| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | #include <linux/kernel.h> |
| 3 | #include <linux/skbuff.h> |
| 4 | #include <linux/export.h> |
| 5 | #include <linux/ip.h> |
| 6 | #include <linux/ipv6.h> |
| 7 | #include <linux/if_vlan.h> |
| 8 | #include <linux/filter.h> |
| 9 | #include <net/dsa.h> |
| 10 | #include <net/dst_metadata.h> |
| 11 | #include <net/ip.h> |
| 12 | #include <net/ipv6.h> |
| 13 | #include <net/gre.h> |
| 14 | #include <net/pptp.h> |
| 15 | #include <net/tipc.h> |
| 16 | #include <linux/igmp.h> |
| 17 | #include <linux/icmp.h> |
| 18 | #include <linux/sctp.h> |
| 19 | #include <linux/dccp.h> |
| 20 | #include <linux/if_tunnel.h> |
| 21 | #include <linux/if_pppox.h> |
| 22 | #include <linux/ppp_defs.h> |
| 23 | #include <linux/stddef.h> |
| 24 | #include <linux/if_ether.h> |
| 25 | #include <linux/if_hsr.h> |
| 26 | #include <linux/mpls.h> |
| 27 | #include <linux/tcp.h> |
| 28 | #include <linux/ptp_classify.h> |
| 29 | #include <net/flow_dissector.h> |
| 30 | #include <net/pkt_cls.h> |
| 31 | #include <scsi/fc/fc_fcoe.h> |
| 32 | #include <uapi/linux/batadv_packet.h> |
| 33 | #include <linux/bpf.h> |
| 34 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
| 35 | #include <net/netfilter/nf_conntrack_core.h> |
| 36 | #include <net/netfilter/nf_conntrack_labels.h> |
| 37 | #endif |
| 38 | #include <linux/bpf-netns.h> |
| 39 | |
| 40 | static void dissector_set_key(struct flow_dissector *flow_dissector, |
| 41 | enum flow_dissector_key_id key_id) |
| 42 | { |
| 43 | flow_dissector->used_keys |= (1ULL << key_id); |
| 44 | } |
| 45 | |
| 46 | void skb_flow_dissector_init(struct flow_dissector *flow_dissector, |
| 47 | const struct flow_dissector_key *key, |
| 48 | unsigned int key_count) |
| 49 | { |
| 50 | unsigned int i; |
| 51 | |
| 52 | memset(flow_dissector, 0, sizeof(*flow_dissector)); |
| 53 | |
| 54 | for (i = 0; i < key_count; i++, key++) { |
| 55 | /* User should make sure that every key target offset is within |
| 56 | * boundaries of unsigned short. |
| 57 | */ |
| 58 | BUG_ON(key->offset > USHRT_MAX); |
| 59 | BUG_ON(dissector_uses_key(flow_dissector, |
| 60 | key->key_id)); |
| 61 | |
| 62 | dissector_set_key(flow_dissector, key->key_id); |
| 63 | flow_dissector->offset[key->key_id] = key->offset; |
| 64 | } |
| 65 | |
| 66 | /* Ensure that the dissector always includes control and basic key. |
| 67 | * That way we are able to avoid handling lack of these in fast path. |
| 68 | */ |
| 69 | BUG_ON(!dissector_uses_key(flow_dissector, |
| 70 | FLOW_DISSECTOR_KEY_CONTROL)); |
| 71 | BUG_ON(!dissector_uses_key(flow_dissector, |
| 72 | FLOW_DISSECTOR_KEY_BASIC)); |
| 73 | } |
| 74 | EXPORT_SYMBOL(skb_flow_dissector_init); |
| 75 | |
| 76 | #ifdef CONFIG_BPF_SYSCALL |
| 77 | int flow_dissector_bpf_prog_attach_check(struct net *net, |
| 78 | struct bpf_prog *prog) |
| 79 | { |
| 80 | enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; |
| 81 | |
| 82 | if (net == &init_net) { |
| 83 | /* BPF flow dissector in the root namespace overrides |
| 84 | * any per-net-namespace one. When attaching to root, |
| 85 | * make sure we don't have any BPF program attached |
| 86 | * to the non-root namespaces. |
| 87 | */ |
| 88 | struct net *ns; |
| 89 | |
| 90 | for_each_net(ns) { |
| 91 | if (ns == &init_net) |
| 92 | continue; |
| 93 | if (rcu_access_pointer(ns->bpf.run_array[type])) |
| 94 | return -EEXIST; |
| 95 | } |
| 96 | } else { |
| 97 | /* Make sure root flow dissector is not attached |
| 98 | * when attaching to the non-root namespace. |
| 99 | */ |
| 100 | if (rcu_access_pointer(init_net.bpf.run_array[type])) |
| 101 | return -EEXIST; |
| 102 | } |
| 103 | |
| 104 | return 0; |
| 105 | } |
| 106 | #endif /* CONFIG_BPF_SYSCALL */ |
| 107 | |
| 108 | /** |
| 109 | * skb_flow_get_ports - extract the upper layer ports and return them |
| 110 | * @skb: sk_buff to extract the ports from |
| 111 | * @thoff: transport header offset |
| 112 | * @ip_proto: protocol for which to get port offset |
| 113 | * @data: raw buffer pointer to the packet, if NULL use skb->data |
| 114 | * @hlen: packet header length, if @data is NULL use skb_headlen(skb) |
| 115 | * |
| 116 | * The function will try to retrieve the ports at offset thoff + poff where poff |
| 117 | * is the protocol port offset returned from proto_ports_offset |
| 118 | */ |
| 119 | __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, |
| 120 | const void *data, int hlen) |
| 121 | { |
| 122 | int poff = proto_ports_offset(ip_proto); |
| 123 | |
| 124 | if (!data) { |
| 125 | data = skb->data; |
| 126 | hlen = skb_headlen(skb); |
| 127 | } |
| 128 | |
| 129 | if (poff >= 0) { |
| 130 | __be32 *ports, _ports; |
| 131 | |
| 132 | ports = __skb_header_pointer(skb, thoff + poff, |
| 133 | sizeof(_ports), data, hlen, &_ports); |
| 134 | if (ports) |
| 135 | return *ports; |
| 136 | } |
| 137 | |
| 138 | return 0; |
| 139 | } |
| 140 | EXPORT_SYMBOL(skb_flow_get_ports); |
| 141 | |
| 142 | static bool icmp_has_id(u8 type) |
| 143 | { |
| 144 | switch (type) { |
| 145 | case ICMP_ECHO: |
| 146 | case ICMP_ECHOREPLY: |
| 147 | case ICMP_TIMESTAMP: |
| 148 | case ICMP_TIMESTAMPREPLY: |
| 149 | case ICMPV6_ECHO_REQUEST: |
| 150 | case ICMPV6_ECHO_REPLY: |
| 151 | return true; |
| 152 | } |
| 153 | |
| 154 | return false; |
| 155 | } |
| 156 | |
| 157 | /** |
| 158 | * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields |
| 159 | * @skb: sk_buff to extract from |
| 160 | * @key_icmp: struct flow_dissector_key_icmp to fill |
| 161 | * @data: raw buffer pointer to the packet |
| 162 | * @thoff: offset to extract at |
| 163 | * @hlen: packet header length |
| 164 | */ |
| 165 | void skb_flow_get_icmp_tci(const struct sk_buff *skb, |
| 166 | struct flow_dissector_key_icmp *key_icmp, |
| 167 | const void *data, int thoff, int hlen) |
| 168 | { |
| 169 | struct icmphdr *ih, _ih; |
| 170 | |
| 171 | ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih); |
| 172 | if (!ih) |
| 173 | return; |
| 174 | |
| 175 | key_icmp->type = ih->type; |
| 176 | key_icmp->code = ih->code; |
| 177 | |
| 178 | /* As we use 0 to signal that the Id field is not present, |
| 179 | * avoid confusion with packets without such field |
| 180 | */ |
| 181 | if (icmp_has_id(ih->type)) |
| 182 | key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1; |
| 183 | else |
| 184 | key_icmp->id = 0; |
| 185 | } |
| 186 | EXPORT_SYMBOL(skb_flow_get_icmp_tci); |
| 187 | |
| 188 | /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet |
| 189 | * using skb_flow_get_icmp_tci(). |
| 190 | */ |
| 191 | static void __skb_flow_dissect_icmp(const struct sk_buff *skb, |
| 192 | struct flow_dissector *flow_dissector, |
| 193 | void *target_container, const void *data, |
| 194 | int thoff, int hlen) |
| 195 | { |
| 196 | struct flow_dissector_key_icmp *key_icmp; |
| 197 | |
| 198 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP)) |
| 199 | return; |
| 200 | |
| 201 | key_icmp = skb_flow_dissector_target(flow_dissector, |
| 202 | FLOW_DISSECTOR_KEY_ICMP, |
| 203 | target_container); |
| 204 | |
| 205 | skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen); |
| 206 | } |
| 207 | |
| 208 | static void __skb_flow_dissect_ah(const struct sk_buff *skb, |
| 209 | struct flow_dissector *flow_dissector, |
| 210 | void *target_container, const void *data, |
| 211 | int nhoff, int hlen) |
| 212 | { |
| 213 | struct flow_dissector_key_ipsec *key_ah; |
| 214 | struct ip_auth_hdr _hdr, *hdr; |
| 215 | |
| 216 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPSEC)) |
| 217 | return; |
| 218 | |
| 219 | hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); |
| 220 | if (!hdr) |
| 221 | return; |
| 222 | |
| 223 | key_ah = skb_flow_dissector_target(flow_dissector, |
| 224 | FLOW_DISSECTOR_KEY_IPSEC, |
| 225 | target_container); |
| 226 | |
| 227 | key_ah->spi = hdr->spi; |
| 228 | } |
| 229 | |
| 230 | static void __skb_flow_dissect_esp(const struct sk_buff *skb, |
| 231 | struct flow_dissector *flow_dissector, |
| 232 | void *target_container, const void *data, |
| 233 | int nhoff, int hlen) |
| 234 | { |
| 235 | struct flow_dissector_key_ipsec *key_esp; |
| 236 | struct ip_esp_hdr _hdr, *hdr; |
| 237 | |
| 238 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPSEC)) |
| 239 | return; |
| 240 | |
| 241 | hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); |
| 242 | if (!hdr) |
| 243 | return; |
| 244 | |
| 245 | key_esp = skb_flow_dissector_target(flow_dissector, |
| 246 | FLOW_DISSECTOR_KEY_IPSEC, |
| 247 | target_container); |
| 248 | |
| 249 | key_esp->spi = hdr->spi; |
| 250 | } |
| 251 | |
| 252 | static void __skb_flow_dissect_l2tpv3(const struct sk_buff *skb, |
| 253 | struct flow_dissector *flow_dissector, |
| 254 | void *target_container, const void *data, |
| 255 | int nhoff, int hlen) |
| 256 | { |
| 257 | struct flow_dissector_key_l2tpv3 *key_l2tpv3; |
| 258 | struct { |
| 259 | __be32 session_id; |
| 260 | } *hdr, _hdr; |
| 261 | |
| 262 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_L2TPV3)) |
| 263 | return; |
| 264 | |
| 265 | hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); |
| 266 | if (!hdr) |
| 267 | return; |
| 268 | |
| 269 | key_l2tpv3 = skb_flow_dissector_target(flow_dissector, |
| 270 | FLOW_DISSECTOR_KEY_L2TPV3, |
| 271 | target_container); |
| 272 | |
| 273 | key_l2tpv3->session_id = hdr->session_id; |
| 274 | } |
