mm/swap: skip readahead only when swap slot cache is enabled
[linux-2.6-block.git] / mm / vmscan.c
... / ...
CommitLineData
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/gfp.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
24#include <linux/vmpressure.h>
25#include <linux/vmstat.h>
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/compaction.h>
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
40#include <linux/delay.h>
41#include <linux/kthread.h>
42#include <linux/freezer.h>
43#include <linux/memcontrol.h>
44#include <linux/delayacct.h>
45#include <linux/sysctl.h>
46#include <linux/oom.h>
47#include <linux/prefetch.h>
48#include <linux/printk.h>
49#include <linux/dax.h>
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53
54#include <linux/swapops.h>
55#include <linux/balloon_compaction.h>
56
57#include "internal.h"
58
59#define CREATE_TRACE_POINTS
60#include <trace/events/vmscan.h>
61
62struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 /* Allocation order */
70 int order;
71
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
77
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
89
90 unsigned int may_writepage:1;
91
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
94
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
97
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash:1;
100
101 unsigned int hibernation_mode:1;
102
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready:1;
105
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned;
108
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed;
111};
112
113#ifdef ARCH_HAS_PREFETCH
114#define prefetch_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127#ifdef ARCH_HAS_PREFETCHW
128#define prefetchw_prev_lru_page(_page, _base, _field) \
129 do { \
130 if ((_page)->lru.prev != _base) { \
131 struct page *prev; \
132 \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
135 } \
136 } while (0)
137#else
138#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139#endif
140
141/*
142 * From 0 .. 100. Higher means more swappy.
143 */
144int vm_swappiness = 60;
145/*
146 * The total number of pages which are beyond the high watermark within all
147 * zones.
148 */
149unsigned long vm_total_pages;
150
151static LIST_HEAD(shrinker_list);
152static DECLARE_RWSEM(shrinker_rwsem);
153
154#ifdef CONFIG_MEMCG
155static bool global_reclaim(struct scan_control *sc)
156{
157 return !sc->target_mem_cgroup;
158}
159
160/**
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
163 *
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
169 *
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
172 */
173static bool sane_reclaim(struct scan_control *sc)
174{
175 struct mem_cgroup *memcg = sc->target_mem_cgroup;
176
177 if (!memcg)
178 return true;
179#ifdef CONFIG_CGROUP_WRITEBACK
180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 return true;
182#endif
183 return false;
184}
185#else
186static bool global_reclaim(struct scan_control *sc)
187{
188 return true;
189}
190
191static bool sane_reclaim(struct scan_control *sc)
192{
193 return true;
194}
195#endif
196
197/*
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
201 */
202unsigned long zone_reclaimable_pages(struct zone *zone)
203{
204 unsigned long nr;
205
206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 if (get_nr_swap_pages() > 0)
209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
211
212 return nr;
213}
214
215unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
216{
217 unsigned long nr;
218
219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222
223 if (get_nr_swap_pages() > 0)
224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227
228 return nr;
229}
230
231bool pgdat_reclaimable(struct pglist_data *pgdat)
232{
233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 pgdat_reclaimable_pages(pgdat) * 6;
235}
236
237unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
238{
239 if (!mem_cgroup_disabled())
240 return mem_cgroup_get_lru_size(lruvec, lru);
241
242 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
243}
244
245unsigned long lruvec_zone_lru_size(struct lruvec *lruvec, enum lru_list lru,
246 int zone_idx)
247{
248 if (!mem_cgroup_disabled())
249 return mem_cgroup_get_zone_lru_size(lruvec, lru, zone_idx);
250
251 return zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zone_idx],
252 NR_ZONE_LRU_BASE + lru);
253}
254
255/*
256 * Add a shrinker callback to be called from the vm.
257 */
258int register_shrinker(struct shrinker *shrinker)
259{
260 size_t size = sizeof(*shrinker->nr_deferred);
261
262 if (shrinker->flags & SHRINKER_NUMA_AWARE)
263 size *= nr_node_ids;
264
265 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
266 if (!shrinker->nr_deferred)
267 return -ENOMEM;
268
269 down_write(&shrinker_rwsem);
270 list_add_tail(&shrinker->list, &shrinker_list);
271 up_write(&shrinker_rwsem);
272 return 0;
273}
274EXPORT_SYMBOL(register_shrinker);
275
276/*
277 * Remove one
278 */
279void unregister_shrinker(struct shrinker *shrinker)
280{
281 down_write(&shrinker_rwsem);
282 list_del(&shrinker->list);
283 up_write(&shrinker_rwsem);
284 kfree(shrinker->nr_deferred);
285}
286EXPORT_SYMBOL(unregister_shrinker);
287
288#define SHRINK_BATCH 128
289
290static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
291 struct shrinker *shrinker,
292 unsigned long nr_scanned,
293 unsigned long nr_eligible)
294{
295 unsigned long freed = 0;
296 unsigned long long delta;
297 long total_scan;
298 long freeable;
299 long nr;
300 long new_nr;
301 int nid = shrinkctl->nid;
302 long batch_size = shrinker->batch ? shrinker->batch
303 : SHRINK_BATCH;
304 long scanned = 0, next_deferred;
305
306 freeable = shrinker->count_objects(shrinker, shrinkctl);
307 if (freeable == 0)
308 return 0;
309
310 /*
311 * copy the current shrinker scan count into a local variable
312 * and zero it so that other concurrent shrinker invocations
313 * don't also do this scanning work.
314 */
315 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
316
317 total_scan = nr;
318 delta = (4 * nr_scanned) / shrinker->seeks;
319 delta *= freeable;
320 do_div(delta, nr_eligible + 1);
321 total_scan += delta;
322 if (total_scan < 0) {
323 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
324 shrinker->scan_objects, total_scan);
325 total_scan = freeable;
326 next_deferred = nr;
327 } else
328 next_deferred = total_scan;
329
330 /*
331 * We need to avoid excessive windup on filesystem shrinkers
332 * due to large numbers of GFP_NOFS allocations causing the
333 * shrinkers to return -1 all the time. This results in a large
334 * nr being built up so when a shrink that can do some work
335 * comes along it empties the entire cache due to nr >>>
336 * freeable. This is bad for sustaining a working set in
337 * memory.
338 *
339 * Hence only allow the shrinker to scan the entire cache when
340 * a large delta change is calculated directly.
341 */
342 if (delta < freeable / 4)
343 total_scan = min(total_scan, freeable / 2);
344
345 /*
346 * Avoid risking looping forever due to too large nr value:
347 * never try to free more than twice the estimate number of
348 * freeable entries.
349 */
350 if (total_scan > freeable * 2)
351 total_scan = freeable * 2;
352
353 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
354 nr_scanned, nr_eligible,
355 freeable, delta, total_scan);
356
357 /*
358 * Normally, we should not scan less than batch_size objects in one
359 * pass to avoid too frequent shrinker calls, but if the slab has less
360 * than batch_size objects in total and we are really tight on memory,
361 * we will try to reclaim all available objects, otherwise we can end
362 * up failing allocations although there are plenty of reclaimable
363 * objects spread over several slabs with usage less than the
364 * batch_size.
365 *
366 * We detect the "tight on memory" situations by looking at the total
367 * number of objects we want to scan (total_scan). If it is greater
368 * than the total number of objects on slab (freeable), we must be
369 * scanning at high prio and therefore should try to reclaim as much as
370 * possible.
371 */
372 while (total_scan >= batch_size ||
373 total_scan >= freeable) {
374 unsigned long ret;
375 unsigned long nr_to_scan = min(batch_size, total_scan);
376
377 shrinkctl->nr_to_scan = nr_to_scan;
378 ret = shrinker->scan_objects(shrinker, shrinkctl);
379 if (ret == SHRINK_STOP)
380 break;
381 freed += ret;
382
383 count_vm_events(SLABS_SCANNED, nr_to_scan);
384 total_scan -= nr_to_scan;
385 scanned += nr_to_scan;
386
387 cond_resched();
388 }
389
390 if (next_deferred >= scanned)
391 next_deferred -= scanned;
392 else
393 next_deferred = 0;
394 /*
395 * move the unused scan count back into the shrinker in a
396 * manner that handles concurrent updates. If we exhausted the
397 * scan, there is no need to do an update.
398 */
399 if (next_deferred > 0)
400 new_nr = atomic_long_add_return(next_deferred,
401 &shrinker->nr_deferred[nid]);
402 else
403 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
404
405 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
406 return freed;
407}
408
409/**
410 * shrink_slab - shrink slab caches
411 * @gfp_mask: allocation context
412 * @nid: node whose slab caches to target
413 * @memcg: memory cgroup whose slab caches to target
414 * @nr_scanned: pressure numerator
415 * @nr_eligible: pressure denominator
416 *
417 * Call the shrink functions to age shrinkable caches.
418 *
419 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
420 * unaware shrinkers will receive a node id of 0 instead.
421 *
422 * @memcg specifies the memory cgroup to target. If it is not NULL,
423 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
424 * objects from the memory cgroup specified. Otherwise, only unaware
425 * shrinkers are called.
426 *
427 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
428 * the available objects should be scanned. Page reclaim for example
429 * passes the number of pages scanned and the number of pages on the
430 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
431 * when it encountered mapped pages. The ratio is further biased by
432 * the ->seeks setting of the shrink function, which indicates the
433 * cost to recreate an object relative to that of an LRU page.
434 *
435 * Returns the number of reclaimed slab objects.
436 */
437static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
438 struct mem_cgroup *memcg,
439 unsigned long nr_scanned,
440 unsigned long nr_eligible)
441{
442 struct shrinker *shrinker;
443 unsigned long freed = 0;
444
445 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
446 return 0;
447
448 if (nr_scanned == 0)
449 nr_scanned = SWAP_CLUSTER_MAX;
450
451 if (!down_read_trylock(&shrinker_rwsem)) {
452 /*
453 * If we would return 0, our callers would understand that we
454 * have nothing else to shrink and give up trying. By returning
455 * 1 we keep it going and assume we'll be able to shrink next
456 * time.
457 */
458 freed = 1;
459 goto out;
460 }
461
462 list_for_each_entry(shrinker, &shrinker_list, list) {
463 struct shrink_control sc = {
464 .gfp_mask = gfp_mask,
465 .nid = nid,
466 .memcg = memcg,
467 };
468
469 /*
470 * If kernel memory accounting is disabled, we ignore
471 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
472 * passing NULL for memcg.
473 */
474 if (memcg_kmem_enabled() &&
475 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
476 continue;
477
478 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
479 sc.nid = 0;
480
481 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
482 }
483
484 up_read(&shrinker_rwsem);
485out:
486 cond_resched();
487 return freed;
488}
489
490void drop_slab_node(int nid)
491{
492 unsigned long freed;
493
494 do {
495 struct mem_cgroup *memcg = NULL;
496
497 freed = 0;
498 do {
499 freed += shrink_slab(GFP_KERNEL, nid, memcg,
500 1000, 1000);
501 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
502 } while (freed > 10);
503}
504
505void drop_slab(void)
506{
507 int nid;
508
509 for_each_online_node(nid)
510 drop_slab_node(nid);
511}
512
513static inline int is_page_cache_freeable(struct page *page)
514{
515 /*
516 * A freeable page cache page is referenced only by the caller
517 * that isolated the page, the page cache radix tree and
518 * optional buffer heads at page->private.
519 */
520 return page_count(page) - page_has_private(page) == 2;
521}
522
523static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
524{
525 if (current->flags & PF_SWAPWRITE)
526 return 1;
527 if (!inode_write_congested(inode))
528 return 1;
529 if (inode_to_bdi(inode) == current->backing_dev_info)
530 return 1;
531 return 0;
532}
533
534/*
535 * We detected a synchronous write error writing a page out. Probably
536 * -ENOSPC. We need to propagate that into the address_space for a subsequent
537 * fsync(), msync() or close().
538 *
539 * The tricky part is that after writepage we cannot touch the mapping: nothing
540 * prevents it from being freed up. But we have a ref on the page and once
541 * that page is locked, the mapping is pinned.
542 *
543 * We're allowed to run sleeping lock_page() here because we know the caller has
544 * __GFP_FS.
545 */
546static void handle_write_error(struct address_space *mapping,
547 struct page *page, int error)
548{
549 lock_page(page);
550 if (page_mapping(page) == mapping)
551 mapping_set_error(mapping, error);
552 unlock_page(page);
553}
554
555/* possible outcome of pageout() */
556typedef enum {
557 /* failed to write page out, page is locked */
558 PAGE_KEEP,
559 /* move page to the active list, page is locked */
560 PAGE_ACTIVATE,
561 /* page has been sent to the disk successfully, page is unlocked */
562 PAGE_SUCCESS,
563 /* page is clean and locked */
564 PAGE_CLEAN,
565} pageout_t;
566
567/*
568 * pageout is called by shrink_page_list() for each dirty page.
569 * Calls ->writepage().
570 */
571static pageout_t pageout(struct page *page, struct address_space *mapping,
572 struct scan_control *sc)
573{
574 /*
575 * If the page is dirty, only perform writeback if that write
576 * will be non-blocking. To prevent this allocation from being
577 * stalled by pagecache activity. But note that there may be
578 * stalls if we need to run get_block(). We could test
579 * PagePrivate for that.
580 *
581 * If this process is currently in __generic_file_write_iter() against
582 * this page's queue, we can perform writeback even if that
583 * will block.
584 *
585 * If the page is swapcache, write it back even if that would
586 * block, for some throttling. This happens by accident, because
587 * swap_backing_dev_info is bust: it doesn't reflect the
588 * congestion state of the swapdevs. Easy to fix, if needed.
589 */
590 if (!is_page_cache_freeable(page))
591 return PAGE_KEEP;
592 if (!mapping) {
593 /*
594 * Some data journaling orphaned pages can have
595 * page->mapping == NULL while being dirty with clean buffers.
596 */
597 if (page_has_private(page)) {
598 if (try_to_free_buffers(page)) {
599 ClearPageDirty(page);
600 pr_info("%s: orphaned page\n", __func__);
601 return PAGE_CLEAN;
602 }
603 }
604 return PAGE_KEEP;
605 }
606 if (mapping->a_ops->writepage == NULL)
607 return PAGE_ACTIVATE;
608 if (!may_write_to_inode(mapping->host, sc))
609 return PAGE_KEEP;
610
611 if (clear_page_dirty_for_io(page)) {
612 int res;
613 struct writeback_control wbc = {
614 .sync_mode = WB_SYNC_NONE,
615 .nr_to_write = SWAP_CLUSTER_MAX,
616 .range_start = 0,
617 .range_end = LLONG_MAX,
618 .for_reclaim = 1,
619 };
620
621 SetPageReclaim(page);
622 res = mapping->a_ops->writepage(page, &wbc);
623 if (res < 0)
624 handle_write_error(mapping, page, res);
625 if (res == AOP_WRITEPAGE_ACTIVATE) {
626 ClearPageReclaim(page);
627 return PAGE_ACTIVATE;
628 }
629
630 if (!PageWriteback(page)) {
631 /* synchronous write or broken a_ops? */
632 ClearPageReclaim(page);
633 }
634 trace_mm_vmscan_writepage(page);
635 inc_node_page_state(page, NR_VMSCAN_WRITE);
636 return PAGE_SUCCESS;
637 }
638
639 return PAGE_CLEAN;
640}
641
642/*
643 * Same as remove_mapping, but if the page is removed from the mapping, it
644 * gets returned with a refcount of 0.
