ipv4: Silence suspicious RCU usage warning
[linux-block.git] / net / core / dev.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/bpf.h>
95#include <linux/bpf_trace.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <net/busy_poll.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/dst_metadata.h>
103#include <net/pkt_sched.h>
104#include <net/pkt_cls.h>
105#include <net/checksum.h>
106#include <net/xfrm.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/module.h>
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
113#include <net/iw_handler.h>
114#include <asm/current.h>
115#include <linux/audit.h>
116#include <linux/dmaengine.h>
117#include <linux/err.h>
118#include <linux/ctype.h>
119#include <linux/if_arp.h>
120#include <linux/if_vlan.h>
121#include <linux/ip.h>
122#include <net/ip.h>
123#include <net/mpls.h>
124#include <linux/ipv6.h>
125#include <linux/in.h>
126#include <linux/jhash.h>
127#include <linux/random.h>
128#include <trace/events/napi.h>
129#include <trace/events/net.h>
130#include <trace/events/skb.h>
131#include <linux/inetdevice.h>
132#include <linux/cpu_rmap.h>
133#include <linux/static_key.h>
134#include <linux/hashtable.h>
135#include <linux/vmalloc.h>
136#include <linux/if_macvlan.h>
137#include <linux/errqueue.h>
138#include <linux/hrtimer.h>
139#include <linux/netfilter_ingress.h>
140#include <linux/crash_dump.h>
141#include <linux/sctp.h>
142#include <net/udp_tunnel.h>
143#include <linux/net_namespace.h>
144#include <linux/indirect_call_wrapper.h>
145#include <net/devlink.h>
146#include <linux/pm_runtime.h>
147
148#include "net-sysfs.h"
149
150#define MAX_GRO_SKBS 8
151
152/* This should be increased if a protocol with a bigger head is added. */
153#define GRO_MAX_HEAD (MAX_HEADER + 128)
154
155static DEFINE_SPINLOCK(ptype_lock);
156static DEFINE_SPINLOCK(offload_lock);
157struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158struct list_head ptype_all __read_mostly; /* Taps */
159static struct list_head offload_base __read_mostly;
160
161static int netif_rx_internal(struct sk_buff *skb);
162static int call_netdevice_notifiers_info(unsigned long val,
163 struct netdev_notifier_info *info);
164static int call_netdevice_notifiers_extack(unsigned long val,
165 struct net_device *dev,
166 struct netlink_ext_ack *extack);
167static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169/*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188DEFINE_RWLOCK(dev_base_lock);
189EXPORT_SYMBOL(dev_base_lock);
190
191static DEFINE_MUTEX(ifalias_mutex);
192
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
196static unsigned int napi_gen_id = NR_CPUS;
197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199static DECLARE_RWSEM(devnet_rename_sem);
200
201static inline void dev_base_seq_inc(struct net *net)
202{
203 while (++net->dev_base_seq == 0)
204 ;
205}
206
207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208{
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212}
213
214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215{
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217}
218
219static inline void rps_lock(struct softnet_data *sd)
220{
221#ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223#endif
224}
225
226static inline void rps_unlock(struct softnet_data *sd)
227{
228#ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230#endif
231}
232
233static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234 const char *name)
235{
236 struct netdev_name_node *name_node;
237
238 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239 if (!name_node)
240 return NULL;
241 INIT_HLIST_NODE(&name_node->hlist);
242 name_node->dev = dev;
243 name_node->name = name;
244 return name_node;
245}
246
247static struct netdev_name_node *
248netdev_name_node_head_alloc(struct net_device *dev)
249{
250 struct netdev_name_node *name_node;
251
252 name_node = netdev_name_node_alloc(dev, dev->name);
253 if (!name_node)
254 return NULL;
255 INIT_LIST_HEAD(&name_node->list);
256 return name_node;
257}
258
259static void netdev_name_node_free(struct netdev_name_node *name_node)
260{
261 kfree(name_node);
262}
263
264static void netdev_name_node_add(struct net *net,
265 struct netdev_name_node *name_node)
266{
267 hlist_add_head_rcu(&name_node->hlist,
268 dev_name_hash(net, name_node->name));
269}
270
271static void netdev_name_node_del(struct netdev_name_node *name_node)
272{
273 hlist_del_rcu(&name_node->hlist);
274}
275
276static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277 const char *name)
278{
279 struct hlist_head *head = dev_name_hash(net, name);
280 struct netdev_name_node *name_node;
281
282 hlist_for_each_entry(name_node, head, hlist)
283 if (!strcmp(name_node->name, name))
284 return name_node;
285 return NULL;
286}
287
288static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289 const char *name)
290{
291 struct hlist_head *head = dev_name_hash(net, name);
292 struct netdev_name_node *name_node;
293
294 hlist_for_each_entry_rcu(name_node, head, hlist)
295 if (!strcmp(name_node->name, name))
296 return name_node;
297 return NULL;
298}
299
300int netdev_name_node_alt_create(struct net_device *dev, const char *name)
301{
302 struct netdev_name_node *name_node;
303 struct net *net = dev_net(dev);
304
305 name_node = netdev_name_node_lookup(net, name);
306 if (name_node)
307 return -EEXIST;
308 name_node = netdev_name_node_alloc(dev, name);
309 if (!name_node)
310 return -ENOMEM;
311 netdev_name_node_add(net, name_node);
312 /* The node that holds dev->name acts as a head of per-device list. */
313 list_add_tail(&name_node->list, &dev->name_node->list);
314
315 return 0;
316}
317EXPORT_SYMBOL(netdev_name_node_alt_create);
318
319static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
320{
321 list_del(&name_node->list);
322 netdev_name_node_del(name_node);
323 kfree(name_node->name);
324 netdev_name_node_free(name_node);
325}
326
327int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (!name_node)
334 return -ENOENT;
335 /* lookup might have found our primary name or a name belonging
336 * to another device.
337 */
338 if (name_node == dev->name_node || name_node->dev != dev)
339 return -EINVAL;
340
341 __netdev_name_node_alt_destroy(name_node);
342
343 return 0;
344}
345EXPORT_SYMBOL(netdev_name_node_alt_destroy);
346
347static void netdev_name_node_alt_flush(struct net_device *dev)
348{
349 struct netdev_name_node *name_node, *tmp;
350
351 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
352 __netdev_name_node_alt_destroy(name_node);
353}
354
355/* Device list insertion */
356static void list_netdevice(struct net_device *dev)
357{
358 struct net *net = dev_net(dev);
359
360 ASSERT_RTNL();
361
362 write_lock_bh(&dev_base_lock);
363 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
364 netdev_name_node_add(net, dev->name_node);
365 hlist_add_head_rcu(&dev->index_hlist,
366 dev_index_hash(net, dev->ifindex));
367 write_unlock_bh(&dev_base_lock);
368
369 dev_base_seq_inc(net);
370}
371
372/* Device list removal
373 * caller must respect a RCU grace period before freeing/reusing dev
374 */
375static void unlist_netdevice(struct net_device *dev)
376{
377 ASSERT_RTNL();
378
379 /* Unlink dev from the device chain */
380 write_lock_bh(&dev_base_lock);
381 list_del_rcu(&dev->dev_list);
382 netdev_name_node_del(dev->name_node);
383 hlist_del_rcu(&dev->index_hlist);
384 write_unlock_bh(&dev_base_lock);
385
386 dev_base_seq_inc(dev_net(dev));
387}
388
389/*
390 * Our notifier list
391 */
392
393static RAW_NOTIFIER_HEAD(netdev_chain);
394
395/*
396 * Device drivers call our routines to queue packets here. We empty the
397 * queue in the local softnet handler.
398 */
399
400DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
401EXPORT_PER_CPU_SYMBOL(softnet_data);
402
403#ifdef CONFIG_LOCKDEP
404/*
405 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
406 * according to dev->type
407 */
408static const unsigned short netdev_lock_type[] = {
409 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
410 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
411 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
412 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
413 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
414 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
415 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
416 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
417 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
418 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
419 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
420 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
421 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
422 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
423 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
424
425static const char *const netdev_lock_name[] = {
426 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
427 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
428 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
429 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
430 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
431 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
432 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
433 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
434 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
435 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
436 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
437 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
438 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
439 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
440 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
441
442static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
443static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
444
445static inline unsigned short netdev_lock_pos(unsigned short dev_type)
446{
447 int i;
448
449 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
450 if (netdev_lock_type[i] == dev_type)
451 return i;
452 /* the last key is used by default */
453 return ARRAY_SIZE(netdev_lock_type) - 1;
454}
455
456static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
457 unsigned short dev_type)
458{
459 int i;
460
461 i = netdev_lock_pos(dev_type);
462 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
463 netdev_lock_name[i]);
464}
465
466static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
467{
468 int i;
469
470 i = netdev_lock_pos(dev->type);
471 lockdep_set_class_and_name(&dev->addr_list_lock,
472 &netdev_addr_lock_key[i],
473 netdev_lock_name[i]);
474}
475#else
476static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
477 unsigned short dev_type)
478{
479}
480
481static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
482{
483}
484#endif
485
486/*******************************************************************************
487 *
488 * Protocol management and registration routines
489 *
490 *******************************************************************************/
491
492
493/*
494 * Add a protocol ID to the list. Now that the input handler is
495 * smarter we can dispense with all the messy stuff that used to be
496 * here.
497 *
498 * BEWARE!!! Protocol handlers, mangling input packets,
499 * MUST BE last in hash buckets and checking protocol handlers
500 * MUST start from promiscuous ptype_all chain in net_bh.
501 * It is true now, do not change it.
502 * Explanation follows: if protocol handler, mangling packet, will
503 * be the first on list, it is not able to sense, that packet
504 * is cloned and should be copied-on-write, so that it will
505 * change it and subsequent readers will get broken packet.
506 * --ANK (980803)
507 */
508
509static inline struct list_head *ptype_head(const struct packet_type *pt)
510{
511 if (pt->type == htons(ETH_P_ALL))
512 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
513 else
514 return pt->dev ? &pt->dev->ptype_specific :
515 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
516}
517
518/**
519 * dev_add_pack - add packet handler
520 * @pt: packet type declaration
521 *
522 * Add a protocol handler to the networking stack. The passed &packet_type
523 * is linked into kernel lists and may not be freed until it has been
524 * removed from the kernel lists.
525 *
526 * This call does not sleep therefore it can not
527 * guarantee all CPU's that are in middle of receiving packets
528 * will see the new packet type (until the next received packet).
529 */
530
531void dev_add_pack(struct packet_type *pt)
532{
533 struct list_head *head = ptype_head(pt);
534
535 spin_lock(&ptype_lock);
536 list_add_rcu(&pt->list, head);
537 spin_unlock(&ptype_lock);
538}
539EXPORT_SYMBOL(dev_add_pack);
540
541/**
542 * __dev_remove_pack - remove packet handler
543 * @pt: packet type declaration
544 *
545 * Remove a protocol handler that was previously added to the kernel
546 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
547 * from the kernel lists and can be freed or reused once this function
548 * returns.
549 *
550 * The packet type might still be in use by receivers
551 * and must not be freed until after all the CPU's have gone
552 * through a quiescent state.
553 */
554void __dev_remove_pack(struct packet_type *pt)
555{
556 struct list_head *head = ptype_head(pt);
557 struct packet_type *pt1;
558
559 spin_lock(&ptype_lock);
560
561 list_for_each_entry(pt1, head, list) {
562 if (pt == pt1) {
563 list_del_rcu(&pt->list);
564 goto out;
565 }
566 }
567
568 pr_warn("dev_remove_pack: %p not found\n", pt);
569out:
570 spin_unlock(&ptype_lock);
571}
572EXPORT_SYMBOL(__dev_remove_pack);
573
574/**
575 * dev_remove_pack - remove packet handler
576 * @pt: packet type declaration
577 *
578 * Remove a protocol handler that was previously added to the kernel
579 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
580 * from the kernel lists and can be freed or reused once this function
581 * returns.
582 *
583 * This call sleeps to guarantee that no CPU is looking at the packet
584 * type after return.
585 */
586void dev_remove_pack(struct packet_type *pt)
587{
588 __dev_remove_pack(pt);
589
590 synchronize_net();
591}
592EXPORT_SYMBOL(dev_remove_pack);
593
594
595/**
596 * dev_add_offload - register offload handlers
597 * @po: protocol offload declaration
598 *
599 * Add protocol offload handlers to the networking stack. The passed
600 * &proto_offload is linked into kernel lists and may not be freed until
601 * it has been removed from the kernel lists.
602 *
603 * This call does not sleep therefore it can not
604 * guarantee all CPU's that are in middle of receiving packets
605 * will see the new offload handlers (until the next received packet).
606 */
607void dev_add_offload(struct packet_offload *po)
608{
609 struct packet_offload *elem;
610
611 spin_lock(&offload_lock);
612 list_for_each_entry(elem, &offload_base, list) {
613 if (po->priority < elem->priority)
614 break;
615 }
616 list_add_rcu(&po->list, elem->list.prev);
617 spin_unlock(&offload_lock);
618}
619EXPORT_SYMBOL(dev_add_offload);
620
621/**
622 * __dev_remove_offload - remove offload handler
623 * @po: packet offload declaration
624 *
625 * Remove a protocol offload handler that was previously added to the
626 * kernel offload handlers by dev_add_offload(). The passed &offload_type
627 * is removed from the kernel lists and can be freed or reused once this
628 * function returns.
629 *
630 * The packet type might still be in use by receivers
631 * and must not be freed until after all the CPU's have gone
632 * through a quiescent state.
633 */
634static void __dev_remove_offload(struct packet_offload *po)
635{
636 struct list_head *head = &offload_base;
637 struct packet_offload *po1;
638
639 spin_lock(&offload_lock);
640
641 list_for_each_entry(po1, head, list) {
642 if (po == po1) {
643 list_del_rcu(&po->list);
644 goto out;
645 }
646 }
647
648 pr_warn("dev_remove_offload: %p not found\n", po);
649out:
650 spin_unlock(&offload_lock);
651}
652
653/**
654 * dev_remove_offload - remove packet offload handler
655 * @po: packet offload declaration
656 *
657 * Remove a packet offload handler that was previously added to the kernel
658 * offload handlers by dev_add_offload(). The passed &offload_type is
659 * removed from the kernel lists and can be freed or reused once this
660 * function returns.
661 *
662 * This call sleeps to guarantee that no CPU is looking at the packet
663 * type after return.
664 */
665void dev_remove_offload(struct packet_offload *po)
666{
667 __dev_remove_offload(po);
668
669 synchronize_net();
670}
671EXPORT_SYMBOL(dev_remove_offload);
672
673/******************************************************************************
674 *
675 * Device Boot-time Settings Routines
676 *
677 ******************************************************************************/
678
679/* Boot time configuration table */
680static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
681
682/**
683 * netdev_boot_setup_add - add new setup entry
684 * @name: name of the device
685 * @map: configured settings for the device
686 *
687 * Adds new setup entry to the dev_boot_setup list. The function
688 * returns 0 on error and 1 on success. This is a generic routine to
689 * all netdevices.
690 */
691static int netdev_boot_setup_add(char *name, struct ifmap *map)
692{
693 struct netdev_boot_setup *s;
694 int i;
695
696 s = dev_boot_setup;
697 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
698 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
699 memset(s[i].name, 0, sizeof(s[i].name));
700 strlcpy(s[i].name, name, IFNAMSIZ);
701 memcpy(&s[i].map, map, sizeof(s[i].map));
702 break;
703 }
704 }
705
706 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
707}
708
709/**
710 * netdev_boot_setup_check - check boot time settings
711 * @dev: the netdevice
712 *
713 * Check boot time settings for the device.
714 * The found settings are set for the device to be used
715 * later in the device probing.
716 * Returns 0 if no settings found, 1 if they are.
717 */
718int netdev_boot_setup_check(struct net_device *dev)
719{
720 struct netdev_boot_setup *s = dev_boot_setup;
721 int i;
722
723 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
724 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
725 !strcmp(dev->name, s[i].name)) {
726 dev->irq = s[i].map.irq;
727 dev->base_addr = s[i].map.base_addr;
728 dev->mem_start = s[i].map.mem_start;
729 dev->mem_end = s[i].map.mem_end;
730 return 1;
731 }
732 }
733 return 0;
734}
735EXPORT_SYMBOL(netdev_boot_setup_check);
736
737
738/**
739 * netdev_boot_base - get address from boot time settings
740 * @prefix: prefix for network device
741 * @unit: id for network device
742 *
743 * Check boot time settings for the base address of device.
744 * The found settings are set for the device to be used
745 * later in the device probing.
746 * Returns 0 if no settings found.
747 */
748unsigned long netdev_boot_base(const char *prefix, int unit)
749{
750 const struct netdev_boot_setup *s = dev_boot_setup;
751 char name[IFNAMSIZ];
752 int i;
753
754 sprintf(name, "%s%d", prefix, unit);
755
756 /*
757 * If device already registered then return base of 1
758 * to indicate not to probe for this interface
759 */
760 if (__dev_get_by_name(&init_net, name))
761 return 1;
762
763 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
764 if (!strcmp(name, s[i].name))
765 return s[i].map.base_addr;
766 return 0;
767}
768
769/*
770 * Saves at boot time configured settings for any netdevice.
771 */
772int __init netdev_boot_setup(char *str)
773{
774 int ints[5];
775 struct ifmap map;
776
777 str = get_options(str, ARRAY_SIZE(ints), ints);
778 if (!str || !*str)
779 return 0;
780
781 /* Save settings */
782 memset(&map, 0, sizeof(map));
783 if (ints[0] > 0)
784 map.irq = ints[1];
785 if (ints[0] > 1)
786 map.base_addr = ints[2];
787 if (ints[0] > 2)
788 map.mem_start = ints[3];
789 if (ints[0] > 3)
790 map.mem_end = ints[4];
791
792 /* Add new entry to the list */
793 return netdev_boot_setup_add(str, &map);
794}
795
796__setup("netdev=", netdev_boot_setup);
797
798/*******************************************************************************
799 *
800 * Device Interface Subroutines
801 *
802 *******************************************************************************/
803
804/**
805 * dev_get_iflink - get 'iflink' value of a interface
806 * @dev: targeted interface
807 *
808 * Indicates the ifindex the interface is linked to.
809 * Physical interfaces have the same 'ifindex' and 'iflink' values.
810 */
811
812int dev_get_iflink(const struct net_device *dev)
813{
814 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
815 return dev->netdev_ops->ndo_get_iflink(dev);
816
817 return dev->ifindex;
818}
819EXPORT_SYMBOL(dev_get_iflink);
820
821/**
822 * dev_fill_metadata_dst - Retrieve tunnel egress information.
823 * @dev: targeted interface
824 * @skb: The packet.
825 *
826 * For better visibility of tunnel traffic OVS needs to retrieve
827 * egress tunnel information for a packet. Following API allows
828 * user to get this info.
829 */
830int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
831{
832 struct ip_tunnel_info *info;
833
834 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
835 return -EINVAL;
836
837 info = skb_tunnel_info_unclone(skb);
838 if (!info)
839 return -ENOMEM;
840 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
841 return -EINVAL;
842
843 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
844}
845EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
846
847/**
848 * __dev_get_by_name - find a device by its name
849 * @net: the applicable net namespace
850 * @name: name to find
851 *
852 * Find an interface by name. Must be called under RTNL semaphore
853 * or @dev_base_lock. If the name is found a pointer to the device
854 * is returned. If the name is not found then %NULL is returned. The
855 * reference counters are not incremented so the caller must be
856 * careful with locks.
857 */
858
859struct net_device *__dev_get_by_name(struct net *net, const char *name)
860{
861 struct netdev_name_node *node_name;
862
863 node_name = netdev_name_node_lookup(net, name);
864 return node_name ? node_name->dev : NULL;
865}
866EXPORT_SYMBOL(__dev_get_by_name);
867
868/**
869 * dev_get_by_name_rcu - find a device by its name
870 * @net: the applicable net namespace
871 * @name: name to find
872 *
873 * Find an interface by name.
874 * If the name is found a pointer to the device is returned.
875 * If the name is not found then %NULL is returned.
876 * The reference counters are not incremented so the caller must be
877 * careful with locks. The caller must hold RCU lock.
878 */
879
880struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
881{
882 struct netdev_name_node *node_name;
883
884 node_name = netdev_name_node_lookup_rcu(net, name);
885 return node_name ? node_name->dev : NULL;
886}
887EXPORT_SYMBOL(dev_get_by_name_rcu);
888
889/**
890 * dev_get_by_name - find a device by its name
891 * @net: the applicable net namespace
892 * @name: name to find
893 *
894 * Find an interface by name. This can be called from any
895 * context and does its own locking. The returned handle has
896 * the usage count incremented and the caller must use dev_put() to
897 * release it when it is no longer needed. %NULL is returned if no
898 * matching device is found.
899 */
900
901struct net_device *dev_get_by_name(struct net *net, const char *name)
902{
903 struct net_device *dev;
904
905 rcu_read_lock();
906 dev = dev_get_by_name_rcu(net, name);
907 if (dev)
908 dev_hold(dev);
909 rcu_read_unlock();
910 return dev;
911}
912EXPORT_SYMBOL(dev_get_by_name);
913
914/**
915 * __dev_get_by_index - find a device by its ifindex
916 * @net: the applicable net namespace
917 * @ifindex: index of device
918 *
919 * Search for an interface by index. Returns %NULL if the device
920 * is not found or a pointer to the device. The device has not
921 * had its reference counter increased so the caller must be careful
922 * about locking. The caller must hold either the RTNL semaphore
923 * or @dev_base_lock.
924 */
925
926struct net_device *__dev_get_by_index(struct net *net, int ifindex)
927{
928 struct net_device *dev;
929 struct hlist_head *head = dev_index_hash(net, ifindex);
930
931 hlist_for_each_entry(dev, head, index_hlist)
932 if (dev->ifindex == ifindex)
933 return dev;
934
935 return NULL;
936}
937EXPORT_SYMBOL(__dev_get_by_index);
938
939/**
940 * dev_get_by_index_rcu - find a device by its ifindex
941 * @net: the applicable net namespace
942 * @ifindex: index of device
943 *
944 * Search for an interface by index. Returns %NULL if the device
945 * is not found or a pointer to the device. The device has not
946 * had its reference counter increased so the caller must be careful
947 * about locking. The caller must hold RCU lock.
948 */
949
950struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
951{
952 struct net_device *dev;
953 struct hlist_head *head = dev_index_hash(net, ifindex);
954
955 hlist_for_each_entry_rcu(dev, head, index_hlist)
956 if (dev->ifindex == ifindex)
957 return dev;
958
959 return NULL;
960}
961EXPORT_SYMBOL(dev_get_by_index_rcu);
962
963
964/**
965 * dev_get_by_index - find a device by its ifindex
966 * @net: the applicable net namespace
967 * @ifindex: index of device
968 *
969 * Search for an interface by index. Returns NULL if the device
970 * is not found or a pointer to the device. The device returned has
971 * had a reference added and the pointer is safe until the user calls
972 * dev_put to indicate they have finished with it.
973 */
974
975struct net_device *dev_get_by_index(struct net *net, int ifindex)
976{
977 struct net_device *dev;
978
979 rcu_read_lock();
980 dev = dev_get_by_index_rcu(net, ifindex);
981 if (dev)
982 dev_hold(dev);
983 rcu_read_unlock();
984 return dev;
985}
986EXPORT_SYMBOL(dev_get_by_index);
987
988/**
989 * dev_get_by_napi_id - find a device by napi_id
990 * @napi_id: ID of the NAPI struct
991 *
992 * Search for an interface by NAPI ID. Returns %NULL if the device
993 * is not found or a pointer to the device. The device has not had
994 * its reference counter increased so the caller must be careful
995 * about locking. The caller must hold RCU lock.
996 */
997
998struct net_device *dev_get_by_napi_id(unsigned int napi_id)
999{
1000 struct napi_struct *napi;
1001
1002 WARN_ON_ONCE(!rcu_read_lock_held());
1003
1004 if (napi_id < MIN_NAPI_ID)
1005 return NULL;
1006
1007 napi = napi_by_id(napi_id);
1008
1009 return napi ? napi->dev : NULL;
1010}
1011EXPORT_SYMBOL(dev_get_by_napi_id);
1012
1013/**
1014 * netdev_get_name - get a netdevice name, knowing its ifindex.
1015 * @net: network namespace
1016 * @name: a pointer to the buffer where the name will be stored.
1017 * @ifindex: the ifindex of the interface to get the name from.
1018 */
1019int netdev_get_name(struct net *net, char *name, int ifindex)
1020{
1021 struct net_device *dev;
1022 int ret;
1023
1024 down_read(&devnet_rename_sem);
1025 rcu_read_lock();
1026
1027 dev = dev_get_by_index_rcu(net, ifindex);
1028 if (!dev) {
1029 ret = -ENODEV;
1030 goto out;
1031 }
1032
1033 strcpy(name, dev->name);
1034
1035 ret = 0;
1036out:
1037 rcu_read_unlock();
1038 up_read(&devnet_rename_sem);
1039 return ret;
1040}
1041
1042/**
1043 * dev_getbyhwaddr_rcu - find a device by its hardware address
1044 * @net: the applicable net namespace
1045 * @type: media type of device
1046 * @ha: hardware address
1047 *
1048 * Search for an interface by MAC address. Returns NULL if the device
1049 * is not found or a pointer to the device.
1050 * The caller must hold RCU or RTNL.
1051 * The returned device has not had its ref count increased
1052 * and the caller must therefore be careful about locking
1053 *
1054 */
1055
1056struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1057 const char *ha)
1058{
1059 struct net_device *dev;
1060
1061 for_each_netdev_rcu(net, dev)
1062 if (dev->type == type &&
1063 !memcmp(dev->dev_addr, ha, dev->addr_len))
1064 return dev;
1065
1066 return NULL;
1067}
1068EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1069
1070struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1071{
1072 struct net_device *dev;
1073
1074 ASSERT_RTNL();
1075 for_each_netdev(net, dev)
1076 if (dev->type == type)
1077 return dev;
1078
1079 return NULL;
1080}
1081EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1082
1083struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1084{
1085 struct net_device *dev, *ret = NULL;
1086
1087 rcu_read_lock();
1088 for_each_netdev_rcu(net, dev)
1089 if (dev->type == type) {
1090 dev_hold(dev);
1091 ret = dev;
1092 break;
1093 }
1094 rcu_read_unlock();
1095 return ret;
1096}
1097EXPORT_SYMBOL(dev_getfirstbyhwtype);
1098
1099/**
1100 * __dev_get_by_flags - find any device with given flags
1101 * @net: the applicable net namespace
1102 * @if_flags: IFF_* values
1103 * @mask: bitmask of bits in if_flags to check
1104 *
1105 * Search for any interface with the given flags. Returns NULL if a device
1106 * is not found or a pointer to the device. Must be called inside
1107 * rtnl_lock(), and result refcount is unchanged.
1108 */
1109
1110struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1111 unsigned short mask)
1112{
1113 struct net_device *dev, *ret;
1114
1115 ASSERT_RTNL();
1116
1117 ret = NULL;
1118 for_each_netdev(net, dev) {
1119 if (((dev->flags ^ if_flags) & mask) == 0) {
1120 ret = dev;
1121 break;
1122 }
1123 }
1124 return ret;
1125}
1126EXPORT_SYMBOL(__dev_get_by_flags);
1127
1128/**
1129 * dev_valid_name - check if name is okay for network device
1130 * @name: name string
1131 *
1132 * Network device names need to be valid file names to
1133 * to allow sysfs to work. We also disallow any kind of
1134 * whitespace.
1135 */
1136bool dev_valid_name(const char *name)
1137{
1138 if (*name == '\0')
1139 return false;
1140 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1141 return false;
1142 if (!strcmp(name, ".") || !strcmp(name, ".."))
1143 return false;
1144
1145 while (*name) {
1146 if (*name == '/' || *name == ':' || isspace(*name))
1147 return false;
1148 name++;
1149 }
1150 return true;
1151}
1152EXPORT_SYMBOL(dev_valid_name);
1153
1154/**
1155 * __dev_alloc_name - allocate a name for a device
1156 * @net: network namespace to allocate the device name in
1157 * @name: name format string
1158 * @buf: scratch buffer and result name string
1159 *
1160 * Passed a format string - eg "lt%d" it will try and find a suitable
1161 * id. It scans list of devices to build up a free map, then chooses
1162 * the first empty slot. The caller must hold the dev_base or rtnl lock
1163 * while allocating the name and adding the device in order to avoid
1164 * duplicates.
1165 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1166 * Returns the number of the unit assigned or a negative errno code.
1167 */
1168
1169static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1170{
1171 int i = 0;
1172 const char *p;
1173 const int max_netdevices = 8*PAGE_SIZE;
1174 unsigned long *inuse;
1175 struct net_device *d;
1176
1177 if (!dev_valid_name(name))
1178 return -EINVAL;
1179
1180 p = strchr(name, '%');
1181 if (p) {
1182 /*
1183 * Verify the string as this thing may have come from
1184 * the user. There must be either one "%d" and no other "%"
1185 * characters.
1186 */
1187 if (p[1] != 'd' || strchr(p + 2, '%'))
1188 return -EINVAL;
1189
1190 /* Use one page as a bit array of possible slots */
1191 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1192 if (!inuse)
1193 return -ENOMEM;
1194
1195 for_each_netdev(net, d) {
1196 if (!sscanf(d->name, name, &i))
1197 continue;
1198 if (i < 0 || i >= max_netdevices)
1199 continue;
1200
1201 /* avoid cases where sscanf is not exact inverse of printf */
1202 snprintf(buf, IFNAMSIZ, name, i);
1203 if (!strncmp(buf, d->name, IFNAMSIZ))
1204 set_bit(i, inuse);
1205 }
1206
1207 i = find_first_zero_bit(inuse, max_netdevices);
1208 free_page((unsigned long) inuse);
1209 }
1210
1211 snprintf(buf, IFNAMSIZ, name, i);
1212 if (!__dev_get_by_name(net, buf))
1213 return i;
1214
1215 /* It is possible to run out of possible slots
1216 * when the name is long and there isn't enough space left
1217 * for the digits, or if all bits are used.
1218 */
1219 return -ENFILE;
1220}
1221
1222static int dev_alloc_name_ns(struct net *net,
1223 struct net_device *dev,
1224 const char *name)
1225{
1226 char buf[IFNAMSIZ];
1227 int ret;
1228
1229 BUG_ON(!net);
1230 ret = __dev_alloc_name(net, name, buf);
1231 if (ret >= 0)
1232 strlcpy(dev->name, buf, IFNAMSIZ);
1233 return ret;
1234}
1235
1236/**
1237 * dev_alloc_name - allocate a name for a device
1238 * @dev: device
1239 * @name: name format string
1240 *
1241 * Passed a format string - eg "lt%d" it will try and find a suitable
1242 * id. It scans list of devices to build up a free map, then chooses
1243 * the first empty slot. The caller must hold the dev_base or rtnl lock
1244 * while allocating the name and adding the device in order to avoid
1245 * duplicates.
1246 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1247 * Returns the number of the unit assigned or a negative errno code.
1248 */
1249
1250int dev_alloc_name(struct net_device *dev, const char *name)
1251{
1252 return dev_alloc_name_ns(dev_net(dev), dev, name);
1253}
1254EXPORT_SYMBOL(dev_alloc_name);
1255
1256static int dev_get_valid_name(struct net *net, struct net_device *dev,
1257 const char *name)
1258{
1259 BUG_ON(!net);
1260
1261 if (!dev_valid_name(name))
1262 return -EINVAL;
1263
1264 if (strchr(name, '%'))
1265 return dev_alloc_name_ns(net, dev, name);
1266 else if (__dev_get_by_name(net, name))
1267 return -EEXIST;
1268 else if (dev->name != name)
1269 strlcpy(dev->name, name, IFNAMSIZ);
1270
1271 return 0;
1272}
1273
1274/**
1275 * dev_change_name - change name of a device
1276 * @dev: device
1277 * @newname: name (or format string) must be at least IFNAMSIZ
1278 *
1279 * Change name of a device, can pass format strings "eth%d".
1280 * for wildcarding.
1281 */
1282int dev_change_name(struct net_device *dev, const char *newname)
1283{
1284 unsigned char old_assign_type;
1285 char oldname[IFNAMSIZ];
1286 int err = 0;
1287 int ret;
1288 struct net *net;
1289
1290 ASSERT_RTNL();
1291 BUG_ON(!dev_net(dev));
1292
1293 net = dev_net(dev);
1294
1295 /* Some auto-enslaved devices e.g. failover slaves are
1296 * special, as userspace might rename the device after
1297 * the interface had been brought up and running since
1298 * the point kernel initiated auto-enslavement. Allow
1299 * live name change even when these slave devices are
1300 * up and running.
1301 *
1302 * Typically, users of these auto-enslaving devices
1303 * don't actually care about slave name change, as
1304 * they are supposed to operate on master interface
1305 * directly.
1306 */
1307 if (dev->flags & IFF_UP &&
1308 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1309 return -EBUSY;
1310
1311 down_write(&devnet_rename_sem);
1312
1313 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1314 up_write(&devnet_rename_sem);
1315 return 0;
1316 }
1317
1318 memcpy(oldname, dev->name, IFNAMSIZ);
1319
1320 err = dev_get_valid_name(net, dev, newname);
1321 if (err < 0) {
1322 up_write(&devnet_rename_sem);
1323 return err;
1324 }
1325
1326 if (oldname[0] && !strchr(oldname, '%'))
1327 netdev_info(dev, "renamed from %s\n", oldname);
1328
1329 old_assign_type = dev->name_assign_type;
1330 dev->name_assign_type = NET_NAME_RENAMED;
1331
1332rollback:
1333 ret = device_rename(&dev->dev, dev->name);
1334 if (ret) {
1335 memcpy(dev->name, oldname, IFNAMSIZ);
1336 dev->name_assign_type = old_assign_type;
1337 up_write(&devnet_rename_sem);
1338 return ret;
1339 }
1340
1341 up_write(&devnet_rename_sem);
1342
1343 netdev_adjacent_rename_links(dev, oldname);
1344
1345 write_lock_bh(&dev_base_lock);
1346 netdev_name_node_del(dev->name_node);
1347 write_unlock_bh(&dev_base_lock);
1348
1349 synchronize_rcu();
1350
1351 write_lock_bh(&dev_base_lock);
1352 netdev_name_node_add(net, dev->name_node);
1353 write_unlock_bh(&dev_base_lock);
1354
1355 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1356 ret = notifier_to_errno(ret);
1357
1358 if (ret) {
1359 /* err >= 0 after dev_alloc_name() or stores the first errno */
1360 if (err >= 0) {
1361 err = ret;
1362 down_write(&devnet_rename_sem);
1363 memcpy(dev->name, oldname, IFNAMSIZ);
1364 memcpy(oldname, newname, IFNAMSIZ);
1365 dev->name_assign_type = old_assign_type;
1366 old_assign_type = NET_NAME_RENAMED;
1367 goto rollback;
1368 } else {
1369 pr_err("%s: name change rollback failed: %d\n",
1370 dev->name, ret);
1371 }
1372 }
1373
1374 return err;
1375}
1376
1377/**
1378 * dev_set_alias - change ifalias of a device
1379 * @dev: device
1380 * @alias: name up to IFALIASZ
1381 * @len: limit of bytes to copy from info
1382 *
1383 * Set ifalias for a device,
1384 */
1385int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1386{
1387 struct dev_ifalias *new_alias = NULL;
1388
1389 if (len >= IFALIASZ)
1390 return -EINVAL;
1391
1392 if (len) {
1393 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1394 if (!new_alias)
1395 return -ENOMEM;
1396
1397 memcpy(new_alias->ifalias, alias, len);
1398 new_alias->ifalias[len] = 0;
1399 }
1400
1401 mutex_lock(&ifalias_mutex);
1402 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1403 mutex_is_locked(&ifalias_mutex));
1404 mutex_unlock(&ifalias_mutex);
1405
1406 if (new_alias)
1407 kfree_rcu(new_alias, rcuhead);
1408
1409 return len;
1410}
1411EXPORT_SYMBOL(dev_set_alias);
1412
1413/**
1414 * dev_get_alias - get ifalias of a device
1415 * @dev: device
1416 * @name: buffer to store name of ifalias
1417 * @len: size of buffer
1418 *
1419 * get ifalias for a device. Caller must make sure dev cannot go
1420 * away, e.g. rcu read lock or own a reference count to device.
1421 */
1422int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1423{
1424 const struct dev_ifalias *alias;
1425 int ret = 0;
1426
1427 rcu_read_lock();
1428 alias = rcu_dereference(dev->ifalias);
1429 if (alias)
1430 ret = snprintf(name, len, "%s", alias->ifalias);
1431 rcu_read_unlock();
1432
1433 return ret;
1434}
1435
1436/**
1437 * netdev_features_change - device changes features
1438 * @dev: device to cause notification
1439 *
1440 * Called to indicate a device has changed features.
1441 */
1442void netdev_features_change(struct net_device *dev)
1443{
1444 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1445}
1446EXPORT_SYMBOL(netdev_features_change);
1447
1448/**
1449 * netdev_state_change - device changes state
1450 * @dev: device to cause notification
1451 *
1452 * Called to indicate a device has changed state. This function calls
1453 * the notifier chains for netdev_chain and sends a NEWLINK message
1454 * to the routing socket.
1455 */
1456void netdev_state_change(struct net_device *dev)
1457{
1458 if (dev->flags & IFF_UP) {
1459 struct netdev_notifier_change_info change_info = {
1460 .info.dev = dev,
1461 };
1462
1463 call_netdevice_notifiers_info(NETDEV_CHANGE,
1464 &change_info.info);
1465 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1466 }
1467}
1468EXPORT_SYMBOL(netdev_state_change);
1469
1470/**
1471 * netdev_notify_peers - notify network peers about existence of @dev
1472 * @dev: network device
1473 *
1474 * Generate traffic such that interested network peers are aware of
1475 * @dev, such as by generating a gratuitous ARP. This may be used when
1476 * a device wants to inform the rest of the network about some sort of
1477 * reconfiguration such as a failover event or virtual machine
1478 * migration.
1479 */
1480void netdev_notify_peers(struct net_device *dev)
1481{
1482 rtnl_lock();
1483 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1484 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1485 rtnl_unlock();
1486}
1487EXPORT_SYMBOL(netdev_notify_peers);
1488
1489static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1490{
1491 const struct net_device_ops *ops = dev->netdev_ops;
1492 int ret;
1493
1494 ASSERT_RTNL();
1495
1496 if (!netif_device_present(dev)) {
1497 /* may be detached because parent is runtime-suspended */
1498 if (dev->dev.parent)
1499 pm_runtime_resume(dev->dev.parent);
1500 if (!netif_device_present(dev))
1501 return -ENODEV;
1502 }
1503
1504 /* Block netpoll from trying to do any rx path servicing.