| 275 | |
| 276 | void skb_flow_dissect_meta(const struct sk_buff *skb, |
| 277 | struct flow_dissector *flow_dissector, |
| 278 | void *target_container) |
| 279 | { |
| 280 | struct flow_dissector_key_meta *meta; |
| 281 | |
| 282 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META)) |
| 283 | return; |
| 284 | |
| 285 | meta = skb_flow_dissector_target(flow_dissector, |
| 286 | FLOW_DISSECTOR_KEY_META, |
| 287 | target_container); |
| 288 | meta->ingress_ifindex = skb->skb_iif; |
| 289 | #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) |
| 290 | if (tc_skb_ext_tc_enabled()) { |
| 291 | struct tc_skb_ext *ext; |
| 292 | |
| 293 | ext = skb_ext_find(skb, TC_SKB_EXT); |
| 294 | if (ext) |
| 295 | meta->l2_miss = ext->l2_miss; |
| 296 | } |
| 297 | #endif |
| 298 | } |
| 299 | EXPORT_SYMBOL(skb_flow_dissect_meta); |
| 300 | |
| 301 | static void |
| 302 | skb_flow_dissect_set_enc_control(enum flow_dissector_key_id type, |
| 303 | u32 ctrl_flags, |
| 304 | struct flow_dissector *flow_dissector, |
| 305 | void *target_container) |
| 306 | { |
| 307 | struct flow_dissector_key_control *ctrl; |
| 308 | |
| 309 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL)) |
| 310 | return; |
| 311 | |
| 312 | ctrl = skb_flow_dissector_target(flow_dissector, |
| 313 | FLOW_DISSECTOR_KEY_ENC_CONTROL, |
| 314 | target_container); |
| 315 | ctrl->addr_type = type; |
| 316 | ctrl->flags = ctrl_flags; |
| 317 | } |
| 318 | |
| 319 | void |
| 320 | skb_flow_dissect_ct(const struct sk_buff *skb, |
| 321 | struct flow_dissector *flow_dissector, |
| 322 | void *target_container, u16 *ctinfo_map, |
| 323 | size_t mapsize, bool post_ct, u16 zone) |
| 324 | { |
| 325 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
| 326 | struct flow_dissector_key_ct *key; |
| 327 | enum ip_conntrack_info ctinfo; |
| 328 | struct nf_conn_labels *cl; |
| 329 | struct nf_conn *ct; |
| 330 | |
| 331 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT)) |
| 332 | return; |
| 333 | |
| 334 | ct = nf_ct_get(skb, &ctinfo); |
| 335 | if (!ct && !post_ct) |
| 336 | return; |
| 337 | |
| 338 | key = skb_flow_dissector_target(flow_dissector, |
| 339 | FLOW_DISSECTOR_KEY_CT, |
| 340 | target_container); |
| 341 | |
| 342 | if (!ct) { |
| 343 | key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED | |
| 344 | TCA_FLOWER_KEY_CT_FLAGS_INVALID; |
| 345 | key->ct_zone = zone; |
| 346 | return; |
| 347 | } |
| 348 | |
| 349 | if (ctinfo < mapsize) |
| 350 | key->ct_state = ctinfo_map[ctinfo]; |
| 351 | #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) |
| 352 | key->ct_zone = ct->zone.id; |
| 353 | #endif |
| 354 | #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) |
| 355 | key->ct_mark = READ_ONCE(ct->mark); |
| 356 | #endif |
| 357 | |
| 358 | cl = nf_ct_labels_find(ct); |
| 359 | if (cl) |
| 360 | memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels)); |
| 361 | #endif /* CONFIG_NF_CONNTRACK */ |
| 362 | } |
| 363 | EXPORT_SYMBOL(skb_flow_dissect_ct); |
| 364 | |
| 365 | void |
| 366 | skb_flow_dissect_tunnel_info(const struct sk_buff *skb, |
| 367 | struct flow_dissector *flow_dissector, |
| 368 | void *target_container) |
| 369 | { |
| 370 | struct ip_tunnel_info *info; |
| 371 | struct ip_tunnel_key *key; |
| 372 | u32 ctrl_flags = 0; |
| 373 | |
| 374 | /* A quick check to see if there might be something to do. */ |
| 375 | if (!dissector_uses_key(flow_dissector, |
| 376 | FLOW_DISSECTOR_KEY_ENC_KEYID) && |
| 377 | !dissector_uses_key(flow_dissector, |
| 378 | FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) && |
| 379 | !dissector_uses_key(flow_dissector, |
| 380 | FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) && |
| 381 | !dissector_uses_key(flow_dissector, |
| 382 | FLOW_DISSECTOR_KEY_ENC_CONTROL) && |
| 383 | !dissector_uses_key(flow_dissector, |
| 384 | FLOW_DISSECTOR_KEY_ENC_PORTS) && |
| 385 | !dissector_uses_key(flow_dissector, |
| 386 | FLOW_DISSECTOR_KEY_ENC_IP) && |
| 387 | !dissector_uses_key(flow_dissector, |
| 388 | FLOW_DISSECTOR_KEY_ENC_OPTS)) |
| 389 | return; |
| 390 | |
| 391 | info = skb_tunnel_info(skb); |
| 392 | if (!info) |
| 393 | return; |
| 394 | |
| 395 | key = &info->key; |
| 396 | |
| 397 | if (test_bit(IP_TUNNEL_CSUM_BIT, key->tun_flags)) |
| 398 | ctrl_flags |= FLOW_DIS_F_TUNNEL_CSUM; |
| 399 | if (test_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, key->tun_flags)) |
| 400 | ctrl_flags |= FLOW_DIS_F_TUNNEL_DONT_FRAGMENT; |
| 401 | if (test_bit(IP_TUNNEL_OAM_BIT, key->tun_flags)) |
| 402 | ctrl_flags |= FLOW_DIS_F_TUNNEL_OAM; |
| 403 | if (test_bit(IP_TUNNEL_CRIT_OPT_BIT, key->tun_flags)) |
| 404 | ctrl_flags |= FLOW_DIS_F_TUNNEL_CRIT_OPT; |
| 405 | |
| 406 | switch (ip_tunnel_info_af(info)) { |
| 407 | case AF_INET: |
| 408 | skb_flow_dissect_set_enc_control(FLOW_DISSECTOR_KEY_IPV4_ADDRS, |
| 409 | ctrl_flags, flow_dissector, |
| 410 | target_container); |
| 411 | if (dissector_uses_key(flow_dissector, |
| 412 | FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) { |
| 413 | struct flow_dissector_key_ipv4_addrs *ipv4; |
| 414 | |
| 415 | ipv4 = skb_flow_dissector_target(flow_dissector, |
| 416 | FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, |
| 417 | target_container); |
| 418 | ipv4->src = key->u.ipv4.src; |
| 419 | ipv4->dst = key->u.ipv4.dst; |
| 420 | } |
| 421 | break; |
| 422 | case AF_INET6: |
| 423 | skb_flow_dissect_set_enc_control(FLOW_DISSECTOR_KEY_IPV6_ADDRS, |
| 424 | ctrl_flags, flow_dissector, |
| 425 | target_container); |
| 426 | if (dissector_uses_key(flow_dissector, |
| 427 | FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) { |
| 428 | struct flow_dissector_key_ipv6_addrs *ipv6; |
| 429 | |
| 430 | ipv6 = skb_flow_dissector_target(flow_dissector, |
| 431 | FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, |
| 432 | target_container); |
| 433 | ipv6->src = key->u.ipv6.src; |
| 434 | ipv6->dst = key->u.ipv6.dst; |
| 435 | } |
| 436 | break; |
| 437 | default: |
| 438 | skb_flow_dissect_set_enc_control(0, ctrl_flags, flow_dissector, |
| 439 | target_container); |
| 440 | break; |
| 441 | } |
| 442 | |
| 443 | if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { |
| 444 | struct flow_dissector_key_keyid *keyid; |
| 445 | |
| 446 | keyid = skb_flow_dissector_target(flow_dissector, |
| 447 | FLOW_DISSECTOR_KEY_ENC_KEYID, |
| 448 | target_container); |
| 449 | keyid->keyid = tunnel_id_to_key32(key->tun_id); |
| 450 | } |
| 451 | |
| 452 | if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) { |
| 453 | struct flow_dissector_key_ports *tp; |
| 454 | |
| 455 | tp = skb_flow_dissector_target(flow_dissector, |
| 456 | FLOW_DISSECTOR_KEY_ENC_PORTS, |
| 457 | target_container); |
| 458 | tp->src = key->tp_src; |
| 459 | tp->dst = key->tp_dst; |
| 460 | } |
| 461 | |
| 462 | if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) { |
| 463 | struct flow_dissector_key_ip *ip; |
| 464 | |
| 465 | ip = skb_flow_dissector_target(flow_dissector, |
| 466 | FLOW_DISSECTOR_KEY_ENC_IP, |
| 467 | target_container); |
| 468 | ip->tos = key->tos; |
| 469 | ip->ttl = key->ttl; |
| 470 | } |
| 471 | |
| 472 | if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) { |
| 473 | struct flow_dissector_key_enc_opts *enc_opt; |
| 474 | IP_TUNNEL_DECLARE_FLAGS(flags) = { }; |
| 475 | u32 val; |
| 476 | |
| 477 | enc_opt = skb_flow_dissector_target(flow_dissector, |
| 478 | FLOW_DISSECTOR_KEY_ENC_OPTS, |
| 479 | target_container); |
| 480 | |
| 481 | if (!info->options_len) |
| 482 | return; |
| 483 | |
| 484 | enc_opt->len = info->options_len; |
| 485 | ip_tunnel_info_opts_get(enc_opt->data, info); |
| 486 | |
| 487 | ip_tunnel_set_options_present(flags); |
| 488 | ip_tunnel_flags_and(flags, info->key.tun_flags, flags); |
| 489 | |
| 490 | val = find_next_bit(flags, __IP_TUNNEL_FLAG_NUM, |
| 491 | IP_TUNNEL_GENEVE_OPT_BIT); |
| 492 | enc_opt->dst_opt_type = val < __IP_TUNNEL_FLAG_NUM ? val : 0; |
| 493 | } |
| 494 | } |
| 495 | EXPORT_SYMBOL(skb_flow_dissect_tunnel_info); |
| 496 | |
| 497 | void skb_flow_dissect_hash(const struct sk_buff *skb, |
| 498 | struct flow_dissector *flow_dissector, |
| 499 | void *target_container) |
| 500 | { |
| 501 | struct flow_dissector_key_hash *key; |
| 502 | |
| 503 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH)) |
| 504 | return; |
| 505 | |
| 506 | key = skb_flow_dissector_target(flow_dissector, |
| 507 | FLOW_DISSECTOR_KEY_HASH, |
| 508 | target_container); |
| 509 | |
| 510 | key->hash = skb_get_hash_raw(skb); |
| 511 | } |
| 512 | EXPORT_SYMBOL(skb_flow_dissect_hash); |
| 513 | |
| 514 | static enum flow_dissect_ret |
| 515 | __skb_flow_dissect_mpls(const struct sk_buff *skb, |
| 516 | struct flow_dissector *flow_dissector, |
| 517 | void *target_container, const void *data, int nhoff, |
| 518 | int hlen, int lse_index, bool *entropy_label) |
| 519 | { |
| 520 | struct mpls_label *hdr, _hdr; |
| 521 | u32 entry, label, bos; |
| 522 | |
| 523 | if (!dissector_uses_key(flow_dissector, |
| 524 | FLOW_DISSECTOR_KEY_MPLS_ENTROPY) && |
| 525 | !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) |
| 526 | return FLOW_DISSECT_RET_OUT_GOOD; |
| 527 | |
| 528 | if (lse_index >= FLOW_DIS_MPLS_MAX) |
| 529 | return FLOW_DISSECT_RET_OUT_GOOD; |
| 530 | |
| 531 | hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, |
| 532 | hlen, &_hdr); |
| 533 | if (!hdr) |
| 534 | return FLOW_DISSECT_RET_OUT_BAD; |
