2578 pn = pn->next;
2579 } while (pn && !net_eq(pneigh_net(pn), net));
2580
2581 while (!pn) {
2582 if (++state->bucket > PNEIGH_HASHMASK)
2583 break;
2584 pn = tbl->phash_buckets[state->bucket];
2585 while (pn && !net_eq(pneigh_net(pn), net))
2586 pn = pn->next;
2587 if (pn)
2588 break;
2589 }
2590
2591 if (pn && pos)
2592 --(*pos);
2593
2594 return pn;
2595}
2596
2597static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2598{
2599 struct pneigh_entry *pn = pneigh_get_first(seq);
2600
2601 if (pn) {
2602 --(*pos);
2603 while (*pos) {
2604 pn = pneigh_get_next(seq, pn, pos);
2605 if (!pn)
2606 break;
2607 }
2608 }
2609 return *pos ? NULL : pn;
2610}
2611
2612static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2613{
2614 struct neigh_seq_state *state = seq->private;
2615 void *rc;
2616 loff_t idxpos = *pos;
2617
2618 rc = neigh_get_idx(seq, &idxpos);
2619 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2620 rc = pneigh_get_idx(seq, &idxpos);
2621
2622 return rc;
2623}
2624
2625void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2626 __acquires(rcu_bh)
2627{
2628 struct neigh_seq_state *state = seq->private;
2629
2630 state->tbl = tbl;
2631 state->bucket = 0;
2632 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2633
2634 rcu_read_lock_bh();
2635 state->nht = rcu_dereference_bh(tbl->nht);
2636
2637 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2638}
2639EXPORT_SYMBOL(neigh_seq_start);
2640
2641void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2642{
2643 struct neigh_seq_state *state;
2644 void *rc;
2645
2646 if (v == SEQ_START_TOKEN) {
2647 rc = neigh_get_first(seq);
2648 goto out;
2649 }
2650
2651 state = seq->private;
2652 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2653 rc = neigh_get_next(seq, v, NULL);
2654 if (rc)
2655 goto out;
2656 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2657 rc = pneigh_get_first(seq);
2658 } else {
2659 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2660 rc = pneigh_get_next(seq, v, NULL);
2661 }
2662out:
2663 ++(*pos);
2664 return rc;
2665}
2666EXPORT_SYMBOL(neigh_seq_next);
2667
2668void neigh_seq_stop(struct seq_file *seq, void *v)
2669 __releases(rcu_bh)
2670{
2671 rcu_read_unlock_bh();
2672}
2673EXPORT_SYMBOL(neigh_seq_stop);
2674
2675/* statistics via seq_file */
2676
2677static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2678{
2679 struct neigh_table *tbl = seq->private;
2680 int cpu;
2681
2682 if (*pos == 0)
2683 return SEQ_START_TOKEN;
2684
2685 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2686 if (!cpu_possible(cpu))
2687 continue;
2688 *pos = cpu+1;
2689 return per_cpu_ptr(tbl->stats, cpu);
2690 }
2691 return NULL;
2692}
2693
2694static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2695{
2696 struct neigh_table *tbl = seq->private;
2697 int cpu;
2698
2699 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2700 if (!cpu_possible(cpu))
2701 continue;
2702 *pos = cpu+1;
2703 return per_cpu_ptr(tbl->stats, cpu);
2704 }
2705 return NULL;
2706}
2707
2708static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2709{
2710
2711}
2712
2713static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2714{
2715 struct neigh_table *tbl = seq->private;
2716 struct neigh_statistics *st = v;
2717
2718 if (v == SEQ_START_TOKEN) {
2719 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2720 return 0;
2721 }
2722
2723 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2724 "%08lx %08lx %08lx %08lx %08lx\n",
2725 atomic_read(&tbl->entries),
2726
2727 st->allocs,
2728 st->destroys,
2729 st->hash_grows,
2730
2731 st->lookups,
2732 st->hits,
2733
2734 st->res_failed,
2735
2736 st->rcv_probes_mcast,
2737 st->rcv_probes_ucast,
2738
2739 st->periodic_gc_runs,
2740 st->forced_gc_runs,
2741 st->unres_discards
2742 );
2743
2744 return 0;
2745}
2746
2747static const struct seq_operations neigh_stat_seq_ops = {
2748 .start = neigh_stat_seq_start,
2749 .next = neigh_stat_seq_next,
2750 .stop = neigh_stat_seq_stop,
2751 .show = neigh_stat_seq_show,
2752};
2753
2754static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2755{
2756 int ret = seq_open(file, &neigh_stat_seq_ops);
2757
2758 if (!ret) {
2759 struct seq_file *sf = file->private_data;
2760 sf->private = PDE_DATA(inode);
2761 }
2762 return ret;
2763};
2764
2765static const struct file_operations neigh_stat_seq_fops = {
2766 .owner = THIS_MODULE,
2767 .open = neigh_stat_seq_open,
2768 .read = seq_read,
2769 .llseek = seq_lseek,
2770 .release = seq_release,
2771};
2772
2773#endif /* CONFIG_PROC_FS */
2774
2775static inline size_t neigh_nlmsg_size(void)
2776{
2777 return NLMSG_ALIGN(sizeof(struct ndmsg))
2778 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2779 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2780 + nla_total_size(sizeof(struct nda_cacheinfo))
2781 + nla_total_size(4); /* NDA_PROBES */
2782}
2783
2784static void __neigh_notify(struct neighbour *n, int type, int flags)
2785{
2786 struct net *net = dev_net(n->dev);
2787 struct sk_buff *skb;
2788 int err = -ENOBUFS;
2789