1505 * If we don't do this there is a chance ndo_poll_controller
1506 * or ndo_poll may be running while we open the device
1507 */
1508 netpoll_poll_disable(dev);
1509
1510 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1511 ret = notifier_to_errno(ret);
1512 if (ret)
1513 return ret;
1514
1515 set_bit(__LINK_STATE_START, &dev->state);
1516
1517 if (ops->ndo_validate_addr)
1518 ret = ops->ndo_validate_addr(dev);
1519
1520 if (!ret && ops->ndo_open)
1521 ret = ops->ndo_open(dev);
1522
1523 netpoll_poll_enable(dev);
1524
1525 if (ret)
1526 clear_bit(__LINK_STATE_START, &dev->state);
1527 else {
1528 dev->flags |= IFF_UP;
1529 dev_set_rx_mode(dev);
1530 dev_activate(dev);
1531 add_device_randomness(dev->dev_addr, dev->addr_len);
1532 }
1533
1534 return ret;
1535}
1536
1537/**
1538 * dev_open - prepare an interface for use.
1539 * @dev: device to open
1540 * @extack: netlink extended ack
1541 *
1542 * Takes a device from down to up state. The device's private open
1543 * function is invoked and then the multicast lists are loaded. Finally
1544 * the device is moved into the up state and a %NETDEV_UP message is
1545 * sent to the netdev notifier chain.
1546 *
1547 * Calling this function on an active interface is a nop. On a failure
1548 * a negative errno code is returned.
1549 */
1550int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1551{
1552 int ret;
1553
1554 if (dev->flags & IFF_UP)
1555 return 0;
1556
1557 ret = __dev_open(dev, extack);
1558 if (ret < 0)
1559 return ret;
1560
1561 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1562 call_netdevice_notifiers(NETDEV_UP, dev);
1563
1564 return ret;
1565}
1566EXPORT_SYMBOL(dev_open);
1567
1568static void __dev_close_many(struct list_head *head)
1569{
1570 struct net_device *dev;
1571
1572 ASSERT_RTNL();
1573 might_sleep();
1574
1575 list_for_each_entry(dev, head, close_list) {
1576 /* Temporarily disable netpoll until the interface is down */
1577 netpoll_poll_disable(dev);
1578
1579 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1580
1581 clear_bit(__LINK_STATE_START, &dev->state);
1582
1583 /* Synchronize to scheduled poll. We cannot touch poll list, it
1584 * can be even on different cpu. So just clear netif_running().
1585 *
1586 * dev->stop() will invoke napi_disable() on all of it's
1587 * napi_struct instances on this device.
1588 */
1589 smp_mb__after_atomic(); /* Commit netif_running(). */
1590 }
1591
1592 dev_deactivate_many(head);
1593
1594 list_for_each_entry(dev, head, close_list) {
1595 const struct net_device_ops *ops = dev->netdev_ops;
1596
1597 /*
1598 * Call the device specific close. This cannot fail.
1599 * Only if device is UP
1600 *
1601 * We allow it to be called even after a DETACH hot-plug
1602 * event.
1603 */
1604 if (ops->ndo_stop)
1605 ops->ndo_stop(dev);
1606
1607 dev->flags &= ~IFF_UP;
1608 netpoll_poll_enable(dev);
1609 }
1610}
1611
1612static void __dev_close(struct net_device *dev)
1613{
1614 LIST_HEAD(single);
1615
1616 list_add(&dev->close_list, &single);
1617 __dev_close_many(&single);
1618 list_del(&single);
1619}
1620
1621void dev_close_many(struct list_head *head, bool unlink)
1622{
1623 struct net_device *dev, *tmp;
1624
1625 /* Remove the devices that don't need to be closed */
1626 list_for_each_entry_safe(dev, tmp, head, close_list)
1627 if (!(dev->flags & IFF_UP))
1628 list_del_init(&dev->close_list);
1629
1630 __dev_close_many(head);
1631
1632 list_for_each_entry_safe(dev, tmp, head, close_list) {
1633 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1634 call_netdevice_notifiers(NETDEV_DOWN, dev);
1635 if (unlink)
1636 list_del_init(&dev->close_list);
1637 }
1638}
1639EXPORT_SYMBOL(dev_close_many);
1640
1641/**
1642 * dev_close - shutdown an interface.
1643 * @dev: device to shutdown
1644 *
1645 * This function moves an active device into down state. A
1646 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1647 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1648 * chain.
1649 */
1650void dev_close(struct net_device *dev)
1651{
1652 if (dev->flags & IFF_UP) {
1653 LIST_HEAD(single);
1654
1655 list_add(&dev->close_list, &single);
1656 dev_close_many(&single, true);
1657 list_del(&single);
1658 }
1659}
1660EXPORT_SYMBOL(dev_close);
1661
1662
1663/**
1664 * dev_disable_lro - disable Large Receive Offload on a device
1665 * @dev: device
1666 *
1667 * Disable Large Receive Offload (LRO) on a net device. Must be
1668 * called under RTNL. This is needed if received packets may be
1669 * forwarded to another interface.
1670 */
1671void dev_disable_lro(struct net_device *dev)
1672{
1673 struct net_device *lower_dev;
1674 struct list_head *iter;
1675
1676 dev->wanted_features &= ~NETIF_F_LRO;
1677 netdev_update_features(dev);
1678
1679 if (unlikely(dev->features & NETIF_F_LRO))
1680 netdev_WARN(dev, "failed to disable LRO!\n");
1681
1682 netdev_for_each_lower_dev(dev, lower_dev, iter)
1683 dev_disable_lro(lower_dev);
1684}
1685EXPORT_SYMBOL(dev_disable_lro);
1686
1687/**
1688 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1689 * @dev: device
1690 *
1691 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1692 * called under RTNL. This is needed if Generic XDP is installed on
1693 * the device.
1694 */
1695static void dev_disable_gro_hw(struct net_device *dev)
1696{
1697 dev->wanted_features &= ~NETIF_F_GRO_HW;
1698 netdev_update_features(dev);
1699
1700 if (unlikely(dev->features & NETIF_F_GRO_HW))
1701 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1702}
1703
1704const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1705{
1706#define N(val) \
1707 case NETDEV_##val: \
1708 return "NETDEV_" __stringify(val);
1709 switch (cmd) {
1710 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1711 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1712 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1713 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1714 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1715 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1716 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1717 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1718 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1719 N(PRE_CHANGEADDR)
1720 }
1721#undef N
1722 return "UNKNOWN_NETDEV_EVENT";
1723}
1724EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1725
1726static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1727 struct net_device *dev)
1728{
1729 struct netdev_notifier_info info = {
1730 .dev = dev,
1731 };
1732
1733 return nb->notifier_call(nb, val, &info);
1734}
1735
1736static int call_netdevice_register_notifiers(struct notifier_block *nb,
1737 struct net_device *dev)
1738{
1739 int err;
1740
1741 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1742 err = notifier_to_errno(err);
1743 if (err)
1744 return err;
1745
1746 if (!(dev->flags & IFF_UP))
1747 return 0;
1748
1749 call_netdevice_notifier(nb, NETDEV_UP, dev);
1750 return 0;
1751}
1752
1753static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1754 struct net_device *dev)
1755{
1756 if (dev->flags & IFF_UP) {
1757 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1758 dev);
1759 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1760 }
1761 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1762}
1763
1764static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1765 struct net *net)
1766{
1767 struct net_device *dev;
1768 int err;
1769
1770 for_each_netdev(net, dev) {
1771 err = call_netdevice_register_notifiers(nb, dev);
1772 if (err)
1773 goto rollback;
1774 }
1775 return 0;
1776
1777rollback:
1778 for_each_netdev_continue_reverse(net, dev)
1779 call_netdevice_unregister_notifiers(nb, dev);
1780 return err;
1781}
1782
1783static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1784 struct net *net)
1785{
1786 struct net_device *dev;
1787
1788 for_each_netdev(net, dev)
1789 call_netdevice_unregister_notifiers(nb, dev);
1790}
1791
1792static int dev_boot_phase = 1;
1793
1794/**
1795 * register_netdevice_notifier - register a network notifier block
1796 * @nb: notifier
1797 *
1798 * Register a notifier to be called when network device events occur.
1799 * The notifier passed is linked into the kernel structures and must
1800 * not be reused until it has been unregistered. A negative errno code
1801 * is returned on a failure.
1802 *
1803 * When registered all registration and up events are replayed
1804 * to the new notifier to allow device to have a race free
1805 * view of the network device list.
1806 */
1807
1808int register_netdevice_notifier(struct notifier_block *nb)
1809{
1810 struct net *net;
1811 int err;
1812
1813 /* Close race with setup_net() and cleanup_net() */
1814 down_write(&pernet_ops_rwsem);
1815 rtnl_lock();
1816 err = raw_notifier_chain_register(&netdev_chain, nb);
1817 if (err)
1818 goto unlock;
1819 if (dev_boot_phase)
1820 goto unlock;
1821 for_each_net(net) {
1822 err = call_netdevice_register_net_notifiers(nb, net);
1823 if (err)
1824 goto rollback;
1825 }
1826
1827unlock:
1828 rtnl_unlock();
1829 up_write(&pernet_ops_rwsem);
1830 return err;
1831
1832rollback:
1833 for_each_net_continue_reverse(net)
1834 call_netdevice_unregister_net_notifiers(nb, net);
1835
1836 raw_notifier_chain_unregister(&netdev_chain, nb);
1837 goto unlock;
1838}
1839EXPORT_SYMBOL(register_netdevice_notifier);
1840
1841/**
1842 * unregister_netdevice_notifier - unregister a network notifier block
1843 * @nb: notifier
1844 *
1845 * Unregister a notifier previously registered by
1846 * register_netdevice_notifier(). The notifier is unlinked into the
1847 * kernel structures and may then be reused. A negative errno code
1848 * is returned on a failure.
1849 *
1850 * After unregistering unregister and down device events are synthesized
1851 * for all devices on the device list to the removed notifier to remove
1852 * the need for special case cleanup code.
1853 */
1854
1855int unregister_netdevice_notifier(struct notifier_block *nb)
1856{
1857 struct net *net;
1858 int err;
1859
1860 /* Close race with setup_net() and cleanup_net() */
1861 down_write(&pernet_ops_rwsem);
1862 rtnl_lock();
1863 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1864 if (err)
1865 goto unlock;
1866
1867 for_each_net(net)
1868 call_netdevice_unregister_net_notifiers(nb, net);
1869
1870unlock:
1871 rtnl_unlock();
1872 up_write(&pernet_ops_rwsem);
1873 return err;
1874}
1875EXPORT_SYMBOL(unregister_netdevice_notifier);
1876
1877static int __register_netdevice_notifier_net(struct net *net,
1878 struct notifier_block *nb,
1879 bool ignore_call_fail)
1880{
1881 int err;
1882
1883 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1884 if (err)
1885 return err;
1886 if (dev_boot_phase)
1887 return 0;
1888
1889 err = call_netdevice_register_net_notifiers(nb, net);
1890 if (err && !ignore_call_fail)
1891 goto chain_unregister;
1892
1893 return 0;
1894
1895chain_unregister:
1896 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1897 return err;
1898}
1899
1900static int __unregister_netdevice_notifier_net(struct net *net,
1901 struct notifier_block *nb)
1902{
1903 int err;
1904
1905 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1906 if (err)
1907 return err;
1908
1909 call_netdevice_unregister_net_notifiers(nb, net);
1910 return 0;
1911}
1912
1913/**
1914 * register_netdevice_notifier_net - register a per-netns network notifier block
1915 * @net: network namespace
1916 * @nb: notifier
1917 *
1918 * Register a notifier to be called when network device events occur.
1919 * The notifier passed is linked into the kernel structures and must
1920 * not be reused until it has been unregistered. A negative errno code
1921 * is returned on a failure.
1922 *
1923 * When registered all registration and up events are replayed
1924 * to the new notifier to allow device to have a race free
1925 * view of the network device list.
1926 */
1927
1928int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1929{
1930 int err;
1931
1932 rtnl_lock();
1933 err = __register_netdevice_notifier_net(net, nb, false);
1934 rtnl_unlock();
1935 return err;
1936}
1937EXPORT_SYMBOL(register_netdevice_notifier_net);
1938
1939/**
1940 * unregister_netdevice_notifier_net - unregister a per-netns
1941 * network notifier block
1942 * @net: network namespace
1943 * @nb: notifier
1944 *
1945 * Unregister a notifier previously registered by
1946 * register_netdevice_notifier(). The notifier is unlinked into the
1947 * kernel structures and may then be reused. A negative errno code
1948 * is returned on a failure.
1949 *
1950 * After unregistering unregister and down device events are synthesized
1951 * for all devices on the device list to the removed notifier to remove
1952 * the need for special case cleanup code.
1953 */
1954
1955int unregister_netdevice_notifier_net(struct net *net,
1956 struct notifier_block *nb)
1957{
1958 int err;
1959
1960 rtnl_lock();
1961 err = __unregister_netdevice_notifier_net(net, nb);
1962 rtnl_unlock();
1963 return err;
1964}
1965EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1966
1967int register_netdevice_notifier_dev_net(struct net_device *dev,
1968 struct notifier_block *nb,
1969 struct netdev_net_notifier *nn)
1970{
1971 int err;
1972
1973 rtnl_lock();
1974 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1975 if (!err) {
1976 nn->nb = nb;
1977 list_add(&nn->list, &dev->net_notifier_list);
1978 }
1979 rtnl_unlock();
1980 return err;
1981}
1982EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1983
1984int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1985 struct notifier_block *nb,
1986 struct netdev_net_notifier *nn)
1987{
1988 int err;
1989
1990 rtnl_lock();
1991 list_del(&nn->list);
1992 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1993 rtnl_unlock();
1994 return err;
1995}
1996EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1997
1998static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1999 struct net *net)
2000{
2001 struct netdev_net_notifier *nn;
2002
2003 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2004 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2005 __register_netdevice_notifier_net(net, nn->nb, true);
2006 }
2007}
2008
2009/**
2010 * call_netdevice_notifiers_info - call all network notifier blocks
2011 * @val: value passed unmodified to notifier function
2012 * @info: notifier information data
2013 *
2014 * Call all network notifier blocks. Parameters and return value
2015 * are as for raw_notifier_call_chain().
2016 */
2017
2018static int call_netdevice_notifiers_info(unsigned long val,
2019 struct netdev_notifier_info *info)
2020{
2021 struct net *net = dev_net(info->dev);
2022 int ret;
2023
2024 ASSERT_RTNL();
2025
2026 /* Run per-netns notifier block chain first, then run the global one.
2027 * Hopefully, one day, the global one is going to be removed after
2028 * all notifier block registrators get converted to be per-netns.
2029 */
2030 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2031 if (ret & NOTIFY_STOP_MASK)
2032 return ret;
2033 return raw_notifier_call_chain(&netdev_chain, val, info);
2034}
2035
2036static int call_netdevice_notifiers_extack(unsigned long val,
2037 struct net_device *dev,
2038 struct netlink_ext_ack *extack)
2039{
2040 struct netdev_notifier_info info = {
2041 .dev = dev,
2042 .extack = extack,
2043 };
2044
2045 return call_netdevice_notifiers_info(val, &info);
2046}
2047
2048/**
2049 * call_netdevice_notifiers - call all network notifier blocks
2050 * @val: value passed unmodified to notifier function
2051 * @dev: net_device pointer passed unmodified to notifier function
2052 *
2053 * Call all network notifier blocks. Parameters and return value
2054 * are as for raw_notifier_call_chain().
2055 */
2056
2057int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2058{
2059 return call_netdevice_notifiers_extack(val, dev, NULL);
2060}
2061EXPORT_SYMBOL(call_netdevice_notifiers);
2062
2063/**
2064 * call_netdevice_notifiers_mtu - call all network notifier blocks
2065 * @val: value passed unmodified to notifier function
2066 * @dev: net_device pointer passed unmodified to notifier function
2067 * @arg: additional u32 argument passed to the notifier function
2068 *
2069 * Call all network notifier blocks. Parameters and return value
2070 * are as for raw_notifier_call_chain().
2071 */
2072static int call_netdevice_notifiers_mtu(unsigned long val,
2073 struct net_device *dev, u32 arg)
2074{
2075 struct netdev_notifier_info_ext info = {
2076 .info.dev = dev,
2077 .ext.mtu = arg,
2078 };
2079
2080 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2081
2082 return call_netdevice_notifiers_info(val, &info.info);
2083}
2084
2085#ifdef CONFIG_NET_INGRESS
2086static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2087
2088void net_inc_ingress_queue(void)
2089{
2090 static_branch_inc(&ingress_needed_key);
2091}
2092EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2093
2094void net_dec_ingress_queue(void)
2095{
2096 static_branch_dec(&ingress_needed_key);
2097}
2098EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2099#endif
2100
2101#ifdef CONFIG_NET_EGRESS
2102static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2103
2104void net_inc_egress_queue(void)
2105{
2106 static_branch_inc(&egress_needed_key);
2107}
2108EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2109
2110void net_dec_egress_queue(void)
2111{
2112 static_branch_dec(&egress_needed_key);
2113}
2114EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2115#endif
2116
2117static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2118#ifdef CONFIG_JUMP_LABEL
2119static atomic_t netstamp_needed_deferred;
2120static atomic_t netstamp_wanted;
2121static void netstamp_clear(struct work_struct *work)
2122{
2123 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2124 int wanted;
2125
2126 wanted = atomic_add_return(deferred, &netstamp_wanted);
2127 if (wanted > 0)
2128 static_branch_enable(&netstamp_needed_key);
2129 else
2130 static_branch_disable(&netstamp_needed_key);
2131}
2132static DECLARE_WORK(netstamp_work, netstamp_clear);
2133#endif
2134
2135void net_enable_timestamp(void)
2136{
2137#ifdef CONFIG_JUMP_LABEL
2138 int wanted;
2139
2140 while (1) {
2141 wanted = atomic_read(&netstamp_wanted);
2142 if (wanted <= 0)
2143 break;
2144 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2145 return;
2146 }
2147 atomic_inc(&netstamp_needed_deferred);
2148 schedule_work(&netstamp_work);
2149#else
2150 static_branch_inc(&netstamp_needed_key);
2151#endif
2152}
2153EXPORT_SYMBOL(net_enable_timestamp);
2154
2155void net_disable_timestamp(void)
2156{
2157#ifdef CONFIG_JUMP_LABEL
2158 int wanted;
2159
2160 while (1) {
2161 wanted = atomic_read(&netstamp_wanted);
2162 if (wanted <= 1)
2163 break;
2164 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2165 return;
2166 }
2167 atomic_dec(&netstamp_needed_deferred);
2168 schedule_work(&netstamp_work);
2169#else
2170 static_branch_dec(&netstamp_needed_key);
2171#endif
2172}
2173EXPORT_SYMBOL(net_disable_timestamp);
2174
2175static inline void net_timestamp_set(struct sk_buff *skb)
2176{
2177 skb->tstamp = 0;
2178 if (static_branch_unlikely(&netstamp_needed_key))
2179 __net_timestamp(skb);
2180}
2181
2182#define net_timestamp_check(COND, SKB) \
2183 if (static_branch_unlikely(&netstamp_needed_key)) { \
2184 if ((COND) && !(SKB)->tstamp) \
2185 __net_timestamp(SKB); \
2186 } \
2187
2188bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2189{
2190 unsigned int len;
2191
2192 if (!(dev->flags & IFF_UP))
2193 return false;
2194
2195 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2196 if (skb->len <= len)
2197 return true;
2198
2199 /* if TSO is enabled, we don't care about the length as the packet
2200 * could be forwarded without being segmented before
2201 */
2202 if (skb_is_gso(skb))
2203 return true;
2204
2205 return false;
2206}
2207EXPORT_SYMBOL_GPL(is_skb_forwardable);
2208
2209int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2210{
2211 int ret = ____dev_forward_skb(dev, skb);
2212
2213 if (likely(!ret)) {
2214 skb->protocol = eth_type_trans(skb, dev);
2215 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2216 }
2217
2218 return ret;
2219}
2220EXPORT_SYMBOL_GPL(__dev_forward_skb);
2221
2222/**
2223 * dev_forward_skb - loopback an skb to another netif
2224 *
2225 * @dev: destination network device
2226 * @skb: buffer to forward
2227 *
2228 * return values:
2229 * NET_RX_SUCCESS (no congestion)
2230 * NET_RX_DROP (packet was dropped, but freed)
2231 *
2232 * dev_forward_skb can be used for injecting an skb from the
2233 * start_xmit function of one device into the receive queue
2234 * of another device.
2235 *
2236 * The receiving device may be in another namespace, so
2237 * we have to clear all information in the skb that could
2238 * impact namespace isolation.
2239 */
2240int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2241{
2242 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2243}
2244EXPORT_SYMBOL_GPL(dev_forward_skb);
2245
2246static inline int deliver_skb(struct sk_buff *skb,
2247 struct packet_type *pt_prev,
2248 struct net_device *orig_dev)
2249{
2250 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2251 return -ENOMEM;
2252 refcount_inc(&skb->users);
2253 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2254}
2255
2256static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2257 struct packet_type **pt,
2258 struct net_device *orig_dev,
2259 __be16 type,
2260 struct list_head *ptype_list)
2261{
2262 struct packet_type *ptype, *pt_prev = *pt;
2263
2264 list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 if (ptype->type != type)
2266 continue;
2267 if (pt_prev)
2268 deliver_skb(skb, pt_prev, orig_dev);
2269 pt_prev = ptype;
2270 }
2271 *pt = pt_prev;
2272}
2273
2274static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2275{
2276 if (!ptype->af_packet_priv || !skb->sk)
2277 return false;
2278
2279 if (ptype->id_match)
2280 return ptype->id_match(ptype, skb->sk);
2281 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2282 return true;
2283
2284 return false;
2285}
2286
2287/**
2288 * dev_nit_active - return true if any network interface taps are in use
2289 *
2290 * @dev: network device to check for the presence of taps
2291 */
2292bool dev_nit_active(struct net_device *dev)
2293{
2294 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2295}
2296EXPORT_SYMBOL_GPL(dev_nit_active);
2297
2298/*
2299 * Support routine. Sends outgoing frames to any network
2300 * taps currently in use.
2301 */
2302
2303void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2304{
2305 struct packet_type *ptype;
2306 struct sk_buff *skb2 = NULL;
2307 struct packet_type *pt_prev = NULL;
2308 struct list_head *ptype_list = &ptype_all;
2309
2310 rcu_read_lock();
2311again:
2312 list_for_each_entry_rcu(ptype, ptype_list, list) {
2313 if (ptype->ignore_outgoing)
2314 continue;
2315
2316 /* Never send packets back to the socket
2317 * they originated from - MvS (miquels@drinkel.ow.org)
2318 */
2319 if (skb_loop_sk(ptype, skb))
2320 continue;
2321
2322 if (pt_prev) {
2323 deliver_skb(skb2, pt_prev, skb->dev);
2324 pt_prev = ptype;
2325 continue;
2326 }
2327
2328 /* need to clone skb, done only once */
2329 skb2 = skb_clone(skb, GFP_ATOMIC);
2330 if (!skb2)
2331 goto out_unlock;
2332
2333 net_timestamp_set(skb2);
2334
2335 /* skb->nh should be correctly
2336 * set by sender, so that the second statement is
2337 * just protection against buggy protocols.
2338 */
2339 skb_reset_mac_header(skb2);
2340
2341 if (skb_network_header(skb2) < skb2->data ||
2342 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2343 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2344 ntohs(skb2->protocol),
2345 dev->name);
2346 skb_reset_network_header(skb2);
2347 }
2348
2349 skb2->transport_header = skb2->network_header;
2350 skb2->pkt_type = PACKET_OUTGOING;
2351 pt_prev = ptype;
2352 }
2353
2354 if (ptype_list == &ptype_all) {
2355 ptype_list = &dev->ptype_all;
2356 goto again;
2357 }
2358out_unlock:
2359 if (pt_prev) {
2360 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2361 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2362 else
2363 kfree_skb(skb2);
2364 }
2365 rcu_read_unlock();
2366}
2367EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2368
2369/**
2370 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2371 * @dev: Network device
2372 * @txq: number of queues available
2373 *
2374 * If real_num_tx_queues is changed the tc mappings may no longer be
2375 * valid. To resolve this verify the tc mapping remains valid and if
2376 * not NULL the mapping. With no priorities mapping to this
2377 * offset/count pair it will no longer be used. In the worst case TC0
2378 * is invalid nothing can be done so disable priority mappings. If is
2379 * expected that drivers will fix this mapping if they can before
2380 * calling netif_set_real_num_tx_queues.
2381 */
2382static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2383{
2384 int i;
2385 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2386
2387 /* If TC0 is invalidated disable TC mapping */
2388 if (tc->offset + tc->count > txq) {
2389 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2390 dev->num_tc = 0;
2391 return;
2392 }
2393
2394 /* Invalidated prio to tc mappings set to TC0 */
2395 for (i = 1; i < TC_BITMASK + 1; i++) {
2396 int q = netdev_get_prio_tc_map(dev, i);
2397
2398 tc = &dev->tc_to_txq[q];
2399 if (tc->offset + tc->count > txq) {
2400 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2401 i, q);
2402 netdev_set_prio_tc_map(dev, i, 0);
2403 }
2404 }
2405}
2406
2407int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2408{
2409 if (dev->num_tc) {
2410 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2411 int i;
2412
2413 /* walk through the TCs and see if it falls into any of them */
2414 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2415 if ((txq - tc->offset) < tc->count)
2416 return i;
2417 }
2418
2419 /* didn't find it, just return -1 to indicate no match */
2420 return -1;
2421 }
2422
2423 return 0;
2424}
2425EXPORT_SYMBOL(netdev_txq_to_tc);
2426
2427#ifdef CONFIG_XPS
2428struct static_key xps_needed __read_mostly;
2429EXPORT_SYMBOL(xps_needed);
2430struct static_key xps_rxqs_needed __read_mostly;
2431EXPORT_SYMBOL(xps_rxqs_needed);
2432static DEFINE_MUTEX(xps_map_mutex);
2433#define xmap_dereference(P) \
2434 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2435
2436static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2437 int tci, u16 index)
2438{
2439 struct xps_map *map = NULL;
2440 int pos;
2441
2442 if (dev_maps)
2443 map = xmap_dereference(dev_maps->attr_map[tci]);
2444 if (!map)
2445 return false;
2446
2447 for (pos = map->len; pos--;) {
2448 if (map->queues[pos] != index)
2449 continue;
2450
2451 if (map->len > 1) {
2452 map->queues[pos] = map->queues[--map->len];
2453 break;
2454 }
2455
2456 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2457 kfree_rcu(map, rcu);
2458 return false;
2459 }
2460
2461 return true;
2462}
2463
2464static bool remove_xps_queue_cpu(struct net_device *dev,
2465 struct xps_dev_maps *dev_maps,
2466 int cpu, u16 offset, u16 count)
2467{
2468 int num_tc = dev->num_tc ? : 1;
2469 bool active = false;
2470 int tci;
2471
2472 for (tci = cpu * num_tc; num_tc--; tci++) {
2473 int i, j;
2474
2475 for (i = count, j = offset; i--; j++) {
2476 if (!remove_xps_queue(dev_maps, tci, j))
2477 break;
2478 }
2479
2480 active |= i < 0;
2481 }
2482
2483 return active;
2484}
2485
2486static void reset_xps_maps(struct net_device *dev,
2487 struct xps_dev_maps *dev_maps,
2488 bool is_rxqs_map)
2489{
2490 if (is_rxqs_map) {
2491 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2492 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2493 } else {
2494 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2495 }
2496 static_key_slow_dec_cpuslocked(&xps_needed);
2497 kfree_rcu(dev_maps, rcu);
2498}
2499
2500static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2501 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2502 u16 offset, u16 count, bool is_rxqs_map)
2503{
2504 bool active = false;
2505 int i, j;
2506
2507 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2508 j < nr_ids;)
2509 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2510 count);
2511 if (!active)
2512 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2513
2514 if (!is_rxqs_map) {
2515 for (i = offset + (count - 1); count--; i--) {
2516 netdev_queue_numa_node_write(
2517 netdev_get_tx_queue(dev, i),
2518 NUMA_NO_NODE);
2519 }
2520 }
2521}
2522
2523static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2524 u16 count)
2525{
2526 const unsigned long *possible_mask = NULL;
2527 struct xps_dev_maps *dev_maps;
2528 unsigned int nr_ids;
2529
2530 if (!static_key_false(&xps_needed))
2531 return;
2532
2533 cpus_read_lock();
2534 mutex_lock(&xps_map_mutex);
2535
2536 if (static_key_false(&xps_rxqs_needed)) {
2537 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2538 if (dev_maps) {
2539 nr_ids = dev->num_rx_queues;
2540 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2541 offset, count, true);
2542 }
2543 }
2544
2545 dev_maps = xmap_dereference(dev->xps_cpus_map);
2546 if (!dev_maps)
2547 goto out_no_maps;
2548
2549 if (num_possible_cpus() > 1)
2550 possible_mask = cpumask_bits(cpu_possible_mask);
2551 nr_ids = nr_cpu_ids;
2552 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2553 false);
2554
2555out_no_maps:
2556 mutex_unlock(&xps_map_mutex);
2557 cpus_read_unlock();
2558}
2559
2560static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2561{
2562 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2563}
2564
2565static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2566 u16 index, bool is_rxqs_map)
2567{
2568 struct xps_map *new_map;
2569 int alloc_len = XPS_MIN_MAP_ALLOC;
2570 int i, pos;
2571
2572 for (pos = 0; map && pos < map->len; pos++) {
2573 if (map->queues[pos] != index)
2574 continue;
2575 return map;
2576 }
2577
2578 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2579 if (map) {
2580 if (pos < map->alloc_len)
2581 return map;
2582
2583 alloc_len = map->alloc_len * 2;
2584 }
2585
2586 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2587 * map
2588 */
2589 if (is_rxqs_map)
2590 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2591 else
2592 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2593 cpu_to_node(attr_index));
2594 if (!new_map)
2595 return NULL;
2596
2597 for (i = 0; i < pos; i++)
2598 new_map->queues[i] = map->queues[i];
2599 new_map->alloc_len = alloc_len;
2600 new_map->len = pos;
2601
2602 return new_map;
2603}
2604
2605/* Must be called under cpus_read_lock */
2606int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2607 u16 index, bool is_rxqs_map)
2608{
2609 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2610 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2611 int i, j, tci, numa_node_id = -2;
2612 int maps_sz, num_tc = 1, tc = 0;
2613 struct xps_map *map, *new_map;
2614 bool active = false;
2615 unsigned int nr_ids;
2616
2617 if (dev->num_tc) {
2618 /* Do not allow XPS on subordinate device directly */
2619 num_tc = dev->num_tc;
2620 if (num_tc < 0)
2621 return -EINVAL;
2622
2623 /* If queue belongs to subordinate dev use its map */
2624 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2625
2626 tc = netdev_txq_to_tc(dev, index);
2627 if (tc < 0)
2628 return -EINVAL;
2629 }
2630
2631 mutex_lock(&xps_map_mutex);
2632 if (is_rxqs_map) {
2633 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2634 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2635 nr_ids = dev->num_rx_queues;
2636 } else {
2637 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2638 if (num_possible_cpus() > 1) {
2639 online_mask = cpumask_bits(cpu_online_mask);
2640 possible_mask = cpumask_bits(cpu_possible_mask);
2641 }
2642 dev_maps = xmap_dereference(dev->xps_cpus_map);
2643 nr_ids = nr_cpu_ids;
2644 }
2645
2646 if (maps_sz < L1_CACHE_BYTES)
2647 maps_sz = L1_CACHE_BYTES;
2648
2649 /* allocate memory for queue storage */
2650 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2651 j < nr_ids;) {
2652 if (!new_dev_maps)
2653 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2654 if (!new_dev_maps) {
2655 mutex_unlock(&xps_map_mutex);
2656 return -ENOMEM;
2657 }
2658
2659 tci = j * num_tc + tc;
2660 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2661 NULL;
2662
2663 map = expand_xps_map(map, j, index, is_rxqs_map);
2664 if (!map)
2665 goto error;
2666
2667 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2668 }
2669
2670 if (!new_dev_maps)
2671 goto out_no_new_maps;
2672
2673 if (!dev_maps) {
2674 /* Increment static keys at most once per type */
2675 static_key_slow_inc_cpuslocked(&xps_needed);
2676 if (is_rxqs_map)
2677 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2678 }
2679
2680 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2681 j < nr_ids;) {
2682 /* copy maps belonging to foreign traffic classes */
2683 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2684 /* fill in the new device map from the old device map */
2685 map = xmap_dereference(dev_maps->attr_map[tci]);
2686 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687 }
2688
2689 /* We need to explicitly update tci as prevous loop
2690 * could break out early if dev_maps is NULL.
2691 */
2692 tci = j * num_tc + tc;
2693
2694 if (netif_attr_test_mask(j, mask, nr_ids) &&
2695 netif_attr_test_online(j, online_mask, nr_ids)) {
2696 /* add tx-queue to CPU/rx-queue maps */
2697 int pos = 0;
2698
2699 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 while ((pos < map->len) && (map->queues[pos] != index))
2701 pos++;
2702
2703 if (pos == map->len)
2704 map->queues[map->len++] = index;
2705#ifdef CONFIG_NUMA
2706 if (!is_rxqs_map) {
2707 if (numa_node_id == -2)
2708 numa_node_id = cpu_to_node(j);
2709 else if (numa_node_id != cpu_to_node(j))
2710 numa_node_id = -1;
2711 }
2712#endif
2713 } else if (dev_maps) {
2714 /* fill in the new device map from the old device map */
2715 map = xmap_dereference(dev_maps->attr_map[tci]);
2716 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2717 }
2718
2719 /* copy maps belonging to foreign traffic classes */
2720 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2721 /* fill in the new device map from the old device map */
2722 map = xmap_dereference(dev_maps->attr_map[tci]);
2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724 }
2725 }
2726
2727 if (is_rxqs_map)
2728 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2729 else
2730 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2731
2732 /* Cleanup old maps */
2733 if (!dev_maps)
2734 goto out_no_old_maps;
2735
2736 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2737 j < nr_ids;) {
2738 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2739 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2740 map = xmap_dereference(dev_maps->attr_map[tci]);
2741 if (map && map != new_map)
2742 kfree_rcu(map, rcu);
2743 }
2744 }
2745
2746 kfree_rcu(dev_maps, rcu);
2747
2748out_no_old_maps:
2749 dev_maps = new_dev_maps;
2750 active = true;
2751
2752out_no_new_maps:
2753 if (!is_rxqs_map) {
2754 /* update Tx queue numa node */
2755 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2756 (numa_node_id >= 0) ?
2757 numa_node_id : NUMA_NO_NODE);
2758 }
2759
2760 if (!dev_maps)
2761 goto out_no_maps;
2762
2763 /* removes tx-queue from unused CPUs/rx-queues */
2764 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2765 j < nr_ids;) {
2766 for (i = tc, tci = j * num_tc; i--; tci++)
2767 active |= remove_xps_queue(dev_maps, tci, index);
2768 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2769 !netif_attr_test_online(j, online_mask, nr_ids))
2770 active |= remove_xps_queue(dev_maps, tci, index);
2771 for (i = num_tc - tc, tci++; --i; tci++)
2772 active |= remove_xps_queue(dev_maps, tci, index);
2773 }
2774
2775 /* free map if not active */
2776 if (!active)
2777 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2778
2779out_no_maps:
2780 mutex_unlock(&xps_map_mutex);
2781
2782 return 0;
2783error:
2784 /* remove any maps that we added */
2785 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2786 j < nr_ids;) {
2787 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2788 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2789 map = dev_maps ?
2790 xmap_dereference(dev_maps->attr_map[tci]) :
2791 NULL;
2792 if (new_map && new_map != map)
2793 kfree(new_map);
2794 }
2795 }
2796
2797 mutex_unlock(&xps_map_mutex);
2798
2799 kfree(new_dev_maps);
2800 return -ENOMEM;
2801}
2802EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2803
2804int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2805 u16 index)
2806{
2807 int ret;
2808
2809 cpus_read_lock();
2810 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2811 cpus_read_unlock();
2812
2813 return ret;
2814}
2815EXPORT_SYMBOL(netif_set_xps_queue);
2816
2817#endif
2818static void netdev_unbind_all_sb_channels(struct net_device *dev)
2819{
2820 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2821
2822 /* Unbind any subordinate channels */
2823 while (txq-- != &dev->_tx[0]) {
2824 if (txq->sb_dev)
2825 netdev_unbind_sb_channel(dev, txq->sb_dev);
2826 }
2827}
2828
2829void netdev_reset_tc(struct net_device *dev)
2830{
2831#ifdef CONFIG_XPS
2832 netif_reset_xps_queues_gt(dev, 0);
2833#endif
2834 netdev_unbind_all_sb_channels(dev);
2835
2836 /* Reset TC configuration of device */
2837 dev->num_tc = 0;
2838 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2839 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2840}
2841EXPORT_SYMBOL(netdev_reset_tc);
2842
2843int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2844{
2845 if (tc >= dev->num_tc)
2846 return -EINVAL;
2847
2848#ifdef CONFIG_XPS
2849 netif_reset_xps_queues(dev, offset, count);
2850#endif
2851 dev->tc_to_txq[tc].count = count;
2852 dev->tc_to_txq[tc].offset = offset;
2853 return 0;
2854}
2855EXPORT_SYMBOL(netdev_set_tc_queue);
2856
2857int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2858{
2859 if (num_tc > TC_MAX_QUEUE)
2860 return -EINVAL;
2861
2862#ifdef CONFIG_XPS
2863 netif_reset_xps_queues_gt(dev, 0);
2864#endif
2865 netdev_unbind_all_sb_channels(dev);
2866
2867 dev->num_tc = num_tc;
2868 return 0;
2869}
2870EXPORT_SYMBOL(netdev_set_num_tc);
2871
2872void netdev_unbind_sb_channel(struct net_device *dev,
2873 struct net_device *sb_dev)
2874{
2875 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2876
2877#ifdef CONFIG_XPS
2878 netif_reset_xps_queues_gt(sb_dev, 0);
2879#endif
2880 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2881 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2882
2883 while (txq-- != &dev->_tx[0]) {
2884 if (txq->sb_dev == sb_dev)
2885 txq->sb_dev = NULL;
2886 }
2887}
2888EXPORT_SYMBOL(netdev_unbind_sb_channel);
2889
2890int netdev_bind_sb_channel_queue(struct net_device *dev,
2891 struct net_device *sb_dev,
2892 u8 tc, u16 count, u16 offset)
2893{
2894 /* Make certain the sb_dev and dev are already configured */
2895 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2896 return -EINVAL;
2897
2898 /* We cannot hand out queues we don't have */
2899 if ((offset + count) > dev->real_num_tx_queues)
2900 return -EINVAL;
2901
2902 /* Record the mapping */
2903 sb_dev->tc_to_txq[tc].count = count;
2904 sb_dev->tc_to_txq[tc].offset = offset;
2905
2906 /* Provide a way for Tx queue to find the tc_to_txq map or
2907 * XPS map for itself.