| 535 | |
| 536 | entry = ntohl(hdr->entry); |
| 537 | label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT; |
| 538 | bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT; |
| 539 | |
| 540 | if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) { |
| 541 | struct flow_dissector_key_mpls *key_mpls; |
| 542 | struct flow_dissector_mpls_lse *lse; |
| 543 | |
| 544 | key_mpls = skb_flow_dissector_target(flow_dissector, |
| 545 | FLOW_DISSECTOR_KEY_MPLS, |
| 546 | target_container); |
| 547 | lse = &key_mpls->ls[lse_index]; |
| 548 | |
| 549 | lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; |
| 550 | lse->mpls_bos = bos; |
| 551 | lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT; |
| 552 | lse->mpls_label = label; |
| 553 | dissector_set_mpls_lse(key_mpls, lse_index); |
| 554 | } |
| 555 | |
| 556 | if (*entropy_label && |
| 557 | dissector_uses_key(flow_dissector, |
| 558 | FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) { |
| 559 | struct flow_dissector_key_keyid *key_keyid; |
| 560 | |
| 561 | key_keyid = skb_flow_dissector_target(flow_dissector, |
| 562 | FLOW_DISSECTOR_KEY_MPLS_ENTROPY, |
| 563 | target_container); |
| 564 | key_keyid->keyid = cpu_to_be32(label); |
| 565 | } |
| 566 | |
| 567 | *entropy_label = label == MPLS_LABEL_ENTROPY; |
| 568 | |
| 569 | return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN; |
| 570 | } |
| 571 | |
| 572 | static enum flow_dissect_ret |
| 573 | __skb_flow_dissect_arp(const struct sk_buff *skb, |
| 574 | struct flow_dissector *flow_dissector, |
| 575 | void *target_container, const void *data, |
| 576 | int nhoff, int hlen) |
| 577 | { |
| 578 | struct flow_dissector_key_arp *key_arp; |
| 579 | struct { |
| 580 | unsigned char ar_sha[ETH_ALEN]; |
| 581 | unsigned char ar_sip[4]; |
| 582 | unsigned char ar_tha[ETH_ALEN]; |
| 583 | unsigned char ar_tip[4]; |
| 584 | } *arp_eth, _arp_eth; |
| 585 | const struct arphdr *arp; |
| 586 | struct arphdr _arp; |
| 587 | |
| 588 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP)) |
| 589 | return FLOW_DISSECT_RET_OUT_GOOD; |
| 590 | |
| 591 | arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data, |
| 592 | hlen, &_arp); |
| 593 | if (!arp) |
| 594 | return FLOW_DISSECT_RET_OUT_BAD; |
| 595 | |
| 596 | if (arp->ar_hrd != htons(ARPHRD_ETHER) || |
| 597 | arp->ar_pro != htons(ETH_P_IP) || |
| 598 | arp->ar_hln != ETH_ALEN || |
| 599 | arp->ar_pln != 4 || |
| 600 | (arp->ar_op != htons(ARPOP_REPLY) && |
| 601 | arp->ar_op != htons(ARPOP_REQUEST))) |
| 602 | return FLOW_DISSECT_RET_OUT_BAD; |
| 603 | |
| 604 | arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp), |
| 605 | sizeof(_arp_eth), data, |
| 606 | hlen, &_arp_eth); |
| 607 | if (!arp_eth) |
| 608 | return FLOW_DISSECT_RET_OUT_BAD; |
| 609 | |
| 610 | key_arp = skb_flow_dissector_target(flow_dissector, |
| 611 | FLOW_DISSECTOR_KEY_ARP, |
| 612 | target_container); |
| 613 | |
| 614 | memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip)); |
| 615 | memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip)); |
| 616 | |
| 617 | /* Only store the lower byte of the opcode; |
| 618 | * this covers ARPOP_REPLY and ARPOP_REQUEST. |
| 619 | */ |
| 620 | key_arp->op = ntohs(arp->ar_op) & 0xff; |
| 621 | |
| 622 | ether_addr_copy(key_arp->sha, arp_eth->ar_sha); |
| 623 | ether_addr_copy(key_arp->tha, arp_eth->ar_tha); |
| 624 | |
| 625 | return FLOW_DISSECT_RET_OUT_GOOD; |
| 626 | } |
| 627 | |
| 628 | static enum flow_dissect_ret |
| 629 | __skb_flow_dissect_cfm(const struct sk_buff *skb, |
| 630 | struct flow_dissector *flow_dissector, |
| 631 | void *target_container, const void *data, |
| 632 | int nhoff, int hlen) |
| 633 | { |
| 634 | struct flow_dissector_key_cfm *key, *hdr, _hdr; |
| 635 | |
| 636 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CFM)) |
| 637 | return FLOW_DISSECT_RET_OUT_GOOD; |
| 638 | |
| 639 | hdr = __skb_header_pointer(skb, nhoff, sizeof(*key), data, hlen, &_hdr); |
| 640 | if (!hdr) |
| 641 | return FLOW_DISSECT_RET_OUT_BAD; |
| 642 | |
| 643 | key = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_CFM, |
| 644 | target_container); |
| 645 | |
| 646 | key->mdl_ver = hdr->mdl_ver; |
| 647 | key->opcode = hdr->opcode; |
| 648 | |
| 649 | return FLOW_DISSECT_RET_OUT_GOOD; |
| 650 | } |
| 651 | |
| 652 | static enum flow_dissect_ret |
| 653 | __skb_flow_dissect_gre(const struct sk_buff *skb, |
| 654 | struct flow_dissector_key_control *key_control, |
| 655 | struct flow_dissector *flow_dissector, |
| 656 | void *target_container, const void *data, |
| 657 | __be16 *p_proto, int *p_nhoff, int *p_hlen, |
| 658 | unsigned int flags) |
| 659 | { |
| 660 | struct flow_dissector_key_keyid *key_keyid; |
| 661 | struct gre_base_hdr *hdr, _hdr; |
| 662 | int offset = 0; |
| 663 | u16 gre_ver; |
| 664 | |
| 665 | hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), |
| 666 | data, *p_hlen, &_hdr); |
| 667 | if (!hdr) |
| 668 | return FLOW_DISSECT_RET_OUT_BAD; |
| 669 | |
| 670 | /* Only look inside GRE without routing */ |
| 671 | if (hdr->flags & GRE_ROUTING) |
| 672 | return FLOW_DISSECT_RET_OUT_GOOD; |
| 673 | |
| 674 | /* Only look inside GRE for version 0 and 1 */ |
| 675 | gre_ver = ntohs(hdr->flags & GRE_VERSION); |
| 676 | if (gre_ver > 1) |
| 677 | return FLOW_DISSECT_RET_OUT_GOOD; |
| 678 | |
| 679 | *p_proto = hdr->protocol; |
| 680 | if (gre_ver) { |
| 681 | /* Version1 must be PPTP, and check the flags */ |
| 682 | if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY))) |
| 683 | return FLOW_DISSECT_RET_OUT_GOOD; |
| 684 | } |
| 685 | |
| 686 | offset += sizeof(struct gre_base_hdr); |
| 687 | |
| 688 | if (hdr->flags & GRE_CSUM) |
| 689 | offset += sizeof_field(struct gre_full_hdr, csum) + |
| 690 | sizeof_field(struct gre_full_hdr, reserved1); |
| 691 | |
| 692 | if (hdr->flags & GRE_KEY) { |
| 693 | const __be32 *keyid; |
| 694 | __be32 _keyid; |
| 695 | |
| 696 | keyid = __skb_header_pointer(skb, *p_nhoff + offset, |
| 697 | sizeof(_keyid), |
| 698 | data, *p_hlen, &_keyid); |
| 699 | if (!keyid) |
| 700 | return FLOW_DISSECT_RET_OUT_BAD; |
| 701 | |
| 702 | if (dissector_uses_key(flow_dissector, |
| 703 | FLOW_DISSECTOR_KEY_GRE_KEYID)) { |
| 704 | key_keyid = skb_flow_dissector_target(flow_dissector, |
| 705 | FLOW_DISSECTOR_KEY_GRE_KEYID, |
| 706 | target_container); |
| 707 | if (gre_ver == 0) |
| 708 | key_keyid->keyid = *keyid; |
| 709 | else |
| 710 | key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK; |
| 711 | } |
| 712 | offset += sizeof_field(struct gre_full_hdr, key); |
| 713 | } |
| 714 | |
| 715 | if (hdr->flags & GRE_SEQ) |
| 716 | offset += sizeof_field(struct pptp_gre_header, seq); |
| 717 | |
| 718 | if (gre_ver == 0) { |
| 719 | if (*p_proto == htons(ETH_P_TEB)) { |
| 720 | const struct ethhdr *eth; |
| 721 | struct ethhdr _eth; |
| 722 | |
| 723 | eth = __skb_header_pointer(skb, *p_nhoff + offset, |
| 724 | sizeof(_eth), |
| 725 | data, *p_hlen, &_eth); |
| 726 | if (!eth) |
| 727 | return FLOW_DISSECT_RET_OUT_BAD; |
| 728 | *p_proto = eth->h_proto; |
| 729 | offset += sizeof(*eth); |
| 730 | |
| 731 | /* Cap headers that we access via pointers at the |
| 732 | * end of the Ethernet header as our maximum alignment |
| 733 | * at that point is only 2 bytes. |
| 734 | */ |
| 735 | if (NET_IP_ALIGN) |
| 736 | *p_hlen = *p_nhoff + offset; |
| 737 | } |
| 738 | } else { /* version 1, must be PPTP */ |
| 739 | u8 _ppp_hdr[PPP_HDRLEN]; |
| 740 | u8 *ppp_hdr; |
| 741 | |
| 742 | if (hdr->flags & GRE_ACK) |
| 743 | offset += sizeof_field(struct pptp_gre_header, ack); |
| 744 | |
| 745 | ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset, |
| 746 | sizeof(_ppp_hdr), |
| 747 | data, *p_hlen, _ppp_hdr); |
| 748 | if (!ppp_hdr) |
| 749 | return FLOW_DISSECT_RET_OUT_BAD; |
| 750 | |
| 751 | switch (PPP_PROTOCOL(ppp_hdr)) { |
| 752 | case PPP_IP: |
| 753 | *p_proto = htons(ETH_P_IP); |
| 754 | break; |
| 755 | case PPP_IPV6: |
| 756 | *p_proto = htons(ETH_P_IPV6); |
| 757 | break; |
| 758 | default: |
| 759 | /* Could probably catch some more like MPLS */ |
| 760 | break; |
| 761 | } |
| 762 | |
| 763 | offset += PPP_HDRLEN; |
| 764 | } |
| 765 | |
| 766 | *p_nhoff += offset; |
| 767 | key_control->flags |= FLOW_DIS_ENCAPSULATION; |
| 768 | if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) |
| 769 | return FLOW_DISSECT_RET_OUT_GOOD; |
| 770 | |
| 771 | return FLOW_DISSECT_RET_PROTO_AGAIN; |
| 772 | } |
| 773 | |
| 774 | /** |
| 775 | * __skb_flow_dissect_batadv() - dissect batman-adv header |
| 776 | * @skb: sk_buff to with the batman-adv header |
| 777 | * @key_control: flow dissectors control key |
| 778 | * @data: raw buffer pointer to the packet, if NULL use skb->data |
| 779 | * @p_proto: pointer used to update the protocol to process next |
| 780 | * @p_nhoff: pointer used to update inner network header offset |
| 781 | * @hlen: packet header length |
| 782 | * @flags: any combination of FLOW_DISSECTOR_F_* |
| 783 | * |
| 784 | * ETH_P_BATMAN packets are tried to be dissected. Only |
| 785 | * &struct batadv_unicast packets are actually processed because they contain an |
| 786 | * inner ethernet header and are usually followed by actual network header. This |
| 787 | * allows the flow dissector to continue processing the packet. |
| 788 | * |
| 789 | * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found, |