2790 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2791 if (skb == NULL)
2792 goto errout;
2793
2794 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2795 if (err < 0) {
2796 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2797 WARN_ON(err == -EMSGSIZE);
2798 kfree_skb(skb);
2799 goto errout;
2800 }
2801 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2802 return;
2803errout:
2804 if (err < 0)
2805 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2806}
2807
2808void neigh_app_ns(struct neighbour *n)
2809{
2810 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2811}
2812EXPORT_SYMBOL(neigh_app_ns);
2813
2814#ifdef CONFIG_SYSCTL
2815static int zero;
2816static int int_max = INT_MAX;
2817static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
2818
2819static int proc_unres_qlen(struct ctl_table *ctl, int write,
2820 void __user *buffer, size_t *lenp, loff_t *ppos)
2821{
2822 int size, ret;
2823 struct ctl_table tmp = *ctl;
2824
2825 tmp.extra1 = &zero;
2826 tmp.extra2 = &unres_qlen_max;
2827 tmp.data = &size;
2828
2829 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
2830 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2831
2832 if (write && !ret)
2833 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2834 return ret;
2835}
2836
2837static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
2838 int family)
2839{
2840 switch (family) {
2841 case AF_INET:
2842 return __in_dev_arp_parms_get_rcu(dev);
2843 case AF_INET6:
2844 return __in6_dev_nd_parms_get_rcu(dev);
2845 }
2846 return NULL;
2847}
2848
2849static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
2850 int index)
2851{
2852 struct net_device *dev;
2853 int family = neigh_parms_family(p);
2854
2855 rcu_read_lock();
2856 for_each_netdev_rcu(net, dev) {
2857 struct neigh_parms *dst_p =
2858 neigh_get_dev_parms_rcu(dev, family);
2859
2860 if (dst_p && !test_bit(index, dst_p->data_state))
2861 dst_p->data[index] = p->data[index];
2862 }
2863 rcu_read_unlock();
2864}
2865
2866static void neigh_proc_update(struct ctl_table *ctl, int write)
2867{
2868 struct net_device *dev = ctl->extra1;
2869 struct neigh_parms *p = ctl->extra2;
2870 struct net *net = neigh_parms_net(p);
2871 int index = (int *) ctl->data - p->data;
2872
2873 if (!write)
2874 return;
2875
2876 set_bit(index, p->data_state);
2877 if (!dev) /* NULL dev means this is default value */
2878 neigh_copy_dflt_parms(net, p, index);
2879}
2880
2881static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
2882 void __user *buffer,
2883 size_t *lenp, loff_t *ppos)
2884{
2885 struct ctl_table tmp = *ctl;
2886 int ret;
2887
2888 tmp.extra1 = &zero;
2889 tmp.extra2 = &int_max;
2890
2891 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2892 neigh_proc_update(ctl, write);
2893 return ret;
2894}
2895
2896int neigh_proc_dointvec(struct ctl_table *ctl, int write,
2897 void __user *buffer, size_t *lenp, loff_t *ppos)
2898{
2899 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
2900
2901 neigh_proc_update(ctl, write);
2902 return ret;
2903}
2904EXPORT_SYMBOL(neigh_proc_dointvec);
2905
2906int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write,
2907 void __user *buffer,
2908 size_t *lenp, loff_t *ppos)
2909{
2910 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
2911
2912 neigh_proc_update(ctl, write);
2913 return ret;
2914}
2915EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
2916
2917static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
2918 void __user *buffer,
2919 size_t *lenp, loff_t *ppos)
2920{
2921 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
2922
2923 neigh_proc_update(ctl, write);
2924 return ret;
2925}
2926
2927int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
2928 void __user *buffer,
2929 size_t *lenp, loff_t *ppos)
2930{
2931 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
2932
2933 neigh_proc_update(ctl, write);
2934 return ret;
2935}
2936EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
2937
2938static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
2939 void __user *buffer,
2940 size_t *lenp, loff_t *ppos)
2941{
2942 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
2943
2944 neigh_proc_update(ctl, write);
2945 return ret;
2946}
2947
2948#define NEIGH_PARMS_DATA_OFFSET(index) \
2949 (&((struct neigh_parms *) 0)->data[index])
2950
2951#define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
2952 [NEIGH_VAR_ ## attr] = { \
2953 .procname = name, \
2954 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
2955 .maxlen = sizeof(int), \
2956 .mode = mval, \
2957 .proc_handler = proc, \
2958 }
2959
2960#define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
2961 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
2962
2963#define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
2964 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
2965
2966#define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
2967 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
2968
2969#define NEIGH_SYSCTL_MS_JIFFIES_ENTRY(attr, name) \
2970 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
