| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 1993 Linus Torvalds |
| 4 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 |
| 5 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 |
| 6 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 |
| 7 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
| 8 | * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 |
| 9 | */ |
| 10 | |
| 11 | #include <linux/vmalloc.h> |
| 12 | #include <linux/mm.h> |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/highmem.h> |
| 15 | #include <linux/sched/signal.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/spinlock.h> |
| 18 | #include <linux/interrupt.h> |
| 19 | #include <linux/proc_fs.h> |
| 20 | #include <linux/seq_file.h> |
| 21 | #include <linux/set_memory.h> |
| 22 | #include <linux/debugobjects.h> |
| 23 | #include <linux/kallsyms.h> |
| 24 | #include <linux/list.h> |
| 25 | #include <linux/notifier.h> |
| 26 | #include <linux/rbtree.h> |
| 27 | #include <linux/xarray.h> |
| 28 | #include <linux/io.h> |
| 29 | #include <linux/rcupdate.h> |
| 30 | #include <linux/pfn.h> |
| 31 | #include <linux/kmemleak.h> |
| 32 | #include <linux/atomic.h> |
| 33 | #include <linux/compiler.h> |
| 34 | #include <linux/memcontrol.h> |
| 35 | #include <linux/llist.h> |
| 36 | #include <linux/uio.h> |
| 37 | #include <linux/bitops.h> |
| 38 | #include <linux/rbtree_augmented.h> |
| 39 | #include <linux/overflow.h> |
| 40 | #include <linux/pgtable.h> |
| 41 | #include <linux/hugetlb.h> |
| 42 | #include <linux/sched/mm.h> |
| 43 | #include <asm/tlbflush.h> |
| 44 | #include <asm/shmparam.h> |
| 45 | #include <linux/page_owner.h> |
| 46 | |
| 47 | #define CREATE_TRACE_POINTS |
| 48 | #include <trace/events/vmalloc.h> |
| 49 | |
| 50 | #include "internal.h" |
| 51 | #include "pgalloc-track.h" |
| 52 | |
| 53 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP |
| 54 | static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; |
| 55 | |
| 56 | static int __init set_nohugeiomap(char *str) |
| 57 | { |
| 58 | ioremap_max_page_shift = PAGE_SHIFT; |
| 59 | return 0; |
| 60 | } |
| 61 | early_param("nohugeiomap", set_nohugeiomap); |
| 62 | #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ |
| 63 | static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; |
| 64 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ |
| 65 | |
| 66 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC |
| 67 | static bool __ro_after_init vmap_allow_huge = true; |
| 68 | |
| 69 | static int __init set_nohugevmalloc(char *str) |
| 70 | { |
| 71 | vmap_allow_huge = false; |
| 72 | return 0; |
| 73 | } |
| 74 | early_param("nohugevmalloc", set_nohugevmalloc); |
| 75 | #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ |
| 76 | static const bool vmap_allow_huge = false; |
| 77 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ |
| 78 | |
| 79 | bool is_vmalloc_addr(const void *x) |
| 80 | { |
| 81 | unsigned long addr = (unsigned long)kasan_reset_tag(x); |
| 82 | |
| 83 | return addr >= VMALLOC_START && addr < VMALLOC_END; |
| 84 | } |
| 85 | EXPORT_SYMBOL(is_vmalloc_addr); |
| 86 | |
| 87 | struct vfree_deferred { |
| 88 | struct llist_head list; |
| 89 | struct work_struct wq; |
| 90 | }; |
| 91 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); |
| 92 | |
| 93 | /*** Page table manipulation functions ***/ |
| 94 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
| 95 | phys_addr_t phys_addr, pgprot_t prot, |
| 96 | unsigned int max_page_shift, pgtbl_mod_mask *mask) |
| 97 | { |
| 98 | pte_t *pte; |
| 99 | u64 pfn; |
| 100 | struct page *page; |
| 101 | unsigned long size = PAGE_SIZE; |
| 102 | |
| 103 | pfn = phys_addr >> PAGE_SHIFT; |
| 104 | pte = pte_alloc_kernel_track(pmd, addr, mask); |
| 105 | if (!pte) |
| 106 | return -ENOMEM; |
| 107 | |
| 108 | arch_enter_lazy_mmu_mode(); |
| 109 | |
| 110 | do { |