645 */
646static int __remove_mapping(struct address_space *mapping, struct page *page,
647 bool reclaimed)
648{
649 unsigned long flags;
650
651 BUG_ON(!PageLocked(page));
652 BUG_ON(mapping != page_mapping(page));
653
654 spin_lock_irqsave(&mapping->tree_lock, flags);
655 /*
656 * The non racy check for a busy page.
657 *
658 * Must be careful with the order of the tests. When someone has
659 * a ref to the page, it may be possible that they dirty it then
660 * drop the reference. So if PageDirty is tested before page_count
661 * here, then the following race may occur:
662 *
663 * get_user_pages(&page);
664 * [user mapping goes away]
665 * write_to(page);
666 * !PageDirty(page) [good]
667 * SetPageDirty(page);
668 * put_page(page);
669 * !page_count(page) [good, discard it]
670 *
671 * [oops, our write_to data is lost]
672 *
673 * Reversing the order of the tests ensures such a situation cannot
674 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
675 * load is not satisfied before that of page->_refcount.
676 *
677 * Note that if SetPageDirty is always performed via set_page_dirty,
678 * and thus under tree_lock, then this ordering is not required.
679 */
680 if (!page_ref_freeze(page, 2))
681 goto cannot_free;
682 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
683 if (unlikely(PageDirty(page))) {
684 page_ref_unfreeze(page, 2);
685 goto cannot_free;
686 }
687
688 if (PageSwapCache(page)) {
689 swp_entry_t swap = { .val = page_private(page) };
690 mem_cgroup_swapout(page, swap);
691 __delete_from_swap_cache(page);
692 spin_unlock_irqrestore(&mapping->tree_lock, flags);
693 swapcache_free(swap);
694 } else {
695 void (*freepage)(struct page *);
696 void *shadow = NULL;
697
698 freepage = mapping->a_ops->freepage;
699 /*
700 * Remember a shadow entry for reclaimed file cache in
701 * order to detect refaults, thus thrashing, later on.
702 *
703 * But don't store shadows in an address space that is
704 * already exiting. This is not just an optizimation,
705 * inode reclaim needs to empty out the radix tree or
706 * the nodes are lost. Don't plant shadows behind its
707 * back.
708 *
709 * We also don't store shadows for DAX mappings because the
710 * only page cache pages found in these are zero pages
711 * covering holes, and because we don't want to mix DAX
712 * exceptional entries and shadow exceptional entries in the
713 * same page_tree.
714 */
715 if (reclaimed && page_is_file_cache(page) &&
716 !mapping_exiting(mapping) && !dax_mapping(mapping))
717 shadow = workingset_eviction(mapping, page);
718 __delete_from_page_cache(page, shadow);
719 spin_unlock_irqrestore(&mapping->tree_lock, flags);
720
721 if (freepage != NULL)
722 freepage(page);
723 }
724
725 return 1;
726
727cannot_free:
728 spin_unlock_irqrestore(&mapping->tree_lock, flags);
729 return 0;
730}
731
732/*
733 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
734 * someone else has a ref on the page, abort and return 0. If it was
735 * successfully detached, return 1. Assumes the caller has a single ref on
736 * this page.
737 */
738int remove_mapping(struct address_space *mapping, struct page *page)
739{
740 if (__remove_mapping(mapping, page, false)) {
741 /*
742 * Unfreezing the refcount with 1 rather than 2 effectively
743 * drops the pagecache ref for us without requiring another
744 * atomic operation.
745 */
746 page_ref_unfreeze(page, 1);
747 return 1;
748 }
749 return 0;
750}
751
752/**
753 * putback_lru_page - put previously isolated page onto appropriate LRU list
754 * @page: page to be put back to appropriate lru list
755 *
756 * Add previously isolated @page to appropriate LRU list.
757 * Page may still be unevictable for other reasons.
758 *
759 * lru_lock must not be held, interrupts must be enabled.
760 */
761void putback_lru_page(struct page *page)
762{
763 bool is_unevictable;
764 int was_unevictable = PageUnevictable(page);
765
766 VM_BUG_ON_PAGE(PageLRU(page), page);
767
768redo:
769 ClearPageUnevictable(page);
770
771 if (page_evictable(page)) {
772 /*
773 * For evictable pages, we can use the cache.
774 * In event of a race, worst case is we end up with an
775 * unevictable page on [in]active list.
776 * We know how to handle that.
777 */
778 is_unevictable = false;
779 lru_cache_add(page);
780 } else {
781 /*
782 * Put unevictable pages directly on zone's unevictable
783 * list.
784 */
785 is_unevictable = true;
786 add_page_to_unevictable_list(page);
787 /*
788 * When racing with an mlock or AS_UNEVICTABLE clearing
789 * (page is unlocked) make sure that if the other thread
790 * does not observe our setting of PG_lru and fails
791 * isolation/check_move_unevictable_pages,
792 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
793 * the page back to the evictable list.
794 *
795 * The other side is TestClearPageMlocked() or shmem_lock().
796 */
797 smp_mb();
798 }
799
800 /*
801 * page's status can change while we move it among lru. If an evictable
802 * page is on unevictable list, it never be freed. To avoid that,
803 * check after we added it to the list, again.
804 */
805 if (is_unevictable && page_evictable(page)) {
806 if (!isolate_lru_page(page)) {
807 put_page(page);
808 goto redo;
809 }
810 /* This means someone else dropped this page from LRU
811 * So, it will be freed or putback to LRU again. There is
812 * nothing to do here.
813 */
814 }
815
816 if (was_unevictable && !is_unevictable)
817 count_vm_event(UNEVICTABLE_PGRESCUED);
818 else if (!was_unevictable && is_unevictable)
819 count_vm_event(UNEVICTABLE_PGCULLED);
820
821 put_page(page); /* drop ref from isolate */
822}
823
824enum page_references {
825 PAGEREF_RECLAIM,
826 PAGEREF_RECLAIM_CLEAN,
827 PAGEREF_KEEP,
828 PAGEREF_ACTIVATE,
829};
830
831static enum page_references page_check_references(struct page *page,
832 struct scan_control *sc)
833{
834 int referenced_ptes, referenced_page;
835 unsigned long vm_flags;
836
837 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
838 &vm_flags);
839 referenced_page = TestClearPageReferenced(page);
840
841 /*
842 * Mlock lost the isolation race with us. Let try_to_unmap()
843 * move the page to the unevictable list.
844 */
845 if (vm_flags & VM_LOCKED)
846 return PAGEREF_RECLAIM;
847
848 if (referenced_ptes) {
849 if (PageSwapBacked(page))
850 return PAGEREF_ACTIVATE;
851 /*
852 * All mapped pages start out with page table
853 * references from the instantiating fault, so we need
854 * to look twice if a mapped file page is used more
855 * than once.
856 *
857 * Mark it and spare it for another trip around the
858 * inactive list. Another page table reference will
859 * lead to its activation.
860 *
861 * Note: the mark is set for activated pages as well
862 * so that recently deactivated but used pages are
863 * quickly recovered.
864 */
865 SetPageReferenced(page);
866
867 if (referenced_page || referenced_ptes > 1)
868 return PAGEREF_ACTIVATE;
869
870 /*
871 * Activate file-backed executable pages after first usage.
872 */
873 if (vm_flags & VM_EXEC)
874 return PAGEREF_ACTIVATE;
875
876 return PAGEREF_KEEP;
877 }
878
879 /* Reclaim if clean, defer dirty pages to writeback */
880 if (referenced_page && !PageSwapBacked(page))
881 return PAGEREF_RECLAIM_CLEAN;
882
883 return PAGEREF_RECLAIM;
884}
885
886/* Check if a page is dirty or under writeback */
887static void page_check_dirty_writeback(struct page *page,
888 bool *dirty, bool *writeback)
889{
890 struct address_space *mapping;
891
892 /*
893 * Anonymous pages are not handled by flushers and must be written
894 * from reclaim context. Do not stall reclaim based on them
895 */
896 if (!page_is_file_cache(page)) {
897 *dirty = false;
898 *writeback = false;
899 return;
900 }
901
902 /* By default assume that the page flags are accurate */
903 *dirty = PageDirty(page);
904 *writeback = PageWriteback(page);
905
906 /* Verify dirty/writeback state if the filesystem supports it */
907 if (!page_has_private(page))
908 return;
909
910 mapping = page_mapping(page);
911 if (mapping && mapping->a_ops->is_dirty_writeback)
912 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
913}
914
915struct reclaim_stat {
916 unsigned nr_dirty;
917 unsigned nr_unqueued_dirty;
918 unsigned nr_congested;
919 unsigned nr_writeback;
920 unsigned nr_immediate;
921 unsigned nr_activate;
922 unsigned nr_ref_keep;
923 unsigned nr_unmap_fail;
924};
925
926/*
927 * shrink_page_list() returns the number of reclaimed pages
928 */
929static unsigned long shrink_page_list(struct list_head *page_list,
930 struct pglist_data *pgdat,
931 struct scan_control *sc,
932 enum ttu_flags ttu_flags,
933 struct reclaim_stat *stat,
934 bool force_reclaim)
935{
936 LIST_HEAD(ret_pages);
937 LIST_HEAD(free_pages);
938 int pgactivate = 0;
939 unsigned nr_unqueued_dirty = 0;
940 unsigned nr_dirty = 0;
941 unsigned nr_congested = 0;
942 unsigned nr_reclaimed = 0;
943 unsigned nr_writeback = 0;
944 unsigned nr_immediate = 0;
945 unsigned nr_ref_keep = 0;
946 unsigned nr_unmap_fail = 0;
947
948 cond_resched();
949
950 while (!list_empty(page_list)) {
951 struct address_space *mapping;
952 struct page *page;
953 int may_enter_fs;
954 enum page_references references = PAGEREF_RECLAIM_CLEAN;
955 bool dirty, writeback;
956 bool lazyfree = false;
957 int ret = SWAP_SUCCESS;
958
959 cond_resched();
960
961 page = lru_to_page(page_list);
962 list_del(&page->lru);
963
964 if (!trylock_page(page))
965 goto keep;
966
967 VM_BUG_ON_PAGE(PageActive(page), page);
968
969 sc->nr_scanned++;
970
971 if (unlikely(!page_evictable(page)))
972 goto cull_mlocked;
973
974 if (!sc->may_unmap && page_mapped(page))
975 goto keep_locked;
976
977 /* Double the slab pressure for mapped and swapcache pages */
978 if (page_mapped(page) || PageSwapCache(page))
979 sc->nr_scanned++;
980
981 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
982 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
983
984 /*
985 * The number of dirty pages determines if a zone is marked
986 * reclaim_congested which affects wait_iff_congested. kswapd
987 * will stall and start writing pages if the tail of the LRU
988 * is all dirty unqueued pages.
989 */
990 page_check_dirty_writeback(page, &dirty, &writeback);
991 if (dirty || writeback)
992 nr_dirty++;
993
994 if (dirty && !writeback)
995 nr_unqueued_dirty++;
996
997 /*
998 * Treat this page as congested if the underlying BDI is or if
999 * pages are cycling through the LRU so quickly that the
1000 * pages marked for immediate reclaim are making it to the
1001 * end of the LRU a second time.
1002 */
1003 mapping = page_mapping(page);
1004 if (((dirty || writeback) && mapping &&
1005 inode_write_congested(mapping->host)) ||
1006 (writeback && PageReclaim(page)))
1007 nr_congested++;
1008
1009 /*
1010 * If a page at the tail of the LRU is under writeback, there
1011 * are three cases to consider.
1012 *
1013 * 1) If reclaim is encountering an excessive number of pages
1014 * under writeback and this page is both under writeback and
1015 * PageReclaim then it indicates that pages are being queued
1016 * for IO but are being recycled through the LRU before the
1017 * IO can complete. Waiting on the page itself risks an
1018 * indefinite stall if it is impossible to writeback the
1019 * page due to IO error or disconnected storage so instead
1020 * note that the LRU is being scanned too quickly and the
1021 * caller can stall after page list has been processed.
1022 *
1023 * 2) Global or new memcg reclaim encounters a page that is
1024 * not marked for immediate reclaim, or the caller does not
1025 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1026 * not to fs). In this case mark the page for immediate
1027 * reclaim and continue scanning.
1028 *
1029 * Require may_enter_fs because we would wait on fs, which
1030 * may not have submitted IO yet. And the loop driver might
1031 * enter reclaim, and deadlock if it waits on a page for
1032 * which it is needed to do the write (loop masks off
1033 * __GFP_IO|__GFP_FS for this reason); but more thought
1034 * would probably show more reasons.
1035 *
1036 * 3) Legacy memcg encounters a page that is already marked
1037 * PageReclaim. memcg does not have any dirty pages
1038 * throttling so we could easily OOM just because too many
1039 * pages are in writeback and there is nothing else to
1040 * reclaim. Wait for the writeback to complete.
1041 */
1042 if (PageWriteback(page)) {
1043 /* Case 1 above */
1044 if (current_is_kswapd() &&
1045 PageReclaim(page) &&
1046 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1047 nr_immediate++;
1048 goto keep_locked;
1049
1050 /* Case 2 above */
1051 } else if (sane_reclaim(sc) ||
1052 !PageReclaim(page) || !may_enter_fs) {
1053 /*
1054 * This is slightly racy - end_page_writeback()
1055 * might have just cleared PageReclaim, then
1056 * setting PageReclaim here end up interpreted
1057 * as PageReadahead - but that does not matter
1058 * enough to care. What we do want is for this
1059 * page to have PageReclaim set next time memcg
1060 * reclaim reaches the tests above, so it will
1061 * then wait_on_page_writeback() to avoid OOM;
1062 * and it's also appropriate in global reclaim.