2971
2972#define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
2973 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
2974
2975#define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
2976 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
2977
2978static struct neigh_sysctl_table {
2979 struct ctl_table_header *sysctl_header;
2980 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
2981} neigh_sysctl_template __read_mostly = {
2982 .neigh_vars = {
2983 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
2984 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
2985 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
2986 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
2987 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
2988 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
2989 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
2990 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
2991 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
2992 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
2993 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
2994 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
2995 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
2996 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
2997 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
2998 [NEIGH_VAR_GC_INTERVAL] = {
2999 .procname = "gc_interval",
3000 .maxlen = sizeof(int),
3001 .mode = 0644,
3002 .proc_handler = proc_dointvec_jiffies,
3003 },
3004 [NEIGH_VAR_GC_THRESH1] = {
3005 .procname = "gc_thresh1",
3006 .maxlen = sizeof(int),
3007 .mode = 0644,
3008 .extra1 = &zero,
3009 .extra2 = &int_max,
3010 .proc_handler = proc_dointvec_minmax,
3011 },
3012 [NEIGH_VAR_GC_THRESH2] = {
3013 .procname = "gc_thresh2",
3014 .maxlen = sizeof(int),
3015 .mode = 0644,
3016 .extra1 = &zero,
3017 .extra2 = &int_max,
3018 .proc_handler = proc_dointvec_minmax,
3019 },
3020 [NEIGH_VAR_GC_THRESH3] = {
3021 .procname = "gc_thresh3",
3022 .maxlen = sizeof(int),
3023 .mode = 0644,
3024 .extra1 = &zero,
3025 .extra2 = &int_max,
3026 .proc_handler = proc_dointvec_minmax,
3027 },
3028 {},
3029 },
3030};
3031
3032int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3033 proc_handler *handler)
3034{
3035 int i;
3036 struct neigh_sysctl_table *t;
3037 const char *dev_name_source;
3038 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3039 char *p_name;
3040
3041 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
3042 if (!t)
3043 goto err;
3044
3045 for (i = 0; i < ARRAY_SIZE(t->neigh_vars); i++) {
3046 t->neigh_vars[i].data += (long) p;
3047 t->neigh_vars[i].extra1 = dev;
3048 t->neigh_vars[i].extra2 = p;
3049 }
3050
3051 if (dev) {
3052 dev_name_source = dev->name;
3053 /* Terminate the table early */
3054 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3055 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3056 } else {
3057 dev_name_source = "default";
3058 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1);
3059 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1;
3060 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2;
3061 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3;
3062 }
3063
3064 if (handler) {
3065 /* RetransTime */
3066 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3067 /* ReachableTime */
3068 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3069 /* RetransTime (in milliseconds)*/
3070 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3071 /* ReachableTime (in milliseconds) */
3072 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3073 }
3074
3075 /* Don't export sysctls to unprivileged users */
3076 if (neigh_parms_net(p)->user_ns != &init_user_ns)
3077 t->neigh_vars[0].procname = NULL;
3078
3079 switch (neigh_parms_family(p)) {
3080 case AF_INET:
3081 p_name = "ipv4";
3082 break;
3083 case AF_INET6:
3084 p_name = "ipv6";
3085 break;
3086 default:
3087 BUG();
3088 }
3089
3090 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3091 p_name, dev_name_source);
3092 t->sysctl_header =
3093 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
3094 if (!t->sysctl_header)
3095 goto free;
3096
3097 p->sysctl_table = t;
3098 return 0;
3099
3100free:
3101 kfree(t);
3102err:
3103 return -ENOBUFS;
3104}
3105EXPORT_SYMBOL(neigh_sysctl_register);
3106
3107void neigh_sysctl_unregister(struct neigh_parms *p)
3108{
3109 if (p->sysctl_table) {
3110 struct neigh_sysctl_table *t = p->sysctl_table;
3111 p->sysctl_table = NULL;
3112 unregister_net_sysctl_table(t->sysctl_header);
3113 kfree(t);
3114 }
3115}
3116EXPORT_SYMBOL(neigh_sysctl_unregister);
3117
3118#endif /* CONFIG_SYSCTL */
3119
3120static int __init neigh_init(void)
3121{
3122 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3123 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3124 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3125
3126 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3127 NULL);
3128 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3129
3130 return 0;
3131}
3132
3133subsys_initcall(neigh_init);
3134