2908 */
2909 while (count--)
2910 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2911
2912 return 0;
2913}
2914EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2915
2916int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2917{
2918 /* Do not use a multiqueue device to represent a subordinate channel */
2919 if (netif_is_multiqueue(dev))
2920 return -ENODEV;
2921
2922 /* We allow channels 1 - 32767 to be used for subordinate channels.
2923 * Channel 0 is meant to be "native" mode and used only to represent
2924 * the main root device. We allow writing 0 to reset the device back
2925 * to normal mode after being used as a subordinate channel.
2926 */
2927 if (channel > S16_MAX)
2928 return -EINVAL;
2929
2930 dev->num_tc = -channel;
2931
2932 return 0;
2933}
2934EXPORT_SYMBOL(netdev_set_sb_channel);
2935
2936/*
2937 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2938 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2939 */
2940int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2941{
2942 bool disabling;
2943 int rc;
2944
2945 disabling = txq < dev->real_num_tx_queues;
2946
2947 if (txq < 1 || txq > dev->num_tx_queues)
2948 return -EINVAL;
2949
2950 if (dev->reg_state == NETREG_REGISTERED ||
2951 dev->reg_state == NETREG_UNREGISTERING) {
2952 ASSERT_RTNL();
2953
2954 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2955 txq);
2956 if (rc)
2957 return rc;
2958
2959 if (dev->num_tc)
2960 netif_setup_tc(dev, txq);
2961
2962 dev->real_num_tx_queues = txq;
2963
2964 if (disabling) {
2965 synchronize_net();
2966 qdisc_reset_all_tx_gt(dev, txq);
2967#ifdef CONFIG_XPS
2968 netif_reset_xps_queues_gt(dev, txq);
2969#endif
2970 }
2971 } else {
2972 dev->real_num_tx_queues = txq;
2973 }
2974
2975 return 0;
2976}
2977EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2978
2979#ifdef CONFIG_SYSFS
2980/**
2981 * netif_set_real_num_rx_queues - set actual number of RX queues used
2982 * @dev: Network device
2983 * @rxq: Actual number of RX queues
2984 *
2985 * This must be called either with the rtnl_lock held or before
2986 * registration of the net device. Returns 0 on success, or a
2987 * negative error code. If called before registration, it always
2988 * succeeds.
2989 */
2990int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2991{
2992 int rc;
2993
2994 if (rxq < 1 || rxq > dev->num_rx_queues)
2995 return -EINVAL;
2996
2997 if (dev->reg_state == NETREG_REGISTERED) {
2998 ASSERT_RTNL();
2999
3000 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3001 rxq);
3002 if (rc)
3003 return rc;
3004 }
3005
3006 dev->real_num_rx_queues = rxq;
3007 return 0;
3008}
3009EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3010#endif
3011
3012/**
3013 * netif_get_num_default_rss_queues - default number of RSS queues
3014 *
3015 * This routine should set an upper limit on the number of RSS queues
3016 * used by default by multiqueue devices.
3017 */
3018int netif_get_num_default_rss_queues(void)
3019{
3020 return is_kdump_kernel() ?
3021 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3022}
3023EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3024
3025static void __netif_reschedule(struct Qdisc *q)
3026{
3027 struct softnet_data *sd;
3028 unsigned long flags;
3029
3030 local_irq_save(flags);
3031 sd = this_cpu_ptr(&softnet_data);
3032 q->next_sched = NULL;
3033 *sd->output_queue_tailp = q;
3034 sd->output_queue_tailp = &q->next_sched;
3035 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3036 local_irq_restore(flags);
3037}
3038
3039void __netif_schedule(struct Qdisc *q)
3040{
3041 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3042 __netif_reschedule(q);
3043}
3044EXPORT_SYMBOL(__netif_schedule);
3045
3046struct dev_kfree_skb_cb {
3047 enum skb_free_reason reason;
3048};
3049
3050static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3051{
3052 return (struct dev_kfree_skb_cb *)skb->cb;
3053}
3054
3055void netif_schedule_queue(struct netdev_queue *txq)
3056{
3057 rcu_read_lock();
3058 if (!netif_xmit_stopped(txq)) {
3059 struct Qdisc *q = rcu_dereference(txq->qdisc);
3060
3061 __netif_schedule(q);
3062 }
3063 rcu_read_unlock();
3064}
3065EXPORT_SYMBOL(netif_schedule_queue);
3066
3067void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3068{
3069 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3070 struct Qdisc *q;
3071
3072 rcu_read_lock();
3073 q = rcu_dereference(dev_queue->qdisc);
3074 __netif_schedule(q);
3075 rcu_read_unlock();
3076 }
3077}
3078EXPORT_SYMBOL(netif_tx_wake_queue);
3079
3080void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3081{
3082 unsigned long flags;
3083
3084 if (unlikely(!skb))
3085 return;
3086
3087 if (likely(refcount_read(&skb->users) == 1)) {
3088 smp_rmb();
3089 refcount_set(&skb->users, 0);
3090 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3091 return;
3092 }
3093 get_kfree_skb_cb(skb)->reason = reason;
3094 local_irq_save(flags);
3095 skb->next = __this_cpu_read(softnet_data.completion_queue);
3096 __this_cpu_write(softnet_data.completion_queue, skb);
3097 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 local_irq_restore(flags);
3099}
3100EXPORT_SYMBOL(__dev_kfree_skb_irq);
3101
3102void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3103{
3104 if (in_irq() || irqs_disabled())
3105 __dev_kfree_skb_irq(skb, reason);
3106 else
3107 dev_kfree_skb(skb);
3108}
3109EXPORT_SYMBOL(__dev_kfree_skb_any);
3110
3111
3112/**
3113 * netif_device_detach - mark device as removed
3114 * @dev: network device
3115 *
3116 * Mark device as removed from system and therefore no longer available.
3117 */
3118void netif_device_detach(struct net_device *dev)
3119{
3120 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3121 netif_running(dev)) {
3122 netif_tx_stop_all_queues(dev);
3123 }
3124}
3125EXPORT_SYMBOL(netif_device_detach);
3126
3127/**
3128 * netif_device_attach - mark device as attached
3129 * @dev: network device
3130 *
3131 * Mark device as attached from system and restart if needed.
3132 */
3133void netif_device_attach(struct net_device *dev)
3134{
3135 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3136 netif_running(dev)) {
3137 netif_tx_wake_all_queues(dev);
3138 __netdev_watchdog_up(dev);
3139 }
3140}
3141EXPORT_SYMBOL(netif_device_attach);
3142
3143/*
3144 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3145 * to be used as a distribution range.
3146 */
3147static u16 skb_tx_hash(const struct net_device *dev,
3148 const struct net_device *sb_dev,
3149 struct sk_buff *skb)
3150{
3151 u32 hash;
3152 u16 qoffset = 0;
3153 u16 qcount = dev->real_num_tx_queues;
3154
3155 if (dev->num_tc) {
3156 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3157
3158 qoffset = sb_dev->tc_to_txq[tc].offset;
3159 qcount = sb_dev->tc_to_txq[tc].count;
3160 }
3161
3162 if (skb_rx_queue_recorded(skb)) {
3163 hash = skb_get_rx_queue(skb);
3164 if (hash >= qoffset)
3165 hash -= qoffset;
3166 while (unlikely(hash >= qcount))
3167 hash -= qcount;
3168 return hash + qoffset;
3169 }
3170
3171 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172}
3173
3174static void skb_warn_bad_offload(const struct sk_buff *skb)
3175{
3176 static const netdev_features_t null_features;
3177 struct net_device *dev = skb->dev;
3178 const char *name = "";
3179
3180 if (!net_ratelimit())
3181 return;
3182
3183 if (dev) {
3184 if (dev->dev.parent)
3185 name = dev_driver_string(dev->dev.parent);
3186 else
3187 name = netdev_name(dev);
3188 }
3189 skb_dump(KERN_WARNING, skb, false);
3190 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3191 name, dev ? &dev->features : &null_features,
3192 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3193}
3194
3195/*
3196 * Invalidate hardware checksum when packet is to be mangled, and
3197 * complete checksum manually on outgoing path.
3198 */
3199int skb_checksum_help(struct sk_buff *skb)
3200{
3201 __wsum csum;
3202 int ret = 0, offset;
3203
3204 if (skb->ip_summed == CHECKSUM_COMPLETE)
3205 goto out_set_summed;
3206
3207 if (unlikely(skb_shinfo(skb)->gso_size)) {
3208 skb_warn_bad_offload(skb);
3209 return -EINVAL;
3210 }
3211
3212 /* Before computing a checksum, we should make sure no frag could
3213 * be modified by an external entity : checksum could be wrong.
3214 */
3215 if (skb_has_shared_frag(skb)) {
3216 ret = __skb_linearize(skb);
3217 if (ret)
3218 goto out;
3219 }
3220
3221 offset = skb_checksum_start_offset(skb);
3222 BUG_ON(offset >= skb_headlen(skb));
3223 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224
3225 offset += skb->csum_offset;
3226 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227
3228 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229 if (ret)
3230 goto out;
3231
3232 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3233out_set_summed:
3234 skb->ip_summed = CHECKSUM_NONE;
3235out:
3236 return ret;
3237}
3238EXPORT_SYMBOL(skb_checksum_help);
3239
3240int skb_crc32c_csum_help(struct sk_buff *skb)
3241{
3242 __le32 crc32c_csum;
3243 int ret = 0, offset, start;
3244
3245 if (skb->ip_summed != CHECKSUM_PARTIAL)
3246 goto out;
3247
3248 if (unlikely(skb_is_gso(skb)))
3249 goto out;
3250
3251 /* Before computing a checksum, we should make sure no frag could
3252 * be modified by an external entity : checksum could be wrong.
3253 */
3254 if (unlikely(skb_has_shared_frag(skb))) {
3255 ret = __skb_linearize(skb);
3256 if (ret)
3257 goto out;
3258 }
3259 start = skb_checksum_start_offset(skb);
3260 offset = start + offsetof(struct sctphdr, checksum);
3261 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 ret = -EINVAL;
3263 goto out;
3264 }
3265
3266 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267 if (ret)
3268 goto out;
3269
3270 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271 skb->len - start, ~(__u32)0,
3272 crc32c_csum_stub));
3273 *(__le32 *)(skb->data + offset) = crc32c_csum;
3274 skb->ip_summed = CHECKSUM_NONE;
3275 skb->csum_not_inet = 0;
3276out:
3277 return ret;
3278}
3279
3280__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3281{
3282 __be16 type = skb->protocol;
3283
3284 /* Tunnel gso handlers can set protocol to ethernet. */
3285 if (type == htons(ETH_P_TEB)) {
3286 struct ethhdr *eth;
3287
3288 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289 return 0;
3290
3291 eth = (struct ethhdr *)skb->data;
3292 type = eth->h_proto;
3293 }
3294
3295 return __vlan_get_protocol(skb, type, depth);
3296}
3297
3298/**
3299 * skb_mac_gso_segment - mac layer segmentation handler.
3300 * @skb: buffer to segment
3301 * @features: features for the output path (see dev->features)
3302 */
3303struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3304 netdev_features_t features)
3305{
3306 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3307 struct packet_offload *ptype;
3308 int vlan_depth = skb->mac_len;
3309 __be16 type = skb_network_protocol(skb, &vlan_depth);
3310
3311 if (unlikely(!type))
3312 return ERR_PTR(-EINVAL);
3313
3314 __skb_pull(skb, vlan_depth);
3315
3316 rcu_read_lock();
3317 list_for_each_entry_rcu(ptype, &offload_base, list) {
3318 if (ptype->type == type && ptype->callbacks.gso_segment) {
3319 segs = ptype->callbacks.gso_segment(skb, features);
3320 break;
3321 }
3322 }
3323 rcu_read_unlock();
3324
3325 __skb_push(skb, skb->data - skb_mac_header(skb));
3326
3327 return segs;
3328}
3329EXPORT_SYMBOL(skb_mac_gso_segment);
3330
3331
3332/* openvswitch calls this on rx path, so we need a different check.
3333 */
3334static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3335{
3336 if (tx_path)
3337 return skb->ip_summed != CHECKSUM_PARTIAL &&
3338 skb->ip_summed != CHECKSUM_UNNECESSARY;
3339
3340 return skb->ip_summed == CHECKSUM_NONE;
3341}
3342
3343/**
3344 * __skb_gso_segment - Perform segmentation on skb.
3345 * @skb: buffer to segment
3346 * @features: features for the output path (see dev->features)
3347 * @tx_path: whether it is called in TX path
3348 *
3349 * This function segments the given skb and returns a list of segments.
3350 *
3351 * It may return NULL if the skb requires no segmentation. This is
3352 * only possible when GSO is used for verifying header integrity.
3353 *
3354 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3355 */
3356struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3357 netdev_features_t features, bool tx_path)
3358{
3359 struct sk_buff *segs;
3360
3361 if (unlikely(skb_needs_check(skb, tx_path))) {
3362 int err;
3363
3364 /* We're going to init ->check field in TCP or UDP header */
3365 err = skb_cow_head(skb, 0);
3366 if (err < 0)
3367 return ERR_PTR(err);
3368 }
3369
3370 /* Only report GSO partial support if it will enable us to
3371 * support segmentation on this frame without needing additional
3372 * work.
3373 */
3374 if (features & NETIF_F_GSO_PARTIAL) {
3375 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3376 struct net_device *dev = skb->dev;
3377
3378 partial_features |= dev->features & dev->gso_partial_features;
3379 if (!skb_gso_ok(skb, features | partial_features))
3380 features &= ~NETIF_F_GSO_PARTIAL;
3381 }
3382
3383 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3384 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3385
3386 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3387 SKB_GSO_CB(skb)->encap_level = 0;
3388
3389 skb_reset_mac_header(skb);
3390 skb_reset_mac_len(skb);
3391
3392 segs = skb_mac_gso_segment(skb, features);
3393
3394 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3395 skb_warn_bad_offload(skb);
3396
3397 return segs;
3398}
3399EXPORT_SYMBOL(__skb_gso_segment);
3400
3401/* Take action when hardware reception checksum errors are detected. */
3402#ifdef CONFIG_BUG
3403void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3404{
3405 if (net_ratelimit()) {
3406 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3407 skb_dump(KERN_ERR, skb, true);
3408 dump_stack();
3409 }
3410}
3411EXPORT_SYMBOL(netdev_rx_csum_fault);
3412#endif
3413
3414/* XXX: check that highmem exists at all on the given machine. */
3415static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3416{
3417#ifdef CONFIG_HIGHMEM
3418 int i;
3419
3420 if (!(dev->features & NETIF_F_HIGHDMA)) {
3421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3423
3424 if (PageHighMem(skb_frag_page(frag)))
3425 return 1;
3426 }
3427 }
3428#endif
3429 return 0;
3430}
3431
3432/* If MPLS offload request, verify we are testing hardware MPLS features
3433 * instead of standard features for the netdev.
3434 */
3435#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3436static netdev_features_t net_mpls_features(struct sk_buff *skb,
3437 netdev_features_t features,
3438 __be16 type)
3439{
3440 if (eth_p_mpls(type))
3441 features &= skb->dev->mpls_features;
3442
3443 return features;
3444}
3445#else
3446static netdev_features_t net_mpls_features(struct sk_buff *skb,
3447 netdev_features_t features,
3448 __be16 type)
3449{
3450 return features;
3451}
3452#endif
3453
3454static netdev_features_t harmonize_features(struct sk_buff *skb,
3455 netdev_features_t features)
3456{
3457 __be16 type;
3458
3459 type = skb_network_protocol(skb, NULL);
3460 features = net_mpls_features(skb, features, type);
3461
3462 if (skb->ip_summed != CHECKSUM_NONE &&
3463 !can_checksum_protocol(features, type)) {
3464 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3465 }
3466 if (illegal_highdma(skb->dev, skb))
3467 features &= ~NETIF_F_SG;
3468
3469 return features;
3470}
3471
3472netdev_features_t passthru_features_check(struct sk_buff *skb,
3473 struct net_device *dev,
3474 netdev_features_t features)
3475{
3476 return features;
3477}
3478EXPORT_SYMBOL(passthru_features_check);
3479
3480static netdev_features_t dflt_features_check(struct sk_buff *skb,
3481 struct net_device *dev,
3482 netdev_features_t features)
3483{
3484 return vlan_features_check(skb, features);
3485}
3486
3487static netdev_features_t gso_features_check(const struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490{
3491 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3492
3493 if (gso_segs > dev->gso_max_segs)
3494 return features & ~NETIF_F_GSO_MASK;
3495
3496 /* Support for GSO partial features requires software
3497 * intervention before we can actually process the packets
3498 * so we need to strip support for any partial features now
3499 * and we can pull them back in after we have partially
3500 * segmented the frame.
3501 */
3502 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3503 features &= ~dev->gso_partial_features;
3504
3505 /* Make sure to clear the IPv4 ID mangling feature if the
3506 * IPv4 header has the potential to be fragmented.
3507 */
3508 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3509 struct iphdr *iph = skb->encapsulation ?
3510 inner_ip_hdr(skb) : ip_hdr(skb);
3511
3512 if (!(iph->frag_off & htons(IP_DF)))
3513 features &= ~NETIF_F_TSO_MANGLEID;
3514 }
3515
3516 return features;
3517}
3518
3519netdev_features_t netif_skb_features(struct sk_buff *skb)
3520{
3521 struct net_device *dev = skb->dev;
3522 netdev_features_t features = dev->features;
3523
3524 if (skb_is_gso(skb))
3525 features = gso_features_check(skb, dev, features);
3526
3527 /* If encapsulation offload request, verify we are testing
3528 * hardware encapsulation features instead of standard
3529 * features for the netdev
3530 */
3531 if (skb->encapsulation)
3532 features &= dev->hw_enc_features;
3533
3534 if (skb_vlan_tagged(skb))
3535 features = netdev_intersect_features(features,
3536 dev->vlan_features |
3537 NETIF_F_HW_VLAN_CTAG_TX |
3538 NETIF_F_HW_VLAN_STAG_TX);
3539
3540 if (dev->netdev_ops->ndo_features_check)
3541 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3542 features);
3543 else
3544 features &= dflt_features_check(skb, dev, features);
3545
3546 return harmonize_features(skb, features);
3547}
3548EXPORT_SYMBOL(netif_skb_features);
3549
3550static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3551 struct netdev_queue *txq, bool more)
3552{
3553 unsigned int len;
3554 int rc;
3555
3556 if (dev_nit_active(dev))
3557 dev_queue_xmit_nit(skb, dev);
3558
3559 len = skb->len;
3560 trace_net_dev_start_xmit(skb, dev);
3561 rc = netdev_start_xmit(skb, dev, txq, more);
3562 trace_net_dev_xmit(skb, rc, dev, len);
3563
3564 return rc;
3565}
3566
3567struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3568 struct netdev_queue *txq, int *ret)
3569{
3570 struct sk_buff *skb = first;
3571 int rc = NETDEV_TX_OK;
3572
3573 while (skb) {
3574 struct sk_buff *next = skb->next;
3575
3576 skb_mark_not_on_list(skb);
3577 rc = xmit_one(skb, dev, txq, next != NULL);
3578 if (unlikely(!dev_xmit_complete(rc))) {
3579 skb->next = next;
3580 goto out;
3581 }
3582
3583 skb = next;
3584 if (netif_tx_queue_stopped(txq) && skb) {
3585 rc = NETDEV_TX_BUSY;
3586 break;
3587 }
3588 }
3589
3590out:
3591 *ret = rc;
3592 return skb;
3593}
3594
3595static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3596 netdev_features_t features)
3597{
3598 if (skb_vlan_tag_present(skb) &&
3599 !vlan_hw_offload_capable(features, skb->vlan_proto))
3600 skb = __vlan_hwaccel_push_inside(skb);
3601 return skb;
3602}
3603
3604int skb_csum_hwoffload_help(struct sk_buff *skb,
3605 const netdev_features_t features)
3606{
3607 if (unlikely(skb->csum_not_inet))
3608 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3609 skb_crc32c_csum_help(skb);
3610
3611 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3612}
3613EXPORT_SYMBOL(skb_csum_hwoffload_help);
3614
3615static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3616{
3617 netdev_features_t features;
3618
3619 features = netif_skb_features(skb);
3620 skb = validate_xmit_vlan(skb, features);
3621 if (unlikely(!skb))
3622 goto out_null;
3623
3624 skb = sk_validate_xmit_skb(skb, dev);
3625 if (unlikely(!skb))
3626 goto out_null;
3627
3628 if (netif_needs_gso(skb, features)) {
3629 struct sk_buff *segs;
3630
3631 segs = skb_gso_segment(skb, features);
3632 if (IS_ERR(segs)) {
3633 goto out_kfree_skb;
3634 } else if (segs) {
3635 consume_skb(skb);
3636 skb = segs;
3637 }
3638 } else {
3639 if (skb_needs_linearize(skb, features) &&
3640 __skb_linearize(skb))
3641 goto out_kfree_skb;
3642
3643 /* If packet is not checksummed and device does not
3644 * support checksumming for this protocol, complete
3645 * checksumming here.
3646 */
3647 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3648 if (skb->encapsulation)
3649 skb_set_inner_transport_header(skb,
3650 skb_checksum_start_offset(skb));
3651 else
3652 skb_set_transport_header(skb,
3653 skb_checksum_start_offset(skb));
3654 if (skb_csum_hwoffload_help(skb, features))
3655 goto out_kfree_skb;
3656 }
3657 }
3658
3659 skb = validate_xmit_xfrm(skb, features, again);
3660
3661 return skb;
3662
3663out_kfree_skb:
3664 kfree_skb(skb);
3665out_null:
3666 atomic_long_inc(&dev->tx_dropped);
3667 return NULL;
3668}
3669
3670struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3671{
3672 struct sk_buff *next, *head = NULL, *tail;
3673
3674 for (; skb != NULL; skb = next) {
3675 next = skb->next;
3676 skb_mark_not_on_list(skb);
3677
3678 /* in case skb wont be segmented, point to itself */
3679 skb->prev = skb;
3680
3681 skb = validate_xmit_skb(skb, dev, again);
3682 if (!skb)
3683 continue;
3684
3685 if (!head)
3686 head = skb;
3687 else
3688 tail->next = skb;
3689 /* If skb was segmented, skb->prev points to
3690 * the last segment. If not, it still contains skb.
3691 */
3692 tail = skb->prev;
3693 }
3694 return head;
3695}
3696EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3697
3698static void qdisc_pkt_len_init(struct sk_buff *skb)
3699{
3700 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3701
3702 qdisc_skb_cb(skb)->pkt_len = skb->len;
3703
3704 /* To get more precise estimation of bytes sent on wire,
3705 * we add to pkt_len the headers size of all segments
3706 */
3707 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3708 unsigned int hdr_len;
3709 u16 gso_segs = shinfo->gso_segs;
3710
3711 /* mac layer + network layer */
3712 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3713
3714 /* + transport layer */
3715 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3716 const struct tcphdr *th;
3717 struct tcphdr _tcphdr;
3718
3719 th = skb_header_pointer(skb, skb_transport_offset(skb),
3720 sizeof(_tcphdr), &_tcphdr);
3721 if (likely(th))
3722 hdr_len += __tcp_hdrlen(th);
3723 } else {
3724 struct udphdr _udphdr;
3725
3726 if (skb_header_pointer(skb, skb_transport_offset(skb),
3727 sizeof(_udphdr), &_udphdr))
3728 hdr_len += sizeof(struct udphdr);
3729 }
3730
3731 if (shinfo->gso_type & SKB_GSO_DODGY)
3732 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3733 shinfo->gso_size);
3734
3735 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3736 }
3737}
3738
3739static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3740 struct net_device *dev,
3741 struct netdev_queue *txq)
3742{
3743 spinlock_t *root_lock = qdisc_lock(q);
3744 struct sk_buff *to_free = NULL;
3745 bool contended;
3746 int rc;
3747
3748 qdisc_calculate_pkt_len(skb, q);
3749
3750 if (q->flags & TCQ_F_NOLOCK) {
3751 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3752 qdisc_run(q);
3753
3754 if (unlikely(to_free))
3755 kfree_skb_list(to_free);
3756 return rc;
3757 }
3758
3759 /*
3760 * Heuristic to force contended enqueues to serialize on a
3761 * separate lock before trying to get qdisc main lock.
3762 * This permits qdisc->running owner to get the lock more
3763 * often and dequeue packets faster.
3764 */
3765 contended = qdisc_is_running(q);
3766 if (unlikely(contended))
3767 spin_lock(&q->busylock);
3768
3769 spin_lock(root_lock);
3770 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3771 __qdisc_drop(skb, &to_free);
3772 rc = NET_XMIT_DROP;
3773 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3774 qdisc_run_begin(q)) {
3775 /*
3776 * This is a work-conserving queue; there are no old skbs
3777 * waiting to be sent out; and the qdisc is not running -
3778 * xmit the skb directly.
3779 */
3780
3781 qdisc_bstats_update(q, skb);
3782
3783 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3784 if (unlikely(contended)) {
3785 spin_unlock(&q->busylock);
3786 contended = false;
3787 }
3788 __qdisc_run(q);
3789 }
3790
3791 qdisc_run_end(q);
3792 rc = NET_XMIT_SUCCESS;
3793 } else {
3794 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3795 if (qdisc_run_begin(q)) {
3796 if (unlikely(contended)) {
3797 spin_unlock(&q->busylock);
3798 contended = false;
3799 }
3800 __qdisc_run(q);
3801 qdisc_run_end(q);
3802 }
3803 }
3804 spin_unlock(root_lock);
3805 if (unlikely(to_free))
3806 kfree_skb_list(to_free);
3807 if (unlikely(contended))
3808 spin_unlock(&q->busylock);
3809 return rc;
3810}
3811
3812#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3813static void skb_update_prio(struct sk_buff *skb)
3814{
3815 const struct netprio_map *map;
3816 const struct sock *sk;
3817 unsigned int prioidx;
3818
3819 if (skb->priority)
3820 return;
3821 map = rcu_dereference_bh(skb->dev->priomap);
3822 if (!map)
3823 return;
3824 sk = skb_to_full_sk(skb);
3825 if (!sk)
3826 return;
3827
3828 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3829
3830 if (prioidx < map->priomap_len)
3831 skb->priority = map->priomap[prioidx];
3832}
3833#else
3834#define skb_update_prio(skb)
3835#endif
3836
3837/**
3838 * dev_loopback_xmit - loop back @skb
3839 * @net: network namespace this loopback is happening in
3840 * @sk: sk needed to be a netfilter okfn
3841 * @skb: buffer to transmit
3842 */
3843int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3844{
3845 skb_reset_mac_header(skb);
3846 __skb_pull(skb, skb_network_offset(skb));
3847 skb->pkt_type = PACKET_LOOPBACK;
3848 skb->ip_summed = CHECKSUM_UNNECESSARY;
3849 WARN_ON(!skb_dst(skb));
3850 skb_dst_force(skb);
3851 netif_rx_ni(skb);
3852 return 0;
3853}
3854EXPORT_SYMBOL(dev_loopback_xmit);
3855
3856#ifdef CONFIG_NET_EGRESS
3857static struct sk_buff *
3858sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3859{
3860 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3861 struct tcf_result cl_res;
3862
3863 if (!miniq)
3864 return skb;
3865
3866 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3867 mini_qdisc_bstats_cpu_update(miniq, skb);
3868
3869 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3870 case TC_ACT_OK:
3871 case TC_ACT_RECLASSIFY:
3872 skb->tc_index = TC_H_MIN(cl_res.classid);
3873 break;
3874 case TC_ACT_SHOT:
3875 mini_qdisc_qstats_cpu_drop(miniq);
3876 *ret = NET_XMIT_DROP;
3877 kfree_skb(skb);
3878 return NULL;
3879 case TC_ACT_STOLEN:
3880 case TC_ACT_QUEUED:
3881 case TC_ACT_TRAP:
3882 *ret = NET_XMIT_SUCCESS;
3883 consume_skb(skb);
3884 return NULL;
3885 case TC_ACT_REDIRECT:
3886 /* No need to push/pop skb's mac_header here on egress! */
3887 skb_do_redirect(skb);
3888 *ret = NET_XMIT_SUCCESS;
3889 return NULL;
3890 default:
3891 break;
3892 }
3893
3894 return skb;
3895}
3896#endif /* CONFIG_NET_EGRESS */
3897
3898#ifdef CONFIG_XPS
3899static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3900 struct xps_dev_maps *dev_maps, unsigned int tci)
3901{
3902 struct xps_map *map;
3903 int queue_index = -1;
3904
3905 if (dev->num_tc) {
3906 tci *= dev->num_tc;
3907 tci += netdev_get_prio_tc_map(dev, skb->priority);
3908 }
3909
3910 map = rcu_dereference(dev_maps->attr_map[tci]);
3911 if (map) {
3912 if (map->len == 1)
3913 queue_index = map->queues[0];
3914 else
3915 queue_index = map->queues[reciprocal_scale(
3916 skb_get_hash(skb), map->len)];
3917 if (unlikely(queue_index >= dev->real_num_tx_queues))
3918 queue_index = -1;
3919 }
3920 return queue_index;
3921}
3922#endif
3923
3924static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3925 struct sk_buff *skb)
3926{
3927#ifdef CONFIG_XPS
3928 struct xps_dev_maps *dev_maps;
3929 struct sock *sk = skb->sk;
3930 int queue_index = -1;
3931
3932 if (!static_key_false(&xps_needed))
3933 return -1;
3934
3935 rcu_read_lock();
3936 if (!static_key_false(&xps_rxqs_needed))
3937 goto get_cpus_map;
3938
3939 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3940 if (dev_maps) {
3941 int tci = sk_rx_queue_get(sk);
3942
3943 if (tci >= 0 && tci < dev->num_rx_queues)
3944 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3945 tci);
3946 }
3947
3948get_cpus_map:
3949 if (queue_index < 0) {
3950 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3951 if (dev_maps) {
3952 unsigned int tci = skb->sender_cpu - 1;
3953
3954 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3955 tci);
3956 }
3957 }
3958 rcu_read_unlock();
3959
3960 return queue_index;
3961#else
3962 return -1;
3963#endif
3964}
3965
3966u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3967 struct net_device *sb_dev)
3968{
3969 return 0;
3970}
3971EXPORT_SYMBOL(dev_pick_tx_zero);
3972
3973u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3974 struct net_device *sb_dev)
3975{
3976 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3977}
3978EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3979
3980u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3981 struct net_device *sb_dev)
3982{
3983 struct sock *sk = skb->sk;
3984 int queue_index = sk_tx_queue_get(sk);
3985
3986 sb_dev = sb_dev ? : dev;
3987
3988 if (queue_index < 0 || skb->ooo_okay ||
3989 queue_index >= dev->real_num_tx_queues) {
3990 int new_index = get_xps_queue(dev, sb_dev, skb);
3991
3992 if (new_index < 0)
3993 new_index = skb_tx_hash(dev, sb_dev, skb);
3994
3995 if (queue_index != new_index && sk &&
3996 sk_fullsock(sk) &&
3997 rcu_access_pointer(sk->sk_dst_cache))
3998 sk_tx_queue_set(sk, new_index);
3999
4000 queue_index = new_index;
4001 }
4002
4003 return queue_index;
4004}
4005EXPORT_SYMBOL(netdev_pick_tx);
4006
4007struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4008 struct sk_buff *skb,
4009 struct net_device *sb_dev)
4010{
4011 int queue_index = 0;
4012
4013#ifdef CONFIG_XPS
4014 u32 sender_cpu = skb->sender_cpu - 1;
4015
4016 if (sender_cpu >= (u32)NR_CPUS)
4017 skb->sender_cpu = raw_smp_processor_id() + 1;
4018#endif
4019
4020 if (dev->real_num_tx_queues != 1) {
4021 const struct net_device_ops *ops = dev->netdev_ops;
4022
4023 if (ops->ndo_select_queue)
4024 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4025 else
4026 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4027
4028 queue_index = netdev_cap_txqueue(dev, queue_index);
4029 }
4030
4031 skb_set_queue_mapping(skb, queue_index);
4032 return netdev_get_tx_queue(dev, queue_index);
4033}
4034
4035/**
4036 * __dev_queue_xmit - transmit a buffer
4037 * @skb: buffer to transmit
4038 * @sb_dev: suboordinate device used for L2 forwarding offload
4039 *
4040 * Queue a buffer for transmission to a network device. The caller must
4041 * have set the device and priority and built the buffer before calling
4042 * this function. The function can be called from an interrupt.
4043 *
4044 * A negative errno code is returned on a failure. A success does not
4045 * guarantee the frame will be transmitted as it may be dropped due
4046 * to congestion or traffic shaping.
4047 *
4048 * -----------------------------------------------------------------------------------
4049 * I notice this method can also return errors from the queue disciplines,
4050 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4051 * be positive.
4052 *
4053 * Regardless of the return value, the skb is consumed, so it is currently
4054 * difficult to retry a send to this method. (You can bump the ref count
4055 * before sending to hold a reference for retry if you are careful.)
4056 *
4057 * When calling this method, interrupts MUST be enabled. This is because
4058 * the BH enable code must have IRQs enabled so that it will not deadlock.
4059 * --BLG
4060 */
4061static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4062{
4063 struct net_device *dev = skb->dev;
4064 struct netdev_queue *txq;
4065 struct Qdisc *q;
4066 int rc = -ENOMEM;
4067 bool again = false;
4068
4069 skb_reset_mac_header(skb);
4070
4071 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4072 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4073
4074 /* Disable soft irqs for various locks below. Also
4075 * stops preemption for RCU.
4076 */
4077 rcu_read_lock_bh();
4078
4079 skb_update_prio(skb);
4080
4081 qdisc_pkt_len_init(skb);
4082#ifdef CONFIG_NET_CLS_ACT
4083 skb->tc_at_ingress = 0;
4084# ifdef CONFIG_NET_EGRESS
4085 if (static_branch_unlikely(&egress_needed_key)) {
4086 skb = sch_handle_egress(skb, &rc, dev);
4087 if (!skb)
4088 goto out;
4089 }
4090# endif
4091#endif
4092 /* If device/qdisc don't need skb->dst, release it right now while
4093 * its hot in this cpu cache.
4094 */
4095 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4096 skb_dst_drop(skb);
4097 else
4098 skb_dst_force(skb);
4099
4100 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4101 q = rcu_dereference_bh(txq->qdisc);
4102
4103 trace_net_dev_queue(skb);
4104 if (q->enqueue) {
4105 rc = __dev_xmit_skb(skb, q, dev, txq);
4106 goto out;
4107 }
4108
4109 /* The device has no queue. Common case for software devices:
4110 * loopback, all the sorts of tunnels...
4111
4112 * Really, it is unlikely that netif_tx_lock protection is necessary
4113 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4114 * counters.)
4115 * However, it is possible, that they rely on protection
4116 * made by us here.
4117
4118 * Check this and shot the lock. It is not prone from deadlocks.
4119 *Either shot noqueue qdisc, it is even simpler 8)
4120 */
4121 if (dev->flags & IFF_UP) {
4122 int cpu = smp_processor_id(); /* ok because BHs are off */
4123
4124 if (txq->xmit_lock_owner != cpu) {
4125 if (dev_xmit_recursion())
4126 goto recursion_alert;
4127
4128 skb = validate_xmit_skb(skb, dev, &again);
4129 if (!skb)
4130 goto out;
4131
4132 HARD_TX_LOCK(dev, txq, cpu);
4133
4134 if (!netif_xmit_stopped(txq)) {
4135 dev_xmit_recursion_inc();
4136 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4137 dev_xmit_recursion_dec();
4138 if (dev_xmit_complete(rc)) {
4139 HARD_TX_UNLOCK(dev, txq);
4140 goto out;
4141 }
4142 }
4143 HARD_TX_UNLOCK(dev, txq);
4144 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4145 dev->name);
4146 } else {
4147 /* Recursion is detected! It is possible,
4148 * unfortunately
4149 */
4150recursion_alert:
4151 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4152 dev->name);
4153 }
4154 }
4155
4156 rc = -ENETDOWN;
4157 rcu_read_unlock_bh();
4158
4159 atomic_long_inc(&dev->tx_dropped);
4160 kfree_skb_list(skb);
4161 return rc;
4162out:
4163 rcu_read_unlock_bh();
4164 return rc;
4165}
4166
4167int dev_queue_xmit(struct sk_buff *skb)
4168{
4169 return __dev_queue_xmit(skb, NULL);
4170}
4171EXPORT_SYMBOL(dev_queue_xmit);
4172
4173int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4174{
4175 return __dev_queue_xmit(skb, sb_dev);
4176}
4177EXPORT_SYMBOL(dev_queue_xmit_accel);
4178
4179int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4180{
4181 struct net_device *dev = skb->dev;
4182 struct sk_buff *orig_skb = skb;
4183 struct netdev_queue *txq;
4184 int ret = NETDEV_TX_BUSY;
4185 bool again = false;
4186
4187 if (unlikely(!netif_running(dev) ||
4188 !netif_carrier_ok(dev)))
4189 goto drop;
4190
4191 skb = validate_xmit_skb_list(skb, dev, &again);
4192 if (skb != orig_skb)
4193 goto drop;
4194
4195 skb_set_queue_mapping(skb, queue_id);
4196 txq = skb_get_tx_queue(dev, skb);
4197
4198 local_bh_disable();
4199
4200 dev_xmit_recursion_inc();
4201 HARD_TX_LOCK(dev, txq, smp_processor_id());
4202 if (!netif_xmit_frozen_or_drv_stopped(txq))
4203 ret = netdev_start_xmit(skb, dev, txq, false);
4204 HARD_TX_UNLOCK(dev, txq);
4205 dev_xmit_recursion_dec();
4206
4207 local_bh_enable();
4208
4209 if (!dev_xmit_complete(ret))
4210 kfree_skb(skb);
4211
4212 return ret;
4213drop:
4214 atomic_long_inc(&dev->tx_dropped);
4215 kfree_skb_list(skb);
4216 return NET_XMIT_DROP;
4217}
4218EXPORT_SYMBOL(dev_direct_xmit);
4219
4220/*************************************************************************
4221 * Receiver routines
4222 *************************************************************************/
4223
4224int netdev_max_backlog __read_mostly = 1000;
4225EXPORT_SYMBOL(netdev_max_backlog);
4226
4227int netdev_tstamp_prequeue __read_mostly = 1;
4228int netdev_budget __read_mostly = 300;
4229/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4230unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4231int weight_p __read_mostly = 64; /* old backlog weight */
4232int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4233int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4234int dev_rx_weight __read_mostly = 64;
4235int dev_tx_weight __read_mostly = 64;
4236/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4237int gro_normal_batch __read_mostly = 8;
4238
4239/* Called with irq disabled */
4240static inline void ____napi_schedule(struct softnet_data *sd,
4241 struct napi_struct *napi)
4242{
4243 list_add_tail(&napi->poll_list, &sd->poll_list);
4244 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4245}
4246
4247#ifdef CONFIG_RPS
4248
4249/* One global table that all flow-based protocols share. */
4250struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4251EXPORT_SYMBOL(rps_sock_flow_table);
4252u32 rps_cpu_mask __read_mostly;
4253EXPORT_SYMBOL(rps_cpu_mask);
4254
4255struct static_key_false rps_needed __read_mostly;
4256EXPORT_SYMBOL(rps_needed);
4257struct static_key_false rfs_needed __read_mostly;
4258EXPORT_SYMBOL(rfs_needed);
4259
4260static struct rps_dev_flow *
4261set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4262 struct rps_dev_flow *rflow, u16 next_cpu)
4263{
4264 if (next_cpu < nr_cpu_ids) {
4265#ifdef CONFIG_RFS_ACCEL
4266 struct netdev_rx_queue *rxqueue;
4267 struct rps_dev_flow_table *flow_table;
4268 struct rps_dev_flow *old_rflow;
4269 u32 flow_id;
4270 u16 rxq_index;
4271 int rc;
4272
4273 /* Should we steer this flow to a different hardware queue? */
4274 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4275 !(dev->features & NETIF_F_NTUPLE))
4276 goto out;
4277 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4278 if (rxq_index == skb_get_rx_queue(skb))
4279 goto out;
4280
4281 rxqueue = dev->_rx + rxq_index;
4282 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4283 if (!flow_table)
4284 goto out;
4285 flow_id = skb_get_hash(skb) & flow_table->mask;
4286 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4287 rxq_index, flow_id);
4288 if (rc < 0)
4289 goto out;
4290 old_rflow = rflow;
4291 rflow = &flow_table->flows[flow_id];
4292 rflow->filter = rc;
4293 if (old_rflow->filter == rflow->filter)
4294 old_rflow->filter = RPS_NO_FILTER;
4295 out:
4296#endif
4297 rflow->last_qtail =
4298 per_cpu(softnet_data, next_cpu).input_queue_head;
4299 }
4300
4301 rflow->cpu = next_cpu;
4302 return rflow;
4303}
4304
4305/*
4306 * get_rps_cpu is called from netif_receive_skb and returns the target
4307 * CPU from the RPS map of the receiving queue for a given skb.