1063 */
1064 SetPageReclaim(page);
1065 nr_writeback++;
1066 goto keep_locked;
1067
1068 /* Case 3 above */
1069 } else {
1070 unlock_page(page);
1071 wait_on_page_writeback(page);
1072 /* then go back and try same page again */
1073 list_add_tail(&page->lru, page_list);
1074 continue;
1075 }
1076 }
1077
1078 if (!force_reclaim)
1079 references = page_check_references(page, sc);
1080
1081 switch (references) {
1082 case PAGEREF_ACTIVATE:
1083 goto activate_locked;
1084 case PAGEREF_KEEP:
1085 nr_ref_keep++;
1086 goto keep_locked;
1087 case PAGEREF_RECLAIM:
1088 case PAGEREF_RECLAIM_CLEAN:
1089 ; /* try to reclaim the page below */
1090 }
1091
1092 /*
1093 * Anonymous process memory has backing store?
1094 * Try to allocate it some swap space here.
1095 */
1096 if (PageAnon(page) && !PageSwapCache(page)) {
1097 if (!(sc->gfp_mask & __GFP_IO))
1098 goto keep_locked;
1099 if (!add_to_swap(page, page_list))
1100 goto activate_locked;
1101 lazyfree = true;
1102 may_enter_fs = 1;
1103
1104 /* Adding to swap updated mapping */
1105 mapping = page_mapping(page);
1106 } else if (unlikely(PageTransHuge(page))) {
1107 /* Split file THP */
1108 if (split_huge_page_to_list(page, page_list))
1109 goto keep_locked;
1110 }
1111
1112 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1113
1114 /*
1115 * The page is mapped into the page tables of one or more
1116 * processes. Try to unmap it here.
1117 */
1118 if (page_mapped(page) && mapping) {
1119 switch (ret = try_to_unmap(page, lazyfree ?
1120 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1121 (ttu_flags | TTU_BATCH_FLUSH))) {
1122 case SWAP_FAIL:
1123 nr_unmap_fail++;
1124 goto activate_locked;
1125 case SWAP_AGAIN:
1126 goto keep_locked;
1127 case SWAP_MLOCK:
1128 goto cull_mlocked;
1129 case SWAP_LZFREE:
1130 goto lazyfree;
1131 case SWAP_SUCCESS:
1132 ; /* try to free the page below */
1133 }
1134 }
1135
1136 if (PageDirty(page)) {
1137 /*
1138 * Only kswapd can writeback filesystem pages to
1139 * avoid risk of stack overflow but only writeback
1140 * if many dirty pages have been encountered.
1141 */
1142 if (page_is_file_cache(page) &&
1143 (!current_is_kswapd() ||
1144 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1145 /*
1146 * Immediately reclaim when written back.
1147 * Similar in principal to deactivate_page()
1148 * except we already have the page isolated
1149 * and know it's dirty
1150 */
1151 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1152 SetPageReclaim(page);
1153
1154 goto keep_locked;
1155 }
1156
1157 if (references == PAGEREF_RECLAIM_CLEAN)
1158 goto keep_locked;
1159 if (!may_enter_fs)
1160 goto keep_locked;
1161 if (!sc->may_writepage)
1162 goto keep_locked;
1163
1164 /*
1165 * Page is dirty. Flush the TLB if a writable entry
1166 * potentially exists to avoid CPU writes after IO
1167 * starts and then write it out here.
1168 */
1169 try_to_unmap_flush_dirty();
1170 switch (pageout(page, mapping, sc)) {
1171 case PAGE_KEEP:
1172 goto keep_locked;
1173 case PAGE_ACTIVATE:
1174 goto activate_locked;
1175 case PAGE_SUCCESS:
1176 if (PageWriteback(page))
1177 goto keep;
1178 if (PageDirty(page))
1179 goto keep;
1180
1181 /*
1182 * A synchronous write - probably a ramdisk. Go
1183 * ahead and try to reclaim the page.
1184 */
1185 if (!trylock_page(page))
1186 goto keep;
1187 if (PageDirty(page) || PageWriteback(page))
1188 goto keep_locked;
1189 mapping = page_mapping(page);
1190 case PAGE_CLEAN:
1191 ; /* try to free the page below */
1192 }
1193 }
1194
1195 /*
1196 * If the page has buffers, try to free the buffer mappings
1197 * associated with this page. If we succeed we try to free
1198 * the page as well.
1199 *
1200 * We do this even if the page is PageDirty().
1201 * try_to_release_page() does not perform I/O, but it is
1202 * possible for a page to have PageDirty set, but it is actually
1203 * clean (all its buffers are clean). This happens if the
1204 * buffers were written out directly, with submit_bh(). ext3
1205 * will do this, as well as the blockdev mapping.
1206 * try_to_release_page() will discover that cleanness and will
1207 * drop the buffers and mark the page clean - it can be freed.
1208 *
1209 * Rarely, pages can have buffers and no ->mapping. These are
1210 * the pages which were not successfully invalidated in
1211 * truncate_complete_page(). We try to drop those buffers here
1212 * and if that worked, and the page is no longer mapped into
1213 * process address space (page_count == 1) it can be freed.
1214 * Otherwise, leave the page on the LRU so it is swappable.
1215 */
1216 if (page_has_private(page)) {
1217 if (!try_to_release_page(page, sc->gfp_mask))
1218 goto activate_locked;
1219 if (!mapping && page_count(page) == 1) {
1220 unlock_page(page);
1221 if (put_page_testzero(page))
1222 goto free_it;
1223 else {
1224 /*
1225 * rare race with speculative reference.
1226 * the speculative reference will free
1227 * this page shortly, so we may
1228 * increment nr_reclaimed here (and
1229 * leave it off the LRU).
1230 */
1231 nr_reclaimed++;
1232 continue;
1233 }
1234 }
1235 }
1236
1237lazyfree:
1238 if (!mapping || !__remove_mapping(mapping, page, true))
1239 goto keep_locked;
1240
1241 /*
1242 * At this point, we have no other references and there is
1243 * no way to pick any more up (removed from LRU, removed
1244 * from pagecache). Can use non-atomic bitops now (and
1245 * we obviously don't have to worry about waking up a process
1246 * waiting on the page lock, because there are no references.
1247 */
1248 __ClearPageLocked(page);
1249free_it:
1250 if (ret == SWAP_LZFREE)
1251 count_vm_event(PGLAZYFREED);
1252
1253 nr_reclaimed++;
1254
1255 /*
1256 * Is there need to periodically free_page_list? It would
1257 * appear not as the counts should be low
1258 */
1259 list_add(&page->lru, &free_pages);
1260 continue;
1261
1262cull_mlocked:
1263 if (PageSwapCache(page))
1264 try_to_free_swap(page);
1265 unlock_page(page);
1266 list_add(&page->lru, &ret_pages);
1267 continue;
1268
1269activate_locked:
1270 /* Not a candidate for swapping, so reclaim swap space. */
1271 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1272 try_to_free_swap(page);
1273 VM_BUG_ON_PAGE(PageActive(page), page);
1274 SetPageActive(page);
1275 pgactivate++;
1276keep_locked:
1277 unlock_page(page);
1278keep:
1279 list_add(&page->lru, &ret_pages);
1280 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1281 }
1282
1283 mem_cgroup_uncharge_list(&free_pages);
1284 try_to_unmap_flush();
1285 free_hot_cold_page_list(&free_pages, true);
1286
1287 list_splice(&ret_pages, page_list);
1288 count_vm_events(PGACTIVATE, pgactivate);
1289
1290 if (stat) {
1291 stat->nr_dirty = nr_dirty;
1292 stat->nr_congested = nr_congested;
1293 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1294 stat->nr_writeback = nr_writeback;
1295 stat->nr_immediate = nr_immediate;
1296 stat->nr_activate = pgactivate;
1297 stat->nr_ref_keep = nr_ref_keep;
1298 stat->nr_unmap_fail = nr_unmap_fail;
1299 }
1300 return nr_reclaimed;
1301}
1302
1303unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1304 struct list_head *page_list)
1305{
1306 struct scan_control sc = {
1307 .gfp_mask = GFP_KERNEL,
1308 .priority = DEF_PRIORITY,
1309 .may_unmap = 1,
1310 };
1311 unsigned long ret;
1312 struct page *page, *next;
1313 LIST_HEAD(clean_pages);
1314
1315 list_for_each_entry_safe(page, next, page_list, lru) {
1316 if (page_is_file_cache(page) && !PageDirty(page) &&
1317 !__PageMovable(page)) {
1318 ClearPageActive(page);
1319 list_move(&page->lru, &clean_pages);
1320 }
1321 }
1322
1323 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1324 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1325 list_splice(&clean_pages, page_list);
1326 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1327 return ret;
1328}
1329
1330/*
1331 * Attempt to remove the specified page from its LRU. Only take this page
1332 * if it is of the appropriate PageActive status. Pages which are being
1333 * freed elsewhere are also ignored.
1334 *
1335 * page: page to consider
1336 * mode: one of the LRU isolation modes defined above
1337 *
1338 * returns 0 on success, -ve errno on failure.
1339 */
1340int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1341{
1342 int ret = -EINVAL;
1343
1344 /* Only take pages on the LRU. */
1345 if (!PageLRU(page))
1346 return ret;
1347
1348 /* Compaction should not handle unevictable pages but CMA can do so */
1349 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1350 return ret;
1351
1352 ret = -EBUSY;
1353
1354 /*
1355 * To minimise LRU disruption, the caller can indicate that it only
1356 * wants to isolate pages it will be able to operate on without
1357 * blocking - clean pages for the most part.
1358 *
1359 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1360 * is used by reclaim when it is cannot write to backing storage
1361 *
1362 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1363 * that it is possible to migrate without blocking
1364 */
1365 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1366 /* All the caller can do on PageWriteback is block */
1367 if (PageWriteback(page))
1368 return ret;
1369
1370 if (PageDirty(page)) {
1371 struct address_space *mapping;
1372
1373 /* ISOLATE_CLEAN means only clean pages */
1374 if (mode & ISOLATE_CLEAN)
1375 return ret;
1376
1377 /*
1378 * Only pages without mappings or that have a
1379 * ->migratepage callback are possible to migrate
1380 * without blocking
1381 */
1382 mapping = page_mapping(page);
1383 if (mapping && !mapping->a_ops->migratepage)
1384 return ret;
1385 }
1386 }
1387
1388 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1389 return ret;
1390
1391 if (likely(get_page_unless_zero(page))) {
1392 /*
1393 * Be careful not to clear PageLRU until after we're
1394 * sure the page is not being freed elsewhere -- the
1395 * page release code relies on it.
1396 */
1397 ClearPageLRU(page);
1398 ret = 0;
1399 }
1400
1401 return ret;
1402}
1403
1404
1405/*
1406 * Update LRU sizes after isolating pages. The LRU size updates must
1407 * be complete before mem_cgroup_update_lru_size due to a santity check.
1408 */
1409static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1410 enum lru_list lru, unsigned long *nr_zone_taken)
1411{
1412 int zid;
1413
1414 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1415 if (!nr_zone_taken[zid])
1416 continue;
1417
1418 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1419#ifdef CONFIG_MEMCG
1420 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1421#endif
1422 }
1423
1424}
1425
1426/*
1427 * zone_lru_lock is heavily contended. Some of the functions that
1428 * shrink the lists perform better by taking out a batch of pages
1429 * and working on them outside the LRU lock.
1430 *
1431 * For pagecache intensive workloads, this function is the hottest
1432 * spot in the kernel (apart from copy_*_user functions).
1433 *
1434 * Appropriate locks must be held before calling this function.
1435 *
1436 * @nr_to_scan: The number of pages to look through on the list.
1437 * @lruvec: The LRU vector to pull pages from.
1438 * @dst: The temp list to put pages on to.
1439 * @nr_scanned: The number of pages that were scanned.
1440 * @sc: The scan_control struct for this reclaim session
1441 * @mode: One of the LRU isolation modes
1442 * @lru: LRU list id for isolating
1443 *
1444 * returns how many pages were moved onto *@dst.
1445 */
1446static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1447 struct lruvec *lruvec, struct list_head *dst,
1448 unsigned long *nr_scanned, struct scan_control *sc,
1449 isolate_mode_t mode, enum lru_list lru)
1450{
1451 struct list_head *src = &lruvec->lists[lru];
1452 unsigned long nr_taken = 0;
1453 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1454 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1455 unsigned long skipped = 0, total_skipped = 0;
1456 unsigned long scan, nr_pages;
1457 LIST_HEAD(pages_skipped);
1458
1459 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1460 !list_empty(src);) {
1461 struct page *page;
1462
1463 page = lru_to_page(src);
1464 prefetchw_prev_lru_page(page, src, flags);
1465
1466 VM_BUG_ON_PAGE(!PageLRU(page), page);
1467
1468 if (page_zonenum(page) > sc->reclaim_idx) {
1469 list_move(&page->lru, &pages_skipped);
1470 nr_skipped[page_zonenum(page)]++;
1471 continue;
1472 }
1473
1474 /*
1475 * Account for scanned and skipped separetly to avoid the pgdat
1476 * being prematurely marked unreclaimable by pgdat_reclaimable.
1477 */
1478 scan++;
1479
1480 switch (__isolate_lru_page(page, mode)) {
1481 case 0:
1482 nr_pages = hpage_nr_pages(page);
1483 nr_taken += nr_pages;
1484 nr_zone_taken[page_zonenum(page)] += nr_pages;
1485 list_move(&page->lru, dst);
1486 break;
1487
1488 case -EBUSY:
1489 /* else it is being freed elsewhere */
1490 list_move(&page->lru, src);
1491 continue;
1492
1493 default:
1494 BUG();
1495 }
1496 }
1497
1498 /*
1499 * Splice any skipped pages to the start of the LRU list. Note that
1500 * this disrupts the LRU order when reclaiming for lower zones but
1501 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1502 * scanning would soon rescan the same pages to skip and put the
1503 * system at risk of premature OOM.
1504 */
1505 if (!list_empty(&pages_skipped)) {
1506 int zid;
1507
1508 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1509 if (!nr_skipped[zid])
1510 continue;
1511
1512 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1513 skipped += nr_skipped[zid];
1514 }
1515
1516 /*
1517 * Account skipped pages as a partial scan as the pgdat may be
1518 * close to unreclaimable. If the LRU list is empty, account
1519 * skipped pages as a full scan.
1520 */
1521 total_skipped = list_empty(src) ? skipped : skipped >> 2;
1522
1523 list_splice(&pages_skipped, src);
1524 }
1525 *nr_scanned = scan + total_skipped;
1526 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1527 scan, skipped, nr_taken, mode, lru);
1528 update_lru_sizes(lruvec, lru, nr_zone_taken);
1529 return nr_taken;
1530}
1531
1532/**
1533 * isolate_lru_page - tries to isolate a page from its LRU list
1534 * @page: page to isolate from its LRU list
1535 *
1536 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1537 * vmstat statistic corresponding to whatever LRU list the page was on.
1538 *
1539 * Returns 0 if the page was removed from an LRU list.
1540 * Returns -EBUSY if the page was not on an LRU list.