| 790 | * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation, |
| 791 | * otherwise FLOW_DISSECT_RET_OUT_BAD |
| 792 | */ |
| 793 | static enum flow_dissect_ret |
| 794 | __skb_flow_dissect_batadv(const struct sk_buff *skb, |
| 795 | struct flow_dissector_key_control *key_control, |
| 796 | const void *data, __be16 *p_proto, int *p_nhoff, |
| 797 | int hlen, unsigned int flags) |
| 798 | { |
| 799 | struct { |
| 800 | struct batadv_unicast_packet batadv_unicast; |
| 801 | struct ethhdr eth; |
| 802 | } *hdr, _hdr; |
| 803 | |
| 804 | hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen, |
| 805 | &_hdr); |
| 806 | if (!hdr) |
| 807 | return FLOW_DISSECT_RET_OUT_BAD; |
| 808 | |
| 809 | if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION) |
| 810 | return FLOW_DISSECT_RET_OUT_BAD; |
| 811 | |
| 812 | if (hdr->batadv_unicast.packet_type != BATADV_UNICAST) |
| 813 | return FLOW_DISSECT_RET_OUT_BAD; |
| 814 | |
| 815 | *p_proto = hdr->eth.h_proto; |
| 816 | *p_nhoff += sizeof(*hdr); |
| 817 | |
| 818 | key_control->flags |= FLOW_DIS_ENCAPSULATION; |
| 819 | if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) |
| 820 | return FLOW_DISSECT_RET_OUT_GOOD; |
| 821 | |
| 822 | return FLOW_DISSECT_RET_PROTO_AGAIN; |
| 823 | } |
| 824 | |
| 825 | static void |
| 826 | __skb_flow_dissect_tcp(const struct sk_buff *skb, |
| 827 | struct flow_dissector *flow_dissector, |
| 828 | void *target_container, const void *data, |
| 829 | int thoff, int hlen) |
| 830 | { |
| 831 | struct flow_dissector_key_tcp *key_tcp; |
| 832 | struct tcphdr *th, _th; |
| 833 | |
| 834 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP)) |
| 835 | return; |
| 836 | |
| 837 | th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th); |
| 838 | if (!th) |
| 839 | return; |
| 840 | |
| 841 | if (unlikely(__tcp_hdrlen(th) < sizeof(_th))) |
| 842 | return; |
| 843 | |
| 844 | key_tcp = skb_flow_dissector_target(flow_dissector, |
| 845 | FLOW_DISSECTOR_KEY_TCP, |
| 846 | target_container); |
| 847 | key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF)); |
| 848 | } |
| 849 | |
| 850 | static void |
| 851 | __skb_flow_dissect_ports(const struct sk_buff *skb, |
| 852 | struct flow_dissector *flow_dissector, |
| 853 | void *target_container, const void *data, |
| 854 | int nhoff, u8 ip_proto, int hlen) |
| 855 | { |
| 856 | struct flow_dissector_key_ports_range *key_ports_range = NULL; |
| 857 | struct flow_dissector_key_ports *key_ports = NULL; |
| 858 | __be32 ports; |
| 859 | |
| 860 | if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) |
| 861 | key_ports = skb_flow_dissector_target(flow_dissector, |
| 862 | FLOW_DISSECTOR_KEY_PORTS, |
| 863 | target_container); |
| 864 | |
| 865 | if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS_RANGE)) |
| 866 | key_ports_range = skb_flow_dissector_target(flow_dissector, |
| 867 | FLOW_DISSECTOR_KEY_PORTS_RANGE, |
| 868 | target_container); |
| 869 | |
| 870 | if (!key_ports && !key_ports_range) |
| 871 | return; |
| 872 | |
| 873 | ports = skb_flow_get_ports(skb, nhoff, ip_proto, data, hlen); |
| 874 | |
| 875 | if (key_ports) |
| 876 | key_ports->ports = ports; |
| 877 | |
| 878 | if (key_ports_range) |
| 879 | key_ports_range->tp.ports = ports; |
| 880 | } |
| 881 | |
| 882 | static void |
| 883 | __skb_flow_dissect_ipv4(const struct sk_buff *skb, |
| 884 | struct flow_dissector *flow_dissector, |
| 885 | void *target_container, const void *data, |
| 886 | const struct iphdr *iph) |
| 887 | { |
| 888 | struct flow_dissector_key_ip *key_ip; |
| 889 | |
| 890 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) |
| 891 | return; |
| 892 | |
| 893 | key_ip = skb_flow_dissector_target(flow_dissector, |
| 894 | FLOW_DISSECTOR_KEY_IP, |
| 895 | target_container); |
| 896 | key_ip->tos = iph->tos; |
| 897 | key_ip->ttl = iph->ttl; |
| 898 | } |
| 899 | |
| 900 | static void |
| 901 | __skb_flow_dissect_ipv6(const struct sk_buff *skb, |
| 902 | struct flow_dissector *flow_dissector, |
| 903 | void *target_container, const void *data, |
| 904 | const struct ipv6hdr *iph) |
| 905 | { |
| 906 | struct flow_dissector_key_ip *key_ip; |
| 907 | |
| 908 | if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) |
| 909 | return; |
| 910 | |
| 911 | key_ip = skb_flow_dissector_target(flow_dissector, |
| 912 | FLOW_DISSECTOR_KEY_IP, |
| 913 | target_container); |
| 914 | key_ip->tos = ipv6_get_dsfield(iph); |
| 915 | key_ip->ttl = iph->hop_limit; |
| 916 | } |
| 917 | |
| 918 | /* Maximum number of protocol headers that can be parsed in |
| 919 | * __skb_flow_dissect |
| 920 | */ |
| 921 | #define MAX_FLOW_DISSECT_HDRS 15 |
| 922 | |
| 923 | static bool skb_flow_dissect_allowed(int *num_hdrs) |
| 924 | { |
| 925 | ++*num_hdrs; |
| 926 | |
| 927 | return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS); |
| 928 | } |
| 929 | |
| 930 | static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys, |
| 931 | struct flow_dissector *flow_dissector, |
| 932 | void *target_container) |
| 933 | { |
| 934 | struct flow_dissector_key_ports_range *key_ports_range = NULL; |
| 935 | struct flow_dissector_key_ports *key_ports = NULL; |
| 936 | struct flow_dissector_key_control *key_control; |
| 937 | struct flow_dissector_key_basic *key_basic; |
| 938 | struct flow_dissector_key_addrs *key_addrs; |
| 939 | struct flow_dissector_key_tags *key_tags; |
| 940 | |
| 941 | key_control = skb_flow_dissector_target(flow_dissector, |
| 942 | FLOW_DISSECTOR_KEY_CONTROL, |
| 943 | target_container); |
| 944 | key_control->thoff = flow_keys->thoff; |
| 945 | if (flow_keys->is_frag) |
| 946 | key_control->flags |= FLOW_DIS_IS_FRAGMENT; |
| 947 | if (flow_keys->is_first_frag) |
| 948 | key_control->flags |= FLOW_DIS_FIRST_FRAG; |
| 949 | if (flow_keys->is_encap) |
| 950 | key_control->flags |= FLOW_DIS_ENCAPSULATION; |
| 951 | |
| 952 | key_basic = skb_flow_dissector_target(flow_dissector, |
| 953 | FLOW_DISSECTOR_KEY_BASIC, |
| 954 | target_container); |
| 955 | key_basic->n_proto = flow_keys->n_proto; |
| 956 | key_basic->ip_proto = flow_keys->ip_proto; |
| 957 | |
| 958 | if (flow_keys->addr_proto == ETH_P_IP && |
| 959 | dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { |
| 960 | key_addrs = skb_flow_dissector_target(flow_dissector, |
| 961 | FLOW_DISSECTOR_KEY_IPV4_ADDRS, |
| 962 | target_container); |
| 963 | key_addrs->v4addrs.src = flow_keys->ipv4_src; |
| 964 | key_addrs->v4addrs.dst = flow_keys->ipv4_dst; |
| 965 | key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; |
| 966 | } else if (flow_keys->addr_proto == ETH_P_IPV6 && |
| 967 | dissector_uses_key(flow_dissector, |
| 968 | FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { |
| 969 | key_addrs = skb_flow_dissector_target(flow_dissector, |
| 970 | FLOW_DISSECTOR_KEY_IPV6_ADDRS, |
| 971 | target_container); |
| 972 | memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src, |
| 973 | sizeof(key_addrs->v6addrs.src)); |
| 974 | memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst, |
| 975 | sizeof(key_addrs->v6addrs.dst)); |
| 976 | key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; |
| 977 | } |
| 978 | |
| 979 | if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) { |
| 980 | key_ports = skb_flow_dissector_target(flow_dissector, |
| 981 | FLOW_DISSECTOR_KEY_PORTS, |
| 982 | target_container); |
| 983 | key_ports->src = flow_keys->sport; |
| 984 | key_ports->dst = flow_keys->dport; |
| 985 | } |
| 986 | if (dissector_uses_key(flow_dissector, |
| 987 | FLOW_DISSECTOR_KEY_PORTS_RANGE)) { |
| 988 | key_ports_range = skb_flow_dissector_target(flow_dissector, |
| 989 | FLOW_DISSECTOR_KEY_PORTS_RANGE, |
| 990 | target_container); |
| 991 | key_ports_range->tp.src = flow_keys->sport; |
| 992 | key_ports_range->tp.dst = flow_keys->dport; |
| 993 | } |
| 994 | |
| 995 | if (dissector_uses_key(flow_dissector, |
| 996 | FLOW_DISSECTOR_KEY_FLOW_LABEL)) { |
| 997 | key_tags = skb_flow_dissector_target(flow_dissector, |
| 998 | FLOW_DISSECTOR_KEY_FLOW_LABEL, |
| 999 | target_container); |
| 1000 | key_tags->flow_label = ntohl(flow_keys->flow_label); |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, |
| 1005 | __be16 proto, int nhoff, int hlen, unsigned int flags) |
| 1006 | { |
| 1007 | struct bpf_flow_keys *flow_keys = ctx->flow_keys; |
| 1008 | u32 result; |
| 1009 | |
| 1010 | /* Pass parameters to the BPF program */ |
| 1011 | memset(flow_keys, 0, sizeof(*flow_keys)); |
| 1012 | flow_keys->n_proto = proto; |
| 1013 | flow_keys->nhoff = nhoff; |
| 1014 | flow_keys->thoff = flow_keys->nhoff; |
| 1015 | |
| 1016 | BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG != |
| 1017 | (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG); |
| 1018 | BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL != |
| 1019 | (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); |
| 1020 | BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP != |
| 1021 | (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP); |
| 1022 | flow_keys->flags = flags; |
| 1023 | |
| 1024 | result = bpf_prog_run_pin_on_cpu(prog, ctx); |
| 1025 | |
| 1026 | flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen); |
| 1027 | flow_keys->thoff = clamp_t(u16, flow_keys->thoff, |
| 1028 | flow_keys->nhoff, hlen); |
| 1029 | |
| 1030 | return result; |
| 1031 | } |
| 1032 | |
| 1033 | static bool is_pppoe_ses_hdr_valid(const struct pppoe_hdr *hdr) |
| 1034 | { |
