mm: introduce node_zonelist() for accessing the zonelist for a GFP mask
[linux-2.6-block.git] / mm / vmstat.c
... / ...
CommitLineData
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11
12#include <linux/mm.h>
13#include <linux/err.h>
14#include <linux/module.h>
15#include <linux/cpu.h>
16#include <linux/sched.h>
17
18#ifdef CONFIG_VM_EVENT_COUNTERS
19DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
20EXPORT_PER_CPU_SYMBOL(vm_event_states);
21
22static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
23{
24 int cpu;
25 int i;
26
27 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
28
29 for_each_cpu_mask(cpu, *cpumask) {
30 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
31
32 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
33 ret[i] += this->event[i];
34 }
35}
36
37/*
38 * Accumulate the vm event counters across all CPUs.
39 * The result is unavoidably approximate - it can change
40 * during and after execution of this function.
41*/
42void all_vm_events(unsigned long *ret)
43{
44 sum_vm_events(ret, &cpu_online_map);
45}
46EXPORT_SYMBOL_GPL(all_vm_events);
47
48#ifdef CONFIG_HOTPLUG
49/*
50 * Fold the foreign cpu events into our own.
51 *
52 * This is adding to the events on one processor
53 * but keeps the global counts constant.
54 */
55void vm_events_fold_cpu(int cpu)
56{
57 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
58 int i;
59
60 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
61 count_vm_events(i, fold_state->event[i]);
62 fold_state->event[i] = 0;
63 }
64}
65#endif /* CONFIG_HOTPLUG */
66
67#endif /* CONFIG_VM_EVENT_COUNTERS */
68
69/*
70 * Manage combined zone based / global counters
71 *
72 * vm_stat contains the global counters
73 */
74atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
75EXPORT_SYMBOL(vm_stat);
76
77#ifdef CONFIG_SMP
78
79static int calculate_threshold(struct zone *zone)
80{
81 int threshold;
82 int mem; /* memory in 128 MB units */
83
84 /*
85 * The threshold scales with the number of processors and the amount
86 * of memory per zone. More memory means that we can defer updates for
87 * longer, more processors could lead to more contention.
88 * fls() is used to have a cheap way of logarithmic scaling.
89 *
90 * Some sample thresholds:
91 *
92 * Threshold Processors (fls) Zonesize fls(mem+1)
93 * ------------------------------------------------------------------
94 * 8 1 1 0.9-1 GB 4
95 * 16 2 2 0.9-1 GB 4
96 * 20 2 2 1-2 GB 5
97 * 24 2 2 2-4 GB 6
98 * 28 2 2 4-8 GB 7
99 * 32 2 2 8-16 GB 8
100 * 4 2 2 <128M 1
101 * 30 4 3 2-4 GB 5
102 * 48 4 3 8-16 GB 8
103 * 32 8 4 1-2 GB 4
104 * 32 8 4 0.9-1GB 4
105 * 10 16 5 <128M 1
106 * 40 16 5 900M 4
107 * 70 64 7 2-4 GB 5
108 * 84 64 7 4-8 GB 6
109 * 108 512 9 4-8 GB 6
110 * 125 1024 10 8-16 GB 8
111 * 125 1024 10 16-32 GB 9
112 */
113
114 mem = zone->present_pages >> (27 - PAGE_SHIFT);
115
116 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
117
118 /*
119 * Maximum threshold is 125
120 */
121 threshold = min(125, threshold);
122
123 return threshold;
124}
125
126/*
127 * Refresh the thresholds for each zone.
128 */
129static void refresh_zone_stat_thresholds(void)
130{
131 struct zone *zone;
132 int cpu;
133 int threshold;
134
135 for_each_zone(zone) {
136
137 if (!zone->present_pages)
138 continue;
139
140 threshold = calculate_threshold(zone);
141
142 for_each_online_cpu(cpu)
143 zone_pcp(zone, cpu)->stat_threshold = threshold;
144 }
145}
146
147/*
148 * For use when we know that interrupts are disabled.