1541 *
1542 * The returned page will have PageLRU() cleared. If it was found on
1543 * the active list, it will have PageActive set. If it was found on
1544 * the unevictable list, it will have the PageUnevictable bit set. That flag
1545 * may need to be cleared by the caller before letting the page go.
1546 *
1547 * The vmstat statistic corresponding to the list on which the page was
1548 * found will be decremented.
1549 *
1550 * Restrictions:
1551 * (1) Must be called with an elevated refcount on the page. This is a
1552 * fundamentnal difference from isolate_lru_pages (which is called
1553 * without a stable reference).
1554 * (2) the lru_lock must not be held.
1555 * (3) interrupts must be enabled.
1556 */
1557int isolate_lru_page(struct page *page)
1558{
1559 int ret = -EBUSY;
1560
1561 VM_BUG_ON_PAGE(!page_count(page), page);
1562 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1563
1564 if (PageLRU(page)) {
1565 struct zone *zone = page_zone(page);
1566 struct lruvec *lruvec;
1567
1568 spin_lock_irq(zone_lru_lock(zone));
1569 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1570 if (PageLRU(page)) {
1571 int lru = page_lru(page);
1572 get_page(page);
1573 ClearPageLRU(page);
1574 del_page_from_lru_list(page, lruvec, lru);
1575 ret = 0;
1576 }
1577 spin_unlock_irq(zone_lru_lock(zone));
1578 }
1579 return ret;
1580}
1581
1582/*
1583 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1584 * then get resheduled. When there are massive number of tasks doing page
1585 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1586 * the LRU list will go small and be scanned faster than necessary, leading to
1587 * unnecessary swapping, thrashing and OOM.
1588 */
1589static int too_many_isolated(struct pglist_data *pgdat, int file,
1590 struct scan_control *sc)
1591{
1592 unsigned long inactive, isolated;
1593
1594 if (current_is_kswapd())
1595 return 0;
1596
1597 if (!sane_reclaim(sc))
1598 return 0;
1599
1600 if (file) {
1601 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1602 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1603 } else {
1604 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1605 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1606 }
1607
1608 /*
1609 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1610 * won't get blocked by normal direct-reclaimers, forming a circular
1611 * deadlock.
1612 */
1613 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1614 inactive >>= 3;
1615
1616 return isolated > inactive;
1617}
1618
1619static noinline_for_stack void
1620putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1621{
1622 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1623 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1624 LIST_HEAD(pages_to_free);
1625
1626 /*
1627 * Put back any unfreeable pages.
1628 */
1629 while (!list_empty(page_list)) {
1630 struct page *page = lru_to_page(page_list);
1631 int lru;
1632
1633 VM_BUG_ON_PAGE(PageLRU(page), page);
1634 list_del(&page->lru);
1635 if (unlikely(!page_evictable(page))) {
1636 spin_unlock_irq(&pgdat->lru_lock);
1637 putback_lru_page(page);
1638 spin_lock_irq(&pgdat->lru_lock);
1639 continue;
1640 }
1641
1642 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1643
1644 SetPageLRU(page);
1645 lru = page_lru(page);
1646 add_page_to_lru_list(page, lruvec, lru);
1647
1648 if (is_active_lru(lru)) {
1649 int file = is_file_lru(lru);
1650 int numpages = hpage_nr_pages(page);
1651 reclaim_stat->recent_rotated[file] += numpages;
1652 }
1653 if (put_page_testzero(page)) {
1654 __ClearPageLRU(page);
1655 __ClearPageActive(page);
1656 del_page_from_lru_list(page, lruvec, lru);
1657
1658 if (unlikely(PageCompound(page))) {
1659 spin_unlock_irq(&pgdat->lru_lock);
1660 mem_cgroup_uncharge(page);
1661 (*get_compound_page_dtor(page))(page);
1662 spin_lock_irq(&pgdat->lru_lock);
1663 } else
1664 list_add(&page->lru, &pages_to_free);
1665 }
1666 }
1667
1668 /*
1669 * To save our caller's stack, now use input list for pages to free.
1670 */
1671 list_splice(&pages_to_free, page_list);
1672}
1673
1674/*
1675 * If a kernel thread (such as nfsd for loop-back mounts) services
1676 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1677 * In that case we should only throttle if the backing device it is
1678 * writing to is congested. In other cases it is safe to throttle.
1679 */
1680static int current_may_throttle(void)
1681{
1682 return !(current->flags & PF_LESS_THROTTLE) ||
1683 current->backing_dev_info == NULL ||
1684 bdi_write_congested(current->backing_dev_info);
1685}
1686
1687static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1688 struct scan_control *sc, enum lru_list lru)
1689{
1690 int zid;
1691 struct zone *zone;
1692 int file = is_file_lru(lru);
1693 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1694
1695 if (!global_reclaim(sc))
1696 return true;
1697
1698 for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1699 zone = &pgdat->node_zones[zid];
1700 if (!managed_zone(zone))
1701 continue;
1702
1703 if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1704 LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1705 return true;
1706 }
1707
1708 return false;
1709}
1710
1711/*
1712 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1713 * of reclaimed pages
1714 */
1715static noinline_for_stack unsigned long
1716shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1717 struct scan_control *sc, enum lru_list lru)
1718{
1719 LIST_HEAD(page_list);
1720 unsigned long nr_scanned;
1721 unsigned long nr_reclaimed = 0;
1722 unsigned long nr_taken;
1723 struct reclaim_stat stat = {};
1724 isolate_mode_t isolate_mode = 0;
1725 int file = is_file_lru(lru);
1726 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1727 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1728
1729 if (!inactive_reclaimable_pages(lruvec, sc, lru))
1730 return 0;
1731
1732 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1733 congestion_wait(BLK_RW_ASYNC, HZ/10);
1734
1735 /* We are about to die and free our memory. Return now. */
1736 if (fatal_signal_pending(current))
1737 return SWAP_CLUSTER_MAX;
1738 }
1739
1740 lru_add_drain();
1741
1742 if (!sc->may_unmap)
1743 isolate_mode |= ISOLATE_UNMAPPED;
1744 if (!sc->may_writepage)
1745 isolate_mode |= ISOLATE_CLEAN;
1746
1747 spin_lock_irq(&pgdat->lru_lock);
1748
1749 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1750 &nr_scanned, sc, isolate_mode, lru);
1751
1752 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1753 reclaim_stat->recent_scanned[file] += nr_taken;
1754
1755 if (global_reclaim(sc)) {
1756 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1757 if (current_is_kswapd())
1758 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1759 else
1760 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1761 }
1762 spin_unlock_irq(&pgdat->lru_lock);
1763
1764 if (nr_taken == 0)
1765 return 0;
1766
1767 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1768 &stat, false);
1769
1770 spin_lock_irq(&pgdat->lru_lock);
1771
1772 if (global_reclaim(sc)) {
1773 if (current_is_kswapd())
1774 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1775 else
1776 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1777 }
1778
1779 putback_inactive_pages(lruvec, &page_list);
1780
1781 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1782
1783 spin_unlock_irq(&pgdat->lru_lock);
1784
1785 mem_cgroup_uncharge_list(&page_list);
1786 free_hot_cold_page_list(&page_list, true);
1787
1788 /*
1789 * If reclaim is isolating dirty pages under writeback, it implies
1790 * that the long-lived page allocation rate is exceeding the page
1791 * laundering rate. Either the global limits are not being effective
1792 * at throttling processes due to the page distribution throughout
1793 * zones or there is heavy usage of a slow backing device. The
1794 * only option is to throttle from reclaim context which is not ideal
1795 * as there is no guarantee the dirtying process is throttled in the
1796 * same way balance_dirty_pages() manages.
1797 *
1798 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1799 * of pages under pages flagged for immediate reclaim and stall if any
1800 * are encountered in the nr_immediate check below.
1801 */
1802 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1803 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1804
1805 /*
1806 * Legacy memcg will stall in page writeback so avoid forcibly
1807 * stalling here.
1808 */
1809 if (sane_reclaim(sc)) {
1810 /*
1811 * Tag a zone as congested if all the dirty pages scanned were
1812 * backed by a congested BDI and wait_iff_congested will stall.
1813 */
1814 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1815 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1816
1817 /*
1818 * If dirty pages are scanned that are not queued for IO, it
1819 * implies that flushers are not keeping up. In this case, flag
1820 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1821 * reclaim context.
1822 */
1823 if (stat.nr_unqueued_dirty == nr_taken)
1824 set_bit(PGDAT_DIRTY, &pgdat->flags);
1825
1826 /*
1827 * If kswapd scans pages marked marked for immediate
1828 * reclaim and under writeback (nr_immediate), it implies
1829 * that pages are cycling through the LRU faster than
1830 * they are written so also forcibly stall.
1831 */
1832 if (stat.nr_immediate && current_may_throttle())
1833 congestion_wait(BLK_RW_ASYNC, HZ/10);
1834 }
1835
1836 /*
1837 * Stall direct reclaim for IO completions if underlying BDIs or zone
1838 * is congested. Allow kswapd to continue until it starts encountering
1839 * unqueued dirty pages or cycling through the LRU too quickly.
1840 */
1841 if (!sc->hibernation_mode && !current_is_kswapd() &&
1842 current_may_throttle())
1843 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1844
1845 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1846 nr_scanned, nr_reclaimed,
1847 stat.nr_dirty, stat.nr_writeback,
1848 stat.nr_congested, stat.nr_immediate,
1849 stat.nr_activate, stat.nr_ref_keep,
1850 stat.nr_unmap_fail,
1851 sc->priority, file);
1852 return nr_reclaimed;
1853}
1854
1855/*
1856 * This moves pages from the active list to the inactive list.
1857 *
1858 * We move them the other way if the page is referenced by one or more
1859 * processes, from rmap.
1860 *
1861 * If the pages are mostly unmapped, the processing is fast and it is
1862 * appropriate to hold zone_lru_lock across the whole operation. But if
1863 * the pages are mapped, the processing is slow (page_referenced()) so we
1864 * should drop zone_lru_lock around each page. It's impossible to balance
1865 * this, so instead we remove the pages from the LRU while processing them.
1866 * It is safe to rely on PG_active against the non-LRU pages in here because
1867 * nobody will play with that bit on a non-LRU page.
1868 *
1869 * The downside is that we have to touch page->_refcount against each page.
1870 * But we had to alter page->flags anyway.
1871 *
1872 * Returns the number of pages moved to the given lru.
1873 */
1874
1875static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1876 struct list_head *list,
1877 struct list_head *pages_to_free,
1878 enum lru_list lru)
1879{
1880 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1881 unsigned long pgmoved = 0;
1882 struct page *page;
1883 int nr_pages;
1884 int nr_moved = 0;
1885
1886 while (!list_empty(list)) {
1887 page = lru_to_page(list);
1888 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1889
1890 VM_BUG_ON_PAGE(PageLRU(page), page);
1891 SetPageLRU(page);
1892
1893 nr_pages = hpage_nr_pages(page);
1894 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1895 list_move(&page->lru, &lruvec->lists[lru]);
1896 pgmoved += nr_pages;
1897
1898 if (put_page_testzero(page)) {
1899 __ClearPageLRU(page);
1900 __ClearPageActive(page);
1901 del_page_from_lru_list(page, lruvec, lru);
1902
1903 if (unlikely(PageCompound(page))) {
1904 spin_unlock_irq(&pgdat->lru_lock);
1905 mem_cgroup_uncharge(page);
1906 (*get_compound_page_dtor(page))(page);
1907 spin_lock_irq(&pgdat->lru_lock);
1908 } else
1909 list_add(&page->lru, pages_to_free);
1910 } else {
1911 nr_moved += nr_pages;
1912 }
1913 }
1914
1915 if (!is_active_lru(lru))
1916 __count_vm_events(PGDEACTIVATE, pgmoved);
1917
1918 return nr_moved;
1919}
1920
1921static void shrink_active_list(unsigned long nr_to_scan,
1922 struct lruvec *lruvec,
1923 struct scan_control *sc,
1924 enum lru_list lru)
1925{
1926 unsigned long nr_taken;
1927 unsigned long nr_scanned;
1928 unsigned long vm_flags;
1929 LIST_HEAD(l_hold); /* The pages which were snipped off */
1930 LIST_HEAD(l_active);
1931 LIST_HEAD(l_inactive);
1932 struct page *page;
1933 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1934 unsigned nr_deactivate, nr_activate;
1935 unsigned nr_rotated = 0;
1936 isolate_mode_t isolate_mode = 0;
1937 int file = is_file_lru(lru);
1938 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1939
1940 lru_add_drain();
1941
1942 if (!sc->may_unmap)
1943 isolate_mode |= ISOLATE_UNMAPPED;
1944 if (!sc->may_writepage)
1945 isolate_mode |= ISOLATE_CLEAN;
1946
1947 spin_lock_irq(&pgdat->lru_lock);
1948
1949 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1950 &nr_scanned, sc, isolate_mode, lru);
1951
1952 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1953 reclaim_stat->recent_scanned[file] += nr_taken;
1954
1955 if (global_reclaim(sc))
1956 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1957 __count_vm_events(PGREFILL, nr_scanned);
1958
1959 spin_unlock_irq(&pgdat->lru_lock);
1960
1961 while (!list_empty(&l_hold)) {
1962 cond_resched();
1963 page = lru_to_page(&l_hold);
1964 list_del(&page->lru);
1965
1966 if (unlikely(!page_evictable(page))) {
1967 putback_lru_page(page);
1968 continue;
1969 }
1970
1971 if (unlikely(buffer_heads_over_limit)) {
1972 if (page_has_private(page) && trylock_page(page)) {
1973 if (page_has_private(page))
1974 try_to_release_page(page, 0);
1975 unlock_page(page);
1976 }
1977 }
1978
1979 if (page_referenced(page, 0, sc->target_mem_cgroup,
1980 &vm_flags)) {
1981 nr_rotated += hpage_nr_pages(page);
1982 /*
1983 * Identify referenced, file-backed active pages and
1984 * give them one more trip around the active list. So
1985 * that executable code get better chances to stay in
1986 * memory under moderate memory pressure. Anon pages
1987 * are not likely to be evicted by use-once streaming
1988 * IO, plus JVM can create lots of anon VM_EXEC pages,
1989 * so we ignore them here.
1990 */
1991 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1992 list_add(&page->lru, &l_active);
1993 continue;
1994 }
1995 }
1996
1997 ClearPageActive(page); /* we are de-activating */
1998 list_add(&page->lru, &l_inactive);
1999 }
2000
2001 /*
2002 * Move pages back to the lru list.
2003 */
2004 spin_lock_irq(&pgdat->lru_lock);
2005 /*
2006 * Count referenced pages from currently used mappings as rotated,
2007 * even though only some of them are actually re-activated. This
2008 * helps balance scan pressure between file and anonymous pages in
2009 * get_scan_count.