4308 * rcu_read_lock must be held on entry.
4309 */
4310static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4311 struct rps_dev_flow **rflowp)
4312{
4313 const struct rps_sock_flow_table *sock_flow_table;
4314 struct netdev_rx_queue *rxqueue = dev->_rx;
4315 struct rps_dev_flow_table *flow_table;
4316 struct rps_map *map;
4317 int cpu = -1;
4318 u32 tcpu;
4319 u32 hash;
4320
4321 if (skb_rx_queue_recorded(skb)) {
4322 u16 index = skb_get_rx_queue(skb);
4323
4324 if (unlikely(index >= dev->real_num_rx_queues)) {
4325 WARN_ONCE(dev->real_num_rx_queues > 1,
4326 "%s received packet on queue %u, but number "
4327 "of RX queues is %u\n",
4328 dev->name, index, dev->real_num_rx_queues);
4329 goto done;
4330 }
4331 rxqueue += index;
4332 }
4333
4334 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4335
4336 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4337 map = rcu_dereference(rxqueue->rps_map);
4338 if (!flow_table && !map)
4339 goto done;
4340
4341 skb_reset_network_header(skb);
4342 hash = skb_get_hash(skb);
4343 if (!hash)
4344 goto done;
4345
4346 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4347 if (flow_table && sock_flow_table) {
4348 struct rps_dev_flow *rflow;
4349 u32 next_cpu;
4350 u32 ident;
4351
4352 /* First check into global flow table if there is a match */
4353 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4354 if ((ident ^ hash) & ~rps_cpu_mask)
4355 goto try_rps;
4356
4357 next_cpu = ident & rps_cpu_mask;
4358
4359 /* OK, now we know there is a match,
4360 * we can look at the local (per receive queue) flow table
4361 */
4362 rflow = &flow_table->flows[hash & flow_table->mask];
4363 tcpu = rflow->cpu;
4364
4365 /*
4366 * If the desired CPU (where last recvmsg was done) is
4367 * different from current CPU (one in the rx-queue flow
4368 * table entry), switch if one of the following holds:
4369 * - Current CPU is unset (>= nr_cpu_ids).
4370 * - Current CPU is offline.
4371 * - The current CPU's queue tail has advanced beyond the
4372 * last packet that was enqueued using this table entry.
4373 * This guarantees that all previous packets for the flow
4374 * have been dequeued, thus preserving in order delivery.
4375 */
4376 if (unlikely(tcpu != next_cpu) &&
4377 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4378 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4379 rflow->last_qtail)) >= 0)) {
4380 tcpu = next_cpu;
4381 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4382 }
4383
4384 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4385 *rflowp = rflow;
4386 cpu = tcpu;
4387 goto done;
4388 }
4389 }
4390
4391try_rps:
4392
4393 if (map) {
4394 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4395 if (cpu_online(tcpu)) {
4396 cpu = tcpu;
4397 goto done;
4398 }
4399 }
4400
4401done:
4402 return cpu;
4403}
4404
4405#ifdef CONFIG_RFS_ACCEL
4406
4407/**
4408 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4409 * @dev: Device on which the filter was set
4410 * @rxq_index: RX queue index
4411 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4412 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4413 *
4414 * Drivers that implement ndo_rx_flow_steer() should periodically call
4415 * this function for each installed filter and remove the filters for
4416 * which it returns %true.
4417 */
4418bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4419 u32 flow_id, u16 filter_id)
4420{
4421 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4422 struct rps_dev_flow_table *flow_table;
4423 struct rps_dev_flow *rflow;
4424 bool expire = true;
4425 unsigned int cpu;
4426
4427 rcu_read_lock();
4428 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4429 if (flow_table && flow_id <= flow_table->mask) {
4430 rflow = &flow_table->flows[flow_id];
4431 cpu = READ_ONCE(rflow->cpu);
4432 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4433 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4434 rflow->last_qtail) <
4435 (int)(10 * flow_table->mask)))
4436 expire = false;
4437 }
4438 rcu_read_unlock();
4439 return expire;
4440}
4441EXPORT_SYMBOL(rps_may_expire_flow);
4442
4443#endif /* CONFIG_RFS_ACCEL */
4444
4445/* Called from hardirq (IPI) context */
4446static void rps_trigger_softirq(void *data)
4447{
4448 struct softnet_data *sd = data;
4449
4450 ____napi_schedule(sd, &sd->backlog);
4451 sd->received_rps++;
4452}
4453
4454#endif /* CONFIG_RPS */
4455
4456/*
4457 * Check if this softnet_data structure is another cpu one
4458 * If yes, queue it to our IPI list and return 1
4459 * If no, return 0
4460 */
4461static int rps_ipi_queued(struct softnet_data *sd)
4462{
4463#ifdef CONFIG_RPS
4464 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4465
4466 if (sd != mysd) {
4467 sd->rps_ipi_next = mysd->rps_ipi_list;
4468 mysd->rps_ipi_list = sd;
4469
4470 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4471 return 1;
4472 }
4473#endif /* CONFIG_RPS */
4474 return 0;
4475}
4476
4477#ifdef CONFIG_NET_FLOW_LIMIT
4478int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4479#endif
4480
4481static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4482{
4483#ifdef CONFIG_NET_FLOW_LIMIT
4484 struct sd_flow_limit *fl;
4485 struct softnet_data *sd;
4486 unsigned int old_flow, new_flow;
4487
4488 if (qlen < (netdev_max_backlog >> 1))
4489 return false;
4490
4491 sd = this_cpu_ptr(&softnet_data);
4492
4493 rcu_read_lock();
4494 fl = rcu_dereference(sd->flow_limit);
4495 if (fl) {
4496 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4497 old_flow = fl->history[fl->history_head];
4498 fl->history[fl->history_head] = new_flow;
4499
4500 fl->history_head++;
4501 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4502
4503 if (likely(fl->buckets[old_flow]))
4504 fl->buckets[old_flow]--;
4505
4506 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4507 fl->count++;
4508 rcu_read_unlock();
4509 return true;
4510 }
4511 }
4512 rcu_read_unlock();
4513#endif
4514 return false;
4515}
4516
4517/*
4518 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4519 * queue (may be a remote CPU queue).
4520 */
4521static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4522 unsigned int *qtail)
4523{
4524 struct softnet_data *sd;
4525 unsigned long flags;
4526 unsigned int qlen;
4527
4528 sd = &per_cpu(softnet_data, cpu);
4529
4530 local_irq_save(flags);
4531
4532 rps_lock(sd);
4533 if (!netif_running(skb->dev))
4534 goto drop;
4535 qlen = skb_queue_len(&sd->input_pkt_queue);
4536 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4537 if (qlen) {
4538enqueue:
4539 __skb_queue_tail(&sd->input_pkt_queue, skb);
4540 input_queue_tail_incr_save(sd, qtail);
4541 rps_unlock(sd);
4542 local_irq_restore(flags);
4543 return NET_RX_SUCCESS;
4544 }
4545
4546 /* Schedule NAPI for backlog device
4547 * We can use non atomic operation since we own the queue lock
4548 */
4549 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4550 if (!rps_ipi_queued(sd))
4551 ____napi_schedule(sd, &sd->backlog);
4552 }
4553 goto enqueue;
4554 }
4555
4556drop:
4557 sd->dropped++;
4558 rps_unlock(sd);
4559
4560 local_irq_restore(flags);
4561
4562 atomic_long_inc(&skb->dev->rx_dropped);
4563 kfree_skb(skb);
4564 return NET_RX_DROP;
4565}
4566
4567static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4568{
4569 struct net_device *dev = skb->dev;
4570 struct netdev_rx_queue *rxqueue;
4571
4572 rxqueue = dev->_rx;
4573
4574 if (skb_rx_queue_recorded(skb)) {
4575 u16 index = skb_get_rx_queue(skb);
4576
4577 if (unlikely(index >= dev->real_num_rx_queues)) {
4578 WARN_ONCE(dev->real_num_rx_queues > 1,
4579 "%s received packet on queue %u, but number "
4580 "of RX queues is %u\n",
4581 dev->name, index, dev->real_num_rx_queues);
4582
4583 return rxqueue; /* Return first rxqueue */
4584 }
4585 rxqueue += index;
4586 }
4587 return rxqueue;
4588}
4589
4590static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4591 struct xdp_buff *xdp,
4592 struct bpf_prog *xdp_prog)
4593{
4594 struct netdev_rx_queue *rxqueue;
4595 void *orig_data, *orig_data_end;
4596 u32 metalen, act = XDP_DROP;
4597 __be16 orig_eth_type;
4598 struct ethhdr *eth;
4599 bool orig_bcast;
4600 int hlen, off;
4601 u32 mac_len;
4602
4603 /* Reinjected packets coming from act_mirred or similar should
4604 * not get XDP generic processing.
4605 */
4606 if (skb_is_redirected(skb))
4607 return XDP_PASS;
4608
4609 /* XDP packets must be linear and must have sufficient headroom
4610 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4611 * native XDP provides, thus we need to do it here as well.
4612 */
4613 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4614 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4615 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4616 int troom = skb->tail + skb->data_len - skb->end;
4617
4618 /* In case we have to go down the path and also linearize,
4619 * then lets do the pskb_expand_head() work just once here.
4620 */
4621 if (pskb_expand_head(skb,
4622 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4623 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4624 goto do_drop;
4625 if (skb_linearize(skb))
4626 goto do_drop;
4627 }
4628
4629 /* The XDP program wants to see the packet starting at the MAC
4630 * header.
4631 */
4632 mac_len = skb->data - skb_mac_header(skb);
4633 hlen = skb_headlen(skb) + mac_len;
4634 xdp->data = skb->data - mac_len;
4635 xdp->data_meta = xdp->data;
4636 xdp->data_end = xdp->data + hlen;
4637 xdp->data_hard_start = skb->data - skb_headroom(skb);
4638
4639 /* SKB "head" area always have tailroom for skb_shared_info */
4640 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4641 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4642
4643 orig_data_end = xdp->data_end;
4644 orig_data = xdp->data;
4645 eth = (struct ethhdr *)xdp->data;
4646 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4647 orig_eth_type = eth->h_proto;
4648
4649 rxqueue = netif_get_rxqueue(skb);
4650 xdp->rxq = &rxqueue->xdp_rxq;
4651
4652 act = bpf_prog_run_xdp(xdp_prog, xdp);
4653
4654 /* check if bpf_xdp_adjust_head was used */
4655 off = xdp->data - orig_data;
4656 if (off) {
4657 if (off > 0)
4658 __skb_pull(skb, off);
4659 else if (off < 0)
4660 __skb_push(skb, -off);
4661
4662 skb->mac_header += off;
4663 skb_reset_network_header(skb);
4664 }
4665
4666 /* check if bpf_xdp_adjust_tail was used */
4667 off = xdp->data_end - orig_data_end;
4668 if (off != 0) {
4669 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4670 skb->len += off; /* positive on grow, negative on shrink */
4671 }
4672
4673 /* check if XDP changed eth hdr such SKB needs update */
4674 eth = (struct ethhdr *)xdp->data;
4675 if ((orig_eth_type != eth->h_proto) ||
4676 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4677 __skb_push(skb, ETH_HLEN);
4678 skb->protocol = eth_type_trans(skb, skb->dev);
4679 }
4680
4681 switch (act) {
4682 case XDP_REDIRECT:
4683 case XDP_TX:
4684 __skb_push(skb, mac_len);
4685 break;
4686 case XDP_PASS:
4687 metalen = xdp->data - xdp->data_meta;
4688 if (metalen)
4689 skb_metadata_set(skb, metalen);
4690 break;
4691 default:
4692 bpf_warn_invalid_xdp_action(act);
4693 /* fall through */
4694 case XDP_ABORTED:
4695 trace_xdp_exception(skb->dev, xdp_prog, act);
4696 /* fall through */
4697 case XDP_DROP:
4698 do_drop:
4699 kfree_skb(skb);
4700 break;
4701 }
4702
4703 return act;
4704}
4705
4706/* When doing generic XDP we have to bypass the qdisc layer and the
4707 * network taps in order to match in-driver-XDP behavior.
4708 */
4709void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4710{
4711 struct net_device *dev = skb->dev;
4712 struct netdev_queue *txq;
4713 bool free_skb = true;
4714 int cpu, rc;
4715
4716 txq = netdev_core_pick_tx(dev, skb, NULL);
4717 cpu = smp_processor_id();
4718 HARD_TX_LOCK(dev, txq, cpu);
4719 if (!netif_xmit_stopped(txq)) {
4720 rc = netdev_start_xmit(skb, dev, txq, 0);
4721 if (dev_xmit_complete(rc))
4722 free_skb = false;
4723 }
4724 HARD_TX_UNLOCK(dev, txq);
4725 if (free_skb) {
4726 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4727 kfree_skb(skb);
4728 }
4729}
4730
4731static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4732
4733int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4734{
4735 if (xdp_prog) {
4736 struct xdp_buff xdp;
4737 u32 act;
4738 int err;
4739
4740 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4741 if (act != XDP_PASS) {
4742 switch (act) {
4743 case XDP_REDIRECT:
4744 err = xdp_do_generic_redirect(skb->dev, skb,
4745 &xdp, xdp_prog);
4746 if (err)
4747 goto out_redir;
4748 break;
4749 case XDP_TX:
4750 generic_xdp_tx(skb, xdp_prog);
4751 break;
4752 }
4753 return XDP_DROP;
4754 }
4755 }
4756 return XDP_PASS;
4757out_redir:
4758 kfree_skb(skb);
4759 return XDP_DROP;
4760}
4761EXPORT_SYMBOL_GPL(do_xdp_generic);
4762
4763static int netif_rx_internal(struct sk_buff *skb)
4764{
4765 int ret;
4766
4767 net_timestamp_check(netdev_tstamp_prequeue, skb);
4768
4769 trace_netif_rx(skb);
4770
4771#ifdef CONFIG_RPS
4772 if (static_branch_unlikely(&rps_needed)) {
4773 struct rps_dev_flow voidflow, *rflow = &voidflow;
4774 int cpu;
4775
4776 preempt_disable();
4777 rcu_read_lock();
4778
4779 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4780 if (cpu < 0)
4781 cpu = smp_processor_id();
4782
4783 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4784
4785 rcu_read_unlock();
4786 preempt_enable();
4787 } else
4788#endif
4789 {
4790 unsigned int qtail;
4791
4792 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4793 put_cpu();
4794 }
4795 return ret;
4796}
4797
4798/**
4799 * netif_rx - post buffer to the network code
4800 * @skb: buffer to post
4801 *
4802 * This function receives a packet from a device driver and queues it for
4803 * the upper (protocol) levels to process. It always succeeds. The buffer
4804 * may be dropped during processing for congestion control or by the
4805 * protocol layers.
4806 *
4807 * return values:
4808 * NET_RX_SUCCESS (no congestion)
4809 * NET_RX_DROP (packet was dropped)
4810 *
4811 */
4812
4813int netif_rx(struct sk_buff *skb)
4814{
4815 int ret;
4816
4817 trace_netif_rx_entry(skb);
4818
4819 ret = netif_rx_internal(skb);
4820 trace_netif_rx_exit(ret);
4821
4822 return ret;
4823}
4824EXPORT_SYMBOL(netif_rx);
4825
4826int netif_rx_ni(struct sk_buff *skb)
4827{
4828 int err;
4829
4830 trace_netif_rx_ni_entry(skb);
4831
4832 preempt_disable();
4833 err = netif_rx_internal(skb);
4834 if (local_softirq_pending())
4835 do_softirq();
4836 preempt_enable();
4837 trace_netif_rx_ni_exit(err);
4838
4839 return err;
4840}
4841EXPORT_SYMBOL(netif_rx_ni);
4842
4843static __latent_entropy void net_tx_action(struct softirq_action *h)
4844{
4845 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4846
4847 if (sd->completion_queue) {
4848 struct sk_buff *clist;
4849
4850 local_irq_disable();
4851 clist = sd->completion_queue;
4852 sd->completion_queue = NULL;
4853 local_irq_enable();
4854
4855 while (clist) {
4856 struct sk_buff *skb = clist;
4857
4858 clist = clist->next;
4859
4860 WARN_ON(refcount_read(&skb->users));
4861 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4862 trace_consume_skb(skb);
4863 else
4864 trace_kfree_skb(skb, net_tx_action);
4865
4866 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4867 __kfree_skb(skb);
4868 else
4869 __kfree_skb_defer(skb);
4870 }
4871
4872 __kfree_skb_flush();
4873 }
4874
4875 if (sd->output_queue) {
4876 struct Qdisc *head;
4877
4878 local_irq_disable();
4879 head = sd->output_queue;
4880 sd->output_queue = NULL;
4881 sd->output_queue_tailp = &sd->output_queue;
4882 local_irq_enable();
4883
4884 while (head) {
4885 struct Qdisc *q = head;
4886 spinlock_t *root_lock = NULL;
4887
4888 head = head->next_sched;
4889
4890 if (!(q->flags & TCQ_F_NOLOCK)) {
4891 root_lock = qdisc_lock(q);
4892 spin_lock(root_lock);
4893 }
4894 /* We need to make sure head->next_sched is read
4895 * before clearing __QDISC_STATE_SCHED
4896 */
4897 smp_mb__before_atomic();
4898 clear_bit(__QDISC_STATE_SCHED, &q->state);
4899 qdisc_run(q);
4900 if (root_lock)
4901 spin_unlock(root_lock);
4902 }
4903 }
4904
4905 xfrm_dev_backlog(sd);
4906}
4907
4908#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4909/* This hook is defined here for ATM LANE */
4910int (*br_fdb_test_addr_hook)(struct net_device *dev,
4911 unsigned char *addr) __read_mostly;
4912EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4913#endif
4914
4915static inline struct sk_buff *
4916sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4917 struct net_device *orig_dev)
4918{
4919#ifdef CONFIG_NET_CLS_ACT
4920 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4921 struct tcf_result cl_res;
4922
4923 /* If there's at least one ingress present somewhere (so
4924 * we get here via enabled static key), remaining devices
4925 * that are not configured with an ingress qdisc will bail
4926 * out here.
4927 */
4928 if (!miniq)
4929 return skb;
4930
4931 if (*pt_prev) {
4932 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4933 *pt_prev = NULL;
4934 }
4935
4936 qdisc_skb_cb(skb)->pkt_len = skb->len;
4937 skb->tc_at_ingress = 1;
4938 mini_qdisc_bstats_cpu_update(miniq, skb);
4939
4940 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4941 &cl_res, false)) {
4942 case TC_ACT_OK:
4943 case TC_ACT_RECLASSIFY:
4944 skb->tc_index = TC_H_MIN(cl_res.classid);
4945 break;
4946 case TC_ACT_SHOT:
4947 mini_qdisc_qstats_cpu_drop(miniq);
4948 kfree_skb(skb);
4949 return NULL;
4950 case TC_ACT_STOLEN:
4951 case TC_ACT_QUEUED:
4952 case TC_ACT_TRAP:
4953 consume_skb(skb);
4954 return NULL;
4955 case TC_ACT_REDIRECT:
4956 /* skb_mac_header check was done by cls/act_bpf, so
4957 * we can safely push the L2 header back before
4958 * redirecting to another netdev
4959 */
4960 __skb_push(skb, skb->mac_len);
4961 skb_do_redirect(skb);
4962 return NULL;
4963 case TC_ACT_CONSUMED:
4964 return NULL;
4965 default:
4966 break;
4967 }
4968#endif /* CONFIG_NET_CLS_ACT */
4969 return skb;
4970}
4971
4972/**
4973 * netdev_is_rx_handler_busy - check if receive handler is registered
4974 * @dev: device to check
4975 *
4976 * Check if a receive handler is already registered for a given device.
4977 * Return true if there one.
4978 *
4979 * The caller must hold the rtnl_mutex.
4980 */
4981bool netdev_is_rx_handler_busy(struct net_device *dev)
4982{
4983 ASSERT_RTNL();
4984 return dev && rtnl_dereference(dev->rx_handler);
4985}
4986EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4987
4988/**
4989 * netdev_rx_handler_register - register receive handler
4990 * @dev: device to register a handler for
4991 * @rx_handler: receive handler to register
4992 * @rx_handler_data: data pointer that is used by rx handler
4993 *
4994 * Register a receive handler for a device. This handler will then be
4995 * called from __netif_receive_skb. A negative errno code is returned
4996 * on a failure.
4997 *
4998 * The caller must hold the rtnl_mutex.
4999 *
5000 * For a general description of rx_handler, see enum rx_handler_result.
5001 */
5002int netdev_rx_handler_register(struct net_device *dev,
5003 rx_handler_func_t *rx_handler,
5004 void *rx_handler_data)
5005{
5006 if (netdev_is_rx_handler_busy(dev))
5007 return -EBUSY;
5008
5009 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5010 return -EINVAL;
5011
5012 /* Note: rx_handler_data must be set before rx_handler */
5013 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5014 rcu_assign_pointer(dev->rx_handler, rx_handler);
5015
5016 return 0;
5017}
5018EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5019
5020/**
5021 * netdev_rx_handler_unregister - unregister receive handler
5022 * @dev: device to unregister a handler from
5023 *
5024 * Unregister a receive handler from a device.
5025 *
5026 * The caller must hold the rtnl_mutex.
5027 */
5028void netdev_rx_handler_unregister(struct net_device *dev)
5029{
5030
5031 ASSERT_RTNL();
5032 RCU_INIT_POINTER(dev->rx_handler, NULL);
5033 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5034 * section has a guarantee to see a non NULL rx_handler_data
5035 * as well.
5036 */
5037 synchronize_net();
5038 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5039}
5040EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5041
5042/*
5043 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5044 * the special handling of PFMEMALLOC skbs.
5045 */
5046static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5047{
5048 switch (skb->protocol) {
5049 case htons(ETH_P_ARP):
5050 case htons(ETH_P_IP):
5051 case htons(ETH_P_IPV6):
5052 case htons(ETH_P_8021Q):
5053 case htons(ETH_P_8021AD):
5054 return true;
5055 default:
5056 return false;
5057 }
5058}
5059
5060static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5061 int *ret, struct net_device *orig_dev)
5062{
5063 if (nf_hook_ingress_active(skb)) {
5064 int ingress_retval;
5065
5066 if (*pt_prev) {
5067 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5068 *pt_prev = NULL;
5069 }
5070
5071 rcu_read_lock();
5072 ingress_retval = nf_hook_ingress(skb);
5073 rcu_read_unlock();
5074 return ingress_retval;
5075 }
5076 return 0;
5077}
5078
5079static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5080 struct packet_type **ppt_prev)
5081{
5082 struct packet_type *ptype, *pt_prev;
5083 rx_handler_func_t *rx_handler;
5084 struct sk_buff *skb = *pskb;
5085 struct net_device *orig_dev;
5086 bool deliver_exact = false;
5087 int ret = NET_RX_DROP;
5088 __be16 type;
5089
5090 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5091
5092 trace_netif_receive_skb(skb);
5093
5094 orig_dev = skb->dev;
5095
5096 skb_reset_network_header(skb);
5097 if (!skb_transport_header_was_set(skb))
5098 skb_reset_transport_header(skb);
5099 skb_reset_mac_len(skb);
5100
5101 pt_prev = NULL;
5102
5103another_round:
5104 skb->skb_iif = skb->dev->ifindex;
5105
5106 __this_cpu_inc(softnet_data.processed);
5107
5108 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5109 int ret2;
5110
5111 preempt_disable();
5112 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5113 preempt_enable();
5114
5115 if (ret2 != XDP_PASS) {
5116 ret = NET_RX_DROP;
5117 goto out;
5118 }
5119 skb_reset_mac_len(skb);
5120 }
5121
5122 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5123 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5124 skb = skb_vlan_untag(skb);
5125 if (unlikely(!skb))
5126 goto out;
5127 }
5128
5129 if (skb_skip_tc_classify(skb))
5130 goto skip_classify;
5131
5132 if (pfmemalloc)
5133 goto skip_taps;
5134
5135 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5136 if (pt_prev)
5137 ret = deliver_skb(skb, pt_prev, orig_dev);
5138 pt_prev = ptype;
5139 }
5140
5141 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5142 if (pt_prev)
5143 ret = deliver_skb(skb, pt_prev, orig_dev);
5144 pt_prev = ptype;
5145 }
5146
5147skip_taps:
5148#ifdef CONFIG_NET_INGRESS
5149 if (static_branch_unlikely(&ingress_needed_key)) {
5150 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5151 if (!skb)
5152 goto out;
5153
5154 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5155 goto out;
5156 }
5157#endif
5158 skb_reset_redirect(skb);
5159skip_classify:
5160 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5161 goto drop;
5162
5163 if (skb_vlan_tag_present(skb)) {
5164 if (pt_prev) {
5165 ret = deliver_skb(skb, pt_prev, orig_dev);
5166 pt_prev = NULL;
5167 }
5168 if (vlan_do_receive(&skb))
5169 goto another_round;
5170 else if (unlikely(!skb))
5171 goto out;
5172 }
5173
5174 rx_handler = rcu_dereference(skb->dev->rx_handler);
5175 if (rx_handler) {
5176 if (pt_prev) {
5177 ret = deliver_skb(skb, pt_prev, orig_dev);
5178 pt_prev = NULL;
5179 }
5180 switch (rx_handler(&skb)) {
5181 case RX_HANDLER_CONSUMED:
5182 ret = NET_RX_SUCCESS;
5183 goto out;
5184 case RX_HANDLER_ANOTHER:
5185 goto another_round;
5186 case RX_HANDLER_EXACT:
5187 deliver_exact = true;
5188 case RX_HANDLER_PASS:
5189 break;
5190 default:
5191 BUG();
5192 }
5193 }
5194
5195 if (unlikely(skb_vlan_tag_present(skb))) {
5196check_vlan_id:
5197 if (skb_vlan_tag_get_id(skb)) {
5198 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5199 * find vlan device.
5200 */
5201 skb->pkt_type = PACKET_OTHERHOST;
5202 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5203 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5204 /* Outer header is 802.1P with vlan 0, inner header is
5205 * 802.1Q or 802.1AD and vlan_do_receive() above could
5206 * not find vlan dev for vlan id 0.
5207 */
5208 __vlan_hwaccel_clear_tag(skb);
5209 skb = skb_vlan_untag(skb);
5210 if (unlikely(!skb))
5211 goto out;
5212 if (vlan_do_receive(&skb))
5213 /* After stripping off 802.1P header with vlan 0
5214 * vlan dev is found for inner header.
5215 */
5216 goto another_round;
5217 else if (unlikely(!skb))
5218 goto out;
5219 else
5220 /* We have stripped outer 802.1P vlan 0 header.
5221 * But could not find vlan dev.
5222 * check again for vlan id to set OTHERHOST.
5223 */
5224 goto check_vlan_id;
5225 }
5226 /* Note: we might in the future use prio bits
5227 * and set skb->priority like in vlan_do_receive()
5228 * For the time being, just ignore Priority Code Point
5229 */
5230 __vlan_hwaccel_clear_tag(skb);
5231 }
5232
5233 type = skb->protocol;
5234
5235 /* deliver only exact match when indicated */
5236 if (likely(!deliver_exact)) {
5237 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5238 &ptype_base[ntohs(type) &
5239 PTYPE_HASH_MASK]);
5240 }
5241
5242 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5243 &orig_dev->ptype_specific);
5244
5245 if (unlikely(skb->dev != orig_dev)) {
5246 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5247 &skb->dev->ptype_specific);
5248 }
5249
5250 if (pt_prev) {
5251 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5252 goto drop;
5253 *ppt_prev = pt_prev;
5254 } else {
5255drop:
5256 if (!deliver_exact)
5257 atomic_long_inc(&skb->dev->rx_dropped);
5258 else
5259 atomic_long_inc(&skb->dev->rx_nohandler);
5260 kfree_skb(skb);
5261 /* Jamal, now you will not able to escape explaining
5262 * me how you were going to use this. :-)
5263 */
5264 ret = NET_RX_DROP;
5265 }
5266
5267out:
5268 /* The invariant here is that if *ppt_prev is not NULL
5269 * then skb should also be non-NULL.
5270 *
5271 * Apparently *ppt_prev assignment above holds this invariant due to
5272 * skb dereferencing near it.
5273 */
5274 *pskb = skb;
5275 return ret;
5276}
5277
5278static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5279{
5280 struct net_device *orig_dev = skb->dev;
5281 struct packet_type *pt_prev = NULL;
5282 int ret;
5283
5284 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5285 if (pt_prev)
5286 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5287 skb->dev, pt_prev, orig_dev);
5288 return ret;
5289}
5290
5291/**
5292 * netif_receive_skb_core - special purpose version of netif_receive_skb
5293 * @skb: buffer to process
5294 *
5295 * More direct receive version of netif_receive_skb(). It should
5296 * only be used by callers that have a need to skip RPS and Generic XDP.
5297 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5298 *
5299 * This function may only be called from softirq context and interrupts
5300 * should be enabled.
5301 *
5302 * Return values (usually ignored):
5303 * NET_RX_SUCCESS: no congestion
5304 * NET_RX_DROP: packet was dropped
5305 */
5306int netif_receive_skb_core(struct sk_buff *skb)
5307{
5308 int ret;
5309
5310 rcu_read_lock();
5311 ret = __netif_receive_skb_one_core(skb, false);
5312 rcu_read_unlock();
5313
5314 return ret;
5315}
5316EXPORT_SYMBOL(netif_receive_skb_core);
5317
5318static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5319 struct packet_type *pt_prev,
5320 struct net_device *orig_dev)
5321{
5322 struct sk_buff *skb, *next;
5323
5324 if (!pt_prev)
5325 return;
5326 if (list_empty(head))
5327 return;
5328 if (pt_prev->list_func != NULL)
5329 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5330 ip_list_rcv, head, pt_prev, orig_dev);
5331 else
5332 list_for_each_entry_safe(skb, next, head, list) {
5333 skb_list_del_init(skb);
5334 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5335 }
5336}
5337
5338static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5339{
5340 /* Fast-path assumptions:
5341 * - There is no RX handler.
5342 * - Only one packet_type matches.
5343 * If either of these fails, we will end up doing some per-packet
5344 * processing in-line, then handling the 'last ptype' for the whole
5345 * sublist. This can't cause out-of-order delivery to any single ptype,
5346 * because the 'last ptype' must be constant across the sublist, and all
5347 * other ptypes are handled per-packet.
5348 */
5349 /* Current (common) ptype of sublist */
5350 struct packet_type *pt_curr = NULL;
5351 /* Current (common) orig_dev of sublist */
5352 struct net_device *od_curr = NULL;
5353 struct list_head sublist;
5354 struct sk_buff *skb, *next;
5355
5356 INIT_LIST_HEAD(&sublist);
5357 list_for_each_entry_safe(skb, next, head, list) {
5358 struct net_device *orig_dev = skb->dev;
5359 struct packet_type *pt_prev = NULL;
5360
5361 skb_list_del_init(skb);
5362 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5363 if (!pt_prev)
5364 continue;
5365 if (pt_curr != pt_prev || od_curr != orig_dev) {
5366 /* dispatch old sublist */
5367 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5368 /* start new sublist */
5369 INIT_LIST_HEAD(&sublist);
5370 pt_curr = pt_prev;
5371 od_curr = orig_dev;
5372 }
5373 list_add_tail(&skb->list, &sublist);
5374 }
5375
5376 /* dispatch final sublist */
5377 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5378}
5379
5380static int __netif_receive_skb(struct sk_buff *skb)
5381{
5382 int ret;
5383
5384 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5385 unsigned int noreclaim_flag;
5386
5387 /*
5388 * PFMEMALLOC skbs are special, they should
5389 * - be delivered to SOCK_MEMALLOC sockets only
5390 * - stay away from userspace
5391 * - have bounded memory usage
5392 *
5393 * Use PF_MEMALLOC as this saves us from propagating the allocation
5394 * context down to all allocation sites.
5395 */
5396 noreclaim_flag = memalloc_noreclaim_save();
5397 ret = __netif_receive_skb_one_core(skb, true);
5398 memalloc_noreclaim_restore(noreclaim_flag);
5399 } else
5400 ret = __netif_receive_skb_one_core(skb, false);
5401
5402 return ret;
5403}
5404
5405static void __netif_receive_skb_list(struct list_head *head)
5406{
5407 unsigned long noreclaim_flag = 0;
5408 struct sk_buff *skb, *next;
5409 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5410
5411 list_for_each_entry_safe(skb, next, head, list) {
5412 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5413 struct list_head sublist;
5414
5415 /* Handle the previous sublist */
5416 list_cut_before(&sublist, head, &skb->list);
5417 if (!list_empty(&sublist))
5418 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5419 pfmemalloc = !pfmemalloc;
5420 /* See comments in __netif_receive_skb */
5421 if (pfmemalloc)
5422 noreclaim_flag = memalloc_noreclaim_save();
5423 else
5424 memalloc_noreclaim_restore(noreclaim_flag);
5425 }
5426 }
5427 /* Handle the remaining sublist */
5428 if (!list_empty(head))
5429 __netif_receive_skb_list_core(head, pfmemalloc);
5430 /* Restore pflags */
5431 if (pfmemalloc)
5432 memalloc_noreclaim_restore(noreclaim_flag);
5433}
5434
5435static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5436{
5437 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5438 struct bpf_prog *new = xdp->prog;
5439 int ret = 0;
5440
5441 if (new) {
5442 u32 i;
5443
5444 /* generic XDP does not work with DEVMAPs that can
5445 * have a bpf_prog installed on an entry
5446 */
5447 for (i = 0; i < new->aux->used_map_cnt; i++) {
5448 if (dev_map_can_have_prog(new->aux->used_maps[i]))
5449 return -EINVAL;
5450 if (cpu_map_prog_allowed(new->aux->used_maps[i]))
5451 return -EINVAL;
5452 }
5453 }
5454
5455 switch (xdp->command) {
5456 case XDP_SETUP_PROG:
5457 rcu_assign_pointer(dev->xdp_prog, new);
5458 if (old)
5459 bpf_prog_put(old);
5460
5461 if (old && !new) {
5462 static_branch_dec(&generic_xdp_needed_key);
5463 } else if (new && !old) {
5464 static_branch_inc(&generic_xdp_needed_key);
5465 dev_disable_lro(dev);
5466 dev_disable_gro_hw(dev);
5467 }
5468 break;
5469
5470 default:
5471 ret = -EINVAL;
5472 break;
5473 }
5474
5475 return ret;
5476}
5477
5478static int netif_receive_skb_internal(struct sk_buff *skb)
5479{
5480 int ret;
5481
5482 net_timestamp_check(netdev_tstamp_prequeue, skb);
5483
5484 if (skb_defer_rx_timestamp(skb))
5485 return NET_RX_SUCCESS;
5486
5487 rcu_read_lock();
5488#ifdef CONFIG_RPS
5489 if (static_branch_unlikely(&rps_needed)) {
5490 struct rps_dev_flow voidflow, *rflow = &voidflow;
5491 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5492
5493 if (cpu >= 0) {
5494 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5495 rcu_read_unlock();
5496 return ret;
5497 }
5498 }
5499#endif
5500 ret = __netif_receive_skb(skb);
5501 rcu_read_unlock();
5502 return ret;
5503}
5504
5505static void netif_receive_skb_list_internal(struct list_head *head)
5506{
5507 struct sk_buff *skb, *next;
5508 struct list_head sublist;
5509
5510 INIT_LIST_HEAD(&sublist);
5511 list_for_each_entry_safe(skb, next, head, list) {
5512 net_timestamp_check(netdev_tstamp_prequeue, skb);
5513 skb_list_del_init(skb);
5514 if (!skb_defer_rx_timestamp(skb))
5515 list_add_tail(&skb->list, &sublist);
5516 }
5517 list_splice_init(&sublist, head);
5518
5519 rcu_read_lock();
5520#ifdef CONFIG_RPS
5521 if (static_branch_unlikely(&rps_needed)) {
5522 list_for_each_entry_safe(skb, next, head, list) {
5523 struct rps_dev_flow voidflow, *rflow = &voidflow;
5524 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5525
5526 if (cpu >= 0) {
5527 /* Will be handled, remove from list */
5528 skb_list_del_init(skb);
5529 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5530 }
5531 }
5532 }
5533#endif
5534 __netif_receive_skb_list(head);
5535 rcu_read_unlock();
5536}
5537
5538/**
5539 * netif_receive_skb - process receive buffer from network
5540 * @skb: buffer to process
5541 *
5542 * netif_receive_skb() is the main receive data processing function.
5543 * It always succeeds. The buffer may be dropped during processing
5544 * for congestion control or by the protocol layers.
5545 *
5546 * This function may only be called from softirq context and interrupts
5547 * should be enabled.