149 */
150void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
151 int delta)
152{
153 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
154 s8 *p = pcp->vm_stat_diff + item;
155 long x;
156
157 x = delta + *p;
158
159 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
160 zone_page_state_add(x, zone, item);
161 x = 0;
162 }
163 *p = x;
164}
165EXPORT_SYMBOL(__mod_zone_page_state);
166
167/*
168 * For an unknown interrupt state
169 */
170void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
171 int delta)
172{
173 unsigned long flags;
174
175 local_irq_save(flags);
176 __mod_zone_page_state(zone, item, delta);
177 local_irq_restore(flags);
178}
179EXPORT_SYMBOL(mod_zone_page_state);
180
181/*
182 * Optimized increment and decrement functions.
183 *
184 * These are only for a single page and therefore can take a struct page *
185 * argument instead of struct zone *. This allows the inclusion of the code
186 * generated for page_zone(page) into the optimized functions.
187 *
188 * No overflow check is necessary and therefore the differential can be
189 * incremented or decremented in place which may allow the compilers to
190 * generate better code.
191 * The increment or decrement is known and therefore one boundary check can
192 * be omitted.
193 *
194 * NOTE: These functions are very performance sensitive. Change only
195 * with care.
196 *
197 * Some processors have inc/dec instructions that are atomic vs an interrupt.
198 * However, the code must first determine the differential location in a zone
199 * based on the processor number and then inc/dec the counter. There is no
200 * guarantee without disabling preemption that the processor will not change
201 * in between and therefore the atomicity vs. interrupt cannot be exploited
202 * in a useful way here.
203 */
204void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
205{
206 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
207 s8 *p = pcp->vm_stat_diff + item;
208
209 (*p)++;
210
211 if (unlikely(*p > pcp->stat_threshold)) {
212 int overstep = pcp->stat_threshold / 2;
213
214 zone_page_state_add(*p + overstep, zone, item);
215 *p = -overstep;
216 }
217}
218
219void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
220{
221 __inc_zone_state(page_zone(page), item);
222}
223EXPORT_SYMBOL(__inc_zone_page_state);
224
225void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
226{
227 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
228 s8 *p = pcp->vm_stat_diff + item;
229
230 (*p)--;
231
232 if (unlikely(*p < - pcp->stat_threshold)) {
233 int overstep = pcp->stat_threshold / 2;
234
235 zone_page_state_add(*p - overstep, zone, item);
236 *p = overstep;
237 }
238}
239
240void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
241{
242 __dec_zone_state(page_zone(page), item);
243}
244EXPORT_SYMBOL(__dec_zone_page_state);
245
246void inc_zone_state(struct zone *zone, enum zone_stat_item item)
247{
248 unsigned long flags;
249
250 local_irq_save(flags);
251 __inc_zone_state(zone, item);
252 local_irq_restore(flags);
253}
254
255void inc_zone_page_state(struct page *page, enum zone_stat_item item)
256{
257 unsigned long flags;
258 struct zone *zone;
259
260 zone = page_zone(page);
261 local_irq_save(flags);
262 __inc_zone_state(zone, item);
263 local_irq_restore(flags);
264}
265EXPORT_SYMBOL(inc_zone_page_state);
266
267void dec_zone_page_state(struct page *page, enum zone_stat_item item)
268{
269 unsigned long flags;
270
271 local_irq_save(flags);
272 __dec_zone_page_state(page, item);
273 local_irq_restore(flags);
274}
275EXPORT_SYMBOL(dec_zone_page_state);
276
277/*
278 * Update the zone counters for one cpu.
279 *
280 * The cpu specified must be either the current cpu or a processor that
281 * is not online. If it is the current cpu then the execution thread must
282 * be pinned to the current cpu.
283 *
284 * Note that refresh_cpu_vm_stats strives to only access
285 * node local memory. The per cpu pagesets on remote zones are placed
286 * in the memory local to the processor using that pageset. So the
287 * loop over all zones will access a series of cachelines local to
288 * the processor.