| 1035 | return hdr->ver == 1 && hdr->type == 1 && hdr->code == 0; |
| 1036 | } |
| 1037 | |
| 1038 | /** |
| 1039 | * __skb_flow_dissect - extract the flow_keys struct and return it |
| 1040 | * @net: associated network namespace, derived from @skb if NULL |
| 1041 | * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified |
| 1042 | * @flow_dissector: list of keys to dissect |
| 1043 | * @target_container: target structure to put dissected values into |
| 1044 | * @data: raw buffer pointer to the packet, if NULL use skb->data |
| 1045 | * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol |
| 1046 | * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb) |
| 1047 | * @hlen: packet header length, if @data is NULL use skb_headlen(skb) |
| 1048 | * @flags: flags that control the dissection process, e.g. |
| 1049 | * FLOW_DISSECTOR_F_STOP_AT_ENCAP. |
| 1050 | * |
| 1051 | * The function will try to retrieve individual keys into target specified |
| 1052 | * by flow_dissector from either the skbuff or a raw buffer specified by the |
| 1053 | * rest parameters. |
| 1054 | * |
| 1055 | * Caller must take care of zeroing target container memory. |
| 1056 | */ |
| 1057 | bool __skb_flow_dissect(const struct net *net, |
| 1058 | const struct sk_buff *skb, |
| 1059 | struct flow_dissector *flow_dissector, |
| 1060 | void *target_container, const void *data, |
| 1061 | __be16 proto, int nhoff, int hlen, unsigned int flags) |
| 1062 | { |
| 1063 | struct flow_dissector_key_control *key_control; |
| 1064 | struct flow_dissector_key_basic *key_basic; |
| 1065 | struct flow_dissector_key_addrs *key_addrs; |
| 1066 | struct flow_dissector_key_tags *key_tags; |
| 1067 | struct flow_dissector_key_vlan *key_vlan; |
| 1068 | enum flow_dissect_ret fdret; |
| 1069 | enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX; |
| 1070 | bool mpls_el = false; |
| 1071 | int mpls_lse = 0; |
| 1072 | int num_hdrs = 0; |
| 1073 | u8 ip_proto = 0; |
| 1074 | bool ret; |
| 1075 | |
| 1076 | if (!data) { |
| 1077 | data = skb->data; |
| 1078 | proto = skb_vlan_tag_present(skb) ? |
| 1079 | skb->vlan_proto : skb->protocol; |
| 1080 | nhoff = skb_network_offset(skb); |
| 1081 | hlen = skb_headlen(skb); |
| 1082 | #if IS_ENABLED(CONFIG_NET_DSA) |
| 1083 | if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) && |
| 1084 | proto == htons(ETH_P_XDSA))) { |
| 1085 | struct metadata_dst *md_dst = skb_metadata_dst(skb); |
| 1086 | const struct dsa_device_ops *ops; |
| 1087 | int offset = 0; |
| 1088 | |
| 1089 | ops = skb->dev->dsa_ptr->tag_ops; |
| 1090 | /* Only DSA header taggers break flow dissection */ |
| 1091 | if (ops->needed_headroom && |
| 1092 | (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)) { |
| 1093 | if (ops->flow_dissect) |
| 1094 | ops->flow_dissect(skb, &proto, &offset); |
| 1095 | else |
| 1096 | dsa_tag_generic_flow_dissect(skb, |
| 1097 | &proto, |
| 1098 | &offset); |
| 1099 | hlen -= offset; |
| 1100 | nhoff += offset; |
| 1101 | } |
| 1102 | } |
| 1103 | #endif |
| 1104 | } |
| 1105 | |
| 1106 | /* It is ensured by skb_flow_dissector_init() that control key will |
| 1107 | * be always present. |
| 1108 | */ |
| 1109 | key_control = skb_flow_dissector_target(flow_dissector, |
| 1110 | FLOW_DISSECTOR_KEY_CONTROL, |
| 1111 | target_container); |
| 1112 | |
| 1113 | /* It is ensured by skb_flow_dissector_init() that basic key will |
| 1114 | * be always present. |
| 1115 | */ |
| 1116 | key_basic = skb_flow_dissector_target(flow_dissector, |
| 1117 | FLOW_DISSECTOR_KEY_BASIC, |
| 1118 | target_container); |
| 1119 | |
| 1120 | rcu_read_lock(); |
| 1121 | |
| 1122 | if (skb) { |
| 1123 | if (!net) { |
| 1124 | if (skb->dev) |
| 1125 | net = dev_net_rcu(skb->dev); |
| 1126 | else if (skb->sk) |
| 1127 | net = sock_net(skb->sk); |
| 1128 | } |
| 1129 | } |
| 1130 | |
| 1131 | DEBUG_NET_WARN_ON_ONCE(!net); |
| 1132 | if (net) { |
| 1133 | enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; |
| 1134 | struct bpf_prog_array *run_array; |
| 1135 | |
| 1136 | run_array = rcu_dereference(init_net.bpf.run_array[type]); |
| 1137 | if (!run_array) |
| 1138 | run_array = rcu_dereference(net->bpf.run_array[type]); |
| 1139 | |
| 1140 | if (run_array) { |
| 1141 | struct bpf_flow_keys flow_keys; |
| 1142 | struct bpf_flow_dissector ctx = { |
| 1143 | .flow_keys = &flow_keys, |
| 1144 | .data = data, |
| 1145 | .data_end = data + hlen, |
| 1146 | }; |
| 1147 | __be16 n_proto = proto; |
| 1148 | struct bpf_prog *prog; |
| 1149 | u32 result; |
| 1150 | |
| 1151 | if (skb) { |
| 1152 | ctx.skb = skb; |
| 1153 | /* we can't use 'proto' in the skb case |
| 1154 | * because it might be set to skb->vlan_proto |
| 1155 | * which has been pulled from the data |
| 1156 | */ |
| 1157 | n_proto = skb->protocol; |
| 1158 | } |
| 1159 | |
| 1160 | prog = READ_ONCE(run_array->items[0].prog); |
| 1161 | result = bpf_flow_dissect(prog, &ctx, n_proto, nhoff, |
| 1162 | hlen, flags); |
| 1163 | if (result != BPF_FLOW_DISSECTOR_CONTINUE) { |
| 1164 | __skb_flow_bpf_to_target(&flow_keys, flow_dissector, |
| 1165 | target_container); |
| 1166 | rcu_read_unlock(); |
| 1167 | return result == BPF_OK; |
| 1168 | } |
| 1169 | } |
| 1170 | } |
| 1171 | |
| 1172 | rcu_read_unlock(); |
| 1173 | |
| 1174 | if (dissector_uses_key(flow_dissector, |
| 1175 | FLOW_DISSECTOR_KEY_ETH_ADDRS)) { |
| 1176 | struct ethhdr *eth = eth_hdr(skb); |
| 1177 | struct flow_dissector_key_eth_addrs *key_eth_addrs; |
| 1178 | |
| 1179 | key_eth_addrs = skb_flow_dissector_target(flow_dissector, |
| 1180 | FLOW_DISSECTOR_KEY_ETH_ADDRS, |
| 1181 | target_container); |
| 1182 | memcpy(key_eth_addrs, eth, sizeof(*key_eth_addrs)); |
| 1183 | } |
| 1184 | |
| 1185 | if (dissector_uses_key(flow_dissector, |
| 1186 | FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) { |
| 1187 | struct flow_dissector_key_num_of_vlans *key_num_of_vlans; |
| 1188 | |
| 1189 | key_num_of_vlans = skb_flow_dissector_target(flow_dissector, |
| 1190 | FLOW_DISSECTOR_KEY_NUM_OF_VLANS, |
| 1191 | target_container); |
| 1192 | key_num_of_vlans->num_of_vlans = 0; |
| 1193 | } |
| 1194 | |
| 1195 | proto_again: |
| 1196 | fdret = FLOW_DISSECT_RET_CONTINUE; |
| 1197 | |
| 1198 | switch (proto) { |
| 1199 | case htons(ETH_P_IP): { |
| 1200 | const struct iphdr *iph; |
| 1201 | struct iphdr _iph; |
| 1202 | |
| 1203 | iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); |
| 1204 | if (!iph || iph->ihl < 5) { |
| 1205 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1206 | break; |
| 1207 | } |
| 1208 | |
| 1209 | nhoff += iph->ihl * 4; |
| 1210 | |
| 1211 | ip_proto = iph->protocol; |
| 1212 | |
| 1213 | if (dissector_uses_key(flow_dissector, |
| 1214 | FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { |
| 1215 | key_addrs = skb_flow_dissector_target(flow_dissector, |
| 1216 | FLOW_DISSECTOR_KEY_IPV4_ADDRS, |
| 1217 | target_container); |
| 1218 | |
| 1219 | memcpy(&key_addrs->v4addrs.src, &iph->saddr, |
| 1220 | sizeof(key_addrs->v4addrs.src)); |
| 1221 | memcpy(&key_addrs->v4addrs.dst, &iph->daddr, |
| 1222 | sizeof(key_addrs->v4addrs.dst)); |
| 1223 | key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; |
| 1224 | } |
| 1225 | |
| 1226 | __skb_flow_dissect_ipv4(skb, flow_dissector, |
| 1227 | target_container, data, iph); |
| 1228 | |
| 1229 | if (ip_is_fragment(iph)) { |
| 1230 | key_control->flags |= FLOW_DIS_IS_FRAGMENT; |
| 1231 | |
| 1232 | if (iph->frag_off & htons(IP_OFFSET)) { |
| 1233 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1234 | break; |
| 1235 | } else { |
| 1236 | key_control->flags |= FLOW_DIS_FIRST_FRAG; |
| 1237 | if (!(flags & |
| 1238 | FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) { |
| 1239 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1240 | break; |
| 1241 | } |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | break; |
| 1246 | } |
| 1247 | case htons(ETH_P_IPV6): { |
| 1248 | const struct ipv6hdr *iph; |
| 1249 | struct ipv6hdr _iph; |
| 1250 | |
| 1251 | iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); |
| 1252 | if (!iph) { |
| 1253 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1254 | break; |
| 1255 | } |
| 1256 | |
| 1257 | ip_proto = iph->nexthdr; |
| 1258 | nhoff += sizeof(struct ipv6hdr); |
| 1259 | |
| 1260 | if (dissector_uses_key(flow_dissector, |
| 1261 | FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { |
| 1262 | key_addrs = skb_flow_dissector_target(flow_dissector, |
| 1263 | FLOW_DISSECTOR_KEY_IPV6_ADDRS, |
| 1264 | target_container); |
| 1265 | |
| 1266 | memcpy(&key_addrs->v6addrs.src, &iph->saddr, |
| 1267 | sizeof(key_addrs->v6addrs.src)); |
| 1268 | memcpy(&key_addrs->v6addrs.dst, &iph->daddr, |
| 1269 | sizeof(key_addrs->v6addrs.dst)); |
| 1270 | key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; |
| 1271 | } |
| 1272 | |
| 1273 | if ((dissector_uses_key(flow_dissector, |
| 1274 | FLOW_DISSECTOR_KEY_FLOW_LABEL) || |
| 1275 | (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) && |
| 1276 | ip6_flowlabel(iph)) { |
| 1277 | __be32 flow_label = ip6_flowlabel(iph); |
| 1278 | |
| 1279 | if (dissector_uses_key(flow_dissector, |
| 1280 | FLOW_DISSECTOR_KEY_FLOW_LABEL)) { |
| 1281 | key_tags = skb_flow_dissector_target(flow_dissector, |
| 1282 | FLOW_DISSECTOR_KEY_FLOW_LABEL, |
| 1283 | target_container); |
| 1284 | key_tags->flow_label = ntohl(flow_label); |
| 1285 | } |