5548 *
5549 * Return values (usually ignored):
5550 * NET_RX_SUCCESS: no congestion
5551 * NET_RX_DROP: packet was dropped
5552 */
5553int netif_receive_skb(struct sk_buff *skb)
5554{
5555 int ret;
5556
5557 trace_netif_receive_skb_entry(skb);
5558
5559 ret = netif_receive_skb_internal(skb);
5560 trace_netif_receive_skb_exit(ret);
5561
5562 return ret;
5563}
5564EXPORT_SYMBOL(netif_receive_skb);
5565
5566/**
5567 * netif_receive_skb_list - process many receive buffers from network
5568 * @head: list of skbs to process.
5569 *
5570 * Since return value of netif_receive_skb() is normally ignored, and
5571 * wouldn't be meaningful for a list, this function returns void.
5572 *
5573 * This function may only be called from softirq context and interrupts
5574 * should be enabled.
5575 */
5576void netif_receive_skb_list(struct list_head *head)
5577{
5578 struct sk_buff *skb;
5579
5580 if (list_empty(head))
5581 return;
5582 if (trace_netif_receive_skb_list_entry_enabled()) {
5583 list_for_each_entry(skb, head, list)
5584 trace_netif_receive_skb_list_entry(skb);
5585 }
5586 netif_receive_skb_list_internal(head);
5587 trace_netif_receive_skb_list_exit(0);
5588}
5589EXPORT_SYMBOL(netif_receive_skb_list);
5590
5591static DEFINE_PER_CPU(struct work_struct, flush_works);
5592
5593/* Network device is going away, flush any packets still pending */
5594static void flush_backlog(struct work_struct *work)
5595{
5596 struct sk_buff *skb, *tmp;
5597 struct softnet_data *sd;
5598
5599 local_bh_disable();
5600 sd = this_cpu_ptr(&softnet_data);
5601
5602 local_irq_disable();
5603 rps_lock(sd);
5604 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5605 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5606 __skb_unlink(skb, &sd->input_pkt_queue);
5607 dev_kfree_skb_irq(skb);
5608 input_queue_head_incr(sd);
5609 }
5610 }
5611 rps_unlock(sd);
5612 local_irq_enable();
5613
5614 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5615 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5616 __skb_unlink(skb, &sd->process_queue);
5617 kfree_skb(skb);
5618 input_queue_head_incr(sd);
5619 }
5620 }
5621 local_bh_enable();
5622}
5623
5624static void flush_all_backlogs(void)
5625{
5626 unsigned int cpu;
5627
5628 get_online_cpus();
5629
5630 for_each_online_cpu(cpu)
5631 queue_work_on(cpu, system_highpri_wq,
5632 per_cpu_ptr(&flush_works, cpu));
5633
5634 for_each_online_cpu(cpu)
5635 flush_work(per_cpu_ptr(&flush_works, cpu));
5636
5637 put_online_cpus();
5638}
5639
5640/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5641static void gro_normal_list(struct napi_struct *napi)
5642{
5643 if (!napi->rx_count)
5644 return;
5645 netif_receive_skb_list_internal(&napi->rx_list);
5646 INIT_LIST_HEAD(&napi->rx_list);
5647 napi->rx_count = 0;
5648}
5649
5650/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5651 * pass the whole batch up to the stack.
5652 */
5653static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5654{
5655 list_add_tail(&skb->list, &napi->rx_list);
5656 if (++napi->rx_count >= gro_normal_batch)
5657 gro_normal_list(napi);
5658}
5659
5660INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5661INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5662static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5663{
5664 struct packet_offload *ptype;
5665 __be16 type = skb->protocol;
5666 struct list_head *head = &offload_base;
5667 int err = -ENOENT;
5668
5669 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5670
5671 if (NAPI_GRO_CB(skb)->count == 1) {
5672 skb_shinfo(skb)->gso_size = 0;
5673 goto out;
5674 }
5675
5676 rcu_read_lock();
5677 list_for_each_entry_rcu(ptype, head, list) {
5678 if (ptype->type != type || !ptype->callbacks.gro_complete)
5679 continue;
5680
5681 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5682 ipv6_gro_complete, inet_gro_complete,
5683 skb, 0);
5684 break;
5685 }
5686 rcu_read_unlock();
5687
5688 if (err) {
5689 WARN_ON(&ptype->list == head);
5690 kfree_skb(skb);
5691 return NET_RX_SUCCESS;
5692 }
5693
5694out:
5695 gro_normal_one(napi, skb);
5696 return NET_RX_SUCCESS;
5697}
5698
5699static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5700 bool flush_old)
5701{
5702 struct list_head *head = &napi->gro_hash[index].list;
5703 struct sk_buff *skb, *p;
5704
5705 list_for_each_entry_safe_reverse(skb, p, head, list) {
5706 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5707 return;
5708 skb_list_del_init(skb);
5709 napi_gro_complete(napi, skb);
5710 napi->gro_hash[index].count--;
5711 }
5712
5713 if (!napi->gro_hash[index].count)
5714 __clear_bit(index, &napi->gro_bitmask);
5715}
5716
5717/* napi->gro_hash[].list contains packets ordered by age.
5718 * youngest packets at the head of it.
5719 * Complete skbs in reverse order to reduce latencies.
5720 */
5721void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5722{
5723 unsigned long bitmask = napi->gro_bitmask;
5724 unsigned int i, base = ~0U;
5725
5726 while ((i = ffs(bitmask)) != 0) {
5727 bitmask >>= i;
5728 base += i;
5729 __napi_gro_flush_chain(napi, base, flush_old);
5730 }
5731}
5732EXPORT_SYMBOL(napi_gro_flush);
5733
5734static struct list_head *gro_list_prepare(struct napi_struct *napi,
5735 struct sk_buff *skb)
5736{
5737 unsigned int maclen = skb->dev->hard_header_len;
5738 u32 hash = skb_get_hash_raw(skb);
5739 struct list_head *head;
5740 struct sk_buff *p;
5741
5742 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5743 list_for_each_entry(p, head, list) {
5744 unsigned long diffs;
5745
5746 NAPI_GRO_CB(p)->flush = 0;
5747
5748 if (hash != skb_get_hash_raw(p)) {
5749 NAPI_GRO_CB(p)->same_flow = 0;
5750 continue;
5751 }
5752
5753 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5754 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5755 if (skb_vlan_tag_present(p))
5756 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5757 diffs |= skb_metadata_dst_cmp(p, skb);
5758 diffs |= skb_metadata_differs(p, skb);
5759 if (maclen == ETH_HLEN)
5760 diffs |= compare_ether_header(skb_mac_header(p),
5761 skb_mac_header(skb));
5762 else if (!diffs)
5763 diffs = memcmp(skb_mac_header(p),
5764 skb_mac_header(skb),
5765 maclen);
5766 NAPI_GRO_CB(p)->same_flow = !diffs;
5767 }
5768
5769 return head;
5770}
5771
5772static void skb_gro_reset_offset(struct sk_buff *skb)
5773{
5774 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5775 const skb_frag_t *frag0 = &pinfo->frags[0];
5776
5777 NAPI_GRO_CB(skb)->data_offset = 0;
5778 NAPI_GRO_CB(skb)->frag0 = NULL;
5779 NAPI_GRO_CB(skb)->frag0_len = 0;
5780
5781 if (!skb_headlen(skb) && pinfo->nr_frags &&
5782 !PageHighMem(skb_frag_page(frag0))) {
5783 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5784 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5785 skb_frag_size(frag0),
5786 skb->end - skb->tail);
5787 }
5788}
5789
5790static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5791{
5792 struct skb_shared_info *pinfo = skb_shinfo(skb);
5793
5794 BUG_ON(skb->end - skb->tail < grow);
5795
5796 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5797
5798 skb->data_len -= grow;
5799 skb->tail += grow;
5800
5801 skb_frag_off_add(&pinfo->frags[0], grow);
5802 skb_frag_size_sub(&pinfo->frags[0], grow);
5803
5804 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5805 skb_frag_unref(skb, 0);
5806 memmove(pinfo->frags, pinfo->frags + 1,
5807 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5808 }
5809}
5810
5811static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5812{
5813 struct sk_buff *oldest;
5814
5815 oldest = list_last_entry(head, struct sk_buff, list);
5816
5817 /* We are called with head length >= MAX_GRO_SKBS, so this is
5818 * impossible.
5819 */
5820 if (WARN_ON_ONCE(!oldest))
5821 return;
5822
5823 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5824 * SKB to the chain.
5825 */
5826 skb_list_del_init(oldest);
5827 napi_gro_complete(napi, oldest);
5828}
5829
5830INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5831 struct sk_buff *));
5832INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5833 struct sk_buff *));
5834static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5835{
5836 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5837 struct list_head *head = &offload_base;
5838 struct packet_offload *ptype;
5839 __be16 type = skb->protocol;
5840 struct list_head *gro_head;
5841 struct sk_buff *pp = NULL;
5842 enum gro_result ret;
5843 int same_flow;
5844 int grow;
5845
5846 if (netif_elide_gro(skb->dev))
5847 goto normal;
5848
5849 gro_head = gro_list_prepare(napi, skb);
5850
5851 rcu_read_lock();
5852 list_for_each_entry_rcu(ptype, head, list) {
5853 if (ptype->type != type || !ptype->callbacks.gro_receive)
5854 continue;
5855
5856 skb_set_network_header(skb, skb_gro_offset(skb));
5857 skb_reset_mac_len(skb);
5858 NAPI_GRO_CB(skb)->same_flow = 0;
5859 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5860 NAPI_GRO_CB(skb)->free = 0;
5861 NAPI_GRO_CB(skb)->encap_mark = 0;
5862 NAPI_GRO_CB(skb)->recursion_counter = 0;
5863 NAPI_GRO_CB(skb)->is_fou = 0;
5864 NAPI_GRO_CB(skb)->is_atomic = 1;
5865 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5866
5867 /* Setup for GRO checksum validation */
5868 switch (skb->ip_summed) {
5869 case CHECKSUM_COMPLETE:
5870 NAPI_GRO_CB(skb)->csum = skb->csum;
5871 NAPI_GRO_CB(skb)->csum_valid = 1;
5872 NAPI_GRO_CB(skb)->csum_cnt = 0;
5873 break;
5874 case CHECKSUM_UNNECESSARY:
5875 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5876 NAPI_GRO_CB(skb)->csum_valid = 0;
5877 break;
5878 default:
5879 NAPI_GRO_CB(skb)->csum_cnt = 0;
5880 NAPI_GRO_CB(skb)->csum_valid = 0;
5881 }
5882
5883 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5884 ipv6_gro_receive, inet_gro_receive,
5885 gro_head, skb);
5886 break;
5887 }
5888 rcu_read_unlock();
5889
5890 if (&ptype->list == head)
5891 goto normal;
5892
5893 if (PTR_ERR(pp) == -EINPROGRESS) {
5894 ret = GRO_CONSUMED;
5895 goto ok;
5896 }
5897
5898 same_flow = NAPI_GRO_CB(skb)->same_flow;
5899 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5900
5901 if (pp) {
5902 skb_list_del_init(pp);
5903 napi_gro_complete(napi, pp);
5904 napi->gro_hash[hash].count--;
5905 }
5906
5907 if (same_flow)
5908 goto ok;
5909
5910 if (NAPI_GRO_CB(skb)->flush)
5911 goto normal;
5912
5913 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5914 gro_flush_oldest(napi, gro_head);
5915 } else {
5916 napi->gro_hash[hash].count++;
5917 }
5918 NAPI_GRO_CB(skb)->count = 1;
5919 NAPI_GRO_CB(skb)->age = jiffies;
5920 NAPI_GRO_CB(skb)->last = skb;
5921 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5922 list_add(&skb->list, gro_head);
5923 ret = GRO_HELD;
5924
5925pull:
5926 grow = skb_gro_offset(skb) - skb_headlen(skb);
5927 if (grow > 0)
5928 gro_pull_from_frag0(skb, grow);
5929ok:
5930 if (napi->gro_hash[hash].count) {
5931 if (!test_bit(hash, &napi->gro_bitmask))
5932 __set_bit(hash, &napi->gro_bitmask);
5933 } else if (test_bit(hash, &napi->gro_bitmask)) {
5934 __clear_bit(hash, &napi->gro_bitmask);
5935 }
5936
5937 return ret;
5938
5939normal:
5940 ret = GRO_NORMAL;
5941 goto pull;
5942}
5943
5944struct packet_offload *gro_find_receive_by_type(__be16 type)
5945{
5946 struct list_head *offload_head = &offload_base;
5947 struct packet_offload *ptype;
5948
5949 list_for_each_entry_rcu(ptype, offload_head, list) {
5950 if (ptype->type != type || !ptype->callbacks.gro_receive)
5951 continue;
5952 return ptype;
5953 }
5954 return NULL;
5955}
5956EXPORT_SYMBOL(gro_find_receive_by_type);
5957
5958struct packet_offload *gro_find_complete_by_type(__be16 type)
5959{
5960 struct list_head *offload_head = &offload_base;
5961 struct packet_offload *ptype;
5962
5963 list_for_each_entry_rcu(ptype, offload_head, list) {
5964 if (ptype->type != type || !ptype->callbacks.gro_complete)
5965 continue;
5966 return ptype;
5967 }
5968 return NULL;
5969}
5970EXPORT_SYMBOL(gro_find_complete_by_type);
5971
5972static void napi_skb_free_stolen_head(struct sk_buff *skb)
5973{
5974 skb_dst_drop(skb);
5975 skb_ext_put(skb);
5976 kmem_cache_free(skbuff_head_cache, skb);
5977}
5978
5979static gro_result_t napi_skb_finish(struct napi_struct *napi,
5980 struct sk_buff *skb,
5981 gro_result_t ret)
5982{
5983 switch (ret) {
5984 case GRO_NORMAL:
5985 gro_normal_one(napi, skb);
5986 break;
5987
5988 case GRO_DROP:
5989 kfree_skb(skb);
5990 break;
5991
5992 case GRO_MERGED_FREE:
5993 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5994 napi_skb_free_stolen_head(skb);
5995 else
5996 __kfree_skb(skb);
5997 break;
5998
5999 case GRO_HELD:
6000 case GRO_MERGED:
6001 case GRO_CONSUMED:
6002 break;
6003 }
6004
6005 return ret;
6006}
6007
6008gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6009{
6010 gro_result_t ret;
6011
6012 skb_mark_napi_id(skb, napi);
6013 trace_napi_gro_receive_entry(skb);
6014
6015 skb_gro_reset_offset(skb);
6016
6017 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6018 trace_napi_gro_receive_exit(ret);
6019
6020 return ret;
6021}
6022EXPORT_SYMBOL(napi_gro_receive);
6023
6024static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6025{
6026 if (unlikely(skb->pfmemalloc)) {
6027 consume_skb(skb);
6028 return;
6029 }
6030 __skb_pull(skb, skb_headlen(skb));
6031 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6032 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6033 __vlan_hwaccel_clear_tag(skb);
6034 skb->dev = napi->dev;
6035 skb->skb_iif = 0;
6036
6037 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6038 skb->pkt_type = PACKET_HOST;
6039
6040 skb->encapsulation = 0;
6041 skb_shinfo(skb)->gso_type = 0;
6042 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6043 skb_ext_reset(skb);
6044
6045 napi->skb = skb;
6046}
6047
6048struct sk_buff *napi_get_frags(struct napi_struct *napi)
6049{
6050 struct sk_buff *skb = napi->skb;
6051
6052 if (!skb) {
6053 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6054 if (skb) {
6055 napi->skb = skb;
6056 skb_mark_napi_id(skb, napi);
6057 }
6058 }
6059 return skb;
6060}
6061EXPORT_SYMBOL(napi_get_frags);
6062
6063static gro_result_t napi_frags_finish(struct napi_struct *napi,
6064 struct sk_buff *skb,
6065 gro_result_t ret)
6066{
6067 switch (ret) {
6068 case GRO_NORMAL:
6069 case GRO_HELD:
6070 __skb_push(skb, ETH_HLEN);
6071 skb->protocol = eth_type_trans(skb, skb->dev);
6072 if (ret == GRO_NORMAL)
6073 gro_normal_one(napi, skb);
6074 break;
6075
6076 case GRO_DROP:
6077 napi_reuse_skb(napi, skb);
6078 break;
6079
6080 case GRO_MERGED_FREE:
6081 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6082 napi_skb_free_stolen_head(skb);
6083 else
6084 napi_reuse_skb(napi, skb);
6085 break;
6086
6087 case GRO_MERGED:
6088 case GRO_CONSUMED:
6089 break;
6090 }
6091
6092 return ret;
6093}
6094
6095/* Upper GRO stack assumes network header starts at gro_offset=0
6096 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6097 * We copy ethernet header into skb->data to have a common layout.
6098 */
6099static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6100{
6101 struct sk_buff *skb = napi->skb;
6102 const struct ethhdr *eth;
6103 unsigned int hlen = sizeof(*eth);
6104
6105 napi->skb = NULL;
6106
6107 skb_reset_mac_header(skb);
6108 skb_gro_reset_offset(skb);
6109
6110 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6111 eth = skb_gro_header_slow(skb, hlen, 0);
6112 if (unlikely(!eth)) {
6113 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6114 __func__, napi->dev->name);
6115 napi_reuse_skb(napi, skb);
6116 return NULL;
6117 }
6118 } else {
6119 eth = (const struct ethhdr *)skb->data;
6120 gro_pull_from_frag0(skb, hlen);
6121 NAPI_GRO_CB(skb)->frag0 += hlen;
6122 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6123 }
6124 __skb_pull(skb, hlen);
6125
6126 /*
6127 * This works because the only protocols we care about don't require
6128 * special handling.
6129 * We'll fix it up properly in napi_frags_finish()
6130 */
6131 skb->protocol = eth->h_proto;
6132
6133 return skb;
6134}
6135
6136gro_result_t napi_gro_frags(struct napi_struct *napi)
6137{
6138 gro_result_t ret;
6139 struct sk_buff *skb = napi_frags_skb(napi);
6140
6141 if (!skb)
6142 return GRO_DROP;
6143
6144 trace_napi_gro_frags_entry(skb);
6145
6146 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6147 trace_napi_gro_frags_exit(ret);
6148
6149 return ret;
6150}
6151EXPORT_SYMBOL(napi_gro_frags);
6152
6153/* Compute the checksum from gro_offset and return the folded value
6154 * after adding in any pseudo checksum.
6155 */
6156__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6157{
6158 __wsum wsum;
6159 __sum16 sum;
6160
6161 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6162
6163 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6164 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6165 /* See comments in __skb_checksum_complete(). */
6166 if (likely(!sum)) {
6167 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6168 !skb->csum_complete_sw)
6169 netdev_rx_csum_fault(skb->dev, skb);
6170 }
6171
6172 NAPI_GRO_CB(skb)->csum = wsum;
6173 NAPI_GRO_CB(skb)->csum_valid = 1;
6174
6175 return sum;
6176}
6177EXPORT_SYMBOL(__skb_gro_checksum_complete);
6178
6179static void net_rps_send_ipi(struct softnet_data *remsd)
6180{
6181#ifdef CONFIG_RPS
6182 while (remsd) {
6183 struct softnet_data *next = remsd->rps_ipi_next;
6184
6185 if (cpu_online(remsd->cpu))
6186 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6187 remsd = next;
6188 }
6189#endif
6190}
6191
6192/*
6193 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6194 * Note: called with local irq disabled, but exits with local irq enabled.
6195 */
6196static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6197{
6198#ifdef CONFIG_RPS
6199 struct softnet_data *remsd = sd->rps_ipi_list;
6200
6201 if (remsd) {
6202 sd->rps_ipi_list = NULL;
6203
6204 local_irq_enable();
6205
6206 /* Send pending IPI's to kick RPS processing on remote cpus. */
6207 net_rps_send_ipi(remsd);
6208 } else
6209#endif
6210 local_irq_enable();
6211}
6212
6213static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6214{
6215#ifdef CONFIG_RPS
6216 return sd->rps_ipi_list != NULL;
6217#else
6218 return false;
6219#endif
6220}
6221
6222static int process_backlog(struct napi_struct *napi, int quota)
6223{
6224 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6225 bool again = true;
6226 int work = 0;
6227
6228 /* Check if we have pending ipi, its better to send them now,
6229 * not waiting net_rx_action() end.
6230 */
6231 if (sd_has_rps_ipi_waiting(sd)) {
6232 local_irq_disable();
6233 net_rps_action_and_irq_enable(sd);
6234 }
6235
6236 napi->weight = dev_rx_weight;
6237 while (again) {
6238 struct sk_buff *skb;
6239
6240 while ((skb = __skb_dequeue(&sd->process_queue))) {
6241 rcu_read_lock();
6242 __netif_receive_skb(skb);
6243 rcu_read_unlock();
6244 input_queue_head_incr(sd);
6245 if (++work >= quota)
6246 return work;
6247
6248 }
6249
6250 local_irq_disable();
6251 rps_lock(sd);
6252 if (skb_queue_empty(&sd->input_pkt_queue)) {
6253 /*
6254 * Inline a custom version of __napi_complete().
6255 * only current cpu owns and manipulates this napi,
6256 * and NAPI_STATE_SCHED is the only possible flag set
6257 * on backlog.
6258 * We can use a plain write instead of clear_bit(),
6259 * and we dont need an smp_mb() memory barrier.
6260 */
6261 napi->state = 0;
6262 again = false;
6263 } else {
6264 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6265 &sd->process_queue);
6266 }
6267 rps_unlock(sd);
6268 local_irq_enable();
6269 }
6270
6271 return work;
6272}
6273
6274/**
6275 * __napi_schedule - schedule for receive
6276 * @n: entry to schedule
6277 *
6278 * The entry's receive function will be scheduled to run.
6279 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6280 */
6281void __napi_schedule(struct napi_struct *n)
6282{
6283 unsigned long flags;
6284
6285 local_irq_save(flags);
6286 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6287 local_irq_restore(flags);
6288}
6289EXPORT_SYMBOL(__napi_schedule);
6290
6291/**
6292 * napi_schedule_prep - check if napi can be scheduled
6293 * @n: napi context
6294 *
6295 * Test if NAPI routine is already running, and if not mark
6296 * it as running. This is used as a condition variable
6297 * insure only one NAPI poll instance runs. We also make
6298 * sure there is no pending NAPI disable.
6299 */
6300bool napi_schedule_prep(struct napi_struct *n)
6301{
6302 unsigned long val, new;
6303
6304 do {
6305 val = READ_ONCE(n->state);
6306 if (unlikely(val & NAPIF_STATE_DISABLE))
6307 return false;
6308 new = val | NAPIF_STATE_SCHED;
6309
6310 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6311 * This was suggested by Alexander Duyck, as compiler
6312 * emits better code than :
6313 * if (val & NAPIF_STATE_SCHED)
6314 * new |= NAPIF_STATE_MISSED;
6315 */
6316 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6317 NAPIF_STATE_MISSED;
6318 } while (cmpxchg(&n->state, val, new) != val);
6319
6320 return !(val & NAPIF_STATE_SCHED);
6321}
6322EXPORT_SYMBOL(napi_schedule_prep);
6323
6324/**
6325 * __napi_schedule_irqoff - schedule for receive
6326 * @n: entry to schedule
6327 *
6328 * Variant of __napi_schedule() assuming hard irqs are masked
6329 */
6330void __napi_schedule_irqoff(struct napi_struct *n)
6331{
6332 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6333}
6334EXPORT_SYMBOL(__napi_schedule_irqoff);
6335
6336bool napi_complete_done(struct napi_struct *n, int work_done)
6337{
6338 unsigned long flags, val, new, timeout = 0;
6339 bool ret = true;
6340
6341 /*
6342 * 1) Don't let napi dequeue from the cpu poll list
6343 * just in case its running on a different cpu.
6344 * 2) If we are busy polling, do nothing here, we have
6345 * the guarantee we will be called later.
6346 */
6347 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6348 NAPIF_STATE_IN_BUSY_POLL)))
6349 return false;
6350
6351 if (work_done) {
6352 if (n->gro_bitmask)
6353 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6354 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6355 }
6356 if (n->defer_hard_irqs_count > 0) {
6357 n->defer_hard_irqs_count--;
6358 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6359 if (timeout)
6360 ret = false;
6361 }
6362 if (n->gro_bitmask) {
6363 /* When the NAPI instance uses a timeout and keeps postponing
6364 * it, we need to bound somehow the time packets are kept in
6365 * the GRO layer
6366 */
6367 napi_gro_flush(n, !!timeout);
6368 }
6369
6370 gro_normal_list(n);
6371
6372 if (unlikely(!list_empty(&n->poll_list))) {
6373 /* If n->poll_list is not empty, we need to mask irqs */
6374 local_irq_save(flags);
6375 list_del_init(&n->poll_list);
6376 local_irq_restore(flags);
6377 }
6378
6379 do {
6380 val = READ_ONCE(n->state);
6381
6382 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6383
6384 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6385
6386 /* If STATE_MISSED was set, leave STATE_SCHED set,
6387 * because we will call napi->poll() one more time.
6388 * This C code was suggested by Alexander Duyck to help gcc.
6389 */
6390 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6391 NAPIF_STATE_SCHED;
6392 } while (cmpxchg(&n->state, val, new) != val);
6393
6394 if (unlikely(val & NAPIF_STATE_MISSED)) {
6395 __napi_schedule(n);
6396 return false;
6397 }
6398
6399 if (timeout)
6400 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6401 HRTIMER_MODE_REL_PINNED);
6402 return ret;
6403}
6404EXPORT_SYMBOL(napi_complete_done);
6405
6406/* must be called under rcu_read_lock(), as we dont take a reference */
6407static struct napi_struct *napi_by_id(unsigned int napi_id)
6408{
6409 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6410 struct napi_struct *napi;
6411
6412 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6413 if (napi->napi_id == napi_id)
6414 return napi;
6415
6416 return NULL;
6417}
6418
6419#if defined(CONFIG_NET_RX_BUSY_POLL)
6420
6421#define BUSY_POLL_BUDGET 8
6422
6423static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6424{
6425 int rc;
6426
6427 /* Busy polling means there is a high chance device driver hard irq
6428 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6429 * set in napi_schedule_prep().
6430 * Since we are about to call napi->poll() once more, we can safely
6431 * clear NAPI_STATE_MISSED.
6432 *
6433 * Note: x86 could use a single "lock and ..." instruction
6434 * to perform these two clear_bit()
6435 */
6436 clear_bit(NAPI_STATE_MISSED, &napi->state);
6437 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6438
6439 local_bh_disable();
6440
6441 /* All we really want here is to re-enable device interrupts.
6442 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6443 */
6444 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6445 /* We can't gro_normal_list() here, because napi->poll() might have
6446 * rearmed the napi (napi_complete_done()) in which case it could
6447 * already be running on another CPU.
6448 */
6449 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6450 netpoll_poll_unlock(have_poll_lock);
6451 if (rc == BUSY_POLL_BUDGET) {
6452 /* As the whole budget was spent, we still own the napi so can
6453 * safely handle the rx_list.
6454 */
6455 gro_normal_list(napi);
6456 __napi_schedule(napi);
6457 }
6458 local_bh_enable();
6459}
6460
6461void napi_busy_loop(unsigned int napi_id,
6462 bool (*loop_end)(void *, unsigned long),
6463 void *loop_end_arg)
6464{
6465 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6466 int (*napi_poll)(struct napi_struct *napi, int budget);
6467 void *have_poll_lock = NULL;
6468 struct napi_struct *napi;
6469
6470restart:
6471 napi_poll = NULL;
6472
6473 rcu_read_lock();
6474
6475 napi = napi_by_id(napi_id);
6476 if (!napi)
6477 goto out;
6478
6479 preempt_disable();
6480 for (;;) {
6481 int work = 0;
6482
6483 local_bh_disable();
6484 if (!napi_poll) {
6485 unsigned long val = READ_ONCE(napi->state);
6486
6487 /* If multiple threads are competing for this napi,
6488 * we avoid dirtying napi->state as much as we can.
6489 */
6490 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6491 NAPIF_STATE_IN_BUSY_POLL))
6492 goto count;
6493 if (cmpxchg(&napi->state, val,
6494 val | NAPIF_STATE_IN_BUSY_POLL |
6495 NAPIF_STATE_SCHED) != val)
6496 goto count;
6497 have_poll_lock = netpoll_poll_lock(napi);
6498 napi_poll = napi->poll;
6499 }
6500 work = napi_poll(napi, BUSY_POLL_BUDGET);
6501 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6502 gro_normal_list(napi);
6503count:
6504 if (work > 0)
6505 __NET_ADD_STATS(dev_net(napi->dev),
6506 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6507 local_bh_enable();
6508
6509 if (!loop_end || loop_end(loop_end_arg, start_time))
6510 break;
6511
6512 if (unlikely(need_resched())) {
6513 if (napi_poll)
6514 busy_poll_stop(napi, have_poll_lock);
6515 preempt_enable();
6516 rcu_read_unlock();
6517 cond_resched();
6518 if (loop_end(loop_end_arg, start_time))
6519 return;
6520 goto restart;
6521 }
6522 cpu_relax();
6523 }
6524 if (napi_poll)
6525 busy_poll_stop(napi, have_poll_lock);
6526 preempt_enable();
6527out:
6528 rcu_read_unlock();
6529}
6530EXPORT_SYMBOL(napi_busy_loop);
6531
6532#endif /* CONFIG_NET_RX_BUSY_POLL */
6533
6534static void napi_hash_add(struct napi_struct *napi)
6535{
6536 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6537 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6538 return;
6539
6540 spin_lock(&napi_hash_lock);
6541
6542 /* 0..NR_CPUS range is reserved for sender_cpu use */
6543 do {
6544 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6545 napi_gen_id = MIN_NAPI_ID;
6546 } while (napi_by_id(napi_gen_id));
6547 napi->napi_id = napi_gen_id;
6548
6549 hlist_add_head_rcu(&napi->napi_hash_node,
6550 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6551
6552 spin_unlock(&napi_hash_lock);
6553}
6554
6555/* Warning : caller is responsible to make sure rcu grace period
6556 * is respected before freeing memory containing @napi
6557 */
6558bool napi_hash_del(struct napi_struct *napi)
6559{
6560 bool rcu_sync_needed = false;
6561
6562 spin_lock(&napi_hash_lock);
6563
6564 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6565 rcu_sync_needed = true;
6566 hlist_del_rcu(&napi->napi_hash_node);
6567 }
6568 spin_unlock(&napi_hash_lock);
6569 return rcu_sync_needed;
6570}
6571EXPORT_SYMBOL_GPL(napi_hash_del);
6572
6573static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6574{
6575 struct napi_struct *napi;
6576
6577 napi = container_of(timer, struct napi_struct, timer);
6578
6579 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6580 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6581 */
6582 if (!napi_disable_pending(napi) &&
6583 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6584 __napi_schedule_irqoff(napi);
6585
6586 return HRTIMER_NORESTART;
6587}
6588
6589static void init_gro_hash(struct napi_struct *napi)
6590{
6591 int i;
6592
6593 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6594 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6595 napi->gro_hash[i].count = 0;
6596 }
6597 napi->gro_bitmask = 0;
6598}
6599
6600void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6601 int (*poll)(struct napi_struct *, int), int weight)
6602{
6603 INIT_LIST_HEAD(&napi->poll_list);
6604 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6605 napi->timer.function = napi_watchdog;
6606 init_gro_hash(napi);
6607 napi->skb = NULL;
6608 INIT_LIST_HEAD(&napi->rx_list);
6609 napi->rx_count = 0;
6610 napi->poll = poll;
6611 if (weight > NAPI_POLL_WEIGHT)
6612 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6613 weight);
6614 napi->weight = weight;
6615 list_add(&napi->dev_list, &dev->napi_list);
6616 napi->dev = dev;
6617#ifdef CONFIG_NETPOLL
6618 napi->poll_owner = -1;
6619#endif
6620 set_bit(NAPI_STATE_SCHED, &napi->state);
6621 napi_hash_add(napi);
6622}
6623EXPORT_SYMBOL(netif_napi_add);
6624
6625void napi_disable(struct napi_struct *n)
6626{
6627 might_sleep();
6628 set_bit(NAPI_STATE_DISABLE, &n->state);
6629
6630 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6631 msleep(1);
6632 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6633 msleep(1);
6634
6635 hrtimer_cancel(&n->timer);
6636
6637 clear_bit(NAPI_STATE_DISABLE, &n->state);
6638}
6639EXPORT_SYMBOL(napi_disable);
6640
6641static void flush_gro_hash(struct napi_struct *napi)
6642{
6643 int i;
6644
6645 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6646 struct sk_buff *skb, *n;
6647
6648 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6649 kfree_skb(skb);
6650 napi->gro_hash[i].count = 0;
6651 }
6652}
6653
6654/* Must be called in process context */
6655void netif_napi_del(struct napi_struct *napi)
6656{
6657 might_sleep();
6658 if (napi_hash_del(napi))
6659 synchronize_net();
6660 list_del_init(&napi->dev_list);
6661 napi_free_frags(napi);
6662
6663 flush_gro_hash(napi);
6664 napi->gro_bitmask = 0;
6665}
6666EXPORT_SYMBOL(netif_napi_del);
6667
6668static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6669{
6670 void *have;
6671 int work, weight;
6672
6673 list_del_init(&n->poll_list);
6674
6675 have = netpoll_poll_lock(n);
6676
6677 weight = n->weight;
6678
6679 /* This NAPI_STATE_SCHED test is for avoiding a race
6680 * with netpoll's poll_napi(). Only the entity which
6681 * obtains the lock and sees NAPI_STATE_SCHED set will
6682 * actually make the ->poll() call. Therefore we avoid
6683 * accidentally calling ->poll() when NAPI is not scheduled.
6684 */
6685 work = 0;
6686 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6687 work = n->poll(n, weight);
6688 trace_napi_poll(n, work, weight);
6689 }
6690
6691 if (unlikely(work > weight))
6692 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6693 n->poll, work, weight);
6694
6695 if (likely(work < weight))
6696 goto out_unlock;
6697
6698 /* Drivers must not modify the NAPI state if they
6699 * consume the entire weight. In such cases this code
6700 * still "owns" the NAPI instance and therefore can
6701 * move the instance around on the list at-will.
6702 */
6703 if (unlikely(napi_disable_pending(n))) {
6704 napi_complete(n);
6705 goto out_unlock;
6706 }
6707
6708 if (n->gro_bitmask) {
6709 /* flush too old packets
6710 * If HZ < 1000, flush all packets.
6711 */
6712 napi_gro_flush(n, HZ >= 1000);
6713 }
6714
6715 gro_normal_list(n);
6716
6717 /* Some drivers may have called napi_schedule
6718 * prior to exhausting their budget.
6719 */
6720 if (unlikely(!list_empty(&n->poll_list))) {
6721 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6722 n->dev ? n->dev->name : "backlog");
6723 goto out_unlock;
6724 }
6725
6726 list_add_tail(&n->poll_list, repoll);
6727
6728out_unlock:
6729 netpoll_poll_unlock(have);
6730
6731 return work;
6732}
6733
6734static __latent_entropy void net_rx_action(struct softirq_action *h)
6735{
6736 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6737 unsigned long time_limit = jiffies +
6738 usecs_to_jiffies(netdev_budget_usecs);
6739 int budget = netdev_budget;
6740 LIST_HEAD(list);
6741 LIST_HEAD(repoll);
6742
6743 local_irq_disable();
6744 list_splice_init(&sd->poll_list, &list);
6745 local_irq_enable();
6746
6747 for (;;) {
6748 struct napi_struct *n;
6749
6750 if (list_empty(&list)) {
6751 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6752 goto out;
6753 break;
6754 }
6755
6756 n = list_first_entry(&list, struct napi_struct, poll_list);
6757 budget -= napi_poll(n, &repoll);
6758
6759 /* If softirq window is exhausted then punt.
6760 * Allow this to run for 2 jiffies since which will allow
6761 * an average latency of 1.5/HZ.
6762 */
6763 if (unlikely(budget <= 0 ||
6764 time_after_eq(jiffies, time_limit))) {
6765 sd->time_squeeze++;
6766 break;
6767 }
6768 }
6769
6770 local_irq_disable();
6771
6772 list_splice_tail_init(&sd->poll_list, &list);
6773 list_splice_tail(&repoll, &list);
6774 list_splice(&list, &sd->poll_list);
6775 if (!list_empty(&sd->poll_list))
6776 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6777
6778 net_rps_action_and_irq_enable(sd);
6779out:
6780 __kfree_skb_flush();
6781}
6782
6783struct netdev_adjacent {
6784 struct net_device *dev;
6785
6786 /* upper master flag, there can only be one master device per list */
6787 bool master;
6788
6789 /* lookup ignore flag */
6790 bool ignore;
6791
6792 /* counter for the number of times this device was added to us */
6793 u16 ref_nr;
6794
6795 /* private field for the users */
6796 void *private;
6797
6798 struct list_head list;
6799 struct rcu_head rcu;
6800};
6801
6802static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6803 struct list_head *adj_list)
6804{
6805 struct netdev_adjacent *adj;
6806
6807 list_for_each_entry(adj, adj_list, list) {
6808 if (adj->dev == adj_dev)
6809 return adj;
6810 }
6811 return NULL;
6812}
6813
6814static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6815{
6816 struct net_device *dev = data;
6817
6818 return upper_dev == dev;
6819}
6820
6821/**
6822 * netdev_has_upper_dev - Check if device is linked to an upper device
6823 * @dev: device
6824 * @upper_dev: upper device to check
6825 *
6826 * Find out if a device is linked to specified upper device and return true
6827 * in case it is. Note that this checks only immediate upper device,
6828 * not through a complete stack of devices. The caller must hold the RTNL lock.
6829 */
6830bool netdev_has_upper_dev(struct net_device *dev,
6831 struct net_device *upper_dev)
6832{
6833 ASSERT_RTNL();
6834
6835 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6836 upper_dev);
6837}
6838EXPORT_SYMBOL(netdev_has_upper_dev);
6839
6840/**
6841 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6842 * @dev: device
6843 * @upper_dev: upper device to check
6844 *
6845 * Find out if a device is linked to specified upper device and return true
6846 * in case it is. Note that this checks the entire upper device chain.
6847 * The caller must hold rcu lock.
6848 */
6849
6850bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6851 struct net_device *upper_dev)
6852{
6853 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6854 upper_dev);
6855}
6856EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6857
6858/**
6859 * netdev_has_any_upper_dev - Check if device is linked to some device
6860 * @dev: device
6861 *
6862 * Find out if a device is linked to an upper device and return true in case
6863 * it is. The caller must hold the RTNL lock.
6864 */
6865bool netdev_has_any_upper_dev(struct net_device *dev)
6866{
6867 ASSERT_RTNL();
6868
6869 return !list_empty(&dev->adj_list.upper);
6870}
6871EXPORT_SYMBOL(netdev_has_any_upper_dev);
6872
6873/**
6874 * netdev_master_upper_dev_get - Get master upper device
6875 * @dev: device
6876 *
6877 * Find a master upper device and return pointer to it or NULL in case
6878 * it's not there. The caller must hold the RTNL lock.