2010 */
2011 reclaim_stat->recent_rotated[file] += nr_rotated;
2012
2013 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2014 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2015 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2016 spin_unlock_irq(&pgdat->lru_lock);
2017
2018 mem_cgroup_uncharge_list(&l_hold);
2019 free_hot_cold_page_list(&l_hold, true);
2020 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2021 nr_deactivate, nr_rotated, sc->priority, file);
2022}
2023
2024/*
2025 * The inactive anon list should be small enough that the VM never has
2026 * to do too much work.
2027 *
2028 * The inactive file list should be small enough to leave most memory
2029 * to the established workingset on the scan-resistant active list,
2030 * but large enough to avoid thrashing the aggregate readahead window.
2031 *
2032 * Both inactive lists should also be large enough that each inactive
2033 * page has a chance to be referenced again before it is reclaimed.
2034 *
2035 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2036 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2037 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2038 *
2039 * total target max
2040 * memory ratio inactive
2041 * -------------------------------------
2042 * 10MB 1 5MB
2043 * 100MB 1 50MB
2044 * 1GB 3 250MB
2045 * 10GB 10 0.9GB
2046 * 100GB 31 3GB
2047 * 1TB 101 10GB
2048 * 10TB 320 32GB
2049 */
2050static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2051 struct scan_control *sc, bool trace)
2052{
2053 unsigned long inactive_ratio;
2054 unsigned long total_inactive, inactive;
2055 unsigned long total_active, active;
2056 unsigned long gb;
2057 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2058 int zid;
2059
2060 /*
2061 * If we don't have swap space, anonymous page deactivation
2062 * is pointless.
2063 */
2064 if (!file && !total_swap_pages)
2065 return false;
2066
2067 total_inactive = inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
2068 total_active = active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
2069
2070 /*
2071 * For zone-constrained allocations, it is necessary to check if
2072 * deactivations are required for lowmem to be reclaimed. This
2073 * calculates the inactive/active pages available in eligible zones.
2074 */
2075 for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) {
2076 struct zone *zone = &pgdat->node_zones[zid];
2077 unsigned long inactive_zone, active_zone;
2078
2079 if (!managed_zone(zone))
2080 continue;
2081
2082 inactive_zone = lruvec_zone_lru_size(lruvec, file * LRU_FILE, zid);
2083 active_zone = lruvec_zone_lru_size(lruvec, (file * LRU_FILE) + LRU_ACTIVE, zid);
2084
2085 inactive -= min(inactive, inactive_zone);
2086 active -= min(active, active_zone);
2087 }
2088
2089 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2090 if (gb)
2091 inactive_ratio = int_sqrt(10 * gb);
2092 else
2093 inactive_ratio = 1;
2094
2095 if (trace)
2096 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id,
2097 sc->reclaim_idx,
2098 total_inactive, inactive,
2099 total_active, active, inactive_ratio, file);
2100 return inactive * inactive_ratio < active;
2101}
2102
2103static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2104 struct lruvec *lruvec, struct scan_control *sc)
2105{
2106 if (is_active_lru(lru)) {
2107 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2108 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2109 return 0;
2110 }
2111
2112 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2113}
2114
2115enum scan_balance {
2116 SCAN_EQUAL,
2117 SCAN_FRACT,
2118 SCAN_ANON,
2119 SCAN_FILE,
2120};
2121
2122/*
2123 * Determine how aggressively the anon and file LRU lists should be
2124 * scanned. The relative value of each set of LRU lists is determined
2125 * by looking at the fraction of the pages scanned we did rotate back
2126 * onto the active list instead of evict.
2127 *
2128 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2129 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2130 */
2131static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2132 struct scan_control *sc, unsigned long *nr,
2133 unsigned long *lru_pages)
2134{
2135 int swappiness = mem_cgroup_swappiness(memcg);
2136 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2137 u64 fraction[2];
2138 u64 denominator = 0; /* gcc */
2139 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2140 unsigned long anon_prio, file_prio;
2141 enum scan_balance scan_balance;
2142 unsigned long anon, file;
2143 bool force_scan = false;
2144 unsigned long ap, fp;
2145 enum lru_list lru;
2146 bool some_scanned;
2147 int pass;
2148
2149 /*
2150 * If the zone or memcg is small, nr[l] can be 0. This
2151 * results in no scanning on this priority and a potential
2152 * priority drop. Global direct reclaim can go to the next
2153 * zone and tends to have no problems. Global kswapd is for
2154 * zone balancing and it needs to scan a minimum amount. When
2155 * reclaiming for a memcg, a priority drop can cause high
2156 * latencies, so it's better to scan a minimum amount there as
2157 * well.
2158 */
2159 if (current_is_kswapd()) {
2160 if (!pgdat_reclaimable(pgdat))
2161 force_scan = true;
2162 if (!mem_cgroup_online(memcg))
2163 force_scan = true;
2164 }
2165 if (!global_reclaim(sc))
2166 force_scan = true;
2167
2168 /* If we have no swap space, do not bother scanning anon pages. */
2169 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2170 scan_balance = SCAN_FILE;
2171 goto out;
2172 }
2173
2174 /*
2175 * Global reclaim will swap to prevent OOM even with no
2176 * swappiness, but memcg users want to use this knob to
2177 * disable swapping for individual groups completely when
2178 * using the memory controller's swap limit feature would be
2179 * too expensive.
2180 */
2181 if (!global_reclaim(sc) && !swappiness) {
2182 scan_balance = SCAN_FILE;
2183 goto out;
2184 }
2185
2186 /*
2187 * Do not apply any pressure balancing cleverness when the
2188 * system is close to OOM, scan both anon and file equally
2189 * (unless the swappiness setting disagrees with swapping).
2190 */
2191 if (!sc->priority && swappiness) {
2192 scan_balance = SCAN_EQUAL;
2193 goto out;
2194 }
2195
2196 /*
2197 * Prevent the reclaimer from falling into the cache trap: as
2198 * cache pages start out inactive, every cache fault will tip
2199 * the scan balance towards the file LRU. And as the file LRU
2200 * shrinks, so does the window for rotation from references.
2201 * This means we have a runaway feedback loop where a tiny
2202 * thrashing file LRU becomes infinitely more attractive than
2203 * anon pages. Try to detect this based on file LRU size.
2204 */
2205 if (global_reclaim(sc)) {
2206 unsigned long pgdatfile;
2207 unsigned long pgdatfree;
2208 int z;
2209 unsigned long total_high_wmark = 0;
2210
2211 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2212 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2213 node_page_state(pgdat, NR_INACTIVE_FILE);
2214
2215 for (z = 0; z < MAX_NR_ZONES; z++) {
2216 struct zone *zone = &pgdat->node_zones[z];
2217 if (!managed_zone(zone))
2218 continue;
2219
2220 total_high_wmark += high_wmark_pages(zone);
2221 }
2222
2223 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2224 scan_balance = SCAN_ANON;
2225 goto out;
2226 }
2227 }
2228
2229 /*
2230 * If there is enough inactive page cache, i.e. if the size of the
2231 * inactive list is greater than that of the active list *and* the
2232 * inactive list actually has some pages to scan on this priority, we
2233 * do not reclaim anything from the anonymous working set right now.
2234 * Without the second condition we could end up never scanning an
2235 * lruvec even if it has plenty of old anonymous pages unless the
2236 * system is under heavy pressure.
2237 */
2238 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2239 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2240 scan_balance = SCAN_FILE;
2241 goto out;
2242 }
2243
2244 scan_balance = SCAN_FRACT;
2245
2246 /*
2247 * With swappiness at 100, anonymous and file have the same priority.
2248 * This scanning priority is essentially the inverse of IO cost.
2249 */
2250 anon_prio = swappiness;
2251 file_prio = 200 - anon_prio;
2252
2253 /*
2254 * OK, so we have swap space and a fair amount of page cache
2255 * pages. We use the recently rotated / recently scanned
2256 * ratios to determine how valuable each cache is.
2257 *
2258 * Because workloads change over time (and to avoid overflow)
2259 * we keep these statistics as a floating average, which ends
2260 * up weighing recent references more than old ones.
2261 *
2262 * anon in [0], file in [1]
2263 */
2264
2265 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2266 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2267 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2268 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2269
2270 spin_lock_irq(&pgdat->lru_lock);
2271 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2272 reclaim_stat->recent_scanned[0] /= 2;
2273 reclaim_stat->recent_rotated[0] /= 2;
2274 }
2275
2276 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2277 reclaim_stat->recent_scanned[1] /= 2;
2278 reclaim_stat->recent_rotated[1] /= 2;
2279 }
2280
2281 /*
2282 * The amount of pressure on anon vs file pages is inversely
2283 * proportional to the fraction of recently scanned pages on
2284 * each list that were recently referenced and in active use.
2285 */
2286 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2287 ap /= reclaim_stat->recent_rotated[0] + 1;
2288
2289 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2290 fp /= reclaim_stat->recent_rotated[1] + 1;
2291 spin_unlock_irq(&pgdat->lru_lock);
2292
2293 fraction[0] = ap;
2294 fraction[1] = fp;
2295 denominator = ap + fp + 1;
2296out:
2297 some_scanned = false;
2298 /* Only use force_scan on second pass. */
2299 for (pass = 0; !some_scanned && pass < 2; pass++) {
2300 *lru_pages = 0;
2301 for_each_evictable_lru(lru) {
2302 int file = is_file_lru(lru);
2303 unsigned long size;
2304 unsigned long scan;
2305
2306 size = lruvec_lru_size(lruvec, lru);
2307 scan = size >> sc->priority;
2308
2309 if (!scan && pass && force_scan)
2310 scan = min(size, SWAP_CLUSTER_MAX);
2311
2312 switch (scan_balance) {
2313 case SCAN_EQUAL:
2314 /* Scan lists relative to size */
2315 break;
2316 case SCAN_FRACT:
2317 /*
2318 * Scan types proportional to swappiness and
2319 * their relative recent reclaim efficiency.
2320 */
2321 scan = div64_u64(scan * fraction[file],
2322 denominator);
2323 break;
2324 case SCAN_FILE:
2325 case SCAN_ANON:
2326 /* Scan one type exclusively */
2327 if ((scan_balance == SCAN_FILE) != file) {
2328 size = 0;
2329 scan = 0;
2330 }
2331 break;
2332 default:
2333 /* Look ma, no brain */
2334 BUG();
2335 }
2336
2337 *lru_pages += size;
2338 nr[lru] = scan;
2339
2340 /*
2341 * Skip the second pass and don't force_scan,
2342 * if we found something to scan.
2343 */
2344 some_scanned |= !!scan;
2345 }
2346 }
2347}
2348
2349/*
2350 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2351 */
2352static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2353 struct scan_control *sc, unsigned long *lru_pages)
2354{
2355 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2356 unsigned long nr[NR_LRU_LISTS];
2357 unsigned long targets[NR_LRU_LISTS];
2358 unsigned long nr_to_scan;
2359 enum lru_list lru;
2360 unsigned long nr_reclaimed = 0;
2361 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2362 struct blk_plug plug;
2363 bool scan_adjusted;
2364
2365 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2366
2367 /* Record the original scan target for proportional adjustments later */
2368 memcpy(targets, nr, sizeof(nr));
2369
2370 /*
2371 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2372 * event that can occur when there is little memory pressure e.g.
2373 * multiple streaming readers/writers. Hence, we do not abort scanning
2374 * when the requested number of pages are reclaimed when scanning at
2375 * DEF_PRIORITY on the assumption that the fact we are direct
2376 * reclaiming implies that kswapd is not keeping up and it is best to
2377 * do a batch of work at once. For memcg reclaim one check is made to
2378 * abort proportional reclaim if either the file or anon lru has already
2379 * dropped to zero at the first pass.
2380 */
2381 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2382 sc->priority == DEF_PRIORITY);
2383
2384 blk_start_plug(&plug);
2385 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2386 nr[LRU_INACTIVE_FILE]) {
2387 unsigned long nr_anon, nr_file, percentage;
2388 unsigned long nr_scanned;
2389
2390 for_each_evictable_lru(lru) {
2391 if (nr[lru]) {
2392 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2393 nr[lru] -= nr_to_scan;
2394
2395 nr_reclaimed += shrink_list(lru, nr_to_scan,
2396 lruvec, sc);
2397 }
2398 }
2399
2400 cond_resched();
2401
2402 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2403 continue;
2404
2405 /*
2406 * For kswapd and memcg, reclaim at least the number of pages
2407 * requested. Ensure that the anon and file LRUs are scanned
2408 * proportionally what was requested by get_scan_count(). We
2409 * stop reclaiming one LRU and reduce the amount scanning
2410 * proportional to the original scan target.
2411 */
2412 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2413 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2414
2415 /*
2416 * It's just vindictive to attack the larger once the smaller
2417 * has gone to zero. And given the way we stop scanning the
2418 * smaller below, this makes sure that we only make one nudge
2419 * towards proportionality once we've got nr_to_reclaim.
2420 */
2421 if (!nr_file || !nr_anon)
2422 break;
2423
2424 if (nr_file > nr_anon) {
2425 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2426 targets[LRU_ACTIVE_ANON] + 1;
2427 lru = LRU_BASE;
2428 percentage = nr_anon * 100 / scan_target;
2429 } else {
2430 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2431 targets[LRU_ACTIVE_FILE] + 1;
2432 lru = LRU_FILE;
2433 percentage = nr_file * 100 / scan_target;
2434 }
2435
2436 /* Stop scanning the smaller of the LRU */
2437 nr[lru] = 0;
2438 nr[lru + LRU_ACTIVE] = 0;
2439
2440 /*
2441 * Recalculate the other LRU scan count based on its original
2442 * scan target and the percentage scanning already complete
2443 */
2444 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2445 nr_scanned = targets[lru] - nr[lru];
2446 nr[lru] = targets[lru] * (100 - percentage) / 100;
2447 nr[lru] -= min(nr[lru], nr_scanned);
2448
2449 lru += LRU_ACTIVE;
2450 nr_scanned = targets[lru] - nr[lru];
2451 nr[lru] = targets[lru] * (100 - percentage) / 100;
2452 nr[lru] -= min(nr[lru], nr_scanned);
2453
2454 scan_adjusted = true;
2455 }
2456 blk_finish_plug(&plug);
2457 sc->nr_reclaimed += nr_reclaimed;
2458
2459 /*
2460 * Even if we did not try to evict anon pages at all, we want to
2461 * rebalance the anon lru active/inactive ratio.