| 1286 | if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) { |
| 1287 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1288 | break; |
| 1289 | } |
| 1290 | } |
| 1291 | |
| 1292 | __skb_flow_dissect_ipv6(skb, flow_dissector, |
| 1293 | target_container, data, iph); |
| 1294 | |
| 1295 | break; |
| 1296 | } |
| 1297 | case htons(ETH_P_8021AD): |
| 1298 | case htons(ETH_P_8021Q): { |
| 1299 | const struct vlan_hdr *vlan = NULL; |
| 1300 | struct vlan_hdr _vlan; |
| 1301 | __be16 saved_vlan_tpid = proto; |
| 1302 | |
| 1303 | if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX && |
| 1304 | skb && skb_vlan_tag_present(skb)) { |
| 1305 | proto = skb->protocol; |
| 1306 | } else { |
| 1307 | vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), |
| 1308 | data, hlen, &_vlan); |
| 1309 | if (!vlan) { |
| 1310 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1311 | break; |
| 1312 | } |
| 1313 | |
| 1314 | proto = vlan->h_vlan_encapsulated_proto; |
| 1315 | nhoff += sizeof(*vlan); |
| 1316 | } |
| 1317 | |
| 1318 | if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_NUM_OF_VLANS) && |
| 1319 | !(key_control->flags & FLOW_DIS_ENCAPSULATION)) { |
| 1320 | struct flow_dissector_key_num_of_vlans *key_nvs; |
| 1321 | |
| 1322 | key_nvs = skb_flow_dissector_target(flow_dissector, |
| 1323 | FLOW_DISSECTOR_KEY_NUM_OF_VLANS, |
| 1324 | target_container); |
| 1325 | key_nvs->num_of_vlans++; |
| 1326 | } |
| 1327 | |
| 1328 | if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) { |
| 1329 | dissector_vlan = FLOW_DISSECTOR_KEY_VLAN; |
| 1330 | } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) { |
| 1331 | dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN; |
| 1332 | } else { |
| 1333 | fdret = FLOW_DISSECT_RET_PROTO_AGAIN; |
| 1334 | break; |
| 1335 | } |
| 1336 | |
| 1337 | if (dissector_uses_key(flow_dissector, dissector_vlan)) { |
| 1338 | key_vlan = skb_flow_dissector_target(flow_dissector, |
| 1339 | dissector_vlan, |
| 1340 | target_container); |
| 1341 | |
| 1342 | if (!vlan) { |
| 1343 | key_vlan->vlan_id = skb_vlan_tag_get_id(skb); |
| 1344 | key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb); |
| 1345 | } else { |
| 1346 | key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) & |
| 1347 | VLAN_VID_MASK; |
| 1348 | key_vlan->vlan_priority = |
| 1349 | (ntohs(vlan->h_vlan_TCI) & |
| 1350 | VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; |
| 1351 | } |
| 1352 | key_vlan->vlan_tpid = saved_vlan_tpid; |
| 1353 | key_vlan->vlan_eth_type = proto; |
| 1354 | } |
| 1355 | |
| 1356 | fdret = FLOW_DISSECT_RET_PROTO_AGAIN; |
| 1357 | break; |
| 1358 | } |
| 1359 | case htons(ETH_P_PPP_SES): { |
| 1360 | struct { |
| 1361 | struct pppoe_hdr hdr; |
| 1362 | __be16 proto; |
| 1363 | } *hdr, _hdr; |
| 1364 | u16 ppp_proto; |
| 1365 | |
| 1366 | hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); |
| 1367 | if (!hdr) { |
| 1368 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1369 | break; |
| 1370 | } |
| 1371 | |
| 1372 | if (!is_pppoe_ses_hdr_valid(&hdr->hdr)) { |
| 1373 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1374 | break; |
| 1375 | } |
| 1376 | |
| 1377 | /* least significant bit of the most significant octet |
| 1378 | * indicates if protocol field was compressed |
| 1379 | */ |
| 1380 | ppp_proto = ntohs(hdr->proto); |
| 1381 | if (ppp_proto & 0x0100) { |
| 1382 | ppp_proto = ppp_proto >> 8; |
| 1383 | nhoff += PPPOE_SES_HLEN - 1; |
| 1384 | } else { |
| 1385 | nhoff += PPPOE_SES_HLEN; |
| 1386 | } |
| 1387 | |
| 1388 | if (ppp_proto == PPP_IP) { |
| 1389 | proto = htons(ETH_P_IP); |
| 1390 | fdret = FLOW_DISSECT_RET_PROTO_AGAIN; |
| 1391 | } else if (ppp_proto == PPP_IPV6) { |
| 1392 | proto = htons(ETH_P_IPV6); |
| 1393 | fdret = FLOW_DISSECT_RET_PROTO_AGAIN; |
| 1394 | } else if (ppp_proto == PPP_MPLS_UC) { |
| 1395 | proto = htons(ETH_P_MPLS_UC); |
| 1396 | fdret = FLOW_DISSECT_RET_PROTO_AGAIN; |
| 1397 | } else if (ppp_proto == PPP_MPLS_MC) { |
| 1398 | proto = htons(ETH_P_MPLS_MC); |
| 1399 | fdret = FLOW_DISSECT_RET_PROTO_AGAIN; |
| 1400 | } else if (ppp_proto_is_valid(ppp_proto)) { |
| 1401 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1402 | } else { |
| 1403 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1404 | break; |
| 1405 | } |
| 1406 | |
| 1407 | if (dissector_uses_key(flow_dissector, |
| 1408 | FLOW_DISSECTOR_KEY_PPPOE)) { |
| 1409 | struct flow_dissector_key_pppoe *key_pppoe; |
| 1410 | |
| 1411 | key_pppoe = skb_flow_dissector_target(flow_dissector, |
| 1412 | FLOW_DISSECTOR_KEY_PPPOE, |
| 1413 | target_container); |
| 1414 | key_pppoe->session_id = hdr->hdr.sid; |
| 1415 | key_pppoe->ppp_proto = htons(ppp_proto); |
| 1416 | key_pppoe->type = htons(ETH_P_PPP_SES); |
| 1417 | } |
| 1418 | break; |
| 1419 | } |
| 1420 | case htons(ETH_P_TIPC): { |
| 1421 | struct tipc_basic_hdr *hdr, _hdr; |
| 1422 | |
| 1423 | hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), |
| 1424 | data, hlen, &_hdr); |
| 1425 | if (!hdr) { |
| 1426 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1427 | break; |
| 1428 | } |
| 1429 | |
| 1430 | if (dissector_uses_key(flow_dissector, |
| 1431 | FLOW_DISSECTOR_KEY_TIPC)) { |
| 1432 | key_addrs = skb_flow_dissector_target(flow_dissector, |
| 1433 | FLOW_DISSECTOR_KEY_TIPC, |
| 1434 | target_container); |
| 1435 | key_addrs->tipckey.key = tipc_hdr_rps_key(hdr); |
| 1436 | key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC; |
| 1437 | } |
| 1438 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1439 | break; |
| 1440 | } |
| 1441 | |
| 1442 | case htons(ETH_P_MPLS_UC): |
| 1443 | case htons(ETH_P_MPLS_MC): |
| 1444 | fdret = __skb_flow_dissect_mpls(skb, flow_dissector, |
| 1445 | target_container, data, |
| 1446 | nhoff, hlen, mpls_lse, |
| 1447 | &mpls_el); |
| 1448 | nhoff += sizeof(struct mpls_label); |
| 1449 | mpls_lse++; |
| 1450 | break; |
| 1451 | case htons(ETH_P_FCOE): |
| 1452 | if ((hlen - nhoff) < FCOE_HEADER_LEN) { |
| 1453 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1454 | break; |
| 1455 | } |
| 1456 | |
| 1457 | nhoff += FCOE_HEADER_LEN; |
| 1458 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1459 | break; |
| 1460 | |
| 1461 | case htons(ETH_P_ARP): |
| 1462 | case htons(ETH_P_RARP): |
| 1463 | fdret = __skb_flow_dissect_arp(skb, flow_dissector, |
| 1464 | target_container, data, |
| 1465 | nhoff, hlen); |
| 1466 | break; |
| 1467 | |
| 1468 | case htons(ETH_P_BATMAN): |
| 1469 | fdret = __skb_flow_dissect_batadv(skb, key_control, data, |
| 1470 | &proto, &nhoff, hlen, flags); |
| 1471 | break; |
| 1472 | |
| 1473 | case htons(ETH_P_1588): { |
| 1474 | struct ptp_header *hdr, _hdr; |
| 1475 | |
| 1476 | hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, |
| 1477 | hlen, &_hdr); |
| 1478 | if (!hdr) { |
| 1479 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1480 | break; |
| 1481 | } |
| 1482 | |
| 1483 | nhoff += sizeof(struct ptp_header); |
| 1484 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1485 | break; |
| 1486 | } |
| 1487 | |
| 1488 | case htons(ETH_P_PRP): |
| 1489 | case htons(ETH_P_HSR): { |
| 1490 | struct hsr_tag *hdr, _hdr; |
| 1491 | |
| 1492 | hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, |
| 1493 | &_hdr); |
| 1494 | if (!hdr) { |
| 1495 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1496 | break; |
| 1497 | } |
| 1498 | |
| 1499 | proto = hdr->encap_proto; |
| 1500 | nhoff += HSR_HLEN; |
| 1501 | fdret = FLOW_DISSECT_RET_PROTO_AGAIN; |
| 1502 | break; |
| 1503 | } |
| 1504 | |
| 1505 | case htons(ETH_P_CFM): |
| 1506 | fdret = __skb_flow_dissect_cfm(skb, flow_dissector, |
| 1507 | target_container, data, |
| 1508 | nhoff, hlen); |
| 1509 | break; |
| 1510 | |
| 1511 | default: |
| 1512 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1513 | break; |
| 1514 | } |
| 1515 | |
| 1516 | /* Process result of proto processing */ |
| 1517 | switch (fdret) { |
| 1518 | case FLOW_DISSECT_RET_OUT_GOOD: |
| 1519 | goto out_good; |
| 1520 | case FLOW_DISSECT_RET_PROTO_AGAIN: |
| 1521 | if (skb_flow_dissect_allowed(&num_hdrs)) |
| 1522 | goto proto_again; |
| 1523 | goto out_good; |
| 1524 | case FLOW_DISSECT_RET_CONTINUE: |
| 1525 | case FLOW_DISSECT_RET_IPPROTO_AGAIN: |
| 1526 | break; |
| 1527 | case FLOW_DISSECT_RET_OUT_BAD: |
| 1528 | default: |
| 1529 | goto out_bad; |
| 1530 | } |
| 1531 | |
| 1532 | ip_proto_again: |
| 1533 | fdret = FLOW_DISSECT_RET_CONTINUE; |
| 1534 | |
| 1535 | switch (ip_proto) { |
| 1536 | case IPPROTO_GRE: |
| 1537 | if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { |
| 1538 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1539 | break; |
| 1540 | } |
| 1541 | |
| 1542 | fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector, |
| 1543 | target_container, data, |
| 1544 | &proto, &nhoff, &hlen, flags); |
| 1545 | break; |
| 1546 | |
| 1547 | case NEXTHDR_HOP: |
| 1548 | case NEXTHDR_ROUTING: |
| 1549 | case NEXTHDR_DEST: { |
| 1550 | u8 _opthdr[2], *opthdr; |
| 1551 | |
| 1552 | if (proto != htons(ETH_P_IPV6)) |
| 1553 | break; |
| 1554 | |
| 1555 | opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr), |
| 1556 | data, hlen, &_opthdr); |
| 1557 | if (!opthdr) { |
| 1558 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1559 | break; |
| 1560 | } |
| 1561 | |
| 1562 | ip_proto = opthdr[0]; |
| 1563 | nhoff += (opthdr[1] + 1) << 3; |
| 1564 | |