6879 */
6880struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6881{
6882 struct netdev_adjacent *upper;
6883
6884 ASSERT_RTNL();
6885
6886 if (list_empty(&dev->adj_list.upper))
6887 return NULL;
6888
6889 upper = list_first_entry(&dev->adj_list.upper,
6890 struct netdev_adjacent, list);
6891 if (likely(upper->master))
6892 return upper->dev;
6893 return NULL;
6894}
6895EXPORT_SYMBOL(netdev_master_upper_dev_get);
6896
6897static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6898{
6899 struct netdev_adjacent *upper;
6900
6901 ASSERT_RTNL();
6902
6903 if (list_empty(&dev->adj_list.upper))
6904 return NULL;
6905
6906 upper = list_first_entry(&dev->adj_list.upper,
6907 struct netdev_adjacent, list);
6908 if (likely(upper->master) && !upper->ignore)
6909 return upper->dev;
6910 return NULL;
6911}
6912
6913/**
6914 * netdev_has_any_lower_dev - Check if device is linked to some device
6915 * @dev: device
6916 *
6917 * Find out if a device is linked to a lower device and return true in case
6918 * it is. The caller must hold the RTNL lock.
6919 */
6920static bool netdev_has_any_lower_dev(struct net_device *dev)
6921{
6922 ASSERT_RTNL();
6923
6924 return !list_empty(&dev->adj_list.lower);
6925}
6926
6927void *netdev_adjacent_get_private(struct list_head *adj_list)
6928{
6929 struct netdev_adjacent *adj;
6930
6931 adj = list_entry(adj_list, struct netdev_adjacent, list);
6932
6933 return adj->private;
6934}
6935EXPORT_SYMBOL(netdev_adjacent_get_private);
6936
6937/**
6938 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6939 * @dev: device
6940 * @iter: list_head ** of the current position
6941 *
6942 * Gets the next device from the dev's upper list, starting from iter
6943 * position. The caller must hold RCU read lock.
6944 */
6945struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6946 struct list_head **iter)
6947{
6948 struct netdev_adjacent *upper;
6949
6950 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6951
6952 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6953
6954 if (&upper->list == &dev->adj_list.upper)
6955 return NULL;
6956
6957 *iter = &upper->list;
6958
6959 return upper->dev;
6960}
6961EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6962
6963static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6964 struct list_head **iter,
6965 bool *ignore)
6966{
6967 struct netdev_adjacent *upper;
6968
6969 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6970
6971 if (&upper->list == &dev->adj_list.upper)
6972 return NULL;
6973
6974 *iter = &upper->list;
6975 *ignore = upper->ignore;
6976
6977 return upper->dev;
6978}
6979
6980static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6981 struct list_head **iter)
6982{
6983 struct netdev_adjacent *upper;
6984
6985 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6986
6987 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6988
6989 if (&upper->list == &dev->adj_list.upper)
6990 return NULL;
6991
6992 *iter = &upper->list;
6993
6994 return upper->dev;
6995}
6996
6997static int __netdev_walk_all_upper_dev(struct net_device *dev,
6998 int (*fn)(struct net_device *dev,
6999 void *data),
7000 void *data)
7001{
7002 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7003 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7004 int ret, cur = 0;
7005 bool ignore;
7006
7007 now = dev;
7008 iter = &dev->adj_list.upper;
7009
7010 while (1) {
7011 if (now != dev) {
7012 ret = fn(now, data);
7013 if (ret)
7014 return ret;
7015 }
7016
7017 next = NULL;
7018 while (1) {
7019 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7020 if (!udev)
7021 break;
7022 if (ignore)
7023 continue;
7024
7025 next = udev;
7026 niter = &udev->adj_list.upper;
7027 dev_stack[cur] = now;
7028 iter_stack[cur++] = iter;
7029 break;
7030 }
7031
7032 if (!next) {
7033 if (!cur)
7034 return 0;
7035 next = dev_stack[--cur];
7036 niter = iter_stack[cur];
7037 }
7038
7039 now = next;
7040 iter = niter;
7041 }
7042
7043 return 0;
7044}
7045
7046int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7047 int (*fn)(struct net_device *dev,
7048 void *data),
7049 void *data)
7050{
7051 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7052 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7053 int ret, cur = 0;
7054
7055 now = dev;
7056 iter = &dev->adj_list.upper;
7057
7058 while (1) {
7059 if (now != dev) {
7060 ret = fn(now, data);
7061 if (ret)
7062 return ret;
7063 }
7064
7065 next = NULL;
7066 while (1) {
7067 udev = netdev_next_upper_dev_rcu(now, &iter);
7068 if (!udev)
7069 break;
7070
7071 next = udev;
7072 niter = &udev->adj_list.upper;
7073 dev_stack[cur] = now;
7074 iter_stack[cur++] = iter;
7075 break;
7076 }
7077
7078 if (!next) {
7079 if (!cur)
7080 return 0;
7081 next = dev_stack[--cur];
7082 niter = iter_stack[cur];
7083 }
7084
7085 now = next;
7086 iter = niter;
7087 }
7088
7089 return 0;
7090}
7091EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7092
7093static bool __netdev_has_upper_dev(struct net_device *dev,
7094 struct net_device *upper_dev)
7095{
7096 ASSERT_RTNL();
7097
7098 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7099 upper_dev);
7100}
7101
7102/**
7103 * netdev_lower_get_next_private - Get the next ->private from the
7104 * lower neighbour list
7105 * @dev: device
7106 * @iter: list_head ** of the current position
7107 *
7108 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7109 * list, starting from iter position. The caller must hold either hold the
7110 * RTNL lock or its own locking that guarantees that the neighbour lower
7111 * list will remain unchanged.
7112 */
7113void *netdev_lower_get_next_private(struct net_device *dev,
7114 struct list_head **iter)
7115{
7116 struct netdev_adjacent *lower;
7117
7118 lower = list_entry(*iter, struct netdev_adjacent, list);
7119
7120 if (&lower->list == &dev->adj_list.lower)
7121 return NULL;
7122
7123 *iter = lower->list.next;
7124
7125 return lower->private;
7126}
7127EXPORT_SYMBOL(netdev_lower_get_next_private);
7128
7129/**
7130 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7131 * lower neighbour list, RCU
7132 * variant
7133 * @dev: device
7134 * @iter: list_head ** of the current position
7135 *
7136 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7137 * list, starting from iter position. The caller must hold RCU read lock.
7138 */
7139void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7140 struct list_head **iter)
7141{
7142 struct netdev_adjacent *lower;
7143
7144 WARN_ON_ONCE(!rcu_read_lock_held());
7145
7146 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7147
7148 if (&lower->list == &dev->adj_list.lower)
7149 return NULL;
7150
7151 *iter = &lower->list;
7152
7153 return lower->private;
7154}
7155EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7156
7157/**
7158 * netdev_lower_get_next - Get the next device from the lower neighbour
7159 * list
7160 * @dev: device
7161 * @iter: list_head ** of the current position
7162 *
7163 * Gets the next netdev_adjacent from the dev's lower neighbour
7164 * list, starting from iter position. The caller must hold RTNL lock or
7165 * its own locking that guarantees that the neighbour lower
7166 * list will remain unchanged.
7167 */
7168void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7169{
7170 struct netdev_adjacent *lower;
7171
7172 lower = list_entry(*iter, struct netdev_adjacent, list);
7173
7174 if (&lower->list == &dev->adj_list.lower)
7175 return NULL;
7176
7177 *iter = lower->list.next;
7178
7179 return lower->dev;
7180}
7181EXPORT_SYMBOL(netdev_lower_get_next);
7182
7183static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7184 struct list_head **iter)
7185{
7186 struct netdev_adjacent *lower;
7187
7188 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7189
7190 if (&lower->list == &dev->adj_list.lower)
7191 return NULL;
7192
7193 *iter = &lower->list;
7194
7195 return lower->dev;
7196}
7197
7198static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7199 struct list_head **iter,
7200 bool *ignore)
7201{
7202 struct netdev_adjacent *lower;
7203
7204 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7205
7206 if (&lower->list == &dev->adj_list.lower)
7207 return NULL;
7208
7209 *iter = &lower->list;
7210 *ignore = lower->ignore;
7211
7212 return lower->dev;
7213}
7214
7215int netdev_walk_all_lower_dev(struct net_device *dev,
7216 int (*fn)(struct net_device *dev,
7217 void *data),
7218 void *data)
7219{
7220 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7221 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7222 int ret, cur = 0;
7223
7224 now = dev;
7225 iter = &dev->adj_list.lower;
7226
7227 while (1) {
7228 if (now != dev) {
7229 ret = fn(now, data);
7230 if (ret)
7231 return ret;
7232 }
7233
7234 next = NULL;
7235 while (1) {
7236 ldev = netdev_next_lower_dev(now, &iter);
7237 if (!ldev)
7238 break;
7239
7240 next = ldev;
7241 niter = &ldev->adj_list.lower;
7242 dev_stack[cur] = now;
7243 iter_stack[cur++] = iter;
7244 break;
7245 }
7246
7247 if (!next) {
7248 if (!cur)
7249 return 0;
7250 next = dev_stack[--cur];
7251 niter = iter_stack[cur];
7252 }
7253
7254 now = next;
7255 iter = niter;
7256 }
7257
7258 return 0;
7259}
7260EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7261
7262static int __netdev_walk_all_lower_dev(struct net_device *dev,
7263 int (*fn)(struct net_device *dev,
7264 void *data),
7265 void *data)
7266{
7267 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7268 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7269 int ret, cur = 0;
7270 bool ignore;
7271
7272 now = dev;
7273 iter = &dev->adj_list.lower;
7274
7275 while (1) {
7276 if (now != dev) {
7277 ret = fn(now, data);
7278 if (ret)
7279 return ret;
7280 }
7281
7282 next = NULL;
7283 while (1) {
7284 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7285 if (!ldev)
7286 break;
7287 if (ignore)
7288 continue;
7289
7290 next = ldev;
7291 niter = &ldev->adj_list.lower;
7292 dev_stack[cur] = now;
7293 iter_stack[cur++] = iter;
7294 break;
7295 }
7296
7297 if (!next) {
7298 if (!cur)
7299 return 0;
7300 next = dev_stack[--cur];
7301 niter = iter_stack[cur];
7302 }
7303
7304 now = next;
7305 iter = niter;
7306 }
7307
7308 return 0;
7309}
7310
7311struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7312 struct list_head **iter)
7313{
7314 struct netdev_adjacent *lower;
7315
7316 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7317 if (&lower->list == &dev->adj_list.lower)
7318 return NULL;
7319
7320 *iter = &lower->list;
7321
7322 return lower->dev;
7323}
7324EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7325
7326static u8 __netdev_upper_depth(struct net_device *dev)
7327{
7328 struct net_device *udev;
7329 struct list_head *iter;
7330 u8 max_depth = 0;
7331 bool ignore;
7332
7333 for (iter = &dev->adj_list.upper,
7334 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7335 udev;
7336 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7337 if (ignore)
7338 continue;
7339 if (max_depth < udev->upper_level)
7340 max_depth = udev->upper_level;
7341 }
7342
7343 return max_depth;
7344}
7345
7346static u8 __netdev_lower_depth(struct net_device *dev)
7347{
7348 struct net_device *ldev;
7349 struct list_head *iter;
7350 u8 max_depth = 0;
7351 bool ignore;
7352
7353 for (iter = &dev->adj_list.lower,
7354 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7355 ldev;
7356 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7357 if (ignore)
7358 continue;
7359 if (max_depth < ldev->lower_level)
7360 max_depth = ldev->lower_level;
7361 }
7362
7363 return max_depth;
7364}
7365
7366static int __netdev_update_upper_level(struct net_device *dev, void *data)
7367{
7368 dev->upper_level = __netdev_upper_depth(dev) + 1;
7369 return 0;
7370}
7371
7372static int __netdev_update_lower_level(struct net_device *dev, void *data)
7373{
7374 dev->lower_level = __netdev_lower_depth(dev) + 1;
7375 return 0;
7376}
7377
7378int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7379 int (*fn)(struct net_device *dev,
7380 void *data),
7381 void *data)
7382{
7383 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7384 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7385 int ret, cur = 0;
7386
7387 now = dev;
7388 iter = &dev->adj_list.lower;
7389
7390 while (1) {
7391 if (now != dev) {
7392 ret = fn(now, data);
7393 if (ret)
7394 return ret;
7395 }
7396
7397 next = NULL;
7398 while (1) {
7399 ldev = netdev_next_lower_dev_rcu(now, &iter);
7400 if (!ldev)
7401 break;
7402
7403 next = ldev;
7404 niter = &ldev->adj_list.lower;
7405 dev_stack[cur] = now;
7406 iter_stack[cur++] = iter;
7407 break;
7408 }
7409
7410 if (!next) {
7411 if (!cur)
7412 return 0;
7413 next = dev_stack[--cur];
7414 niter = iter_stack[cur];
7415 }
7416
7417 now = next;
7418 iter = niter;
7419 }
7420
7421 return 0;
7422}
7423EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7424
7425/**
7426 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7427 * lower neighbour list, RCU
7428 * variant
7429 * @dev: device
7430 *
7431 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7432 * list. The caller must hold RCU read lock.
7433 */
7434void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7435{
7436 struct netdev_adjacent *lower;
7437
7438 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7439 struct netdev_adjacent, list);
7440 if (lower)
7441 return lower->private;
7442 return NULL;
7443}
7444EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7445
7446/**
7447 * netdev_master_upper_dev_get_rcu - Get master upper device
7448 * @dev: device
7449 *
7450 * Find a master upper device and return pointer to it or NULL in case
7451 * it's not there. The caller must hold the RCU read lock.
7452 */
7453struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7454{
7455 struct netdev_adjacent *upper;
7456
7457 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7458 struct netdev_adjacent, list);
7459 if (upper && likely(upper->master))
7460 return upper->dev;
7461 return NULL;
7462}
7463EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7464
7465static int netdev_adjacent_sysfs_add(struct net_device *dev,
7466 struct net_device *adj_dev,
7467 struct list_head *dev_list)
7468{
7469 char linkname[IFNAMSIZ+7];
7470
7471 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7472 "upper_%s" : "lower_%s", adj_dev->name);
7473 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7474 linkname);
7475}
7476static void netdev_adjacent_sysfs_del(struct net_device *dev,
7477 char *name,
7478 struct list_head *dev_list)
7479{
7480 char linkname[IFNAMSIZ+7];
7481
7482 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7483 "upper_%s" : "lower_%s", name);
7484 sysfs_remove_link(&(dev->dev.kobj), linkname);
7485}
7486
7487static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7488 struct net_device *adj_dev,
7489 struct list_head *dev_list)
7490{
7491 return (dev_list == &dev->adj_list.upper ||
7492 dev_list == &dev->adj_list.lower) &&
7493 net_eq(dev_net(dev), dev_net(adj_dev));
7494}
7495
7496static int __netdev_adjacent_dev_insert(struct net_device *dev,
7497 struct net_device *adj_dev,
7498 struct list_head *dev_list,
7499 void *private, bool master)
7500{
7501 struct netdev_adjacent *adj;
7502 int ret;
7503
7504 adj = __netdev_find_adj(adj_dev, dev_list);
7505
7506 if (adj) {
7507 adj->ref_nr += 1;
7508 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7509 dev->name, adj_dev->name, adj->ref_nr);
7510
7511 return 0;
7512 }
7513
7514 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7515 if (!adj)
7516 return -ENOMEM;
7517
7518 adj->dev = adj_dev;
7519 adj->master = master;
7520 adj->ref_nr = 1;
7521 adj->private = private;
7522 adj->ignore = false;
7523 dev_hold(adj_dev);
7524
7525 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7526 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7527
7528 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7529 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7530 if (ret)
7531 goto free_adj;
7532 }
7533
7534 /* Ensure that master link is always the first item in list. */
7535 if (master) {
7536 ret = sysfs_create_link(&(dev->dev.kobj),
7537 &(adj_dev->dev.kobj), "master");
7538 if (ret)
7539 goto remove_symlinks;
7540
7541 list_add_rcu(&adj->list, dev_list);
7542 } else {
7543 list_add_tail_rcu(&adj->list, dev_list);
7544 }
7545
7546 return 0;
7547
7548remove_symlinks:
7549 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7550 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7551free_adj:
7552 kfree(adj);
7553 dev_put(adj_dev);
7554
7555 return ret;
7556}
7557
7558static void __netdev_adjacent_dev_remove(struct net_device *dev,
7559 struct net_device *adj_dev,
7560 u16 ref_nr,
7561 struct list_head *dev_list)
7562{
7563 struct netdev_adjacent *adj;
7564
7565 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7566 dev->name, adj_dev->name, ref_nr);
7567
7568 adj = __netdev_find_adj(adj_dev, dev_list);
7569
7570 if (!adj) {
7571 pr_err("Adjacency does not exist for device %s from %s\n",
7572 dev->name, adj_dev->name);
7573 WARN_ON(1);
7574 return;
7575 }
7576
7577 if (adj->ref_nr > ref_nr) {
7578 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7579 dev->name, adj_dev->name, ref_nr,
7580 adj->ref_nr - ref_nr);
7581 adj->ref_nr -= ref_nr;
7582 return;
7583 }
7584
7585 if (adj->master)
7586 sysfs_remove_link(&(dev->dev.kobj), "master");
7587
7588 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7589 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7590
7591 list_del_rcu(&adj->list);
7592 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7593 adj_dev->name, dev->name, adj_dev->name);
7594 dev_put(adj_dev);
7595 kfree_rcu(adj, rcu);
7596}
7597
7598static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7599 struct net_device *upper_dev,
7600 struct list_head *up_list,
7601 struct list_head *down_list,
7602 void *private, bool master)
7603{
7604 int ret;
7605
7606 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7607 private, master);
7608 if (ret)
7609 return ret;
7610
7611 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7612 private, false);
7613 if (ret) {
7614 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7615 return ret;
7616 }
7617
7618 return 0;
7619}
7620
7621static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7622 struct net_device *upper_dev,
7623 u16 ref_nr,
7624 struct list_head *up_list,
7625 struct list_head *down_list)
7626{
7627 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7628 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7629}
7630
7631static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7632 struct net_device *upper_dev,
7633 void *private, bool master)
7634{
7635 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7636 &dev->adj_list.upper,
7637 &upper_dev->adj_list.lower,
7638 private, master);
7639}
7640
7641static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7642 struct net_device *upper_dev)
7643{
7644 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7645 &dev->adj_list.upper,
7646 &upper_dev->adj_list.lower);
7647}
7648
7649static int __netdev_upper_dev_link(struct net_device *dev,
7650 struct net_device *upper_dev, bool master,
7651 void *upper_priv, void *upper_info,
7652 struct netlink_ext_ack *extack)
7653{
7654 struct netdev_notifier_changeupper_info changeupper_info = {
7655 .info = {
7656 .dev = dev,
7657 .extack = extack,
7658 },
7659 .upper_dev = upper_dev,
7660 .master = master,
7661 .linking = true,
7662 .upper_info = upper_info,
7663 };
7664 struct net_device *master_dev;
7665 int ret = 0;
7666
7667 ASSERT_RTNL();
7668
7669 if (dev == upper_dev)
7670 return -EBUSY;
7671
7672 /* To prevent loops, check if dev is not upper device to upper_dev. */
7673 if (__netdev_has_upper_dev(upper_dev, dev))
7674 return -EBUSY;
7675
7676 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7677 return -EMLINK;
7678
7679 if (!master) {
7680 if (__netdev_has_upper_dev(dev, upper_dev))
7681 return -EEXIST;
7682 } else {
7683 master_dev = __netdev_master_upper_dev_get(dev);
7684 if (master_dev)
7685 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7686 }
7687
7688 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7689 &changeupper_info.info);
7690 ret = notifier_to_errno(ret);
7691 if (ret)
7692 return ret;
7693
7694 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7695 master);
7696 if (ret)
7697 return ret;
7698
7699 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7700 &changeupper_info.info);
7701 ret = notifier_to_errno(ret);
7702 if (ret)
7703 goto rollback;
7704
7705 __netdev_update_upper_level(dev, NULL);
7706 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7707
7708 __netdev_update_lower_level(upper_dev, NULL);
7709 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7710 NULL);
7711
7712 return 0;
7713
7714rollback:
7715 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7716
7717 return ret;
7718}
7719
7720/**
7721 * netdev_upper_dev_link - Add a link to the upper device
7722 * @dev: device
7723 * @upper_dev: new upper device
7724 * @extack: netlink extended ack
7725 *
7726 * Adds a link to device which is upper to this one. The caller must hold
7727 * the RTNL lock. On a failure a negative errno code is returned.
7728 * On success the reference counts are adjusted and the function
7729 * returns zero.
7730 */
7731int netdev_upper_dev_link(struct net_device *dev,
7732 struct net_device *upper_dev,
7733 struct netlink_ext_ack *extack)
7734{
7735 return __netdev_upper_dev_link(dev, upper_dev, false,
7736 NULL, NULL, extack);
7737}
7738EXPORT_SYMBOL(netdev_upper_dev_link);
7739
7740/**
7741 * netdev_master_upper_dev_link - Add a master link to the upper device
7742 * @dev: device
7743 * @upper_dev: new upper device
7744 * @upper_priv: upper device private
7745 * @upper_info: upper info to be passed down via notifier
7746 * @extack: netlink extended ack
7747 *
7748 * Adds a link to device which is upper to this one. In this case, only
7749 * one master upper device can be linked, although other non-master devices
7750 * might be linked as well. The caller must hold the RTNL lock.
7751 * On a failure a negative errno code is returned. On success the reference
7752 * counts are adjusted and the function returns zero.
7753 */
7754int netdev_master_upper_dev_link(struct net_device *dev,
7755 struct net_device *upper_dev,
7756 void *upper_priv, void *upper_info,
7757 struct netlink_ext_ack *extack)
7758{
7759 return __netdev_upper_dev_link(dev, upper_dev, true,
7760 upper_priv, upper_info, extack);
7761}
7762EXPORT_SYMBOL(netdev_master_upper_dev_link);
7763
7764/**
7765 * netdev_upper_dev_unlink - Removes a link to upper device
7766 * @dev: device
7767 * @upper_dev: new upper device
7768 *
7769 * Removes a link to device which is upper to this one. The caller must hold
7770 * the RTNL lock.
7771 */
7772void netdev_upper_dev_unlink(struct net_device *dev,
7773 struct net_device *upper_dev)
7774{
7775 struct netdev_notifier_changeupper_info changeupper_info = {
7776 .info = {
7777 .dev = dev,
7778 },
7779 .upper_dev = upper_dev,
7780 .linking = false,
7781 };
7782
7783 ASSERT_RTNL();
7784
7785 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7786
7787 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7788 &changeupper_info.info);
7789
7790 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7791
7792 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7793 &changeupper_info.info);
7794
7795 __netdev_update_upper_level(dev, NULL);
7796 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7797
7798 __netdev_update_lower_level(upper_dev, NULL);
7799 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7800 NULL);
7801}
7802EXPORT_SYMBOL(netdev_upper_dev_unlink);
7803
7804static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7805 struct net_device *lower_dev,
7806 bool val)
7807{
7808 struct netdev_adjacent *adj;
7809
7810 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7811 if (adj)
7812 adj->ignore = val;
7813
7814 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7815 if (adj)
7816 adj->ignore = val;
7817}
7818
7819static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7820 struct net_device *lower_dev)
7821{
7822 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7823}
7824
7825static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7826 struct net_device *lower_dev)
7827{
7828 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7829}
7830
7831int netdev_adjacent_change_prepare(struct net_device *old_dev,
7832 struct net_device *new_dev,
7833 struct net_device *dev,
7834 struct netlink_ext_ack *extack)
7835{
7836 int err;
7837
7838 if (!new_dev)
7839 return 0;
7840
7841 if (old_dev && new_dev != old_dev)
7842 netdev_adjacent_dev_disable(dev, old_dev);
7843
7844 err = netdev_upper_dev_link(new_dev, dev, extack);
7845 if (err) {
7846 if (old_dev && new_dev != old_dev)
7847 netdev_adjacent_dev_enable(dev, old_dev);
7848 return err;
7849 }
7850
7851 return 0;
7852}
7853EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7854
7855void netdev_adjacent_change_commit(struct net_device *old_dev,
7856 struct net_device *new_dev,
7857 struct net_device *dev)
7858{
7859 if (!new_dev || !old_dev)
7860 return;
7861
7862 if (new_dev == old_dev)
7863 return;
7864
7865 netdev_adjacent_dev_enable(dev, old_dev);
7866 netdev_upper_dev_unlink(old_dev, dev);
7867}
7868EXPORT_SYMBOL(netdev_adjacent_change_commit);
7869
7870void netdev_adjacent_change_abort(struct net_device *old_dev,
7871 struct net_device *new_dev,
7872 struct net_device *dev)
7873{
7874 if (!new_dev)
7875 return;
7876
7877 if (old_dev && new_dev != old_dev)
7878 netdev_adjacent_dev_enable(dev, old_dev);
7879
7880 netdev_upper_dev_unlink(new_dev, dev);
7881}
7882EXPORT_SYMBOL(netdev_adjacent_change_abort);
7883
7884/**
7885 * netdev_bonding_info_change - Dispatch event about slave change
7886 * @dev: device
7887 * @bonding_info: info to dispatch
7888 *
7889 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7890 * The caller must hold the RTNL lock.
7891 */
7892void netdev_bonding_info_change(struct net_device *dev,
7893 struct netdev_bonding_info *bonding_info)
7894{
7895 struct netdev_notifier_bonding_info info = {
7896 .info.dev = dev,
7897 };
7898
7899 memcpy(&info.bonding_info, bonding_info,
7900 sizeof(struct netdev_bonding_info));
7901 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7902 &info.info);
7903}
7904EXPORT_SYMBOL(netdev_bonding_info_change);
7905
7906/**
7907 * netdev_get_xmit_slave - Get the xmit slave of master device
7908 * @dev: device
7909 * @skb: The packet
7910 * @all_slaves: assume all the slaves are active
7911 *
7912 * The reference counters are not incremented so the caller must be
7913 * careful with locks. The caller must hold RCU lock.
7914 * %NULL is returned if no slave is found.
7915 */
7916
7917struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7918 struct sk_buff *skb,
7919 bool all_slaves)
7920{
7921 const struct net_device_ops *ops = dev->netdev_ops;
7922
7923 if (!ops->ndo_get_xmit_slave)
7924 return NULL;
7925 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7926}
7927EXPORT_SYMBOL(netdev_get_xmit_slave);
7928
7929static void netdev_adjacent_add_links(struct net_device *dev)
7930{
7931 struct netdev_adjacent *iter;
7932
7933 struct net *net = dev_net(dev);
7934
7935 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7936 if (!net_eq(net, dev_net(iter->dev)))
7937 continue;
7938 netdev_adjacent_sysfs_add(iter->dev, dev,
7939 &iter->dev->adj_list.lower);
7940 netdev_adjacent_sysfs_add(dev, iter->dev,
7941 &dev->adj_list.upper);
7942 }
7943
7944 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7945 if (!net_eq(net, dev_net(iter->dev)))
7946 continue;
7947 netdev_adjacent_sysfs_add(iter->dev, dev,
7948 &iter->dev->adj_list.upper);
7949 netdev_adjacent_sysfs_add(dev, iter->dev,
7950 &dev->adj_list.lower);
7951 }
7952}
7953
7954static void netdev_adjacent_del_links(struct net_device *dev)
7955{
7956 struct netdev_adjacent *iter;
7957
7958 struct net *net = dev_net(dev);
7959
7960 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7961 if (!net_eq(net, dev_net(iter->dev)))
7962 continue;
7963 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7964 &iter->dev->adj_list.lower);
7965 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7966 &dev->adj_list.upper);
7967 }
7968
7969 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7970 if (!net_eq(net, dev_net(iter->dev)))
7971 continue;
7972 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7973 &iter->dev->adj_list.upper);
7974 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7975 &dev->adj_list.lower);
7976 }
7977}
7978
7979void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7980{
7981 struct netdev_adjacent *iter;
7982
7983 struct net *net = dev_net(dev);
7984
7985 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7986 if (!net_eq(net, dev_net(iter->dev)))
7987 continue;
7988 netdev_adjacent_sysfs_del(iter->dev, oldname,
7989 &iter->dev->adj_list.lower);
7990 netdev_adjacent_sysfs_add(iter->dev, dev,
7991 &iter->dev->adj_list.lower);
7992 }
7993
7994 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7995 if (!net_eq(net, dev_net(iter->dev)))
7996 continue;
7997 netdev_adjacent_sysfs_del(iter->dev, oldname,
7998 &iter->dev->adj_list.upper);
7999 netdev_adjacent_sysfs_add(iter->dev, dev,
8000 &iter->dev->adj_list.upper);
8001 }
8002}
8003
8004void *netdev_lower_dev_get_private(struct net_device *dev,
8005 struct net_device *lower_dev)
8006{
8007 struct netdev_adjacent *lower;
8008
8009 if (!lower_dev)
8010 return NULL;
8011 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8012 if (!lower)
8013 return NULL;
8014
8015 return lower->private;
8016}
8017EXPORT_SYMBOL(netdev_lower_dev_get_private);
8018
8019
8020/**
8021 * netdev_lower_change - Dispatch event about lower device state change
8022 * @lower_dev: device
8023 * @lower_state_info: state to dispatch
8024 *
8025 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8026 * The caller must hold the RTNL lock.
8027 */
8028void netdev_lower_state_changed(struct net_device *lower_dev,
8029 void *lower_state_info)
8030{
8031 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8032 .info.dev = lower_dev,
8033 };
8034
8035 ASSERT_RTNL();
8036 changelowerstate_info.lower_state_info = lower_state_info;
8037 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8038 &changelowerstate_info.info);
8039}
8040EXPORT_SYMBOL(netdev_lower_state_changed);
8041
8042static void dev_change_rx_flags(struct net_device *dev, int flags)
8043{
8044 const struct net_device_ops *ops = dev->netdev_ops;
8045
8046 if (ops->ndo_change_rx_flags)
8047 ops->ndo_change_rx_flags(dev, flags);
8048}
8049
8050static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8051{
8052 unsigned int old_flags = dev->flags;
8053 kuid_t uid;
8054 kgid_t gid;
8055
8056 ASSERT_RTNL();
8057
8058 dev->flags |= IFF_PROMISC;
8059 dev->promiscuity += inc;
8060 if (dev->promiscuity == 0) {
8061 /*
8062 * Avoid overflow.
8063 * If inc causes overflow, untouch promisc and return error.
8064 */
8065 if (inc < 0)
8066 dev->flags &= ~IFF_PROMISC;
8067 else {
8068 dev->promiscuity -= inc;
8069 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8070 dev->name);
8071 return -EOVERFLOW;
8072 }
8073 }
8074 if (dev->flags != old_flags) {
8075 pr_info("device %s %s promiscuous mode\n",
8076 dev->name,
8077 dev->flags & IFF_PROMISC ? "entered" : "left");
8078 if (audit_enabled) {
8079 current_uid_gid(&uid, &gid);
8080 audit_log(audit_context(), GFP_ATOMIC,
8081 AUDIT_ANOM_PROMISCUOUS,
8082 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8083 dev->name, (dev->flags & IFF_PROMISC),
8084 (old_flags & IFF_PROMISC),
8085 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8086 from_kuid(&init_user_ns, uid),
8087 from_kgid(&init_user_ns, gid),
8088 audit_get_sessionid(current));
8089 }
8090
8091 dev_change_rx_flags(dev, IFF_PROMISC);
8092 }
8093 if (notify)
8094 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8095 return 0;
8096}
8097
8098/**
8099 * dev_set_promiscuity - update promiscuity count on a device
8100 * @dev: device
8101 * @inc: modifier
8102 *
8103 * Add or remove promiscuity from a device. While the count in the device
8104 * remains above zero the interface remains promiscuous. Once it hits zero
8105 * the device reverts back to normal filtering operation. A negative inc
8106 * value is used to drop promiscuity on the device.
8107 * Return 0 if successful or a negative errno code on error.
8108 */
8109int dev_set_promiscuity(struct net_device *dev, int inc)
8110{
8111 unsigned int old_flags = dev->flags;
8112 int err;
8113
8114 err = __dev_set_promiscuity(dev, inc, true);
8115 if (err < 0)
8116 return err;
8117 if (dev->flags != old_flags)
8118 dev_set_rx_mode(dev);
8119 return err;
8120}
8121EXPORT_SYMBOL(dev_set_promiscuity);
8122
8123static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8124{
8125 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8126
8127 ASSERT_RTNL();
8128
8129 dev->flags |= IFF_ALLMULTI;
8130 dev->allmulti += inc;
8131 if (dev->allmulti == 0) {
8132 /*
8133 * Avoid overflow.
8134 * If inc causes overflow, untouch allmulti and return error.
8135 */
8136 if (inc < 0)
8137 dev->flags &= ~IFF_ALLMULTI;
8138 else {
8139 dev->allmulti -= inc;
8140 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8141 dev->name);
8142 return -EOVERFLOW;
8143 }
8144 }
8145 if (dev->flags ^ old_flags) {
8146 dev_change_rx_flags(dev, IFF_ALLMULTI);
8147 dev_set_rx_mode(dev);
8148 if (notify)
8149 __dev_notify_flags(dev, old_flags,
8150 dev->gflags ^ old_gflags);
8151 }
8152 return 0;
8153}
8154
8155/**
8156 * dev_set_allmulti - update allmulti count on a device
8157 * @dev: device
8158 * @inc: modifier
8159 *
8160 * Add or remove reception of all multicast frames to a device. While the
8161 * count in the device remains above zero the interface remains listening
8162 * to all interfaces. Once it hits zero the device reverts back to normal
8163 * filtering operation. A negative @inc value is used to drop the counter
8164 * when releasing a resource needing all multicasts.
8165 * Return 0 if successful or a negative errno code on error.
8166 */
8167
8168int dev_set_allmulti(struct net_device *dev, int inc)
8169{
8170 return __dev_set_allmulti(dev, inc, true);
8171}
8172EXPORT_SYMBOL(dev_set_allmulti);
8173
8174/*
8175 * Upload unicast and multicast address lists to device and
8176 * configure RX filtering. When the device doesn't support unicast
8177 * filtering it is put in promiscuous mode while unicast addresses
8178 * are present.
8179 */
8180void __dev_set_rx_mode(struct net_device *dev)
8181{
8182 const struct net_device_ops *ops = dev->netdev_ops;
8183
8184 /* dev_open will call this function so the list will stay sane. */
8185 if (!(dev->flags&IFF_UP))
8186 return;
8187
8188 if (!netif_device_present(dev))
8189 return;
8190
8191 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8192 /* Unicast addresses changes may only happen under the rtnl,
8193 * therefore calling __dev_set_promiscuity here is safe.
8194 */
8195 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8196 __dev_set_promiscuity(dev, 1, false);
8197 dev->uc_promisc = true;
8198 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8199 __dev_set_promiscuity(dev, -1, false);
8200 dev->uc_promisc = false;
8201 }
8202 }
8203
8204 if (ops->ndo_set_rx_mode)
8205 ops->ndo_set_rx_mode(dev);
8206}
8207
8208void dev_set_rx_mode(struct net_device *dev)
8209{
8210 netif_addr_lock_bh(dev);
8211 __dev_set_rx_mode(dev);
8212 netif_addr_unlock_bh(dev);
8213}
8214
8215/**
8216 * dev_get_flags - get flags reported to userspace
8217 * @dev: device
8218 *
8219 * Get the combination of flag bits exported through APIs to userspace.
8220 */
8221unsigned int dev_get_flags(const struct net_device *dev)
8222{
8223 unsigned int flags;
8224
8225 flags = (dev->flags & ~(IFF_PROMISC |
8226 IFF_ALLMULTI |
8227 IFF_RUNNING |
8228 IFF_LOWER_UP |
8229 IFF_DORMANT)) |
8230 (dev->gflags & (IFF_PROMISC |
8231 IFF_ALLMULTI));
8232
8233 if (netif_running(dev)) {
8234 if (netif_oper_up(dev))
8235 flags |= IFF_RUNNING;
8236 if (netif_carrier_ok(dev))
8237 flags |= IFF_LOWER_UP;
8238 if (netif_dormant(dev))
8239 flags |= IFF_DORMANT;
8240 }
8241
8242 return flags;
8243}
8244EXPORT_SYMBOL(dev_get_flags);
8245
8246int __dev_change_flags(struct net_device *dev, unsigned int flags,
8247 struct netlink_ext_ack *extack)
8248{
8249 unsigned int old_flags = dev->flags;
8250 int ret;
8251
8252 ASSERT_RTNL();
8253
8254 /*
8255 * Set the flags on our device.
8256 */
8257
8258 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8259 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8260 IFF_AUTOMEDIA)) |
8261 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8262 IFF_ALLMULTI));
8263
8264 /*
8265 * Load in the correct multicast list now the flags have changed.
8266 */
8267
8268 if ((old_flags ^ flags) & IFF_MULTICAST)
8269 dev_change_rx_flags(dev, IFF_MULTICAST);
8270
8271 dev_set_rx_mode(dev);
8272
8273 /*
8274 * Have we downed the interface. We handle IFF_UP ourselves
8275 * according to user attempts to set it, rather than blindly
8276 * setting it.
8277 */
8278
8279 ret = 0;
8280 if ((old_flags ^ flags) & IFF_UP) {
8281 if (old_flags & IFF_UP)
8282 __dev_close(dev);
8283 else
8284 ret = __dev_open(dev, extack);
8285 }
8286
8287 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8288 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8289 unsigned int old_flags = dev->flags;
8290
8291 dev->gflags ^= IFF_PROMISC;
8292
8293 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8294 if (dev->flags != old_flags)
8295 dev_set_rx_mode(dev);
8296 }
8297
8298 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8299 * is important. Some (broken) drivers set IFF_PROMISC, when
8300 * IFF_ALLMULTI is requested not asking us and not reporting.
8301 */
8302 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8303 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8304
8305 dev->gflags ^= IFF_ALLMULTI;
8306 __dev_set_allmulti(dev, inc, false);
8307 }
8308
8309 return ret;
8310}
8311
8312void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8313 unsigned int gchanges)
8314{
8315 unsigned int changes = dev->flags ^ old_flags;
8316
8317 if (gchanges)
8318 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8319
8320 if (changes & IFF_UP) {
8321 if (dev->flags & IFF_UP)
8322 call_netdevice_notifiers(NETDEV_UP, dev);
8323 else
8324 call_netdevice_notifiers(NETDEV_DOWN, dev);
8325 }
8326
8327 if (dev->flags & IFF_UP &&
8328 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8329 struct netdev_notifier_change_info change_info = {
8330 .info = {
8331 .dev = dev,
8332 },
8333 .flags_changed = changes,
8334 };
8335
8336 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8337 }
8338}
8339
8340/**
8341 * dev_change_flags - change device settings
8342 * @dev: device
8343 * @flags: device state flags
8344 * @extack: netlink extended ack
8345 *
8346 * Change settings on device based state flags. The flags are
8347 * in the userspace exported format.