2462 */
2463 if (inactive_list_is_low(lruvec, false, sc, true))
2464 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2465 sc, LRU_ACTIVE_ANON);
2466}
2467
2468/* Use reclaim/compaction for costly allocs or under memory pressure */
2469static bool in_reclaim_compaction(struct scan_control *sc)
2470{
2471 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2472 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2473 sc->priority < DEF_PRIORITY - 2))
2474 return true;
2475
2476 return false;
2477}
2478
2479/*
2480 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2481 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2482 * true if more pages should be reclaimed such that when the page allocator
2483 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2484 * It will give up earlier than that if there is difficulty reclaiming pages.
2485 */
2486static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2487 unsigned long nr_reclaimed,
2488 unsigned long nr_scanned,
2489 struct scan_control *sc)
2490{
2491 unsigned long pages_for_compaction;
2492 unsigned long inactive_lru_pages;
2493 int z;
2494
2495 /* If not in reclaim/compaction mode, stop */
2496 if (!in_reclaim_compaction(sc))
2497 return false;
2498
2499 /* Consider stopping depending on scan and reclaim activity */
2500 if (sc->gfp_mask & __GFP_REPEAT) {
2501 /*
2502 * For __GFP_REPEAT allocations, stop reclaiming if the
2503 * full LRU list has been scanned and we are still failing
2504 * to reclaim pages. This full LRU scan is potentially
2505 * expensive but a __GFP_REPEAT caller really wants to succeed
2506 */
2507 if (!nr_reclaimed && !nr_scanned)
2508 return false;
2509 } else {
2510 /*
2511 * For non-__GFP_REPEAT allocations which can presumably
2512 * fail without consequence, stop if we failed to reclaim
2513 * any pages from the last SWAP_CLUSTER_MAX number of
2514 * pages that were scanned. This will return to the
2515 * caller faster at the risk reclaim/compaction and
2516 * the resulting allocation attempt fails
2517 */
2518 if (!nr_reclaimed)
2519 return false;
2520 }
2521
2522 /*
2523 * If we have not reclaimed enough pages for compaction and the
2524 * inactive lists are large enough, continue reclaiming
2525 */
2526 pages_for_compaction = compact_gap(sc->order);
2527 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2528 if (get_nr_swap_pages() > 0)
2529 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2530 if (sc->nr_reclaimed < pages_for_compaction &&
2531 inactive_lru_pages > pages_for_compaction)
2532 return true;
2533
2534 /* If compaction would go ahead or the allocation would succeed, stop */
2535 for (z = 0; z <= sc->reclaim_idx; z++) {
2536 struct zone *zone = &pgdat->node_zones[z];
2537 if (!managed_zone(zone))
2538 continue;
2539
2540 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2541 case COMPACT_SUCCESS:
2542 case COMPACT_CONTINUE:
2543 return false;
2544 default:
2545 /* check next zone */
2546 ;
2547 }
2548 }
2549 return true;
2550}
2551
2552static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2553{
2554 struct reclaim_state *reclaim_state = current->reclaim_state;
2555 unsigned long nr_reclaimed, nr_scanned;
2556 bool reclaimable = false;
2557
2558 do {
2559 struct mem_cgroup *root = sc->target_mem_cgroup;
2560 struct mem_cgroup_reclaim_cookie reclaim = {
2561 .pgdat = pgdat,
2562 .priority = sc->priority,
2563 };
2564 unsigned long node_lru_pages = 0;
2565 struct mem_cgroup *memcg;
2566
2567 nr_reclaimed = sc->nr_reclaimed;
2568 nr_scanned = sc->nr_scanned;
2569
2570 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2571 do {
2572 unsigned long lru_pages;
2573 unsigned long reclaimed;
2574 unsigned long scanned;
2575
2576 if (mem_cgroup_low(root, memcg)) {
2577 if (!sc->may_thrash)
2578 continue;
2579 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2580 }
2581
2582 reclaimed = sc->nr_reclaimed;
2583 scanned = sc->nr_scanned;
2584
2585 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2586 node_lru_pages += lru_pages;
2587
2588 if (memcg)
2589 shrink_slab(sc->gfp_mask, pgdat->node_id,
2590 memcg, sc->nr_scanned - scanned,
2591 lru_pages);
2592
2593 /* Record the group's reclaim efficiency */
2594 vmpressure(sc->gfp_mask, memcg, false,
2595 sc->nr_scanned - scanned,
2596 sc->nr_reclaimed - reclaimed);
2597
2598 /*
2599 * Direct reclaim and kswapd have to scan all memory
2600 * cgroups to fulfill the overall scan target for the
2601 * node.
2602 *
2603 * Limit reclaim, on the other hand, only cares about
2604 * nr_to_reclaim pages to be reclaimed and it will
2605 * retry with decreasing priority if one round over the
2606 * whole hierarchy is not sufficient.
2607 */
2608 if (!global_reclaim(sc) &&
2609 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2610 mem_cgroup_iter_break(root, memcg);
2611 break;
2612 }
2613 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2614
2615 /*
2616 * Shrink the slab caches in the same proportion that
2617 * the eligible LRU pages were scanned.
2618 */
2619 if (global_reclaim(sc))
2620 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2621 sc->nr_scanned - nr_scanned,
2622 node_lru_pages);
2623
2624 if (reclaim_state) {
2625 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2626 reclaim_state->reclaimed_slab = 0;
2627 }
2628
2629 /* Record the subtree's reclaim efficiency */
2630 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2631 sc->nr_scanned - nr_scanned,
2632 sc->nr_reclaimed - nr_reclaimed);
2633
2634 if (sc->nr_reclaimed - nr_reclaimed)
2635 reclaimable = true;
2636
2637 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2638 sc->nr_scanned - nr_scanned, sc));
2639
2640 return reclaimable;
2641}
2642
2643/*
2644 * Returns true if compaction should go ahead for a costly-order request, or
2645 * the allocation would already succeed without compaction. Return false if we
2646 * should reclaim first.
2647 */
2648static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2649{
2650 unsigned long watermark;
2651 enum compact_result suitable;
2652
2653 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2654 if (suitable == COMPACT_SUCCESS)
2655 /* Allocation should succeed already. Don't reclaim. */
2656 return true;
2657 if (suitable == COMPACT_SKIPPED)
2658 /* Compaction cannot yet proceed. Do reclaim. */
2659 return false;
2660
2661 /*
2662 * Compaction is already possible, but it takes time to run and there
2663 * are potentially other callers using the pages just freed. So proceed
2664 * with reclaim to make a buffer of free pages available to give
2665 * compaction a reasonable chance of completing and allocating the page.
2666 * Note that we won't actually reclaim the whole buffer in one attempt
2667 * as the target watermark in should_continue_reclaim() is lower. But if
2668 * we are already above the high+gap watermark, don't reclaim at all.
2669 */
2670 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2671
2672 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2673}
2674
2675/*
2676 * This is the direct reclaim path, for page-allocating processes. We only
2677 * try to reclaim pages from zones which will satisfy the caller's allocation
2678 * request.
2679 *
2680 * If a zone is deemed to be full of pinned pages then just give it a light
2681 * scan then give up on it.
2682 */
2683static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2684{
2685 struct zoneref *z;
2686 struct zone *zone;
2687 unsigned long nr_soft_reclaimed;
2688 unsigned long nr_soft_scanned;
2689 gfp_t orig_mask;
2690 pg_data_t *last_pgdat = NULL;
2691
2692 /*
2693 * If the number of buffer_heads in the machine exceeds the maximum
2694 * allowed level, force direct reclaim to scan the highmem zone as
2695 * highmem pages could be pinning lowmem pages storing buffer_heads
2696 */
2697 orig_mask = sc->gfp_mask;
2698 if (buffer_heads_over_limit) {
2699 sc->gfp_mask |= __GFP_HIGHMEM;
2700 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2701 }
2702
2703 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2704 sc->reclaim_idx, sc->nodemask) {
2705 /*
2706 * Take care memory controller reclaiming has small influence
2707 * to global LRU.
2708 */
2709 if (global_reclaim(sc)) {
2710 if (!cpuset_zone_allowed(zone,
2711 GFP_KERNEL | __GFP_HARDWALL))
2712 continue;
2713
2714 if (sc->priority != DEF_PRIORITY &&
2715 !pgdat_reclaimable(zone->zone_pgdat))
2716 continue; /* Let kswapd poll it */
2717
2718 /*
2719 * If we already have plenty of memory free for
2720 * compaction in this zone, don't free any more.
2721 * Even though compaction is invoked for any
2722 * non-zero order, only frequent costly order
2723 * reclamation is disruptive enough to become a
2724 * noticeable problem, like transparent huge
2725 * page allocations.
2726 */
2727 if (IS_ENABLED(CONFIG_COMPACTION) &&
2728 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2729 compaction_ready(zone, sc)) {
2730 sc->compaction_ready = true;
2731 continue;
2732 }
2733
2734 /*
2735 * Shrink each node in the zonelist once. If the
2736 * zonelist is ordered by zone (not the default) then a
2737 * node may be shrunk multiple times but in that case
2738 * the user prefers lower zones being preserved.
2739 */
2740 if (zone->zone_pgdat == last_pgdat)
2741 continue;
2742
2743 /*
2744 * This steals pages from memory cgroups over softlimit
2745 * and returns the number of reclaimed pages and
2746 * scanned pages. This works for global memory pressure
2747 * and balancing, not for a memcg's limit.
2748 */
2749 nr_soft_scanned = 0;
2750 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2751 sc->order, sc->gfp_mask,
2752 &nr_soft_scanned);
2753 sc->nr_reclaimed += nr_soft_reclaimed;
2754 sc->nr_scanned += nr_soft_scanned;
2755 /* need some check for avoid more shrink_zone() */
2756 }
2757
2758 /* See comment about same check for global reclaim above */
2759 if (zone->zone_pgdat == last_pgdat)
2760 continue;
2761 last_pgdat = zone->zone_pgdat;
2762 shrink_node(zone->zone_pgdat, sc);
2763 }
2764
2765 /*
2766 * Restore to original mask to avoid the impact on the caller if we
2767 * promoted it to __GFP_HIGHMEM.
2768 */
2769 sc->gfp_mask = orig_mask;
2770}
2771
2772/*
2773 * This is the main entry point to direct page reclaim.
2774 *
2775 * If a full scan of the inactive list fails to free enough memory then we
2776 * are "out of memory" and something needs to be killed.
2777 *
2778 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2779 * high - the zone may be full of dirty or under-writeback pages, which this
2780 * caller can't do much about. We kick the writeback threads and take explicit
2781 * naps in the hope that some of these pages can be written. But if the
2782 * allocating task holds filesystem locks which prevent writeout this might not
2783 * work, and the allocation attempt will fail.
2784 *
2785 * returns: 0, if no pages reclaimed
2786 * else, the number of pages reclaimed
2787 */
2788static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2789 struct scan_control *sc)
2790{
2791 int initial_priority = sc->priority;
2792 unsigned long total_scanned = 0;
2793 unsigned long writeback_threshold;
2794retry:
2795 delayacct_freepages_start();
2796
2797 if (global_reclaim(sc))
2798 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2799
2800 do {
2801 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2802 sc->priority);
2803 sc->nr_scanned = 0;
2804 shrink_zones(zonelist, sc);
2805
2806 total_scanned += sc->nr_scanned;
2807 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2808 break;
2809
2810 if (sc->compaction_ready)
2811 break;
2812
2813 /*
2814 * If we're getting trouble reclaiming, start doing
2815 * writepage even in laptop mode.
2816 */
2817 if (sc->priority < DEF_PRIORITY - 2)
2818 sc->may_writepage = 1;
2819
2820 /*
2821 * Try to write back as many pages as we just scanned. This
2822 * tends to cause slow streaming writers to write data to the
2823 * disk smoothly, at the dirtying rate, which is nice. But
2824 * that's undesirable in laptop mode, where we *want* lumpy
2825 * writeout. So in laptop mode, write out the whole world.
2826 */
2827 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2828 if (total_scanned > writeback_threshold) {
2829 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2830 WB_REASON_TRY_TO_FREE_PAGES);
2831 sc->may_writepage = 1;
2832 }
2833 } while (--sc->priority >= 0);
2834
2835 delayacct_freepages_end();
2836
2837 if (sc->nr_reclaimed)
2838 return sc->nr_reclaimed;
2839
2840 /* Aborted reclaim to try compaction? don't OOM, then */
2841 if (sc->compaction_ready)
2842 return 1;
2843
2844 /* Untapped cgroup reserves? Don't OOM, retry. */
2845 if (!sc->may_thrash) {
2846 sc->priority = initial_priority;
2847 sc->may_thrash = 1;
2848 goto retry;
2849 }
2850
2851 return 0;
2852}
2853
2854static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2855{
2856 struct zone *zone;
2857 unsigned long pfmemalloc_reserve = 0;
2858 unsigned long free_pages = 0;
2859 int i;
2860 bool wmark_ok;
2861
2862 for (i = 0; i <= ZONE_NORMAL; i++) {
2863 zone = &pgdat->node_zones[i];
2864 if (!managed_zone(zone) ||
2865 pgdat_reclaimable_pages(pgdat) == 0)
2866 continue;
2867
2868 pfmemalloc_reserve += min_wmark_pages(zone);
2869 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2870 }
2871
2872 /* If there are no reserves (unexpected config) then do not throttle */
2873 if (!pfmemalloc_reserve)
2874 return true;
2875
2876 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2877
2878 /* kswapd must be awake if processes are being throttled */
2879 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2880 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2881 (enum zone_type)ZONE_NORMAL);
2882 wake_up_interruptible(&pgdat->kswapd_wait);
2883 }
2884
2885 return wmark_ok;
2886}
2887
2888/*
2889 * Throttle direct reclaimers if backing storage is backed by the network
2890 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2891 * depleted. kswapd will continue to make progress and wake the processes
2892 * when the low watermark is reached.
2893 *
2894 * Returns true if a fatal signal was delivered during throttling. If this
2895 * happens, the page allocator should not consider triggering the OOM killer.
2896 */
2897static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2898 nodemask_t *nodemask)
2899{
2900 struct zoneref *z;
2901 struct zone *zone;
2902 pg_data_t *pgdat = NULL;
2903
2904 /*
2905 * Kernel threads should not be throttled as they may be indirectly
2906 * responsible for cleaning pages necessary for reclaim to make forward
2907 * progress. kjournald for example may enter direct reclaim while
2908 * committing a transaction where throttling it could forcing other
2909 * processes to block on log_wait_commit().
2910 */
2911 if (current->flags & PF_KTHREAD)
2912 goto out;
2913
2914 /*
2915 * If a fatal signal is pending, this process should not throttle.
2916 * It should return quickly so it can exit and free its memory
2917 */
2918 if (fatal_signal_pending(current))
2919 goto out;
2920
2921 /*
2922 * Check if the pfmemalloc reserves are ok by finding the first node
2923 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2924 * GFP_KERNEL will be required for allocating network buffers when
2925 * swapping over the network so ZONE_HIGHMEM is unusable.