| 1565 | fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; |
| 1566 | break; |
| 1567 | } |
| 1568 | case NEXTHDR_FRAGMENT: { |
| 1569 | struct frag_hdr _fh, *fh; |
| 1570 | |
| 1571 | if (proto != htons(ETH_P_IPV6)) |
| 1572 | break; |
| 1573 | |
| 1574 | fh = __skb_header_pointer(skb, nhoff, sizeof(_fh), |
| 1575 | data, hlen, &_fh); |
| 1576 | |
| 1577 | if (!fh) { |
| 1578 | fdret = FLOW_DISSECT_RET_OUT_BAD; |
| 1579 | break; |
| 1580 | } |
| 1581 | |
| 1582 | key_control->flags |= FLOW_DIS_IS_FRAGMENT; |
| 1583 | |
| 1584 | nhoff += sizeof(_fh); |
| 1585 | ip_proto = fh->nexthdr; |
| 1586 | |
| 1587 | if (!(fh->frag_off & htons(IP6_OFFSET))) { |
| 1588 | key_control->flags |= FLOW_DIS_FIRST_FRAG; |
| 1589 | if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) { |
| 1590 | fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; |
| 1591 | break; |
| 1592 | } |
| 1593 | } |
| 1594 | |
| 1595 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1596 | break; |
| 1597 | } |
| 1598 | case IPPROTO_IPIP: |
| 1599 | if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { |
| 1600 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1601 | break; |
| 1602 | } |
| 1603 | |
| 1604 | proto = htons(ETH_P_IP); |
| 1605 | |
| 1606 | key_control->flags |= FLOW_DIS_ENCAPSULATION; |
| 1607 | if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { |
| 1608 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1609 | break; |
| 1610 | } |
| 1611 | |
| 1612 | fdret = FLOW_DISSECT_RET_PROTO_AGAIN; |
| 1613 | break; |
| 1614 | |
| 1615 | case IPPROTO_IPV6: |
| 1616 | if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { |
| 1617 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1618 | break; |
| 1619 | } |
| 1620 | |
| 1621 | proto = htons(ETH_P_IPV6); |
| 1622 | |
| 1623 | key_control->flags |= FLOW_DIS_ENCAPSULATION; |
| 1624 | if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { |
| 1625 | fdret = FLOW_DISSECT_RET_OUT_GOOD; |
| 1626 | break; |
| 1627 | } |
| 1628 | |
| 1629 | fdret = FLOW_DISSECT_RET_PROTO_AGAIN; |
| 1630 | break; |
| 1631 | |
| 1632 | |
| 1633 | case IPPROTO_MPLS: |
| 1634 | proto = htons(ETH_P_MPLS_UC); |
| 1635 | fdret = FLOW_DISSECT_RET_PROTO_AGAIN; |
| 1636 | break; |
| 1637 | |
| 1638 | case IPPROTO_TCP: |
| 1639 | __skb_flow_dissect_tcp(skb, flow_dissector, target_container, |
| 1640 | data, nhoff, hlen); |
| 1641 | break; |
| 1642 | |
| 1643 | case IPPROTO_ICMP: |
| 1644 | case IPPROTO_ICMPV6: |
| 1645 | __skb_flow_dissect_icmp(skb, flow_dissector, target_container, |
| 1646 | data, nhoff, hlen); |
| 1647 | break; |
| 1648 | case IPPROTO_L2TP: |
| 1649 | __skb_flow_dissect_l2tpv3(skb, flow_dissector, target_container, |
| 1650 | data, nhoff, hlen); |
| 1651 | break; |
| 1652 | case IPPROTO_ESP: |
| 1653 | __skb_flow_dissect_esp(skb, flow_dissector, target_container, |
| 1654 | data, nhoff, hlen); |
| 1655 | break; |
| 1656 | case IPPROTO_AH: |
| 1657 | __skb_flow_dissect_ah(skb, flow_dissector, target_container, |
| 1658 | data, nhoff, hlen); |
| 1659 | break; |
| 1660 | default: |
| 1661 | break; |
| 1662 | } |
| 1663 | |
| 1664 | if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT)) |
| 1665 | __skb_flow_dissect_ports(skb, flow_dissector, target_container, |
| 1666 | data, nhoff, ip_proto, hlen); |
| 1667 | |
| 1668 | /* Process result of IP proto processing */ |
| 1669 | switch (fdret) { |
| 1670 | case FLOW_DISSECT_RET_PROTO_AGAIN: |
| 1671 | if (skb_flow_dissect_allowed(&num_hdrs)) |
| 1672 | goto proto_again; |
| 1673 | break; |
| 1674 | case FLOW_DISSECT_RET_IPPROTO_AGAIN: |
| 1675 | if (skb_flow_dissect_allowed(&num_hdrs)) |
| 1676 | goto ip_proto_again; |
| 1677 | break; |
| 1678 | case FLOW_DISSECT_RET_OUT_GOOD: |
| 1679 | case FLOW_DISSECT_RET_CONTINUE: |
| 1680 | break; |
| 1681 | case FLOW_DISSECT_RET_OUT_BAD: |
| 1682 | default: |
| 1683 | goto out_bad; |
| 1684 | } |
| 1685 | |
| 1686 | out_good: |
| 1687 | ret = true; |
| 1688 | |
| 1689 | out: |
| 1690 | key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen); |
| 1691 | key_basic->n_proto = proto; |
| 1692 | key_basic->ip_proto = ip_proto; |
| 1693 | |
| 1694 | return ret; |
| 1695 | |
| 1696 | out_bad: |
| 1697 | ret = false; |
| 1698 | goto out; |
| 1699 | } |
| 1700 | EXPORT_SYMBOL(__skb_flow_dissect); |
| 1701 | |
| 1702 | static siphash_aligned_key_t hashrnd; |
| 1703 | static __always_inline void __flow_hash_secret_init(void) |
| 1704 | { |
| 1705 | net_get_random_once(&hashrnd, sizeof(hashrnd)); |
| 1706 | } |
| 1707 | |
| 1708 | static const void *flow_keys_hash_start(const struct flow_keys *flow) |
| 1709 | { |
| 1710 | BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT); |
| 1711 | return &flow->FLOW_KEYS_HASH_START_FIELD; |
| 1712 | } |
| 1713 | |
| 1714 | static inline size_t flow_keys_hash_length(const struct flow_keys *flow) |
| 1715 | { |
| 1716 | size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs); |
| 1717 | |
| 1718 | BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32)); |
| 1719 | |
| 1720 | switch (flow->control.addr_type) { |
| 1721 | case FLOW_DISSECTOR_KEY_IPV4_ADDRS: |
| 1722 | diff -= sizeof(flow->addrs.v4addrs); |
| 1723 | break; |
| 1724 | case FLOW_DISSECTOR_KEY_IPV6_ADDRS: |
| 1725 | diff -= sizeof(flow->addrs.v6addrs); |
| 1726 | break; |
| 1727 | case FLOW_DISSECTOR_KEY_TIPC: |
| 1728 | diff -= sizeof(flow->addrs.tipckey); |
| 1729 | break; |
| 1730 | } |
| 1731 | return sizeof(*flow) - diff; |
| 1732 | } |
| 1733 | |
| 1734 | __be32 flow_get_u32_src(const struct flow_keys *flow) |
| 1735 | { |
| 1736 | switch (flow->control.addr_type) { |
| 1737 | case FLOW_DISSECTOR_KEY_IPV4_ADDRS: |
| 1738 | return flow->addrs.v4addrs.src; |
| 1739 | case FLOW_DISSECTOR_KEY_IPV6_ADDRS: |
| 1740 | return (__force __be32)ipv6_addr_hash( |
| 1741 | &flow->addrs.v6addrs.src); |
| 1742 | case FLOW_DISSECTOR_KEY_TIPC: |
| 1743 | return flow->addrs.tipckey.key; |
| 1744 | default: |
| 1745 | return 0; |
| 1746 | } |
| 1747 | } |
| 1748 | EXPORT_SYMBOL(flow_get_u32_src); |
| 1749 | |
| 1750 | __be32 flow_get_u32_dst(const struct flow_keys *flow) |
| 1751 | { |
| 1752 | switch (flow->control.addr_type) { |
| 1753 | case FLOW_DISSECTOR_KEY_IPV4_ADDRS: |
| 1754 | return flow->addrs.v4addrs.dst; |
| 1755 | case FLOW_DISSECTOR_KEY_IPV6_ADDRS: |
| 1756 | return (__force __be32)ipv6_addr_hash( |
| 1757 | &flow->addrs.v6addrs.dst); |
| 1758 | default: |
| 1759 | return 0; |
| 1760 | } |
| 1761 | } |
| 1762 | EXPORT_SYMBOL(flow_get_u32_dst); |
| 1763 | |
| 1764 | /* Sort the source and destination IP and the ports, |
| 1765 | * to have consistent hash within the two directions |
| 1766 | */ |
| 1767 | static inline void __flow_hash_consistentify(struct flow_keys *keys) |
| 1768 | { |
| 1769 | int addr_diff, i; |
| 1770 | |
| 1771 | switch (keys->control.addr_type) { |
| 1772 | case FLOW_DISSECTOR_KEY_IPV4_ADDRS: |
| 1773 | if ((__force u32)keys->addrs.v4addrs.dst < |
| 1774 | (__force u32)keys->addrs.v4addrs.src) |
| 1775 | swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst); |
| 1776 | |
| 1777 | if ((__force u16)keys->ports.dst < |
| 1778 | (__force u16)keys->ports.src) { |
| 1779 | swap(keys->ports.src, keys->ports.dst); |
| 1780 | } |
| 1781 | break; |
| 1782 | case FLOW_DISSECTOR_KEY_IPV6_ADDRS: |
| 1783 | addr_diff = memcmp(&keys->addrs.v6addrs.dst, |
| 1784 | &keys->addrs.v6addrs.src, |
| 1785 | sizeof(keys->addrs.v6addrs.dst)); |
| 1786 | if (addr_diff < 0) { |
| 1787 | for (i = 0; i < 4; i++) |
| 1788 | swap(keys->addrs.v6addrs.src.s6_addr32[i], |
| 1789 | keys->addrs.v6addrs.dst.s6_addr32[i]); |
| 1790 | } |
| 1791 | if ((__force u16)keys->ports.dst < |
| 1792 | (__force u16)keys->ports.src) { |
| 1793 | swap(keys->ports.src, keys->ports.dst); |
| 1794 | } |
| 1795 | break; |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | static inline u32 __flow_hash_from_keys(struct flow_keys *keys, |
| 1800 | const siphash_key_t *keyval) |
| 1801 | { |
| 1802 | u32 hash; |
| 1803 | |
| 1804 | __flow_hash_consistentify(keys); |
| 1805 | |
| 1806 | hash = siphash(flow_keys_hash_start(keys), |
| 1807 | flow_keys_hash_length(keys), keyval); |
| 1808 | if (!hash) |
| 1809 | hash = 1; |
| 1810 | |
| 1811 | return hash; |
| 1812 | } |
| 1813 | |
| 1814 | u32 flow_hash_from_keys(struct flow_keys *keys) |
| 1815 | { |
| 1816 | __flow_hash_secret_init(); |
| 1817 | return __flow_hash_from_keys(keys, &hashrnd); |
| 1818 | } |
| 1819 | EXPORT_SYMBOL(flow_hash_from_keys); |
| 1820 | |
| 1821 | u32 flow_hash_from_keys_seed(struct flow_keys *keys, |
| 1822 | const siphash_key_t *keyval) |
| 1823 | { |
| 1824 | return __flow_hash_from_keys(keys, keyval); |
| 1825 | } |
| 1826 | EXPORT_SYMBOL(flow_hash_from_keys_seed); |
| 1827 | |
| 1828 | static inline u32 ___skb_get_hash(const struct sk_buff *skb, |
| 1829 | struct flow_keys *keys, |
| 1830 | const siphash_key_t *keyval) |
| 1831 | { |
| 1832 | skb_flow_dissect_flow_keys(skb, keys, |
| 1833 | FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); |
| 1834 | |
| 1835 | return __flow_hash_from_keys(keys, keyval); |
| 1836 | } |
| 1837 | |
| 1838 | struct _flow_keys_digest_data { |
| 1839 | __be16 n_proto; |
| 1840 | u8 ip_proto; |
| 1841 | u8 padding; |
| 1842 | __be32 ports; |
| 1843 | __be32 src; |
| 1844 | __be32 dst; |
| 1845 | }; |
| 1846 | |
| 1847 | void make_flow_keys_digest(struct flow_keys_digest *digest, |
| 1848 | const struct flow_keys *flow) |