289 *
290 * The call to zone_page_state_add updates the cachelines with the
291 * statistics in the remote zone struct as well as the global cachelines
292 * with the global counters. These could cause remote node cache line
293 * bouncing and will have to be only done when necessary.
294 */
295void refresh_cpu_vm_stats(int cpu)
296{
297 struct zone *zone;
298 int i;
299 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
300
301 for_each_zone(zone) {
302 struct per_cpu_pageset *p;
303
304 if (!populated_zone(zone))
305 continue;
306
307 p = zone_pcp(zone, cpu);
308
309 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
310 if (p->vm_stat_diff[i]) {
311 unsigned long flags;
312 int v;
313
314 local_irq_save(flags);
315 v = p->vm_stat_diff[i];
316 p->vm_stat_diff[i] = 0;
317 local_irq_restore(flags);
318 atomic_long_add(v, &zone->vm_stat[i]);
319 global_diff[i] += v;
320#ifdef CONFIG_NUMA
321 /* 3 seconds idle till flush */
322 p->expire = 3;
323#endif
324 }
325#ifdef CONFIG_NUMA
326 /*
327 * Deal with draining the remote pageset of this
328 * processor
329 *
330 * Check if there are pages remaining in this pageset
331 * if not then there is nothing to expire.
332 */
333 if (!p->expire || !p->pcp.count)
334 continue;
335
336 /*
337 * We never drain zones local to this processor.
338 */
339 if (zone_to_nid(zone) == numa_node_id()) {
340 p->expire = 0;
341 continue;
342 }
343
344 p->expire--;
345 if (p->expire)
346 continue;
347
348 if (p->pcp.count)
349 drain_zone_pages(zone, &p->pcp);
350#endif
351 }
352
353 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
354 if (global_diff[i])
355 atomic_long_add(global_diff[i], &vm_stat[i]);
356}
357
358#endif
359
360#ifdef CONFIG_NUMA
361/*
362 * zonelist = the list of zones passed to the allocator
363 * z = the zone from which the allocation occurred.
364 *
365 * Must be called with interrupts disabled.
366 */
367void zone_statistics(struct zonelist *zonelist, struct zone *z)
368{
369 if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) {
370 __inc_zone_state(z, NUMA_HIT);
371 } else {
372 __inc_zone_state(z, NUMA_MISS);
373 __inc_zone_state(zonelist->zones[0], NUMA_FOREIGN);
374 }
375 if (z->node == numa_node_id())
376 __inc_zone_state(z, NUMA_LOCAL);
377 else
378 __inc_zone_state(z, NUMA_OTHER);
379}
380#endif
381
382#ifdef CONFIG_PROC_FS
383
384#include <linux/seq_file.h>
385
386static char * const migratetype_names[MIGRATE_TYPES] = {
387 "Unmovable",
388 "Reclaimable",
389 "Movable",
390 "Reserve",
391 "Isolate",
392};
393
394static void *frag_start(struct seq_file *m, loff_t *pos)
395{
396 pg_data_t *pgdat;
397 loff_t node = *pos;
398 for (pgdat = first_online_pgdat();
399 pgdat && node;
400 pgdat = next_online_pgdat(pgdat))
401 --node;
402
403 return pgdat;
404}
405
406static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
407{
408 pg_data_t *pgdat = (pg_data_t *)arg;
409
410 (*pos)++;
411 return next_online_pgdat(pgdat);
412}
413
414static void frag_stop(struct seq_file *m, void *arg)
415{
416}
417
418/* Walk all the zones in a node and print using a callback */
419static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
420 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
421{
422 struct zone *zone;
423 struct zone *node_zones = pgdat->node_zones;
424 unsigned long flags;
425
426 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
427 if (!populated_zone(zone))
428 continue;
429
430 spin_lock_irqsave(&zone->lock, flags);
431 print(m, pgdat, zone);
432 spin_unlock_irqrestore(&zone->lock, flags);
433 }
434}
435
436static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
437 struct zone *zone)
438{
439 int order;
440
441 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
442 for (order = 0; order < MAX_ORDER; ++order)
443 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
444 seq_putc(m, '\n');
445}
446
447/*
448 * This walks the free areas for each zone.