2926 *
2927 * Throttling is based on the first usable node and throttled processes
2928 * wait on a queue until kswapd makes progress and wakes them. There
2929 * is an affinity then between processes waking up and where reclaim
2930 * progress has been made assuming the process wakes on the same node.
2931 * More importantly, processes running on remote nodes will not compete
2932 * for remote pfmemalloc reserves and processes on different nodes
2933 * should make reasonable progress.
2934 */
2935 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2936 gfp_zone(gfp_mask), nodemask) {
2937 if (zone_idx(zone) > ZONE_NORMAL)
2938 continue;
2939
2940 /* Throttle based on the first usable node */
2941 pgdat = zone->zone_pgdat;
2942 if (pfmemalloc_watermark_ok(pgdat))
2943 goto out;
2944 break;
2945 }
2946
2947 /* If no zone was usable by the allocation flags then do not throttle */
2948 if (!pgdat)
2949 goto out;
2950
2951 /* Account for the throttling */
2952 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2953
2954 /*
2955 * If the caller cannot enter the filesystem, it's possible that it
2956 * is due to the caller holding an FS lock or performing a journal
2957 * transaction in the case of a filesystem like ext[3|4]. In this case,
2958 * it is not safe to block on pfmemalloc_wait as kswapd could be
2959 * blocked waiting on the same lock. Instead, throttle for up to a
2960 * second before continuing.
2961 */
2962 if (!(gfp_mask & __GFP_FS)) {
2963 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2964 pfmemalloc_watermark_ok(pgdat), HZ);
2965
2966 goto check_pending;
2967 }
2968
2969 /* Throttle until kswapd wakes the process */
2970 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2971 pfmemalloc_watermark_ok(pgdat));
2972
2973check_pending:
2974 if (fatal_signal_pending(current))
2975 return true;
2976
2977out:
2978 return false;
2979}
2980
2981unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2982 gfp_t gfp_mask, nodemask_t *nodemask)
2983{
2984 unsigned long nr_reclaimed;
2985 struct scan_control sc = {
2986 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2987 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2988 .reclaim_idx = gfp_zone(gfp_mask),
2989 .order = order,
2990 .nodemask = nodemask,
2991 .priority = DEF_PRIORITY,
2992 .may_writepage = !laptop_mode,
2993 .may_unmap = 1,
2994 .may_swap = 1,
2995 };
2996
2997 /*
2998 * Do not enter reclaim if fatal signal was delivered while throttled.
2999 * 1 is returned so that the page allocator does not OOM kill at this
3000 * point.
3001 */
3002 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
3003 return 1;
3004
3005 trace_mm_vmscan_direct_reclaim_begin(order,
3006 sc.may_writepage,
3007 gfp_mask,
3008 sc.reclaim_idx);
3009
3010 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3011
3012 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3013
3014 return nr_reclaimed;
3015}
3016
3017#ifdef CONFIG_MEMCG
3018
3019unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3020 gfp_t gfp_mask, bool noswap,
3021 pg_data_t *pgdat,
3022 unsigned long *nr_scanned)
3023{
3024 struct scan_control sc = {
3025 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3026 .target_mem_cgroup = memcg,
3027 .may_writepage = !laptop_mode,
3028 .may_unmap = 1,
3029 .reclaim_idx = MAX_NR_ZONES - 1,
3030 .may_swap = !noswap,
3031 };
3032 unsigned long lru_pages;
3033
3034 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3035 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3036
3037 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3038 sc.may_writepage,
3039 sc.gfp_mask,
3040 sc.reclaim_idx);
3041
3042 /*
3043 * NOTE: Although we can get the priority field, using it
3044 * here is not a good idea, since it limits the pages we can scan.
3045 * if we don't reclaim here, the shrink_node from balance_pgdat
3046 * will pick up pages from other mem cgroup's as well. We hack
3047 * the priority and make it zero.
3048 */
3049 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3050
3051 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3052
3053 *nr_scanned = sc.nr_scanned;
3054 return sc.nr_reclaimed;
3055}
3056
3057unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3058 unsigned long nr_pages,
3059 gfp_t gfp_mask,
3060 bool may_swap)
3061{
3062 struct zonelist *zonelist;
3063 unsigned long nr_reclaimed;
3064 int nid;
3065 struct scan_control sc = {
3066 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3067 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3068 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3069 .reclaim_idx = MAX_NR_ZONES - 1,
3070 .target_mem_cgroup = memcg,
3071 .priority = DEF_PRIORITY,
3072 .may_writepage = !laptop_mode,
3073 .may_unmap = 1,
3074 .may_swap = may_swap,
3075 };
3076
3077 /*
3078 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3079 * take care of from where we get pages. So the node where we start the
3080 * scan does not need to be the current node.
3081 */
3082 nid = mem_cgroup_select_victim_node(memcg);
3083
3084 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3085
3086 trace_mm_vmscan_memcg_reclaim_begin(0,
3087 sc.may_writepage,
3088 sc.gfp_mask,
3089 sc.reclaim_idx);
3090
3091 current->flags |= PF_MEMALLOC;
3092 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3093 current->flags &= ~PF_MEMALLOC;
3094
3095 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3096
3097 return nr_reclaimed;
3098}
3099#endif
3100
3101static void age_active_anon(struct pglist_data *pgdat,
3102 struct scan_control *sc)
3103{
3104 struct mem_cgroup *memcg;
3105
3106 if (!total_swap_pages)
3107 return;
3108
3109 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3110 do {
3111 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3112
3113 if (inactive_list_is_low(lruvec, false, sc, true))
3114 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3115 sc, LRU_ACTIVE_ANON);
3116
3117 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3118 } while (memcg);
3119}
3120
3121static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3122{
3123 unsigned long mark = high_wmark_pages(zone);
3124
3125 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3126 return false;
3127
3128 /*
3129 * If any eligible zone is balanced then the node is not considered
3130 * to be congested or dirty
3131 */
3132 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3133 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3134
3135 return true;
3136}
3137
3138/*
3139 * Prepare kswapd for sleeping. This verifies that there are no processes
3140 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3141 *
3142 * Returns true if kswapd is ready to sleep
3143 */
3144static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3145{
3146 int i;
3147
3148 /*
3149 * The throttled processes are normally woken up in balance_pgdat() as
3150 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3151 * race between when kswapd checks the watermarks and a process gets
3152 * throttled. There is also a potential race if processes get
3153 * throttled, kswapd wakes, a large process exits thereby balancing the
3154 * zones, which causes kswapd to exit balance_pgdat() before reaching
3155 * the wake up checks. If kswapd is going to sleep, no process should
3156 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3157 * the wake up is premature, processes will wake kswapd and get
3158 * throttled again. The difference from wake ups in balance_pgdat() is
3159 * that here we are under prepare_to_wait().
3160 */
3161 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3162 wake_up_all(&pgdat->pfmemalloc_wait);
3163
3164 for (i = 0; i <= classzone_idx; i++) {
3165 struct zone *zone = pgdat->node_zones + i;
3166
3167 if (!managed_zone(zone))
3168 continue;
3169
3170 if (!zone_balanced(zone, order, classzone_idx))
3171 return false;
3172 }
3173
3174 return true;
3175}
3176
3177/*
3178 * kswapd shrinks a node of pages that are at or below the highest usable
3179 * zone that is currently unbalanced.
3180 *
3181 * Returns true if kswapd scanned at least the requested number of pages to
3182 * reclaim or if the lack of progress was due to pages under writeback.
3183 * This is used to determine if the scanning priority needs to be raised.
3184 */
3185static bool kswapd_shrink_node(pg_data_t *pgdat,
3186 struct scan_control *sc)
3187{
3188 struct zone *zone;
3189 int z;
3190
3191 /* Reclaim a number of pages proportional to the number of zones */
3192 sc->nr_to_reclaim = 0;
3193 for (z = 0; z <= sc->reclaim_idx; z++) {
3194 zone = pgdat->node_zones + z;
3195 if (!managed_zone(zone))
3196 continue;
3197
3198 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3199 }
3200
3201 /*
3202 * Historically care was taken to put equal pressure on all zones but
3203 * now pressure is applied based on node LRU order.
3204 */
3205 shrink_node(pgdat, sc);
3206
3207 /*
3208 * Fragmentation may mean that the system cannot be rebalanced for
3209 * high-order allocations. If twice the allocation size has been
3210 * reclaimed then recheck watermarks only at order-0 to prevent
3211 * excessive reclaim. Assume that a process requested a high-order
3212 * can direct reclaim/compact.
3213 */
3214 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3215 sc->order = 0;
3216
3217 return sc->nr_scanned >= sc->nr_to_reclaim;
3218}
3219
3220/*
3221 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3222 * that are eligible for use by the caller until at least one zone is
3223 * balanced.
3224 *
3225 * Returns the order kswapd finished reclaiming at.
3226 *
3227 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3228 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3229 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3230 * or lower is eligible for reclaim until at least one usable zone is
3231 * balanced.
3232 */
3233static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3234{
3235 int i;
3236 unsigned long nr_soft_reclaimed;
3237 unsigned long nr_soft_scanned;
3238 struct zone *zone;
3239 struct scan_control sc = {
3240 .gfp_mask = GFP_KERNEL,
3241 .order = order,
3242 .priority = DEF_PRIORITY,
3243 .may_writepage = !laptop_mode,
3244 .may_unmap = 1,
3245 .may_swap = 1,
3246 };
3247 count_vm_event(PAGEOUTRUN);
3248
3249 do {
3250 bool raise_priority = true;
3251
3252 sc.nr_reclaimed = 0;
3253 sc.reclaim_idx = classzone_idx;
3254
3255 /*
3256 * If the number of buffer_heads exceeds the maximum allowed
3257 * then consider reclaiming from all zones. This has a dual
3258 * purpose -- on 64-bit systems it is expected that
3259 * buffer_heads are stripped during active rotation. On 32-bit
3260 * systems, highmem pages can pin lowmem memory and shrinking
3261 * buffers can relieve lowmem pressure. Reclaim may still not
3262 * go ahead if all eligible zones for the original allocation
3263 * request are balanced to avoid excessive reclaim from kswapd.
3264 */
3265 if (buffer_heads_over_limit) {
3266 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3267 zone = pgdat->node_zones + i;
3268 if (!managed_zone(zone))
3269 continue;
3270
3271 sc.reclaim_idx = i;
3272 break;
3273 }
3274 }
3275
3276 /*
3277 * Only reclaim if there are no eligible zones. Check from
3278 * high to low zone as allocations prefer higher zones.
3279 * Scanning from low to high zone would allow congestion to be
3280 * cleared during a very small window when a small low
3281 * zone was balanced even under extreme pressure when the
3282 * overall node may be congested. Note that sc.reclaim_idx
3283 * is not used as buffer_heads_over_limit may have adjusted
3284 * it.
3285 */
3286 for (i = classzone_idx; i >= 0; i--) {
3287 zone = pgdat->node_zones + i;
3288 if (!managed_zone(zone))
3289 continue;
3290
3291 if (zone_balanced(zone, sc.order, classzone_idx))
3292 goto out;
3293 }
3294
3295 /*
3296 * Do some background aging of the anon list, to give
3297 * pages a chance to be referenced before reclaiming. All
3298 * pages are rotated regardless of classzone as this is
3299 * about consistent aging.
3300 */
3301 age_active_anon(pgdat, &sc);
3302
3303 /*
3304 * If we're getting trouble reclaiming, start doing writepage
3305 * even in laptop mode.
3306 */
3307 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3308 sc.may_writepage = 1;
3309
3310 /* Call soft limit reclaim before calling shrink_node. */
3311 sc.nr_scanned = 0;
3312 nr_soft_scanned = 0;
3313 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3314 sc.gfp_mask, &nr_soft_scanned);
3315 sc.nr_reclaimed += nr_soft_reclaimed;
3316
3317 /*
3318 * There should be no need to raise the scanning priority if
3319 * enough pages are already being scanned that that high
3320 * watermark would be met at 100% efficiency.
3321 */
3322 if (kswapd_shrink_node(pgdat, &sc))
3323 raise_priority = false;
3324
3325 /*
3326 * If the low watermark is met there is no need for processes
3327 * to be throttled on pfmemalloc_wait as they should not be
3328 * able to safely make forward progress. Wake them
3329 */
3330 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3331 pfmemalloc_watermark_ok(pgdat))
3332 wake_up_all(&pgdat->pfmemalloc_wait);
3333
3334 /* Check if kswapd should be suspending */
3335 if (try_to_freeze() || kthread_should_stop())
3336 break;
3337
3338 /*
3339 * Raise priority if scanning rate is too low or there was no
3340 * progress in reclaiming pages
3341 */
3342 if (raise_priority || !sc.nr_reclaimed)
3343 sc.priority--;
3344 } while (sc.priority >= 1);
3345
3346out:
3347 /*
3348 * Return the order kswapd stopped reclaiming at as
3349 * prepare_kswapd_sleep() takes it into account. If another caller
3350 * entered the allocator slow path while kswapd was awake, order will
3351 * remain at the higher level.
3352 */
3353 return sc.order;
3354}
3355
3356static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3357 unsigned int classzone_idx)
3358{
3359 long remaining = 0;
3360 DEFINE_WAIT(wait);
3361
3362 if (freezing(current) || kthread_should_stop())
3363 return;
3364
3365 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3366
3367 /* Try to sleep for a short interval */
3368 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3369 /*
3370 * Compaction records what page blocks it recently failed to
3371 * isolate pages from and skips them in the future scanning.
3372 * When kswapd is going to sleep, it is reasonable to assume
3373 * that pages and compaction may succeed so reset the cache.
3374 */
3375 reset_isolation_suitable(pgdat);
3376
3377 /*
3378 * We have freed the memory, now we should compact it to make
3379 * allocation of the requested order possible.
3380 */
3381 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3382
3383 remaining = schedule_timeout(HZ/10);
3384
3385 /*
3386 * If woken prematurely then reset kswapd_classzone_idx and
3387 * order. The values will either be from a wakeup request or
3388 * the previous request that slept prematurely.
3389 */
3390 if (remaining) {
3391 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3392 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3393 }
3394
3395 finish_wait(&pgdat->kswapd_wait, &wait);
3396 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3397 }
3398
3399 /*
3400 * After a short sleep, check if it was a premature sleep. If not, then
3401 * go fully to sleep until explicitly woken up.
3402 */
3403 if (!remaining &&
3404 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3405 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3406
3407 /*
3408 * vmstat counters are not perfectly accurate and the estimated
3409 * value for counters such as NR_FREE_PAGES can deviate from the
3410 * true value by nr_online_cpus * threshold. To avoid the zone
3411 * watermarks being breached while under pressure, we reduce the
3412 * per-cpu vmstat threshold while kswapd is awake and restore
3413 * them before going back to sleep.