| 1849 | { |
| 1850 | struct _flow_keys_digest_data *data = |
| 1851 | (struct _flow_keys_digest_data *)digest; |
| 1852 | |
| 1853 | BUILD_BUG_ON(sizeof(*data) > sizeof(*digest)); |
| 1854 | |
| 1855 | memset(digest, 0, sizeof(*digest)); |
| 1856 | |
| 1857 | data->n_proto = flow->basic.n_proto; |
| 1858 | data->ip_proto = flow->basic.ip_proto; |
| 1859 | data->ports = flow->ports.ports; |
| 1860 | data->src = flow->addrs.v4addrs.src; |
| 1861 | data->dst = flow->addrs.v4addrs.dst; |
| 1862 | } |
| 1863 | EXPORT_SYMBOL(make_flow_keys_digest); |
| 1864 | |
| 1865 | static struct flow_dissector flow_keys_dissector_symmetric __read_mostly; |
| 1866 | |
| 1867 | u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb) |
| 1868 | { |
| 1869 | struct flow_keys keys; |
| 1870 | |
| 1871 | __flow_hash_secret_init(); |
| 1872 | |
| 1873 | memset(&keys, 0, sizeof(keys)); |
| 1874 | __skb_flow_dissect(net, skb, &flow_keys_dissector_symmetric, |
| 1875 | &keys, NULL, 0, 0, 0, 0); |
| 1876 | |
| 1877 | return __flow_hash_from_keys(&keys, &hashrnd); |
| 1878 | } |
| 1879 | EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric_net); |
| 1880 | |
| 1881 | /** |
| 1882 | * __skb_get_hash_net: calculate a flow hash |
| 1883 | * @net: associated network namespace, derived from @skb if NULL |
| 1884 | * @skb: sk_buff to calculate flow hash from |
| 1885 | * |
| 1886 | * This function calculates a flow hash based on src/dst addresses |
| 1887 | * and src/dst port numbers. Sets hash in skb to non-zero hash value |
| 1888 | * on success, zero indicates no valid hash. Also, sets l4_hash in skb |
| 1889 | * if hash is a canonical 4-tuple hash over transport ports. |
| 1890 | */ |
| 1891 | void __skb_get_hash_net(const struct net *net, struct sk_buff *skb) |
| 1892 | { |
| 1893 | struct flow_keys keys; |
| 1894 | u32 hash; |
| 1895 | |
| 1896 | memset(&keys, 0, sizeof(keys)); |
| 1897 | |
| 1898 | __skb_flow_dissect(net, skb, &flow_keys_dissector, |
| 1899 | &keys, NULL, 0, 0, 0, |
| 1900 | FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); |
| 1901 | |
| 1902 | __flow_hash_secret_init(); |
| 1903 | |
| 1904 | hash = __flow_hash_from_keys(&keys, &hashrnd); |
| 1905 | |
| 1906 | __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); |
| 1907 | } |
| 1908 | EXPORT_SYMBOL(__skb_get_hash_net); |
| 1909 | |
| 1910 | __u32 skb_get_hash_perturb(const struct sk_buff *skb, |
| 1911 | const siphash_key_t *perturb) |
| 1912 | { |
| 1913 | struct flow_keys keys; |
| 1914 | |
| 1915 | return ___skb_get_hash(skb, &keys, perturb); |
| 1916 | } |
| 1917 | EXPORT_SYMBOL(skb_get_hash_perturb); |
| 1918 | |
| 1919 | u32 __skb_get_poff(const struct sk_buff *skb, const void *data, |
| 1920 | const struct flow_keys_basic *keys, int hlen) |
| 1921 | { |
| 1922 | u32 poff = keys->control.thoff; |
| 1923 | |
| 1924 | /* skip L4 headers for fragments after the first */ |
| 1925 | if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) && |
| 1926 | !(keys->control.flags & FLOW_DIS_FIRST_FRAG)) |
| 1927 | return poff; |
| 1928 | |
| 1929 | switch (keys->basic.ip_proto) { |
| 1930 | case IPPROTO_TCP: { |
| 1931 | /* access doff as u8 to avoid unaligned access */ |
| 1932 | const u8 *doff; |
| 1933 | u8 _doff; |
| 1934 | |
| 1935 | doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff), |
| 1936 | data, hlen, &_doff); |
| 1937 | if (!doff) |
| 1938 | return poff; |
| 1939 | |
| 1940 | poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2); |
| 1941 | break; |
| 1942 | } |
| 1943 | case IPPROTO_UDP: |
| 1944 | case IPPROTO_UDPLITE: |
| 1945 | poff += sizeof(struct udphdr); |
| 1946 | break; |
| 1947 | /* For the rest, we do not really care about header |
| 1948 | * extensions at this point for now. |
| 1949 | */ |
| 1950 | case IPPROTO_ICMP: |
| 1951 | poff += sizeof(struct icmphdr); |
| 1952 | break; |
| 1953 | case IPPROTO_ICMPV6: |
| 1954 | poff += sizeof(struct icmp6hdr); |
| 1955 | break; |
| 1956 | case IPPROTO_IGMP: |
| 1957 | poff += sizeof(struct igmphdr); |
| 1958 | break; |
| 1959 | case IPPROTO_DCCP: |
| 1960 | poff += sizeof(struct dccp_hdr); |
| 1961 | break; |
| 1962 | case IPPROTO_SCTP: |
| 1963 | poff += sizeof(struct sctphdr); |
| 1964 | break; |
| 1965 | } |
| 1966 | |
| 1967 | return poff; |
| 1968 | } |
| 1969 | |
| 1970 | /** |
| 1971 | * skb_get_poff - get the offset to the payload |
| 1972 | * @skb: sk_buff to get the payload offset from |
| 1973 | * |
| 1974 | * The function will get the offset to the payload as far as it could |
| 1975 | * be dissected. The main user is currently BPF, so that we can dynamically |
| 1976 | * truncate packets without needing to push actual payload to the user |
| 1977 | * space and can analyze headers only, instead. |
| 1978 | */ |
| 1979 | u32 skb_get_poff(const struct sk_buff *skb) |
| 1980 | { |
| 1981 | struct flow_keys_basic keys; |
| 1982 | |
| 1983 | if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, |
| 1984 | NULL, 0, 0, 0, 0)) |
| 1985 | return 0; |
| 1986 | |
| 1987 | return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb)); |
| 1988 | } |
| 1989 | |
| 1990 | __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys) |
| 1991 | { |
| 1992 | memset(keys, 0, sizeof(*keys)); |
| 1993 | |
| 1994 | memcpy(&keys->addrs.v6addrs.src, &fl6->saddr, |
| 1995 | sizeof(keys->addrs.v6addrs.src)); |
| 1996 | memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr, |
| 1997 | sizeof(keys->addrs.v6addrs.dst)); |
| 1998 | keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; |
| 1999 | keys->ports.src = fl6->fl6_sport; |
| 2000 | keys->ports.dst = fl6->fl6_dport; |
| 2001 | keys->keyid.keyid = fl6->fl6_gre_key; |
| 2002 | keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); |
| 2003 | keys->basic.ip_proto = fl6->flowi6_proto; |
| 2004 | |
| 2005 | return flow_hash_from_keys(keys); |
| 2006 | } |
| 2007 | EXPORT_SYMBOL(__get_hash_from_flowi6); |
| 2008 | |
| 2009 | static const struct flow_dissector_key flow_keys_dissector_keys[] = { |
| 2010 | { |
| 2011 | .key_id = FLOW_DISSECTOR_KEY_CONTROL, |
| 2012 | .offset = offsetof(struct flow_keys, control), |
| 2013 | }, |
| 2014 | { |
| 2015 | .key_id = FLOW_DISSECTOR_KEY_BASIC, |
| 2016 | .offset = offsetof(struct flow_keys, basic), |
| 2017 | }, |
| 2018 | { |
| 2019 | .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, |
| 2020 | .offset = offsetof(struct flow_keys, addrs.v4addrs), |
| 2021 | }, |
| 2022 | { |
| 2023 | .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, |
| 2024 | .offset = offsetof(struct flow_keys, addrs.v6addrs), |
| 2025 | }, |
| 2026 | { |
| 2027 | .key_id = FLOW_DISSECTOR_KEY_TIPC, |
| 2028 | .offset = offsetof(struct flow_keys, addrs.tipckey), |
| 2029 | }, |
| 2030 | { |
| 2031 | .key_id = FLOW_DISSECTOR_KEY_PORTS, |
| 2032 | .offset = offsetof(struct flow_keys, ports), |
| 2033 | }, |
| 2034 | { |
| 2035 | .key_id = FLOW_DISSECTOR_KEY_VLAN, |
| 2036 | .offset = offsetof(struct flow_keys, vlan), |
| 2037 | }, |
| 2038 | { |
| 2039 | .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL, |
| 2040 | .offset = offsetof(struct flow_keys, tags), |
| 2041 | }, |
| 2042 | { |
| 2043 | .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID, |
| 2044 | .offset = offsetof(struct flow_keys, keyid), |
| 2045 | }, |
| 2046 | }; |
| 2047 | |
| 2048 | static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = { |
| 2049 | { |
| 2050 | .key_id = FLOW_DISSECTOR_KEY_CONTROL, |
| 2051 | .offset = offsetof(struct flow_keys, control), |
| 2052 | }, |
| 2053 | { |
| 2054 | .key_id = FLOW_DISSECTOR_KEY_BASIC, |
| 2055 | .offset = offsetof(struct flow_keys, basic), |
| 2056 | }, |
| 2057 | { |
| 2058 | .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, |
| 2059 | .offset = offsetof(struct flow_keys, addrs.v4addrs), |
| 2060 | }, |
| 2061 | { |
| 2062 | .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, |
| 2063 | .offset = offsetof(struct flow_keys, addrs.v6addrs), |
| 2064 | }, |
| 2065 | { |
| 2066 | .key_id = FLOW_DISSECTOR_KEY_PORTS, |
| 2067 | .offset = offsetof(struct flow_keys, ports), |
| 2068 | }, |
| 2069 | }; |
| 2070 | |
| 2071 | static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = { |
| 2072 | { |
| 2073 | .key_id = FLOW_DISSECTOR_KEY_CONTROL, |
| 2074 | .offset = offsetof(struct flow_keys, control), |
| 2075 | }, |
| 2076 | { |
| 2077 | .key_id = FLOW_DISSECTOR_KEY_BASIC, |
| 2078 | .offset = offsetof(struct flow_keys, basic), |
| 2079 | }, |
| 2080 | }; |
| 2081 | |
| 2082 | struct flow_dissector flow_keys_dissector __read_mostly; |
| 2083 | EXPORT_SYMBOL(flow_keys_dissector); |
| 2084 | |
| 2085 | struct flow_dissector flow_keys_basic_dissector __read_mostly; |
| 2086 | EXPORT_SYMBOL(flow_keys_basic_dissector); |
| 2087 | |
| 2088 | static int __init init_default_flow_dissectors(void) |
| 2089 | { |
| 2090 | skb_flow_dissector_init(&flow_keys_dissector, |
| 2091 | flow_keys_dissector_keys, |
| 2092 | ARRAY_SIZE(flow_keys_dissector_keys)); |
| 2093 | skb_flow_dissector_init(&flow_keys_dissector_symmetric, |
| 2094 | flow_keys_dissector_symmetric_keys, |
| 2095 | ARRAY_SIZE(flow_keys_dissector_symmetric_keys)); |
| 2096 | skb_flow_dissector_init(&flow_keys_basic_dissector, |
| 2097 | flow_keys_basic_dissector_keys, |
| 2098 | ARRAY_SIZE(flow_keys_basic_dissector_keys)); |
| 2099 | return 0; |
| 2100 | } |
| 2101 | core_initcall(init_default_flow_dissectors); |