449 */
450static int frag_show(struct seq_file *m, void *arg)
451{
452 pg_data_t *pgdat = (pg_data_t *)arg;
453 walk_zones_in_node(m, pgdat, frag_show_print);
454 return 0;
455}
456
457static void pagetypeinfo_showfree_print(struct seq_file *m,
458 pg_data_t *pgdat, struct zone *zone)
459{
460 int order, mtype;
461
462 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
463 seq_printf(m, "Node %4d, zone %8s, type %12s ",
464 pgdat->node_id,
465 zone->name,
466 migratetype_names[mtype]);
467 for (order = 0; order < MAX_ORDER; ++order) {
468 unsigned long freecount = 0;
469 struct free_area *area;
470 struct list_head *curr;
471
472 area = &(zone->free_area[order]);
473
474 list_for_each(curr, &area->free_list[mtype])
475 freecount++;
476 seq_printf(m, "%6lu ", freecount);
477 }
478 seq_putc(m, '\n');
479 }
480}
481
482/* Print out the free pages at each order for each migatetype */
483static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
484{
485 int order;
486 pg_data_t *pgdat = (pg_data_t *)arg;
487
488 /* Print header */
489 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
490 for (order = 0; order < MAX_ORDER; ++order)
491 seq_printf(m, "%6d ", order);
492 seq_putc(m, '\n');
493
494 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
495
496 return 0;
497}
498
499static void pagetypeinfo_showblockcount_print(struct seq_file *m,
500 pg_data_t *pgdat, struct zone *zone)
501{
502 int mtype;
503 unsigned long pfn;
504 unsigned long start_pfn = zone->zone_start_pfn;
505 unsigned long end_pfn = start_pfn + zone->spanned_pages;
506 unsigned long count[MIGRATE_TYPES] = { 0, };
507
508 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
509 struct page *page;
510
511 if (!pfn_valid(pfn))
512 continue;
513
514 page = pfn_to_page(pfn);
515 mtype = get_pageblock_migratetype(page);
516
517 count[mtype]++;
518 }
519
520 /* Print counts */
521 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
522 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
523 seq_printf(m, "%12lu ", count[mtype]);
524 seq_putc(m, '\n');
525}
526
527/* Print out the free pages at each order for each migratetype */
528static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
529{
530 int mtype;
531 pg_data_t *pgdat = (pg_data_t *)arg;
532
533 seq_printf(m, "\n%-23s", "Number of blocks type ");
534 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
535 seq_printf(m, "%12s ", migratetype_names[mtype]);
536 seq_putc(m, '\n');
537 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
538
539 return 0;
540}
541
542/*
543 * This prints out statistics in relation to grouping pages by mobility.
544 * It is expensive to collect so do not constantly read the file.