3414 */
3415 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3416
3417 if (!kthread_should_stop())
3418 schedule();
3419
3420 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3421 } else {
3422 if (remaining)
3423 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3424 else
3425 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3426 }
3427 finish_wait(&pgdat->kswapd_wait, &wait);
3428}
3429
3430/*
3431 * The background pageout daemon, started as a kernel thread
3432 * from the init process.
3433 *
3434 * This basically trickles out pages so that we have _some_
3435 * free memory available even if there is no other activity
3436 * that frees anything up. This is needed for things like routing
3437 * etc, where we otherwise might have all activity going on in
3438 * asynchronous contexts that cannot page things out.
3439 *
3440 * If there are applications that are active memory-allocators
3441 * (most normal use), this basically shouldn't matter.
3442 */
3443static int kswapd(void *p)
3444{
3445 unsigned int alloc_order, reclaim_order, classzone_idx;
3446 pg_data_t *pgdat = (pg_data_t*)p;
3447 struct task_struct *tsk = current;
3448
3449 struct reclaim_state reclaim_state = {
3450 .reclaimed_slab = 0,
3451 };
3452 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3453
3454 lockdep_set_current_reclaim_state(GFP_KERNEL);
3455
3456 if (!cpumask_empty(cpumask))
3457 set_cpus_allowed_ptr(tsk, cpumask);
3458 current->reclaim_state = &reclaim_state;
3459
3460 /*
3461 * Tell the memory management that we're a "memory allocator",
3462 * and that if we need more memory we should get access to it
3463 * regardless (see "__alloc_pages()"). "kswapd" should
3464 * never get caught in the normal page freeing logic.
3465 *
3466 * (Kswapd normally doesn't need memory anyway, but sometimes
3467 * you need a small amount of memory in order to be able to
3468 * page out something else, and this flag essentially protects
3469 * us from recursively trying to free more memory as we're
3470 * trying to free the first piece of memory in the first place).
3471 */
3472 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3473 set_freezable();
3474
3475 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3476 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3477 for ( ; ; ) {
3478 bool ret;
3479
3480kswapd_try_sleep:
3481 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3482 classzone_idx);
3483
3484 /* Read the new order and classzone_idx */
3485 alloc_order = reclaim_order = pgdat->kswapd_order;
3486 classzone_idx = pgdat->kswapd_classzone_idx;
3487 pgdat->kswapd_order = 0;
3488 pgdat->kswapd_classzone_idx = 0;
3489
3490 ret = try_to_freeze();
3491 if (kthread_should_stop())
3492 break;
3493
3494 /*
3495 * We can speed up thawing tasks if we don't call balance_pgdat
3496 * after returning from the refrigerator
3497 */
3498 if (ret)
3499 continue;
3500
3501 /*
3502 * Reclaim begins at the requested order but if a high-order
3503 * reclaim fails then kswapd falls back to reclaiming for
3504 * order-0. If that happens, kswapd will consider sleeping
3505 * for the order it finished reclaiming at (reclaim_order)
3506 * but kcompactd is woken to compact for the original
3507 * request (alloc_order).
3508 */
3509 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3510 alloc_order);
3511 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3512 if (reclaim_order < alloc_order)
3513 goto kswapd_try_sleep;
3514
3515 alloc_order = reclaim_order = pgdat->kswapd_order;
3516 classzone_idx = pgdat->kswapd_classzone_idx;
3517 }
3518
3519 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3520 current->reclaim_state = NULL;
3521 lockdep_clear_current_reclaim_state();
3522
3523 return 0;
3524}
3525
3526/*
3527 * A zone is low on free memory, so wake its kswapd task to service it.
3528 */
3529void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3530{
3531 pg_data_t *pgdat;
3532 int z;
3533
3534 if (!managed_zone(zone))
3535 return;
3536
3537 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3538 return;
3539 pgdat = zone->zone_pgdat;
3540 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3541 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3542 if (!waitqueue_active(&pgdat->kswapd_wait))
3543 return;
3544
3545 /* Only wake kswapd if all zones are unbalanced */
3546 for (z = 0; z <= classzone_idx; z++) {
3547 zone = pgdat->node_zones + z;
3548 if (!managed_zone(zone))
3549 continue;
3550
3551 if (zone_balanced(zone, order, classzone_idx))
3552 return;
3553 }
3554
3555 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3556 wake_up_interruptible(&pgdat->kswapd_wait);
3557}
3558
3559#ifdef CONFIG_HIBERNATION
3560/*
3561 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3562 * freed pages.
3563 *
3564 * Rather than trying to age LRUs the aim is to preserve the overall
3565 * LRU order by reclaiming preferentially
3566 * inactive > active > active referenced > active mapped
3567 */
3568unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3569{
3570 struct reclaim_state reclaim_state;
3571 struct scan_control sc = {
3572 .nr_to_reclaim = nr_to_reclaim,
3573 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3574 .reclaim_idx = MAX_NR_ZONES - 1,
3575 .priority = DEF_PRIORITY,
3576 .may_writepage = 1,
3577 .may_unmap = 1,
3578 .may_swap = 1,
3579 .hibernation_mode = 1,
3580 };
3581 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3582 struct task_struct *p = current;
3583 unsigned long nr_reclaimed;
3584
3585 p->flags |= PF_MEMALLOC;
3586 lockdep_set_current_reclaim_state(sc.gfp_mask);
3587 reclaim_state.reclaimed_slab = 0;
3588 p->reclaim_state = &reclaim_state;
3589
3590 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3591
3592 p->reclaim_state = NULL;
3593 lockdep_clear_current_reclaim_state();
3594 p->flags &= ~PF_MEMALLOC;
3595
3596 return nr_reclaimed;
3597}
3598#endif /* CONFIG_HIBERNATION */
3599
3600/* It's optimal to keep kswapds on the same CPUs as their memory, but
3601 not required for correctness. So if the last cpu in a node goes
3602 away, we get changed to run anywhere: as the first one comes back,
3603 restore their cpu bindings. */
3604static int kswapd_cpu_online(unsigned int cpu)
3605{
3606 int nid;
3607
3608 for_each_node_state(nid, N_MEMORY) {
3609 pg_data_t *pgdat = NODE_DATA(nid);
3610 const struct cpumask *mask;
3611
3612 mask = cpumask_of_node(pgdat->node_id);
3613
3614 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3615 /* One of our CPUs online: restore mask */
3616 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3617 }
3618 return 0;
3619}
3620
3621/*
3622 * This kswapd start function will be called by init and node-hot-add.
3623 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3624 */
3625int kswapd_run(int nid)
3626{
3627 pg_data_t *pgdat = NODE_DATA(nid);
3628 int ret = 0;
3629
3630 if (pgdat->kswapd)
3631 return 0;
3632
3633 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3634 if (IS_ERR(pgdat->kswapd)) {
3635 /* failure at boot is fatal */
3636 BUG_ON(system_state == SYSTEM_BOOTING);
3637 pr_err("Failed to start kswapd on node %d\n", nid);
3638 ret = PTR_ERR(pgdat->kswapd);
3639 pgdat->kswapd = NULL;
3640 }
3641 return ret;
3642}
3643
3644/*
3645 * Called by memory hotplug when all memory in a node is offlined. Caller must
3646 * hold mem_hotplug_begin/end().
3647 */
3648void kswapd_stop(int nid)
3649{
3650 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3651
3652 if (kswapd) {
3653 kthread_stop(kswapd);
3654 NODE_DATA(nid)->kswapd = NULL;
3655 }
3656}
3657
3658static int __init kswapd_init(void)
3659{
3660 int nid, ret;
3661
3662 swap_setup();
3663 for_each_node_state(nid, N_MEMORY)
3664 kswapd_run(nid);
3665 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3666 "mm/vmscan:online", kswapd_cpu_online,
3667 NULL);
3668 WARN_ON(ret < 0);
3669 return 0;
3670}
3671
3672module_init(kswapd_init)
3673
3674#ifdef CONFIG_NUMA
3675/*
3676 * Node reclaim mode
3677 *
3678 * If non-zero call node_reclaim when the number of free pages falls below
3679 * the watermarks.
3680 */
3681int node_reclaim_mode __read_mostly;
3682
3683#define RECLAIM_OFF 0
3684#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3685#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3686#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3687
3688/*
3689 * Priority for NODE_RECLAIM. This determines the fraction of pages
3690 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3691 * a zone.
3692 */
3693#define NODE_RECLAIM_PRIORITY 4
3694
3695/*
3696 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3697 * occur.
3698 */
3699int sysctl_min_unmapped_ratio = 1;
3700
3701/*
3702 * If the number of slab pages in a zone grows beyond this percentage then
3703 * slab reclaim needs to occur.
3704 */
3705int sysctl_min_slab_ratio = 5;
3706
3707static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3708{
3709 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3710 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3711 node_page_state(pgdat, NR_ACTIVE_FILE);
3712
3713 /*
3714 * It's possible for there to be more file mapped pages than
3715 * accounted for by the pages on the file LRU lists because
3716 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3717 */
3718 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3719}
3720
3721/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3722static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3723{
3724 unsigned long nr_pagecache_reclaimable;
3725 unsigned long delta = 0;
3726
3727 /*
3728 * If RECLAIM_UNMAP is set, then all file pages are considered
3729 * potentially reclaimable. Otherwise, we have to worry about
3730 * pages like swapcache and node_unmapped_file_pages() provides
3731 * a better estimate
3732 */
3733 if (node_reclaim_mode & RECLAIM_UNMAP)
3734 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3735 else
3736 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3737
3738 /* If we can't clean pages, remove dirty pages from consideration */
3739 if (!(node_reclaim_mode & RECLAIM_WRITE))
3740 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3741
3742 /* Watch for any possible underflows due to delta */
3743 if (unlikely(delta > nr_pagecache_reclaimable))
3744 delta = nr_pagecache_reclaimable;
3745
3746 return nr_pagecache_reclaimable - delta;
3747}
3748
3749/*
3750 * Try to free up some pages from this node through reclaim.
3751 */
3752static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3753{
3754 /* Minimum pages needed in order to stay on node */
3755 const unsigned long nr_pages = 1 << order;
3756 struct task_struct *p = current;
3757 struct reclaim_state reclaim_state;
3758 int classzone_idx = gfp_zone(gfp_mask);
3759 struct scan_control sc = {
3760 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3761 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3762 .order = order,
3763 .priority = NODE_RECLAIM_PRIORITY,
3764 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3765 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3766 .may_swap = 1,
3767 .reclaim_idx = classzone_idx,
3768 };
3769
3770 cond_resched();
3771 /*
3772 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3773 * and we also need to be able to write out pages for RECLAIM_WRITE
3774 * and RECLAIM_UNMAP.
3775 */
3776 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3777 lockdep_set_current_reclaim_state(gfp_mask);
3778 reclaim_state.reclaimed_slab = 0;
3779 p->reclaim_state = &reclaim_state;
3780
3781 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3782 /*
3783 * Free memory by calling shrink zone with increasing
3784 * priorities until we have enough memory freed.
3785 */
3786 do {
3787 shrink_node(pgdat, &sc);
3788 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3789 }
3790
3791 p->reclaim_state = NULL;
3792 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3793 lockdep_clear_current_reclaim_state();
3794 return sc.nr_reclaimed >= nr_pages;
3795}
3796
3797int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3798{
3799 int ret;
3800
3801 /*
3802 * Node reclaim reclaims unmapped file backed pages and
3803 * slab pages if we are over the defined limits.
3804 *
3805 * A small portion of unmapped file backed pages is needed for
3806 * file I/O otherwise pages read by file I/O will be immediately
3807 * thrown out if the node is overallocated. So we do not reclaim
3808 * if less than a specified percentage of the node is used by
3809 * unmapped file backed pages.
3810 */
3811 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3812 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3813 return NODE_RECLAIM_FULL;
3814
3815 if (!pgdat_reclaimable(pgdat))
3816 return NODE_RECLAIM_FULL;
3817
3818 /*
3819 * Do not scan if the allocation should not be delayed.
3820 */
3821 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3822 return NODE_RECLAIM_NOSCAN;
3823
3824 /*
3825 * Only run node reclaim on the local node or on nodes that do not
3826 * have associated processors. This will favor the local processor
3827 * over remote processors and spread off node memory allocations
3828 * as wide as possible.
3829 */
3830 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3831 return NODE_RECLAIM_NOSCAN;
3832
3833 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3834 return NODE_RECLAIM_NOSCAN;
3835
3836 ret = __node_reclaim(pgdat, gfp_mask, order);
3837 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3838
3839 if (!ret)
3840 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3841
3842 return ret;
3843}
3844#endif
3845
3846/*
3847 * page_evictable - test whether a page is evictable
3848 * @page: the page to test
3849 *
3850 * Test whether page is evictable--i.e., should be placed on active/inactive
3851 * lists vs unevictable list.
3852 *
3853 * Reasons page might not be evictable:
3854 * (1) page's mapping marked unevictable
3855 * (2) page is part of an mlocked VMA
3856 *
3857 */
3858int page_evictable(struct page *page)
3859{
3860 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3861}
3862
3863#ifdef CONFIG_SHMEM
3864/**
3865 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3866 * @pages: array of pages to check
3867 * @nr_pages: number of pages to check
3868 *
3869 * Checks pages for evictability and moves them to the appropriate lru list.
3870 *
3871 * This function is only used for SysV IPC SHM_UNLOCK.
3872 */
3873void check_move_unevictable_pages(struct page **pages, int nr_pages)
3874{
3875 struct lruvec *lruvec;
3876 struct pglist_data *pgdat = NULL;
3877 int pgscanned = 0;
3878 int pgrescued = 0;
3879 int i;
3880
3881 for (i = 0; i < nr_pages; i++) {
3882 struct page *page = pages[i];
3883 struct pglist_data *pagepgdat = page_pgdat(page);
3884
3885 pgscanned++;
3886 if (pagepgdat != pgdat) {
3887 if (pgdat)
3888 spin_unlock_irq(&pgdat->lru_lock);
3889 pgdat = pagepgdat;
3890 spin_lock_irq(&pgdat->lru_lock);
3891 }
3892 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3893
3894 if (!PageLRU(page) || !PageUnevictable(page))
3895 continue;
3896
3897 if (page_evictable(page)) {
3898 enum lru_list lru = page_lru_base_type(page);
3899
3900 VM_BUG_ON_PAGE(PageActive(page), page);
3901 ClearPageUnevictable(page);
3902 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3903 add_page_to_lru_list(page, lruvec, lru);
3904 pgrescued++;
3905 }
3906 }
3907
3908 if (pgdat) {
3909 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3910 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3911 spin_unlock_irq(&pgdat->lru_lock);
3912 }
3913}
3914#endif /* CONFIG_SHMEM */