8348 */
8349int dev_change_flags(struct net_device *dev, unsigned int flags,
8350 struct netlink_ext_ack *extack)
8351{
8352 int ret;
8353 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8354
8355 ret = __dev_change_flags(dev, flags, extack);
8356 if (ret < 0)
8357 return ret;
8358
8359 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8360 __dev_notify_flags(dev, old_flags, changes);
8361 return ret;
8362}
8363EXPORT_SYMBOL(dev_change_flags);
8364
8365int __dev_set_mtu(struct net_device *dev, int new_mtu)
8366{
8367 const struct net_device_ops *ops = dev->netdev_ops;
8368
8369 if (ops->ndo_change_mtu)
8370 return ops->ndo_change_mtu(dev, new_mtu);
8371
8372 /* Pairs with all the lockless reads of dev->mtu in the stack */
8373 WRITE_ONCE(dev->mtu, new_mtu);
8374 return 0;
8375}
8376EXPORT_SYMBOL(__dev_set_mtu);
8377
8378int dev_validate_mtu(struct net_device *dev, int new_mtu,
8379 struct netlink_ext_ack *extack)
8380{
8381 /* MTU must be positive, and in range */
8382 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8383 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8384 return -EINVAL;
8385 }
8386
8387 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8388 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8389 return -EINVAL;
8390 }
8391 return 0;
8392}
8393
8394/**
8395 * dev_set_mtu_ext - Change maximum transfer unit
8396 * @dev: device
8397 * @new_mtu: new transfer unit
8398 * @extack: netlink extended ack
8399 *
8400 * Change the maximum transfer size of the network device.
8401 */
8402int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8403 struct netlink_ext_ack *extack)
8404{
8405 int err, orig_mtu;
8406
8407 if (new_mtu == dev->mtu)
8408 return 0;
8409
8410 err = dev_validate_mtu(dev, new_mtu, extack);
8411 if (err)
8412 return err;
8413
8414 if (!netif_device_present(dev))
8415 return -ENODEV;
8416
8417 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8418 err = notifier_to_errno(err);
8419 if (err)
8420 return err;
8421
8422 orig_mtu = dev->mtu;
8423 err = __dev_set_mtu(dev, new_mtu);
8424
8425 if (!err) {
8426 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8427 orig_mtu);
8428 err = notifier_to_errno(err);
8429 if (err) {
8430 /* setting mtu back and notifying everyone again,
8431 * so that they have a chance to revert changes.
8432 */
8433 __dev_set_mtu(dev, orig_mtu);
8434 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8435 new_mtu);
8436 }
8437 }
8438 return err;
8439}
8440
8441int dev_set_mtu(struct net_device *dev, int new_mtu)
8442{
8443 struct netlink_ext_ack extack;
8444 int err;
8445
8446 memset(&extack, 0, sizeof(extack));
8447 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8448 if (err && extack._msg)
8449 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8450 return err;
8451}
8452EXPORT_SYMBOL(dev_set_mtu);
8453
8454/**
8455 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8456 * @dev: device
8457 * @new_len: new tx queue length
8458 */
8459int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8460{
8461 unsigned int orig_len = dev->tx_queue_len;
8462 int res;
8463
8464 if (new_len != (unsigned int)new_len)
8465 return -ERANGE;
8466
8467 if (new_len != orig_len) {
8468 dev->tx_queue_len = new_len;
8469 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8470 res = notifier_to_errno(res);
8471 if (res)
8472 goto err_rollback;
8473 res = dev_qdisc_change_tx_queue_len(dev);
8474 if (res)
8475 goto err_rollback;
8476 }
8477
8478 return 0;
8479
8480err_rollback:
8481 netdev_err(dev, "refused to change device tx_queue_len\n");
8482 dev->tx_queue_len = orig_len;
8483 return res;
8484}
8485
8486/**
8487 * dev_set_group - Change group this device belongs to
8488 * @dev: device
8489 * @new_group: group this device should belong to
8490 */
8491void dev_set_group(struct net_device *dev, int new_group)
8492{
8493 dev->group = new_group;
8494}
8495EXPORT_SYMBOL(dev_set_group);
8496
8497/**
8498 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8499 * @dev: device
8500 * @addr: new address
8501 * @extack: netlink extended ack
8502 */
8503int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8504 struct netlink_ext_ack *extack)
8505{
8506 struct netdev_notifier_pre_changeaddr_info info = {
8507 .info.dev = dev,
8508 .info.extack = extack,
8509 .dev_addr = addr,
8510 };
8511 int rc;
8512
8513 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8514 return notifier_to_errno(rc);
8515}
8516EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8517
8518/**
8519 * dev_set_mac_address - Change Media Access Control Address
8520 * @dev: device
8521 * @sa: new address
8522 * @extack: netlink extended ack
8523 *
8524 * Change the hardware (MAC) address of the device
8525 */
8526int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8527 struct netlink_ext_ack *extack)
8528{
8529 const struct net_device_ops *ops = dev->netdev_ops;
8530 int err;
8531
8532 if (!ops->ndo_set_mac_address)
8533 return -EOPNOTSUPP;
8534 if (sa->sa_family != dev->type)
8535 return -EINVAL;
8536 if (!netif_device_present(dev))
8537 return -ENODEV;
8538 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8539 if (err)
8540 return err;
8541 err = ops->ndo_set_mac_address(dev, sa);
8542 if (err)
8543 return err;
8544 dev->addr_assign_type = NET_ADDR_SET;
8545 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8546 add_device_randomness(dev->dev_addr, dev->addr_len);
8547 return 0;
8548}
8549EXPORT_SYMBOL(dev_set_mac_address);
8550
8551/**
8552 * dev_change_carrier - Change device carrier
8553 * @dev: device
8554 * @new_carrier: new value
8555 *
8556 * Change device carrier
8557 */
8558int dev_change_carrier(struct net_device *dev, bool new_carrier)
8559{
8560 const struct net_device_ops *ops = dev->netdev_ops;
8561
8562 if (!ops->ndo_change_carrier)
8563 return -EOPNOTSUPP;
8564 if (!netif_device_present(dev))
8565 return -ENODEV;
8566 return ops->ndo_change_carrier(dev, new_carrier);
8567}
8568EXPORT_SYMBOL(dev_change_carrier);
8569
8570/**
8571 * dev_get_phys_port_id - Get device physical port ID
8572 * @dev: device
8573 * @ppid: port ID
8574 *
8575 * Get device physical port ID
8576 */
8577int dev_get_phys_port_id(struct net_device *dev,
8578 struct netdev_phys_item_id *ppid)
8579{
8580 const struct net_device_ops *ops = dev->netdev_ops;
8581
8582 if (!ops->ndo_get_phys_port_id)
8583 return -EOPNOTSUPP;
8584 return ops->ndo_get_phys_port_id(dev, ppid);
8585}
8586EXPORT_SYMBOL(dev_get_phys_port_id);
8587
8588/**
8589 * dev_get_phys_port_name - Get device physical port name
8590 * @dev: device
8591 * @name: port name
8592 * @len: limit of bytes to copy to name
8593 *
8594 * Get device physical port name
8595 */
8596int dev_get_phys_port_name(struct net_device *dev,
8597 char *name, size_t len)
8598{
8599 const struct net_device_ops *ops = dev->netdev_ops;
8600 int err;
8601
8602 if (ops->ndo_get_phys_port_name) {
8603 err = ops->ndo_get_phys_port_name(dev, name, len);
8604 if (err != -EOPNOTSUPP)
8605 return err;
8606 }
8607 return devlink_compat_phys_port_name_get(dev, name, len);
8608}
8609EXPORT_SYMBOL(dev_get_phys_port_name);
8610
8611/**
8612 * dev_get_port_parent_id - Get the device's port parent identifier
8613 * @dev: network device
8614 * @ppid: pointer to a storage for the port's parent identifier
8615 * @recurse: allow/disallow recursion to lower devices
8616 *
8617 * Get the devices's port parent identifier
8618 */
8619int dev_get_port_parent_id(struct net_device *dev,
8620 struct netdev_phys_item_id *ppid,
8621 bool recurse)
8622{
8623 const struct net_device_ops *ops = dev->netdev_ops;
8624 struct netdev_phys_item_id first = { };
8625 struct net_device *lower_dev;
8626 struct list_head *iter;
8627 int err;
8628
8629 if (ops->ndo_get_port_parent_id) {
8630 err = ops->ndo_get_port_parent_id(dev, ppid);
8631 if (err != -EOPNOTSUPP)
8632 return err;
8633 }
8634
8635 err = devlink_compat_switch_id_get(dev, ppid);
8636 if (!err || err != -EOPNOTSUPP)
8637 return err;
8638
8639 if (!recurse)
8640 return -EOPNOTSUPP;
8641
8642 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8643 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8644 if (err)
8645 break;
8646 if (!first.id_len)
8647 first = *ppid;
8648 else if (memcmp(&first, ppid, sizeof(*ppid)))
8649 return -ENODATA;
8650 }
8651
8652 return err;
8653}
8654EXPORT_SYMBOL(dev_get_port_parent_id);
8655
8656/**
8657 * netdev_port_same_parent_id - Indicate if two network devices have
8658 * the same port parent identifier
8659 * @a: first network device
8660 * @b: second network device
8661 */
8662bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8663{
8664 struct netdev_phys_item_id a_id = { };
8665 struct netdev_phys_item_id b_id = { };
8666
8667 if (dev_get_port_parent_id(a, &a_id, true) ||
8668 dev_get_port_parent_id(b, &b_id, true))
8669 return false;
8670
8671 return netdev_phys_item_id_same(&a_id, &b_id);
8672}
8673EXPORT_SYMBOL(netdev_port_same_parent_id);
8674
8675/**
8676 * dev_change_proto_down - update protocol port state information
8677 * @dev: device
8678 * @proto_down: new value
8679 *
8680 * This info can be used by switch drivers to set the phys state of the
8681 * port.
8682 */
8683int dev_change_proto_down(struct net_device *dev, bool proto_down)
8684{
8685 const struct net_device_ops *ops = dev->netdev_ops;
8686
8687 if (!ops->ndo_change_proto_down)
8688 return -EOPNOTSUPP;
8689 if (!netif_device_present(dev))
8690 return -ENODEV;
8691 return ops->ndo_change_proto_down(dev, proto_down);
8692}
8693EXPORT_SYMBOL(dev_change_proto_down);
8694
8695/**
8696 * dev_change_proto_down_generic - generic implementation for
8697 * ndo_change_proto_down that sets carrier according to
8698 * proto_down.
8699 *
8700 * @dev: device
8701 * @proto_down: new value
8702 */
8703int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8704{
8705 if (proto_down)
8706 netif_carrier_off(dev);
8707 else
8708 netif_carrier_on(dev);
8709 dev->proto_down = proto_down;
8710 return 0;
8711}
8712EXPORT_SYMBOL(dev_change_proto_down_generic);
8713
8714/**
8715 * dev_change_proto_down_reason - proto down reason
8716 *
8717 * @dev: device
8718 * @mask: proto down mask
8719 * @value: proto down value
8720 */
8721void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8722 u32 value)
8723{
8724 int b;
8725
8726 if (!mask) {
8727 dev->proto_down_reason = value;
8728 } else {
8729 for_each_set_bit(b, &mask, 32) {
8730 if (value & (1 << b))
8731 dev->proto_down_reason |= BIT(b);
8732 else
8733 dev->proto_down_reason &= ~BIT(b);
8734 }
8735 }
8736}
8737EXPORT_SYMBOL(dev_change_proto_down_reason);
8738
8739struct bpf_xdp_link {
8740 struct bpf_link link;
8741 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8742 int flags;
8743};
8744
8745static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8746{
8747 if (flags & XDP_FLAGS_HW_MODE)
8748 return XDP_MODE_HW;
8749 if (flags & XDP_FLAGS_DRV_MODE)
8750 return XDP_MODE_DRV;
8751 if (flags & XDP_FLAGS_SKB_MODE)
8752 return XDP_MODE_SKB;
8753 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8754}
8755
8756static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8757{
8758 switch (mode) {
8759 case XDP_MODE_SKB:
8760 return generic_xdp_install;
8761 case XDP_MODE_DRV:
8762 case XDP_MODE_HW:
8763 return dev->netdev_ops->ndo_bpf;
8764 default:
8765 return NULL;
8766 };
8767}
8768
8769static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8770 enum bpf_xdp_mode mode)
8771{
8772 return dev->xdp_state[mode].link;
8773}
8774
8775static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8776 enum bpf_xdp_mode mode)
8777{
8778 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8779
8780 if (link)
8781 return link->link.prog;
8782 return dev->xdp_state[mode].prog;
8783}
8784
8785u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8786{
8787 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8788
8789 return prog ? prog->aux->id : 0;
8790}
8791
8792static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8793 struct bpf_xdp_link *link)
8794{
8795 dev->xdp_state[mode].link = link;
8796 dev->xdp_state[mode].prog = NULL;
8797}
8798
8799static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8800 struct bpf_prog *prog)
8801{
8802 dev->xdp_state[mode].link = NULL;
8803 dev->xdp_state[mode].prog = prog;
8804}
8805
8806static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8807 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8808 u32 flags, struct bpf_prog *prog)
8809{
8810 struct netdev_bpf xdp;
8811 int err;
8812
8813 memset(&xdp, 0, sizeof(xdp));
8814 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8815 xdp.extack = extack;
8816 xdp.flags = flags;
8817 xdp.prog = prog;
8818
8819 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8820 * "moved" into driver), so they don't increment it on their own, but
8821 * they do decrement refcnt when program is detached or replaced.
8822 * Given net_device also owns link/prog, we need to bump refcnt here
8823 * to prevent drivers from underflowing it.
8824 */
8825 if (prog)
8826 bpf_prog_inc(prog);
8827 err = bpf_op(dev, &xdp);
8828 if (err) {
8829 if (prog)
8830 bpf_prog_put(prog);
8831 return err;
8832 }
8833
8834 if (mode != XDP_MODE_HW)
8835 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8836
8837 return 0;
8838}
8839
8840static void dev_xdp_uninstall(struct net_device *dev)
8841{
8842 struct bpf_xdp_link *link;
8843 struct bpf_prog *prog;
8844 enum bpf_xdp_mode mode;
8845 bpf_op_t bpf_op;
8846
8847 ASSERT_RTNL();
8848
8849 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8850 prog = dev_xdp_prog(dev, mode);
8851 if (!prog)
8852 continue;
8853
8854 bpf_op = dev_xdp_bpf_op(dev, mode);
8855 if (!bpf_op)
8856 continue;
8857
8858 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8859
8860 /* auto-detach link from net device */
8861 link = dev_xdp_link(dev, mode);
8862 if (link)
8863 link->dev = NULL;
8864 else
8865 bpf_prog_put(prog);
8866
8867 dev_xdp_set_link(dev, mode, NULL);
8868 }
8869}
8870
8871static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8872 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8873 struct bpf_prog *old_prog, u32 flags)
8874{
8875 struct bpf_prog *cur_prog;
8876 enum bpf_xdp_mode mode;
8877 bpf_op_t bpf_op;
8878 int err;
8879
8880 ASSERT_RTNL();
8881
8882 /* either link or prog attachment, never both */
8883 if (link && (new_prog || old_prog))
8884 return -EINVAL;
8885 /* link supports only XDP mode flags */
8886 if (link && (flags & ~XDP_FLAGS_MODES)) {
8887 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8888 return -EINVAL;
8889 }
8890 /* just one XDP mode bit should be set, zero defaults to SKB mode */
8891 if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
8892 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8893 return -EINVAL;
8894 }
8895 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8896 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8897 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8898 return -EINVAL;
8899 }
8900
8901 mode = dev_xdp_mode(dev, flags);
8902 /* can't replace attached link */
8903 if (dev_xdp_link(dev, mode)) {
8904 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8905 return -EBUSY;
8906 }
8907
8908 cur_prog = dev_xdp_prog(dev, mode);
8909 /* can't replace attached prog with link */
8910 if (link && cur_prog) {
8911 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8912 return -EBUSY;
8913 }
8914 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8915 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8916 return -EEXIST;
8917 }
8918
8919 /* put effective new program into new_prog */
8920 if (link)
8921 new_prog = link->link.prog;
8922
8923 if (new_prog) {
8924 bool offload = mode == XDP_MODE_HW;
8925 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8926 ? XDP_MODE_DRV : XDP_MODE_SKB;
8927
8928 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8929 NL_SET_ERR_MSG(extack, "XDP program already attached");
8930 return -EBUSY;
8931 }
8932 if (!offload && dev_xdp_prog(dev, other_mode)) {
8933 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8934 return -EEXIST;
8935 }
8936 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
8937 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
8938 return -EINVAL;
8939 }
8940 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
8941 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8942 return -EINVAL;
8943 }
8944 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8945 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
8946 return -EINVAL;
8947 }
8948 }
8949
8950 /* don't call drivers if the effective program didn't change */
8951 if (new_prog != cur_prog) {
8952 bpf_op = dev_xdp_bpf_op(dev, mode);
8953 if (!bpf_op) {
8954 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8955 return -EOPNOTSUPP;
8956 }
8957
8958 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
8959 if (err)
8960 return err;
8961 }
8962
8963 if (link)
8964 dev_xdp_set_link(dev, mode, link);
8965 else
8966 dev_xdp_set_prog(dev, mode, new_prog);
8967 if (cur_prog)
8968 bpf_prog_put(cur_prog);
8969
8970 return 0;
8971}
8972
8973static int dev_xdp_attach_link(struct net_device *dev,
8974 struct netlink_ext_ack *extack,
8975 struct bpf_xdp_link *link)
8976{
8977 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
8978}
8979
8980static int dev_xdp_detach_link(struct net_device *dev,
8981 struct netlink_ext_ack *extack,
8982 struct bpf_xdp_link *link)
8983{
8984 enum bpf_xdp_mode mode;
8985 bpf_op_t bpf_op;
8986
8987 ASSERT_RTNL();
8988
8989 mode = dev_xdp_mode(dev, link->flags);
8990 if (dev_xdp_link(dev, mode) != link)
8991 return -EINVAL;
8992
8993 bpf_op = dev_xdp_bpf_op(dev, mode);
8994 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8995 dev_xdp_set_link(dev, mode, NULL);
8996 return 0;
8997}
8998
8999static void bpf_xdp_link_release(struct bpf_link *link)
9000{
9001 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9002
9003 rtnl_lock();
9004
9005 /* if racing with net_device's tear down, xdp_link->dev might be
9006 * already NULL, in which case link was already auto-detached
9007 */
9008 if (xdp_link->dev) {
9009 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9010 xdp_link->dev = NULL;
9011 }
9012
9013 rtnl_unlock();
9014}
9015
9016static int bpf_xdp_link_detach(struct bpf_link *link)
9017{
9018 bpf_xdp_link_release(link);
9019 return 0;
9020}
9021
9022static void bpf_xdp_link_dealloc(struct bpf_link *link)
9023{
9024 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9025
9026 kfree(xdp_link);
9027}
9028
9029static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9030 struct seq_file *seq)
9031{
9032 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9033 u32 ifindex = 0;
9034
9035 rtnl_lock();
9036 if (xdp_link->dev)
9037 ifindex = xdp_link->dev->ifindex;
9038 rtnl_unlock();
9039
9040 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9041}
9042
9043static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9044 struct bpf_link_info *info)
9045{
9046 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9047 u32 ifindex = 0;
9048
9049 rtnl_lock();
9050 if (xdp_link->dev)
9051 ifindex = xdp_link->dev->ifindex;
9052 rtnl_unlock();
9053
9054 info->xdp.ifindex = ifindex;
9055 return 0;
9056}
9057
9058static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9059 struct bpf_prog *old_prog)
9060{
9061 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9062 enum bpf_xdp_mode mode;
9063 bpf_op_t bpf_op;
9064 int err = 0;
9065
9066 rtnl_lock();
9067
9068 /* link might have been auto-released already, so fail */
9069 if (!xdp_link->dev) {
9070 err = -ENOLINK;
9071 goto out_unlock;
9072 }
9073
9074 if (old_prog && link->prog != old_prog) {
9075 err = -EPERM;
9076 goto out_unlock;
9077 }
9078 old_prog = link->prog;
9079 if (old_prog == new_prog) {
9080 /* no-op, don't disturb drivers */
9081 bpf_prog_put(new_prog);
9082 goto out_unlock;
9083 }
9084
9085 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9086 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9087 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9088 xdp_link->flags, new_prog);
9089 if (err)
9090 goto out_unlock;
9091
9092 old_prog = xchg(&link->prog, new_prog);
9093 bpf_prog_put(old_prog);
9094
9095out_unlock:
9096 rtnl_unlock();
9097 return err;
9098}
9099
9100static const struct bpf_link_ops bpf_xdp_link_lops = {
9101 .release = bpf_xdp_link_release,
9102 .dealloc = bpf_xdp_link_dealloc,
9103 .detach = bpf_xdp_link_detach,
9104 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9105 .fill_link_info = bpf_xdp_link_fill_link_info,
9106 .update_prog = bpf_xdp_link_update,
9107};
9108
9109int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9110{
9111 struct net *net = current->nsproxy->net_ns;
9112 struct bpf_link_primer link_primer;
9113 struct bpf_xdp_link *link;
9114 struct net_device *dev;
9115 int err, fd;
9116
9117 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9118 if (!dev)
9119 return -EINVAL;
9120
9121 link = kzalloc(sizeof(*link), GFP_USER);
9122 if (!link) {
9123 err = -ENOMEM;
9124 goto out_put_dev;
9125 }
9126
9127 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9128 link->dev = dev;
9129 link->flags = attr->link_create.flags;
9130
9131 err = bpf_link_prime(&link->link, &link_primer);
9132 if (err) {
9133 kfree(link);
9134 goto out_put_dev;
9135 }
9136
9137 rtnl_lock();
9138 err = dev_xdp_attach_link(dev, NULL, link);
9139 rtnl_unlock();
9140
9141 if (err) {
9142 bpf_link_cleanup(&link_primer);
9143 goto out_put_dev;
9144 }
9145
9146 fd = bpf_link_settle(&link_primer);
9147 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9148 dev_put(dev);
9149 return fd;
9150
9151out_put_dev:
9152 dev_put(dev);
9153 return err;
9154}
9155
9156/**
9157 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9158 * @dev: device
9159 * @extack: netlink extended ack
9160 * @fd: new program fd or negative value to clear
9161 * @expected_fd: old program fd that userspace expects to replace or clear
9162 * @flags: xdp-related flags
9163 *
9164 * Set or clear a bpf program for a device
9165 */
9166int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9167 int fd, int expected_fd, u32 flags)
9168{
9169 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9170 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9171 int err;
9172
9173 ASSERT_RTNL();
9174
9175 if (fd >= 0) {
9176 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9177 mode != XDP_MODE_SKB);
9178 if (IS_ERR(new_prog))
9179 return PTR_ERR(new_prog);
9180 }
9181
9182 if (expected_fd >= 0) {
9183 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9184 mode != XDP_MODE_SKB);
9185 if (IS_ERR(old_prog)) {
9186 err = PTR_ERR(old_prog);
9187 old_prog = NULL;
9188 goto err_out;
9189 }
9190 }
9191
9192 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9193
9194err_out:
9195 if (err && new_prog)
9196 bpf_prog_put(new_prog);
9197 if (old_prog)
9198 bpf_prog_put(old_prog);
9199 return err;
9200}
9201
9202/**
9203 * dev_new_index - allocate an ifindex
9204 * @net: the applicable net namespace
9205 *
9206 * Returns a suitable unique value for a new device interface
9207 * number. The caller must hold the rtnl semaphore or the
9208 * dev_base_lock to be sure it remains unique.
9209 */
9210static int dev_new_index(struct net *net)
9211{
9212 int ifindex = net->ifindex;
9213
9214 for (;;) {
9215 if (++ifindex <= 0)
9216 ifindex = 1;
9217 if (!__dev_get_by_index(net, ifindex))
9218 return net->ifindex = ifindex;
9219 }
9220}
9221
9222/* Delayed registration/unregisteration */
9223static LIST_HEAD(net_todo_list);
9224DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9225
9226static void net_set_todo(struct net_device *dev)
9227{
9228 list_add_tail(&dev->todo_list, &net_todo_list);
9229 dev_net(dev)->dev_unreg_count++;
9230}
9231
9232static void rollback_registered_many(struct list_head *head)
9233{
9234 struct net_device *dev, *tmp;
9235 LIST_HEAD(close_head);
9236
9237 BUG_ON(dev_boot_phase);
9238 ASSERT_RTNL();
9239
9240 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9241 /* Some devices call without registering
9242 * for initialization unwind. Remove those
9243 * devices and proceed with the remaining.
9244 */
9245 if (dev->reg_state == NETREG_UNINITIALIZED) {
9246 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9247 dev->name, dev);
9248
9249 WARN_ON(1);
9250 list_del(&dev->unreg_list);
9251 continue;
9252 }
9253 dev->dismantle = true;
9254 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9255 }
9256
9257 /* If device is running, close it first. */
9258 list_for_each_entry(dev, head, unreg_list)
9259 list_add_tail(&dev->close_list, &close_head);
9260 dev_close_many(&close_head, true);
9261
9262 list_for_each_entry(dev, head, unreg_list) {
9263 /* And unlink it from device chain. */
9264 unlist_netdevice(dev);
9265
9266 dev->reg_state = NETREG_UNREGISTERING;
9267 }
9268 flush_all_backlogs();
9269
9270 synchronize_net();
9271
9272 list_for_each_entry(dev, head, unreg_list) {
9273 struct sk_buff *skb = NULL;
9274
9275 /* Shutdown queueing discipline. */
9276 dev_shutdown(dev);
9277
9278 dev_xdp_uninstall(dev);
9279
9280 /* Notify protocols, that we are about to destroy
9281 * this device. They should clean all the things.
9282 */
9283 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9284
9285 if (!dev->rtnl_link_ops ||
9286 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9287 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9288 GFP_KERNEL, NULL, 0);
9289
9290 /*
9291 * Flush the unicast and multicast chains
9292 */
9293 dev_uc_flush(dev);
9294 dev_mc_flush(dev);
9295
9296 netdev_name_node_alt_flush(dev);
9297 netdev_name_node_free(dev->name_node);
9298
9299 if (dev->netdev_ops->ndo_uninit)
9300 dev->netdev_ops->ndo_uninit(dev);
9301
9302 if (skb)
9303 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9304
9305 /* Notifier chain MUST detach us all upper devices. */
9306 WARN_ON(netdev_has_any_upper_dev(dev));
9307 WARN_ON(netdev_has_any_lower_dev(dev));
9308
9309 /* Remove entries from kobject tree */
9310 netdev_unregister_kobject(dev);
9311#ifdef CONFIG_XPS
9312 /* Remove XPS queueing entries */
9313 netif_reset_xps_queues_gt(dev, 0);
9314#endif
9315 }
9316
9317 synchronize_net();
9318
9319 list_for_each_entry(dev, head, unreg_list)
9320 dev_put(dev);
9321}
9322
9323static void rollback_registered(struct net_device *dev)
9324{
9325 LIST_HEAD(single);
9326
9327 list_add(&dev->unreg_list, &single);
9328 rollback_registered_many(&single);
9329 list_del(&single);
9330}
9331
9332static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9333 struct net_device *upper, netdev_features_t features)
9334{
9335 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9336 netdev_features_t feature;
9337 int feature_bit;
9338
9339 for_each_netdev_feature(upper_disables, feature_bit) {
9340 feature = __NETIF_F_BIT(feature_bit);
9341 if (!(upper->wanted_features & feature)
9342 && (features & feature)) {
9343 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9344 &feature, upper->name);
9345 features &= ~feature;
9346 }
9347 }
9348
9349 return features;
9350}
9351
9352static void netdev_sync_lower_features(struct net_device *upper,
9353 struct net_device *lower, netdev_features_t features)
9354{
9355 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9356 netdev_features_t feature;
9357 int feature_bit;
9358
9359 for_each_netdev_feature(upper_disables, feature_bit) {
9360 feature = __NETIF_F_BIT(feature_bit);
9361 if (!(features & feature) && (lower->features & feature)) {
9362 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9363 &feature, lower->name);
9364 lower->wanted_features &= ~feature;
9365 __netdev_update_features(lower);
9366
9367 if (unlikely(lower->features & feature))
9368 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9369 &feature, lower->name);
9370 else
9371 netdev_features_change(lower);
9372 }
9373 }
9374}
9375
9376static netdev_features_t netdev_fix_features(struct net_device *dev,
9377 netdev_features_t features)
9378{
9379 /* Fix illegal checksum combinations */
9380 if ((features & NETIF_F_HW_CSUM) &&
9381 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9382 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9383 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9384 }
9385
9386 /* TSO requires that SG is present as well. */
9387 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9388 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9389 features &= ~NETIF_F_ALL_TSO;
9390 }
9391
9392 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9393 !(features & NETIF_F_IP_CSUM)) {
9394 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9395 features &= ~NETIF_F_TSO;
9396 features &= ~NETIF_F_TSO_ECN;
9397 }
9398
9399 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9400 !(features & NETIF_F_IPV6_CSUM)) {
9401 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9402 features &= ~NETIF_F_TSO6;
9403 }
9404
9405 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9406 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9407 features &= ~NETIF_F_TSO_MANGLEID;
9408
9409 /* TSO ECN requires that TSO is present as well. */
9410 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9411 features &= ~NETIF_F_TSO_ECN;
9412
9413 /* Software GSO depends on SG. */
9414 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9415 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9416 features &= ~NETIF_F_GSO;
9417 }
9418
9419 /* GSO partial features require GSO partial be set */
9420 if ((features & dev->gso_partial_features) &&
9421 !(features & NETIF_F_GSO_PARTIAL)) {
9422 netdev_dbg(dev,
9423 "Dropping partially supported GSO features since no GSO partial.\n");
9424 features &= ~dev->gso_partial_features;
9425 }
9426
9427 if (!(features & NETIF_F_RXCSUM)) {
9428 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9429 * successfully merged by hardware must also have the
9430 * checksum verified by hardware. If the user does not
9431 * want to enable RXCSUM, logically, we should disable GRO_HW.
9432 */
9433 if (features & NETIF_F_GRO_HW) {
9434 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9435 features &= ~NETIF_F_GRO_HW;
9436 }
9437 }
9438
9439 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9440 if (features & NETIF_F_RXFCS) {
9441 if (features & NETIF_F_LRO) {
9442 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9443 features &= ~NETIF_F_LRO;
9444 }
9445
9446 if (features & NETIF_F_GRO_HW) {
9447 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9448 features &= ~NETIF_F_GRO_HW;
9449 }
9450 }
9451
9452 return features;
9453}
9454
9455int __netdev_update_features(struct net_device *dev)
9456{
9457 struct net_device *upper, *lower;
9458 netdev_features_t features;
9459 struct list_head *iter;
9460 int err = -1;
9461
9462 ASSERT_RTNL();
9463
9464 features = netdev_get_wanted_features(dev);
9465
9466 if (dev->netdev_ops->ndo_fix_features)
9467 features = dev->netdev_ops->ndo_fix_features(dev, features);
9468
9469 /* driver might be less strict about feature dependencies */
9470 features = netdev_fix_features(dev, features);
9471
9472 /* some features can't be enabled if they're off an an upper device */
9473 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9474 features = netdev_sync_upper_features(dev, upper, features);
9475
9476 if (dev->features == features)
9477 goto sync_lower;
9478
9479 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9480 &dev->features, &features);
9481
9482 if (dev->netdev_ops->ndo_set_features)
9483 err = dev->netdev_ops->ndo_set_features(dev, features);
9484 else
9485 err = 0;
9486
9487 if (unlikely(err < 0)) {
9488 netdev_err(dev,
9489 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9490 err, &features, &dev->features);
9491 /* return non-0 since some features might have changed and
9492 * it's better to fire a spurious notification than miss it
9493 */
9494 return -1;
9495 }
9496
9497sync_lower:
9498 /* some features must be disabled on lower devices when disabled
9499 * on an upper device (think: bonding master or bridge)
9500 */
9501 netdev_for_each_lower_dev(dev, lower, iter)
9502 netdev_sync_lower_features(dev, lower, features);
9503
9504 if (!err) {
9505 netdev_features_t diff = features ^ dev->features;
9506
9507 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9508 /* udp_tunnel_{get,drop}_rx_info both need
9509 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9510 * device, or they won't do anything.
9511 * Thus we need to update dev->features
9512 * *before* calling udp_tunnel_get_rx_info,
9513 * but *after* calling udp_tunnel_drop_rx_info.
9514 */
9515 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9516 dev->features = features;
9517 udp_tunnel_get_rx_info(dev);
9518 } else {
9519 udp_tunnel_drop_rx_info(dev);
9520 }
9521 }
9522
9523 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9524 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9525 dev->features = features;
9526 err |= vlan_get_rx_ctag_filter_info(dev);
9527 } else {
9528 vlan_drop_rx_ctag_filter_info(dev);
9529 }
9530 }
9531
9532 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9533 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9534 dev->features = features;
9535 err |= vlan_get_rx_stag_filter_info(dev);
9536 } else {
9537 vlan_drop_rx_stag_filter_info(dev);
9538 }
9539 }
9540
9541 dev->features = features;
9542 }
9543
9544 return err < 0 ? 0 : 1;
9545}
9546
9547/**
9548 * netdev_update_features - recalculate device features
9549 * @dev: the device to check
9550 *
9551 * Recalculate dev->features set and send notifications if it
9552 * has changed. Should be called after driver or hardware dependent
9553 * conditions might have changed that influence the features.
9554 */
9555void netdev_update_features(struct net_device *dev)
9556{
9557 if (__netdev_update_features(dev))
9558 netdev_features_change(dev);
9559}
9560EXPORT_SYMBOL(netdev_update_features);
9561
9562/**
9563 * netdev_change_features - recalculate device features
9564 * @dev: the device to check
9565 *
9566 * Recalculate dev->features set and send notifications even
9567 * if they have not changed. Should be called instead of
9568 * netdev_update_features() if also dev->vlan_features might
9569 * have changed to allow the changes to be propagated to stacked
9570 * VLAN devices.
9571 */
9572void netdev_change_features(struct net_device *dev)
9573{
9574 __netdev_update_features(dev);
9575 netdev_features_change(dev);
9576}
9577EXPORT_SYMBOL(netdev_change_features);
9578
9579/**
9580 * netif_stacked_transfer_operstate - transfer operstate
9581 * @rootdev: the root or lower level device to transfer state from
9582 * @dev: the device to transfer operstate to
9583 *
9584 * Transfer operational state from root to device. This is normally
9585 * called when a stacking relationship exists between the root
9586 * device and the device(a leaf device).
9587 */
9588void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9589 struct net_device *dev)
9590{
9591 if (rootdev->operstate == IF_OPER_DORMANT)
9592 netif_dormant_on(dev);
9593 else
9594 netif_dormant_off(dev);
9595
9596 if (rootdev->operstate == IF_OPER_TESTING)
9597 netif_testing_on(dev);
9598 else
9599 netif_testing_off(dev);
9600
9601 if (netif_carrier_ok(rootdev))
9602 netif_carrier_on(dev);
9603 else
9604 netif_carrier_off(dev);
9605}
9606EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9607
9608static int netif_alloc_rx_queues(struct net_device *dev)
9609{
9610 unsigned int i, count = dev->num_rx_queues;
9611 struct netdev_rx_queue *rx;
9612 size_t sz = count * sizeof(*rx);
9613 int err = 0;
9614
9615 BUG_ON(count < 1);
9616
9617 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9618 if (!rx)
9619 return -ENOMEM;
9620
9621 dev->_rx = rx;
9622
9623 for (i = 0; i < count; i++) {
9624 rx[i].dev = dev;
9625
9626 /* XDP RX-queue setup */
9627 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9628 if (err < 0)
9629 goto err_rxq_info;
9630 }
9631 return 0;
9632
9633err_rxq_info:
9634 /* Rollback successful reg's and free other resources */
9635 while (i--)
9636 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9637 kvfree(dev->_rx);
9638 dev->_rx = NULL;
9639 return err;
9640}
9641
9642static void netif_free_rx_queues(struct net_device *dev)
9643{
9644 unsigned int i, count = dev->num_rx_queues;
9645
9646 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9647 if (!dev->_rx)
9648 return;
9649
9650 for (i = 0; i < count; i++)
9651 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9652
9653 kvfree(dev->_rx);
9654}
9655
9656static void netdev_init_one_queue(struct net_device *dev,
9657 struct netdev_queue *queue, void *_unused)
9658{
9659 /* Initialize queue lock */
9660 spin_lock_init(&queue->_xmit_lock);
9661 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9662 queue->xmit_lock_owner = -1;
9663 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9664 queue->dev = dev;
9665#ifdef CONFIG_BQL
9666 dql_init(&queue->dql, HZ);
9667#endif
9668}
9669
9670static void netif_free_tx_queues(struct net_device *dev)
9671{
9672 kvfree(dev->_tx);
9673}
9674
9675static int netif_alloc_netdev_queues(struct net_device *dev)
9676{
9677 unsigned int count = dev->num_tx_queues;
9678 struct netdev_queue *tx;
9679 size_t sz = count * sizeof(*tx);
9680
9681 if (count < 1 || count > 0xffff)
9682 return -EINVAL;
9683
9684 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9685 if (!tx)
9686 return -ENOMEM;
9687
9688 dev->_tx = tx;
9689
9690 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9691 spin_lock_init(&dev->tx_global_lock);
9692
9693 return 0;
9694}
9695
9696void netif_tx_stop_all_queues(struct net_device *dev)
9697{
9698 unsigned int i;
9699
9700 for (i = 0; i < dev->num_tx_queues; i++) {
9701 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9702
9703 netif_tx_stop_queue(txq);
9704 }
9705}
9706EXPORT_SYMBOL(netif_tx_stop_all_queues);
9707
9708/**
9709 * register_netdevice - register a network device
9710 * @dev: device to register
9711 *
9712 * Take a completed network device structure and add it to the kernel
9713 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9714 * chain. 0 is returned on success. A negative errno code is returned
9715 * on a failure to set up the device, or if the name is a duplicate.
9716 *
9717 * Callers must hold the rtnl semaphore. You may want
9718 * register_netdev() instead of this.
9719 *
9720 * BUGS:
9721 * The locking appears insufficient to guarantee two parallel registers
9722 * will not get the same name.