545 */
546static int pagetypeinfo_show(struct seq_file *m, void *arg)
547{
548 pg_data_t *pgdat = (pg_data_t *)arg;
549
550 seq_printf(m, "Page block order: %d\n", pageblock_order);
551 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
552 seq_putc(m, '\n');
553 pagetypeinfo_showfree(m, pgdat);
554 pagetypeinfo_showblockcount(m, pgdat);
555
556 return 0;
557}
558
559const struct seq_operations fragmentation_op = {
560 .start = frag_start,
561 .next = frag_next,
562 .stop = frag_stop,
563 .show = frag_show,
564};
565
566const struct seq_operations pagetypeinfo_op = {
567 .start = frag_start,
568 .next = frag_next,
569 .stop = frag_stop,
570 .show = pagetypeinfo_show,
571};
572
573#ifdef CONFIG_ZONE_DMA
574#define TEXT_FOR_DMA(xx) xx "_dma",
575#else
576#define TEXT_FOR_DMA(xx)
577#endif
578
579#ifdef CONFIG_ZONE_DMA32
580#define TEXT_FOR_DMA32(xx) xx "_dma32",
581#else
582#define TEXT_FOR_DMA32(xx)
583#endif
584
585#ifdef CONFIG_HIGHMEM
586#define TEXT_FOR_HIGHMEM(xx) xx "_high",
587#else
588#define TEXT_FOR_HIGHMEM(xx)
589#endif
590
591#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
592 TEXT_FOR_HIGHMEM(xx) xx "_movable",
593
594static const char * const vmstat_text[] = {
595 /* Zoned VM counters */
596 "nr_free_pages",
597 "nr_inactive",
598 "nr_active",
599 "nr_anon_pages",
600 "nr_mapped",
601 "nr_file_pages",
602 "nr_dirty",
603 "nr_writeback",
604 "nr_slab_reclaimable",
605 "nr_slab_unreclaimable",
606 "nr_page_table_pages",
607 "nr_unstable",
608 "nr_bounce",
609 "nr_vmscan_write",
610
611#ifdef CONFIG_NUMA
612 "numa_hit",
613 "numa_miss",
614 "numa_foreign",
615 "numa_interleave",
616 "numa_local",
617 "numa_other",
618#endif
619
620#ifdef CONFIG_VM_EVENT_COUNTERS
621 "pgpgin",
622 "pgpgout",
623 "pswpin",
624 "pswpout",
625
626 TEXTS_FOR_ZONES("pgalloc")
627
628 "pgfree",
629 "pgactivate",
630 "pgdeactivate",
631
632 "pgfault",
633 "pgmajfault",
634
635 TEXTS_FOR_ZONES("pgrefill")
636 TEXTS_FOR_ZONES("pgsteal")
637 TEXTS_FOR_ZONES("pgscan_kswapd")
638 TEXTS_FOR_ZONES("pgscan_direct")
639
640 "pginodesteal",
641 "slabs_scanned",
642 "kswapd_steal",
643 "kswapd_inodesteal",
644 "pageoutrun",
645 "allocstall",
646
647 "pgrotated",
648#endif
649};
650
651static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
652 struct zone *zone)
653{
654 int i;
655 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
656 seq_printf(m,
657 "\n pages free %lu"
658 "\n min %lu"
659 "\n low %lu"
660 "\n high %lu"
661 "\n scanned %lu (a: %lu i: %lu)"
662 "\n spanned %lu"
663 "\n present %lu",
664 zone_page_state(zone, NR_FREE_PAGES),
665 zone->pages_min,
666 zone->pages_low,
667 zone->pages_high,
668 zone->pages_scanned,
669 zone->nr_scan_active, zone->nr_scan_inactive,
670 zone->spanned_pages,
671 zone->present_pages);
672
673 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
674 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
675 zone_page_state(zone, i));
676
677 seq_printf(m,
678 "\n protection: (%lu",
679 zone->lowmem_reserve[0]);
680 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
681 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
682 seq_printf(m,
683 ")"
684 "\n pagesets");
685 for_each_online_cpu(i) {
686 struct per_cpu_pageset *pageset;
687
688 pageset = zone_pcp(zone, i);
689 seq_printf(m,
690 "\n cpu: %i"
691 "\n count: %i"
692 "\n high: %i"
693 "\n batch: %i",
694 i,
695 pageset->pcp.count,
696 pageset->pcp.high,
697 pageset->pcp.batch);
698#ifdef CONFIG_SMP
699 seq_printf(m, "\n vm stats threshold: %d",
700 pageset->stat_threshold);
701#endif
702 }
703 seq_printf(m,
704 "\n all_unreclaimable: %u"
705 "\n prev_priority: %i"
706 "\n start_pfn: %lu",
707 zone_is_all_unreclaimable(zone),
708 zone->prev_priority,
709 zone->zone_start_pfn);
710 seq_putc(m, '\n');
711}
712
713/*
714 * Output information about zones in @pgdat.
715 */
716static int zoneinfo_show(struct seq_file *m, void *arg)
717{
718 pg_data_t *pgdat = (pg_data_t *)arg;
719 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
720 return 0;
721}
722
723const struct seq_operations zoneinfo_op = {
724 .start = frag_start, /* iterate over all zones. The same as in
725 * fragmentation. */
726 .next = frag_next,
727 .stop = frag_stop,
728 .show = zoneinfo_show,
729};
730
731static void *vmstat_start(struct seq_file *m, loff_t *pos)
732{
733 unsigned long *v;
734#ifdef CONFIG_VM_EVENT_COUNTERS
735 unsigned long *e;
736#endif
737 int i;
738
739 if (*pos >= ARRAY_SIZE(vmstat_text))
740 return NULL;
741
742#ifdef CONFIG_VM_EVENT_COUNTERS
743 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
744 + sizeof(struct vm_event_state), GFP_KERNEL);
745#else
746 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
747 GFP_KERNEL);
748#endif
749 m->private = v;
750 if (!v)
751 return ERR_PTR(-ENOMEM);
752 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
753 v[i] = global_page_state(i);
754#ifdef CONFIG_VM_EVENT_COUNTERS
755 e = v + NR_VM_ZONE_STAT_ITEMS;
756 all_vm_events(e);
757 e[PGPGIN] /= 2; /* sectors -> kbytes */
758 e[PGPGOUT] /= 2;
759#endif
760 return v + *pos;
761}
762
763static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
764{
765 (*pos)++;
766 if (*pos >= ARRAY_SIZE(vmstat_text))
767 return NULL;
768 return (unsigned long *)m->private + *pos;
769}
770
771static int vmstat_show(struct seq_file *m, void *arg)
772{
773 unsigned long *l = arg;
774 unsigned long off = l - (unsigned long *)m->private;
775
776 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
777 return 0;
778}
779
780static void vmstat_stop(struct seq_file *m, void *arg)
781{
782 kfree(m->private);
783 m->private = NULL;
784}
785
786const struct seq_operations vmstat_op = {
787 .start = vmstat_start,
788 .next = vmstat_next,
789 .stop = vmstat_stop,
790 .show = vmstat_show,
791};
792
793#endif /* CONFIG_PROC_FS */
794
795#ifdef CONFIG_SMP
796static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
797int sysctl_stat_interval __read_mostly = HZ;
798
799static void vmstat_update(struct work_struct *w)
800{
801 refresh_cpu_vm_stats(smp_processor_id());
802 schedule_delayed_work(&__get_cpu_var(vmstat_work),
803 sysctl_stat_interval);
804}
805
806static void __cpuinit start_cpu_timer(int cpu)
807{
808 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
809
810 INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
811 schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
812}
813
814/*
815 * Use the cpu notifier to insure that the thresholds are recalculated
816 * when necessary.
817 */
818static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
819 unsigned long action,
820 void *hcpu)
821{
822 long cpu = (long)hcpu;
823
824 switch (action) {
825 case CPU_ONLINE:
826 case CPU_ONLINE_FROZEN:
827 start_cpu_timer(cpu);
828 break;
829 case CPU_DOWN_PREPARE:
830 case CPU_DOWN_PREPARE_FROZEN:
831 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
832 per_cpu(vmstat_work, cpu).work.func = NULL;
833 break;
834 case CPU_DOWN_FAILED:
835 case CPU_DOWN_FAILED_FROZEN:
836 start_cpu_timer(cpu);
837 break;
838 case CPU_DEAD:
839 case CPU_DEAD_FROZEN:
840 refresh_zone_stat_thresholds();
841 break;
842 default:
843 break;
844 }
845 return NOTIFY_OK;
846}
847
848static struct notifier_block __cpuinitdata vmstat_notifier =
849 { &vmstat_cpuup_callback, NULL, 0 };
850
851static int __init setup_vmstat(void)
852{
853 int cpu;
854
855 refresh_zone_stat_thresholds();
856 register_cpu_notifier(&vmstat_notifier);
857
858 for_each_online_cpu(cpu)
859 start_cpu_timer(cpu);
860 return 0;
861}
862module_init(setup_vmstat)
863#endif