9723 */
9724
9725int register_netdevice(struct net_device *dev)
9726{
9727 int ret;
9728 struct net *net = dev_net(dev);
9729
9730 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9731 NETDEV_FEATURE_COUNT);
9732 BUG_ON(dev_boot_phase);
9733 ASSERT_RTNL();
9734
9735 might_sleep();
9736
9737 /* When net_device's are persistent, this will be fatal. */
9738 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9739 BUG_ON(!net);
9740
9741 ret = ethtool_check_ops(dev->ethtool_ops);
9742 if (ret)
9743 return ret;
9744
9745 spin_lock_init(&dev->addr_list_lock);
9746 netdev_set_addr_lockdep_class(dev);
9747
9748 ret = dev_get_valid_name(net, dev, dev->name);
9749 if (ret < 0)
9750 goto out;
9751
9752 ret = -ENOMEM;
9753 dev->name_node = netdev_name_node_head_alloc(dev);
9754 if (!dev->name_node)
9755 goto out;
9756
9757 /* Init, if this function is available */
9758 if (dev->netdev_ops->ndo_init) {
9759 ret = dev->netdev_ops->ndo_init(dev);
9760 if (ret) {
9761 if (ret > 0)
9762 ret = -EIO;
9763 goto err_free_name;
9764 }
9765 }
9766
9767 if (((dev->hw_features | dev->features) &
9768 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9769 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9770 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9771 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9772 ret = -EINVAL;
9773 goto err_uninit;
9774 }
9775
9776 ret = -EBUSY;
9777 if (!dev->ifindex)
9778 dev->ifindex = dev_new_index(net);
9779 else if (__dev_get_by_index(net, dev->ifindex))
9780 goto err_uninit;
9781
9782 /* Transfer changeable features to wanted_features and enable
9783 * software offloads (GSO and GRO).
9784 */
9785 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9786 dev->features |= NETIF_F_SOFT_FEATURES;
9787
9788 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9789 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9790 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9791 }
9792
9793 dev->wanted_features = dev->features & dev->hw_features;
9794
9795 if (!(dev->flags & IFF_LOOPBACK))
9796 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9797
9798 /* If IPv4 TCP segmentation offload is supported we should also
9799 * allow the device to enable segmenting the frame with the option
9800 * of ignoring a static IP ID value. This doesn't enable the
9801 * feature itself but allows the user to enable it later.
9802 */
9803 if (dev->hw_features & NETIF_F_TSO)
9804 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9805 if (dev->vlan_features & NETIF_F_TSO)
9806 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9807 if (dev->mpls_features & NETIF_F_TSO)
9808 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9809 if (dev->hw_enc_features & NETIF_F_TSO)
9810 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9811
9812 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9813 */
9814 dev->vlan_features |= NETIF_F_HIGHDMA;
9815
9816 /* Make NETIF_F_SG inheritable to tunnel devices.
9817 */
9818 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9819
9820 /* Make NETIF_F_SG inheritable to MPLS.
9821 */
9822 dev->mpls_features |= NETIF_F_SG;
9823
9824 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9825 ret = notifier_to_errno(ret);
9826 if (ret)
9827 goto err_uninit;
9828
9829 ret = netdev_register_kobject(dev);
9830 if (ret) {
9831 dev->reg_state = NETREG_UNREGISTERED;
9832 goto err_uninit;
9833 }
9834 dev->reg_state = NETREG_REGISTERED;
9835
9836 __netdev_update_features(dev);
9837
9838 /*
9839 * Default initial state at registry is that the
9840 * device is present.
9841 */
9842
9843 set_bit(__LINK_STATE_PRESENT, &dev->state);
9844
9845 linkwatch_init_dev(dev);
9846
9847 dev_init_scheduler(dev);
9848 dev_hold(dev);
9849 list_netdevice(dev);
9850 add_device_randomness(dev->dev_addr, dev->addr_len);
9851
9852 /* If the device has permanent device address, driver should
9853 * set dev_addr and also addr_assign_type should be set to
9854 * NET_ADDR_PERM (default value).
9855 */
9856 if (dev->addr_assign_type == NET_ADDR_PERM)
9857 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9858
9859 /* Notify protocols, that a new device appeared. */
9860 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9861 ret = notifier_to_errno(ret);
9862 if (ret) {
9863 rollback_registered(dev);
9864 rcu_barrier();
9865
9866 dev->reg_state = NETREG_UNREGISTERED;
9867 /* We should put the kobject that hold in
9868 * netdev_unregister_kobject(), otherwise
9869 * the net device cannot be freed when
9870 * driver calls free_netdev(), because the
9871 * kobject is being hold.
9872 */
9873 kobject_put(&dev->dev.kobj);
9874 }
9875 /*
9876 * Prevent userspace races by waiting until the network
9877 * device is fully setup before sending notifications.
9878 */
9879 if (!dev->rtnl_link_ops ||
9880 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9881 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9882
9883out:
9884 return ret;
9885
9886err_uninit:
9887 if (dev->netdev_ops->ndo_uninit)
9888 dev->netdev_ops->ndo_uninit(dev);
9889 if (dev->priv_destructor)
9890 dev->priv_destructor(dev);
9891err_free_name:
9892 netdev_name_node_free(dev->name_node);
9893 goto out;
9894}
9895EXPORT_SYMBOL(register_netdevice);
9896
9897/**
9898 * init_dummy_netdev - init a dummy network device for NAPI
9899 * @dev: device to init
9900 *
9901 * This takes a network device structure and initialize the minimum
9902 * amount of fields so it can be used to schedule NAPI polls without
9903 * registering a full blown interface. This is to be used by drivers
9904 * that need to tie several hardware interfaces to a single NAPI
9905 * poll scheduler due to HW limitations.
9906 */
9907int init_dummy_netdev(struct net_device *dev)
9908{
9909 /* Clear everything. Note we don't initialize spinlocks
9910 * are they aren't supposed to be taken by any of the
9911 * NAPI code and this dummy netdev is supposed to be
9912 * only ever used for NAPI polls
9913 */
9914 memset(dev, 0, sizeof(struct net_device));
9915
9916 /* make sure we BUG if trying to hit standard
9917 * register/unregister code path
9918 */
9919 dev->reg_state = NETREG_DUMMY;
9920
9921 /* NAPI wants this */
9922 INIT_LIST_HEAD(&dev->napi_list);
9923
9924 /* a dummy interface is started by default */
9925 set_bit(__LINK_STATE_PRESENT, &dev->state);
9926 set_bit(__LINK_STATE_START, &dev->state);
9927
9928 /* napi_busy_loop stats accounting wants this */
9929 dev_net_set(dev, &init_net);
9930
9931 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9932 * because users of this 'device' dont need to change
9933 * its refcount.
9934 */
9935
9936 return 0;
9937}
9938EXPORT_SYMBOL_GPL(init_dummy_netdev);
9939
9940
9941/**
9942 * register_netdev - register a network device
9943 * @dev: device to register
9944 *
9945 * Take a completed network device structure and add it to the kernel
9946 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9947 * chain. 0 is returned on success. A negative errno code is returned
9948 * on a failure to set up the device, or if the name is a duplicate.
9949 *
9950 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9951 * and expands the device name if you passed a format string to
9952 * alloc_netdev.
9953 */
9954int register_netdev(struct net_device *dev)
9955{
9956 int err;
9957
9958 if (rtnl_lock_killable())
9959 return -EINTR;
9960 err = register_netdevice(dev);
9961 rtnl_unlock();
9962 return err;
9963}
9964EXPORT_SYMBOL(register_netdev);
9965
9966int netdev_refcnt_read(const struct net_device *dev)
9967{
9968 int i, refcnt = 0;
9969
9970 for_each_possible_cpu(i)
9971 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9972 return refcnt;
9973}
9974EXPORT_SYMBOL(netdev_refcnt_read);
9975
9976/**
9977 * netdev_wait_allrefs - wait until all references are gone.
9978 * @dev: target net_device
9979 *
9980 * This is called when unregistering network devices.
9981 *
9982 * Any protocol or device that holds a reference should register
9983 * for netdevice notification, and cleanup and put back the
9984 * reference if they receive an UNREGISTER event.
9985 * We can get stuck here if buggy protocols don't correctly
9986 * call dev_put.
9987 */
9988static void netdev_wait_allrefs(struct net_device *dev)
9989{
9990 unsigned long rebroadcast_time, warning_time;
9991 int refcnt;
9992
9993 linkwatch_forget_dev(dev);
9994
9995 rebroadcast_time = warning_time = jiffies;
9996 refcnt = netdev_refcnt_read(dev);
9997
9998 while (refcnt != 0) {
9999 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10000 rtnl_lock();
10001
10002 /* Rebroadcast unregister notification */
10003 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10004
10005 __rtnl_unlock();
10006 rcu_barrier();
10007 rtnl_lock();
10008
10009 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10010 &dev->state)) {
10011 /* We must not have linkwatch events
10012 * pending on unregister. If this
10013 * happens, we simply run the queue
10014 * unscheduled, resulting in a noop
10015 * for this device.
10016 */
10017 linkwatch_run_queue();
10018 }
10019
10020 __rtnl_unlock();
10021
10022 rebroadcast_time = jiffies;
10023 }
10024
10025 msleep(250);
10026
10027 refcnt = netdev_refcnt_read(dev);
10028
10029 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10030 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10031 dev->name, refcnt);
10032 warning_time = jiffies;
10033 }
10034 }
10035}
10036
10037/* The sequence is:
10038 *
10039 * rtnl_lock();
10040 * ...
10041 * register_netdevice(x1);
10042 * register_netdevice(x2);
10043 * ...
10044 * unregister_netdevice(y1);
10045 * unregister_netdevice(y2);
10046 * ...
10047 * rtnl_unlock();
10048 * free_netdev(y1);
10049 * free_netdev(y2);
10050 *
10051 * We are invoked by rtnl_unlock().
10052 * This allows us to deal with problems:
10053 * 1) We can delete sysfs objects which invoke hotplug
10054 * without deadlocking with linkwatch via keventd.
10055 * 2) Since we run with the RTNL semaphore not held, we can sleep
10056 * safely in order to wait for the netdev refcnt to drop to zero.
10057 *
10058 * We must not return until all unregister events added during
10059 * the interval the lock was held have been completed.
10060 */
10061void netdev_run_todo(void)
10062{
10063 struct list_head list;
10064
10065 /* Snapshot list, allow later requests */
10066 list_replace_init(&net_todo_list, &list);
10067
10068 __rtnl_unlock();
10069
10070
10071 /* Wait for rcu callbacks to finish before next phase */
10072 if (!list_empty(&list))
10073 rcu_barrier();
10074
10075 while (!list_empty(&list)) {
10076 struct net_device *dev
10077 = list_first_entry(&list, struct net_device, todo_list);
10078 list_del(&dev->todo_list);
10079
10080 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10081 pr_err("network todo '%s' but state %d\n",
10082 dev->name, dev->reg_state);
10083 dump_stack();
10084 continue;
10085 }
10086
10087 dev->reg_state = NETREG_UNREGISTERED;
10088
10089 netdev_wait_allrefs(dev);
10090
10091 /* paranoia */
10092 BUG_ON(netdev_refcnt_read(dev));
10093 BUG_ON(!list_empty(&dev->ptype_all));
10094 BUG_ON(!list_empty(&dev->ptype_specific));
10095 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10096 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10097#if IS_ENABLED(CONFIG_DECNET)
10098 WARN_ON(dev->dn_ptr);
10099#endif
10100 if (dev->priv_destructor)
10101 dev->priv_destructor(dev);
10102 if (dev->needs_free_netdev)
10103 free_netdev(dev);
10104
10105 /* Report a network device has been unregistered */
10106 rtnl_lock();
10107 dev_net(dev)->dev_unreg_count--;
10108 __rtnl_unlock();
10109 wake_up(&netdev_unregistering_wq);
10110
10111 /* Free network device */
10112 kobject_put(&dev->dev.kobj);
10113 }
10114}
10115
10116/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10117 * all the same fields in the same order as net_device_stats, with only
10118 * the type differing, but rtnl_link_stats64 may have additional fields
10119 * at the end for newer counters.
10120 */
10121void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10122 const struct net_device_stats *netdev_stats)
10123{
10124#if BITS_PER_LONG == 64
10125 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10126 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10127 /* zero out counters that only exist in rtnl_link_stats64 */
10128 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10129 sizeof(*stats64) - sizeof(*netdev_stats));
10130#else
10131 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10132 const unsigned long *src = (const unsigned long *)netdev_stats;
10133 u64 *dst = (u64 *)stats64;
10134
10135 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10136 for (i = 0; i < n; i++)
10137 dst[i] = src[i];
10138 /* zero out counters that only exist in rtnl_link_stats64 */
10139 memset((char *)stats64 + n * sizeof(u64), 0,
10140 sizeof(*stats64) - n * sizeof(u64));
10141#endif
10142}
10143EXPORT_SYMBOL(netdev_stats_to_stats64);
10144
10145/**
10146 * dev_get_stats - get network device statistics
10147 * @dev: device to get statistics from
10148 * @storage: place to store stats
10149 *
10150 * Get network statistics from device. Return @storage.
10151 * The device driver may provide its own method by setting
10152 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10153 * otherwise the internal statistics structure is used.
10154 */
10155struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10156 struct rtnl_link_stats64 *storage)
10157{
10158 const struct net_device_ops *ops = dev->netdev_ops;
10159
10160 if (ops->ndo_get_stats64) {
10161 memset(storage, 0, sizeof(*storage));
10162 ops->ndo_get_stats64(dev, storage);
10163 } else if (ops->ndo_get_stats) {
10164 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10165 } else {
10166 netdev_stats_to_stats64(storage, &dev->stats);
10167 }
10168 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10169 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10170 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10171 return storage;
10172}
10173EXPORT_SYMBOL(dev_get_stats);
10174
10175struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10176{
10177 struct netdev_queue *queue = dev_ingress_queue(dev);
10178
10179#ifdef CONFIG_NET_CLS_ACT
10180 if (queue)
10181 return queue;
10182 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10183 if (!queue)
10184 return NULL;
10185 netdev_init_one_queue(dev, queue, NULL);
10186 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10187 queue->qdisc_sleeping = &noop_qdisc;
10188 rcu_assign_pointer(dev->ingress_queue, queue);
10189#endif
10190 return queue;
10191}
10192
10193static const struct ethtool_ops default_ethtool_ops;
10194
10195void netdev_set_default_ethtool_ops(struct net_device *dev,
10196 const struct ethtool_ops *ops)
10197{
10198 if (dev->ethtool_ops == &default_ethtool_ops)
10199 dev->ethtool_ops = ops;
10200}
10201EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10202
10203void netdev_freemem(struct net_device *dev)
10204{
10205 char *addr = (char *)dev - dev->padded;
10206
10207 kvfree(addr);
10208}
10209
10210/**
10211 * alloc_netdev_mqs - allocate network device
10212 * @sizeof_priv: size of private data to allocate space for
10213 * @name: device name format string
10214 * @name_assign_type: origin of device name
10215 * @setup: callback to initialize device
10216 * @txqs: the number of TX subqueues to allocate
10217 * @rxqs: the number of RX subqueues to allocate
10218 *
10219 * Allocates a struct net_device with private data area for driver use
10220 * and performs basic initialization. Also allocates subqueue structs
10221 * for each queue on the device.
10222 */
10223struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10224 unsigned char name_assign_type,
10225 void (*setup)(struct net_device *),
10226 unsigned int txqs, unsigned int rxqs)
10227{
10228 struct net_device *dev;
10229 unsigned int alloc_size;
10230 struct net_device *p;
10231
10232 BUG_ON(strlen(name) >= sizeof(dev->name));
10233
10234 if (txqs < 1) {
10235 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10236 return NULL;
10237 }
10238
10239 if (rxqs < 1) {
10240 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10241 return NULL;
10242 }
10243
10244 alloc_size = sizeof(struct net_device);
10245 if (sizeof_priv) {
10246 /* ensure 32-byte alignment of private area */
10247 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10248 alloc_size += sizeof_priv;
10249 }
10250 /* ensure 32-byte alignment of whole construct */
10251 alloc_size += NETDEV_ALIGN - 1;
10252
10253 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10254 if (!p)
10255 return NULL;
10256
10257 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10258 dev->padded = (char *)dev - (char *)p;
10259
10260 dev->pcpu_refcnt = alloc_percpu(int);
10261 if (!dev->pcpu_refcnt)
10262 goto free_dev;
10263
10264 if (dev_addr_init(dev))
10265 goto free_pcpu;
10266
10267 dev_mc_init(dev);
10268 dev_uc_init(dev);
10269
10270 dev_net_set(dev, &init_net);
10271
10272 dev->gso_max_size = GSO_MAX_SIZE;
10273 dev->gso_max_segs = GSO_MAX_SEGS;
10274 dev->upper_level = 1;
10275 dev->lower_level = 1;
10276
10277 INIT_LIST_HEAD(&dev->napi_list);
10278 INIT_LIST_HEAD(&dev->unreg_list);
10279 INIT_LIST_HEAD(&dev->close_list);
10280 INIT_LIST_HEAD(&dev->link_watch_list);
10281 INIT_LIST_HEAD(&dev->adj_list.upper);
10282 INIT_LIST_HEAD(&dev->adj_list.lower);
10283 INIT_LIST_HEAD(&dev->ptype_all);
10284 INIT_LIST_HEAD(&dev->ptype_specific);
10285 INIT_LIST_HEAD(&dev->net_notifier_list);
10286#ifdef CONFIG_NET_SCHED
10287 hash_init(dev->qdisc_hash);
10288#endif
10289 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10290 setup(dev);
10291
10292 if (!dev->tx_queue_len) {
10293 dev->priv_flags |= IFF_NO_QUEUE;
10294 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10295 }
10296
10297 dev->num_tx_queues = txqs;
10298 dev->real_num_tx_queues = txqs;
10299 if (netif_alloc_netdev_queues(dev))
10300 goto free_all;
10301
10302 dev->num_rx_queues = rxqs;
10303 dev->real_num_rx_queues = rxqs;
10304 if (netif_alloc_rx_queues(dev))
10305 goto free_all;
10306
10307 strcpy(dev->name, name);
10308 dev->name_assign_type = name_assign_type;
10309 dev->group = INIT_NETDEV_GROUP;
10310 if (!dev->ethtool_ops)
10311 dev->ethtool_ops = &default_ethtool_ops;
10312
10313 nf_hook_ingress_init(dev);
10314
10315 return dev;
10316
10317free_all:
10318 free_netdev(dev);
10319 return NULL;
10320
10321free_pcpu:
10322 free_percpu(dev->pcpu_refcnt);
10323free_dev:
10324 netdev_freemem(dev);
10325 return NULL;
10326}
10327EXPORT_SYMBOL(alloc_netdev_mqs);
10328
10329/**
10330 * free_netdev - free network device
10331 * @dev: device
10332 *
10333 * This function does the last stage of destroying an allocated device
10334 * interface. The reference to the device object is released. If this
10335 * is the last reference then it will be freed.Must be called in process
10336 * context.
10337 */
10338void free_netdev(struct net_device *dev)
10339{
10340 struct napi_struct *p, *n;
10341
10342 might_sleep();
10343 netif_free_tx_queues(dev);
10344 netif_free_rx_queues(dev);
10345
10346 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10347
10348 /* Flush device addresses */
10349 dev_addr_flush(dev);
10350
10351 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10352 netif_napi_del(p);
10353
10354 free_percpu(dev->pcpu_refcnt);
10355 dev->pcpu_refcnt = NULL;
10356 free_percpu(dev->xdp_bulkq);
10357 dev->xdp_bulkq = NULL;
10358
10359 /* Compatibility with error handling in drivers */
10360 if (dev->reg_state == NETREG_UNINITIALIZED) {
10361 netdev_freemem(dev);
10362 return;
10363 }
10364
10365 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10366 dev->reg_state = NETREG_RELEASED;
10367
10368 /* will free via device release */
10369 put_device(&dev->dev);
10370}
10371EXPORT_SYMBOL(free_netdev);
10372
10373/**
10374 * synchronize_net - Synchronize with packet receive processing
10375 *
10376 * Wait for packets currently being received to be done.
10377 * Does not block later packets from starting.
10378 */
10379void synchronize_net(void)
10380{
10381 might_sleep();
10382 if (rtnl_is_locked())
10383 synchronize_rcu_expedited();
10384 else
10385 synchronize_rcu();
10386}
10387EXPORT_SYMBOL(synchronize_net);
10388
10389/**
10390 * unregister_netdevice_queue - remove device from the kernel
10391 * @dev: device
10392 * @head: list
10393 *
10394 * This function shuts down a device interface and removes it
10395 * from the kernel tables.
10396 * If head not NULL, device is queued to be unregistered later.
10397 *
10398 * Callers must hold the rtnl semaphore. You may want
10399 * unregister_netdev() instead of this.
10400 */
10401
10402void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10403{
10404 ASSERT_RTNL();
10405
10406 if (head) {
10407 list_move_tail(&dev->unreg_list, head);
10408 } else {
10409 rollback_registered(dev);
10410 /* Finish processing unregister after unlock */
10411 net_set_todo(dev);
10412 }
10413}
10414EXPORT_SYMBOL(unregister_netdevice_queue);
10415
10416/**
10417 * unregister_netdevice_many - unregister many devices
10418 * @head: list of devices
10419 *
10420 * Note: As most callers use a stack allocated list_head,
10421 * we force a list_del() to make sure stack wont be corrupted later.
10422 */
10423void unregister_netdevice_many(struct list_head *head)
10424{
10425 struct net_device *dev;
10426
10427 if (!list_empty(head)) {
10428 rollback_registered_many(head);
10429 list_for_each_entry(dev, head, unreg_list)
10430 net_set_todo(dev);
10431 list_del(head);
10432 }
10433}
10434EXPORT_SYMBOL(unregister_netdevice_many);
10435
10436/**
10437 * unregister_netdev - remove device from the kernel
10438 * @dev: device
10439 *
10440 * This function shuts down a device interface and removes it
10441 * from the kernel tables.
10442 *
10443 * This is just a wrapper for unregister_netdevice that takes
10444 * the rtnl semaphore. In general you want to use this and not
10445 * unregister_netdevice.
10446 */
10447void unregister_netdev(struct net_device *dev)
10448{
10449 rtnl_lock();
10450 unregister_netdevice(dev);
10451 rtnl_unlock();
10452}
10453EXPORT_SYMBOL(unregister_netdev);
10454
10455/**
10456 * dev_change_net_namespace - move device to different nethost namespace
10457 * @dev: device
10458 * @net: network namespace
10459 * @pat: If not NULL name pattern to try if the current device name
10460 * is already taken in the destination network namespace.
10461 *
10462 * This function shuts down a device interface and moves it
10463 * to a new network namespace. On success 0 is returned, on
10464 * a failure a netagive errno code is returned.
10465 *
10466 * Callers must hold the rtnl semaphore.
10467 */
10468
10469int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10470{
10471 struct net *net_old = dev_net(dev);
10472 int err, new_nsid, new_ifindex;
10473
10474 ASSERT_RTNL();
10475
10476 /* Don't allow namespace local devices to be moved. */
10477 err = -EINVAL;
10478 if (dev->features & NETIF_F_NETNS_LOCAL)
10479 goto out;
10480
10481 /* Ensure the device has been registrered */
10482 if (dev->reg_state != NETREG_REGISTERED)
10483 goto out;
10484
10485 /* Get out if there is nothing todo */
10486 err = 0;
10487 if (net_eq(net_old, net))
10488 goto out;
10489
10490 /* Pick the destination device name, and ensure
10491 * we can use it in the destination network namespace.
10492 */
10493 err = -EEXIST;
10494 if (__dev_get_by_name(net, dev->name)) {
10495 /* We get here if we can't use the current device name */
10496 if (!pat)
10497 goto out;
10498 err = dev_get_valid_name(net, dev, pat);
10499 if (err < 0)
10500 goto out;
10501 }
10502
10503 /*
10504 * And now a mini version of register_netdevice unregister_netdevice.
10505 */
10506
10507 /* If device is running close it first. */
10508 dev_close(dev);
10509
10510 /* And unlink it from device chain */
10511 unlist_netdevice(dev);
10512
10513 synchronize_net();
10514
10515 /* Shutdown queueing discipline. */
10516 dev_shutdown(dev);
10517
10518 /* Notify protocols, that we are about to destroy
10519 * this device. They should clean all the things.
10520 *
10521 * Note that dev->reg_state stays at NETREG_REGISTERED.
10522 * This is wanted because this way 8021q and macvlan know
10523 * the device is just moving and can keep their slaves up.
10524 */
10525 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10526 rcu_barrier();
10527
10528 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10529 /* If there is an ifindex conflict assign a new one */
10530 if (__dev_get_by_index(net, dev->ifindex))
10531 new_ifindex = dev_new_index(net);
10532 else
10533 new_ifindex = dev->ifindex;
10534
10535 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10536 new_ifindex);
10537
10538 /*
10539 * Flush the unicast and multicast chains
10540 */
10541 dev_uc_flush(dev);
10542 dev_mc_flush(dev);
10543
10544 /* Send a netdev-removed uevent to the old namespace */
10545 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10546 netdev_adjacent_del_links(dev);
10547
10548 /* Move per-net netdevice notifiers that are following the netdevice */
10549 move_netdevice_notifiers_dev_net(dev, net);
10550
10551 /* Actually switch the network namespace */
10552 dev_net_set(dev, net);
10553 dev->ifindex = new_ifindex;
10554
10555 /* Send a netdev-add uevent to the new namespace */
10556 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10557 netdev_adjacent_add_links(dev);
10558
10559 /* Fixup kobjects */
10560 err = device_rename(&dev->dev, dev->name);
10561 WARN_ON(err);
10562
10563 /* Adapt owner in case owning user namespace of target network
10564 * namespace is different from the original one.
10565 */
10566 err = netdev_change_owner(dev, net_old, net);
10567 WARN_ON(err);
10568
10569 /* Add the device back in the hashes */
10570 list_netdevice(dev);
10571
10572 /* Notify protocols, that a new device appeared. */
10573 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10574
10575 /*
10576 * Prevent userspace races by waiting until the network
10577 * device is fully setup before sending notifications.
10578 */
10579 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10580
10581 synchronize_net();
10582 err = 0;
10583out:
10584 return err;
10585}
10586EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10587
10588static int dev_cpu_dead(unsigned int oldcpu)
10589{
10590 struct sk_buff **list_skb;
10591 struct sk_buff *skb;
10592 unsigned int cpu;
10593 struct softnet_data *sd, *oldsd, *remsd = NULL;
10594
10595 local_irq_disable();
10596 cpu = smp_processor_id();
10597 sd = &per_cpu(softnet_data, cpu);
10598 oldsd = &per_cpu(softnet_data, oldcpu);
10599
10600 /* Find end of our completion_queue. */
10601 list_skb = &sd->completion_queue;
10602 while (*list_skb)
10603 list_skb = &(*list_skb)->next;
10604 /* Append completion queue from offline CPU. */
10605 *list_skb = oldsd->completion_queue;
10606 oldsd->completion_queue = NULL;
10607
10608 /* Append output queue from offline CPU. */
10609 if (oldsd->output_queue) {
10610 *sd->output_queue_tailp = oldsd->output_queue;
10611 sd->output_queue_tailp = oldsd->output_queue_tailp;
10612 oldsd->output_queue = NULL;
10613 oldsd->output_queue_tailp = &oldsd->output_queue;
10614 }
10615 /* Append NAPI poll list from offline CPU, with one exception :
10616 * process_backlog() must be called by cpu owning percpu backlog.
10617 * We properly handle process_queue & input_pkt_queue later.
10618 */
10619 while (!list_empty(&oldsd->poll_list)) {
10620 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10621 struct napi_struct,
10622 poll_list);
10623
10624 list_del_init(&napi->poll_list);
10625 if (napi->poll == process_backlog)
10626 napi->state = 0;
10627 else
10628 ____napi_schedule(sd, napi);
10629 }
10630
10631 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10632 local_irq_enable();
10633
10634#ifdef CONFIG_RPS
10635 remsd = oldsd->rps_ipi_list;
10636 oldsd->rps_ipi_list = NULL;
10637#endif
10638 /* send out pending IPI's on offline CPU */
10639 net_rps_send_ipi(remsd);
10640
10641 /* Process offline CPU's input_pkt_queue */
10642 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10643 netif_rx_ni(skb);
10644 input_queue_head_incr(oldsd);
10645 }
10646 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10647 netif_rx_ni(skb);
10648 input_queue_head_incr(oldsd);
10649 }
10650
10651 return 0;
10652}
10653
10654/**
10655 * netdev_increment_features - increment feature set by one
10656 * @all: current feature set
10657 * @one: new feature set
10658 * @mask: mask feature set
10659 *
10660 * Computes a new feature set after adding a device with feature set
10661 * @one to the master device with current feature set @all. Will not
10662 * enable anything that is off in @mask. Returns the new feature set.
10663 */
10664netdev_features_t netdev_increment_features(netdev_features_t all,
10665 netdev_features_t one, netdev_features_t mask)
10666{
10667 if (mask & NETIF_F_HW_CSUM)
10668 mask |= NETIF_F_CSUM_MASK;
10669 mask |= NETIF_F_VLAN_CHALLENGED;
10670
10671 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10672 all &= one | ~NETIF_F_ALL_FOR_ALL;
10673
10674 /* If one device supports hw checksumming, set for all. */
10675 if (all & NETIF_F_HW_CSUM)
10676 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10677
10678 return all;
10679}
10680EXPORT_SYMBOL(netdev_increment_features);
10681
10682static struct hlist_head * __net_init netdev_create_hash(void)
10683{
10684 int i;
10685 struct hlist_head *hash;
10686
10687 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10688 if (hash != NULL)
10689 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10690 INIT_HLIST_HEAD(&hash[i]);
10691
10692 return hash;
10693}
10694
10695/* Initialize per network namespace state */
10696static int __net_init netdev_init(struct net *net)
10697{
10698 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10699 8 * sizeof_field(struct napi_struct, gro_bitmask));
10700
10701 if (net != &init_net)
10702 INIT_LIST_HEAD(&net->dev_base_head);
10703
10704 net->dev_name_head = netdev_create_hash();
10705 if (net->dev_name_head == NULL)
10706 goto err_name;
10707
10708 net->dev_index_head = netdev_create_hash();
10709 if (net->dev_index_head == NULL)
10710 goto err_idx;
10711
10712 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10713
10714 return 0;
10715
10716err_idx:
10717 kfree(net->dev_name_head);
10718err_name:
10719 return -ENOMEM;
10720}
10721
10722/**
10723 * netdev_drivername - network driver for the device
10724 * @dev: network device
10725 *
10726 * Determine network driver for device.
10727 */
10728const char *netdev_drivername(const struct net_device *dev)
10729{
10730 const struct device_driver *driver;
10731 const struct device *parent;
10732 const char *empty = "";
10733
10734 parent = dev->dev.parent;
10735 if (!parent)
10736 return empty;
10737
10738 driver = parent->driver;
10739 if (driver && driver->name)
10740 return driver->name;
10741 return empty;
10742}
10743
10744static void __netdev_printk(const char *level, const struct net_device *dev,
10745 struct va_format *vaf)
10746{
10747 if (dev && dev->dev.parent) {
10748 dev_printk_emit(level[1] - '0',
10749 dev->dev.parent,
10750 "%s %s %s%s: %pV",
10751 dev_driver_string(dev->dev.parent),
10752 dev_name(dev->dev.parent),
10753 netdev_name(dev), netdev_reg_state(dev),
10754 vaf);
10755 } else if (dev) {
10756 printk("%s%s%s: %pV",
10757 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10758 } else {
10759 printk("%s(NULL net_device): %pV", level, vaf);
10760 }
10761}
10762
10763void netdev_printk(const char *level, const struct net_device *dev,
10764 const char *format, ...)
10765{
10766 struct va_format vaf;
10767 va_list args;
10768
10769 va_start(args, format);
10770
10771 vaf.fmt = format;
10772 vaf.va = &args;
10773
10774 __netdev_printk(level, dev, &vaf);
10775
10776 va_end(args);
10777}
10778EXPORT_SYMBOL(netdev_printk);
10779
10780#define define_netdev_printk_level(func, level) \
10781void func(const struct net_device *dev, const char *fmt, ...) \
10782{ \
10783 struct va_format vaf; \
10784 va_list args; \
10785 \
10786 va_start(args, fmt); \
10787 \
10788 vaf.fmt = fmt; \
10789 vaf.va = &args; \
10790 \
10791 __netdev_printk(level, dev, &vaf); \
10792 \
10793 va_end(args); \
10794} \
10795EXPORT_SYMBOL(func);
10796
10797define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10798define_netdev_printk_level(netdev_alert, KERN_ALERT);
10799define_netdev_printk_level(netdev_crit, KERN_CRIT);
10800define_netdev_printk_level(netdev_err, KERN_ERR);
10801define_netdev_printk_level(netdev_warn, KERN_WARNING);
10802define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10803define_netdev_printk_level(netdev_info, KERN_INFO);
10804
10805static void __net_exit netdev_exit(struct net *net)
10806{
10807 kfree(net->dev_name_head);
10808 kfree(net->dev_index_head);
10809 if (net != &init_net)
10810 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10811}
10812
10813static struct pernet_operations __net_initdata netdev_net_ops = {
10814 .init = netdev_init,
10815 .exit = netdev_exit,
10816};
10817
10818static void __net_exit default_device_exit(struct net *net)
10819{
10820 struct net_device *dev, *aux;
10821 /*
10822 * Push all migratable network devices back to the
10823 * initial network namespace
10824 */
10825 rtnl_lock();
10826 for_each_netdev_safe(net, dev, aux) {
10827 int err;
10828 char fb_name[IFNAMSIZ];
10829
10830 /* Ignore unmoveable devices (i.e. loopback) */
10831 if (dev->features & NETIF_F_NETNS_LOCAL)
10832 continue;
10833
10834 /* Leave virtual devices for the generic cleanup */
10835 if (dev->rtnl_link_ops)
10836 continue;
10837
10838 /* Push remaining network devices to init_net */
10839 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10840 if (__dev_get_by_name(&init_net, fb_name))
10841 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10842 err = dev_change_net_namespace(dev, &init_net, fb_name);
10843 if (err) {
10844 pr_emerg("%s: failed to move %s to init_net: %d\n",
10845 __func__, dev->name, err);
10846 BUG();
10847 }
10848 }
10849 rtnl_unlock();
10850}
10851
10852static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10853{
10854 /* Return with the rtnl_lock held when there are no network
10855 * devices unregistering in any network namespace in net_list.
10856 */
10857 struct net *net;
10858 bool unregistering;
10859 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10860
10861 add_wait_queue(&netdev_unregistering_wq, &wait);
10862 for (;;) {
10863 unregistering = false;
10864 rtnl_lock();
10865 list_for_each_entry(net, net_list, exit_list) {
10866 if (net->dev_unreg_count > 0) {
10867 unregistering = true;
10868 break;
10869 }
10870 }
10871 if (!unregistering)
10872 break;
10873 __rtnl_unlock();
10874
10875 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10876 }
10877 remove_wait_queue(&netdev_unregistering_wq, &wait);
10878}
10879
10880static void __net_exit default_device_exit_batch(struct list_head *net_list)
10881{
10882 /* At exit all network devices most be removed from a network
10883 * namespace. Do this in the reverse order of registration.
10884 * Do this across as many network namespaces as possible to
10885 * improve batching efficiency.
10886 */
10887 struct net_device *dev;
10888 struct net *net;
10889 LIST_HEAD(dev_kill_list);
10890
10891 /* To prevent network device cleanup code from dereferencing
10892 * loopback devices or network devices that have been freed
10893 * wait here for all pending unregistrations to complete,
10894 * before unregistring the loopback device and allowing the
10895 * network namespace be freed.
10896 *
10897 * The netdev todo list containing all network devices
10898 * unregistrations that happen in default_device_exit_batch
10899 * will run in the rtnl_unlock() at the end of
10900 * default_device_exit_batch.
10901 */
10902 rtnl_lock_unregistering(net_list);
10903 list_for_each_entry(net, net_list, exit_list) {
10904 for_each_netdev_reverse(net, dev) {
10905 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10906 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10907 else
10908 unregister_netdevice_queue(dev, &dev_kill_list);
10909 }
10910 }
10911 unregister_netdevice_many(&dev_kill_list);
10912 rtnl_unlock();
10913}
10914
10915static struct pernet_operations __net_initdata default_device_ops = {
10916 .exit = default_device_exit,
10917 .exit_batch = default_device_exit_batch,
10918};
10919
10920/*
10921 * Initialize the DEV module. At boot time this walks the device list and
10922 * unhooks any devices that fail to initialise (normally hardware not
10923 * present) and leaves us with a valid list of present and active devices.
10924 *
10925 */
10926
10927/*
10928 * This is called single threaded during boot, so no need
10929 * to take the rtnl semaphore.
10930 */
10931static int __init net_dev_init(void)
10932{
10933 int i, rc = -ENOMEM;
10934
10935 BUG_ON(!dev_boot_phase);
10936
10937 if (dev_proc_init())
10938 goto out;
10939
10940 if (netdev_kobject_init())
10941 goto out;
10942
10943 INIT_LIST_HEAD(&ptype_all);
10944 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10945 INIT_LIST_HEAD(&ptype_base[i]);
10946
10947 INIT_LIST_HEAD(&offload_base);
10948
10949 if (register_pernet_subsys(&netdev_net_ops))
10950 goto out;
10951
10952 /*
10953 * Initialise the packet receive queues.
10954 */
10955
10956 for_each_possible_cpu(i) {
10957 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10958 struct softnet_data *sd = &per_cpu(softnet_data, i);
10959
10960 INIT_WORK(flush, flush_backlog);
10961
10962 skb_queue_head_init(&sd->input_pkt_queue);
10963 skb_queue_head_init(&sd->process_queue);
10964#ifdef CONFIG_XFRM_OFFLOAD
10965 skb_queue_head_init(&sd->xfrm_backlog);
10966#endif
10967 INIT_LIST_HEAD(&sd->poll_list);
10968 sd->output_queue_tailp = &sd->output_queue;
10969#ifdef CONFIG_RPS
10970 sd->csd.func = rps_trigger_softirq;
10971 sd->csd.info = sd;
10972 sd->cpu = i;
10973#endif
10974
10975 init_gro_hash(&sd->backlog);
10976 sd->backlog.poll = process_backlog;
10977 sd->backlog.weight = weight_p;
10978 }
10979
10980 dev_boot_phase = 0;
10981
10982 /* The loopback device is special if any other network devices
10983 * is present in a network namespace the loopback device must
10984 * be present. Since we now dynamically allocate and free the
10985 * loopback device ensure this invariant is maintained by
10986 * keeping the loopback device as the first device on the
10987 * list of network devices. Ensuring the loopback devices
10988 * is the first device that appears and the last network device
10989 * that disappears.
10990 */
10991 if (register_pernet_device(&loopback_net_ops))
10992 goto out;
10993
10994 if (register_pernet_device(&default_device_ops))
10995 goto out;
10996
10997 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10998 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10999
11000 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11001 NULL, dev_cpu_dead);
11002 WARN_ON(rc < 0);
11003 rc = 0;
11004out:
11005 return rc;
11006}
11007
11008subsys_initcall(net_dev_init);