| 111 | if (unlikely(!pte_none(ptep_get(pte)))) { |
| 112 | if (pfn_valid(pfn)) { |
| 113 | page = pfn_to_page(pfn); |
| 114 | dump_page(page, "remapping already mapped page"); |
| 115 | } |
| 116 | BUG(); |
| 117 | } |
| 118 | |
| 119 | #ifdef CONFIG_HUGETLB_PAGE |
| 120 | size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); |
| 121 | if (size != PAGE_SIZE) { |
| 122 | pte_t entry = pfn_pte(pfn, prot); |
| 123 | |
| 124 | entry = arch_make_huge_pte(entry, ilog2(size), 0); |
| 125 | set_huge_pte_at(&init_mm, addr, pte, entry, size); |
| 126 | pfn += PFN_DOWN(size); |
| 127 | continue; |
| 128 | } |
| 129 | #endif |
| 130 | set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); |
| 131 | pfn++; |
| 132 | } while (pte += PFN_DOWN(size), addr += size, addr != end); |
| 133 | |
| 134 | arch_leave_lazy_mmu_mode(); |
| 135 | *mask |= PGTBL_PTE_MODIFIED; |
| 136 | return 0; |
| 137 | } |
| 138 | |
| 139 | static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, |
| 140 | phys_addr_t phys_addr, pgprot_t prot, |
| 141 | unsigned int max_page_shift) |
| 142 | { |
| 143 | if (max_page_shift < PMD_SHIFT) |
| 144 | return 0; |
| 145 | |
| 146 | if (!arch_vmap_pmd_supported(prot)) |
| 147 | return 0; |
| 148 | |
| 149 | if ((end - addr) != PMD_SIZE) |
| 150 | return 0; |
| 151 | |
| 152 | if (!IS_ALIGNED(addr, PMD_SIZE)) |
| 153 | return 0; |
| 154 | |
| 155 | if (!IS_ALIGNED(phys_addr, PMD_SIZE)) |
| 156 | return 0; |
| 157 | |
| 158 | if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) |
| 159 | return 0; |
| 160 | |
| 161 | return pmd_set_huge(pmd, phys_addr, prot); |
| 162 | } |
| 163 | |
| 164 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, |
| 165 | phys_addr_t phys_addr, pgprot_t prot, |
| 166 | unsigned int max_page_shift, pgtbl_mod_mask *mask) |
| 167 | { |
| 168 | pmd_t *pmd; |
| 169 | unsigned long next; |
| 170 | |
| 171 | pmd = pmd_alloc_track(&init_mm, pud, addr, mask); |
| 172 | if (!pmd) |
| 173 | return -ENOMEM; |
| 174 | do { |
| 175 | next = pmd_addr_end(addr, end); |
| 176 | |
| 177 | if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, |
| 178 | max_page_shift)) { |
| 179 | *mask |= PGTBL_PMD_MODIFIED; |
| 180 | continue; |
| 181 | } |
| 182 | |
| 183 | if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) |
| 184 | return -ENOMEM; |
| 185 | } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); |
| 186 | return 0; |
| 187 | } |
| 188 | |
| 189 | static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, |
| 190 | phys_addr_t phys_addr, pgprot_t prot, |
| 191 | unsigned int max_page_shift) |
| 192 | { |
| 193 | if (max_page_shift < PUD_SHIFT) |
| 194 | return 0; |
| 195 | |
| 196 | if (!arch_vmap_pud_supported(prot)) |
| 197 | return 0; |
| 198 | |
| 199 | if ((end - addr) != PUD_SIZE) |
| 200 | return 0; |
| 201 | |
| 202 | if (!IS_ALIGNED(addr, PUD_SIZE)) |
| 203 | return 0; |
| 204 | |
| 205 | if (!IS_ALIGNED(phys_addr, PUD_SIZE)) |
| 206 | return 0; |
| 207 | |
| 208 | if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) |
| 209 | return 0; |
| 210 | |
| 211 | return pud_set_huge(pud, phys_addr, prot); |
| 212 | } |
| 213 | |
| 214 | static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, |
| 215 | phys_addr_t phys_addr, pgprot_t prot, |
| 216 | unsigned int max_page_shift, pgtbl_mod_mask *mask) |
| 217 | { |
| 218 | pud_t *pud; |
| 219 | unsigned long next; |
| 220 | |
| 221 | pud = pud_alloc_track(&init_mm, p4d, addr, mask); |
| 222 | if (!pud) |
| 223 | return -ENOMEM; |
| 224 | do { |
| 225 | next = pud_addr_end(addr, end); |
| 226 | |
| 227 | if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, |
| 228 | max_page_shift)) { |
| 229 | *mask |= PGTBL_PUD_MODIFIED; |
| 230 | continue; |
| 231 | } |
| 232 | |
| 233 | if (vmap_pmd_range(pud, addr, next, phys_addr, prot, |
| 234 | max_page_shift, mask)) |
| 235 | return -ENOMEM; |
| 236 | } while (pud++, phys_addr += (next - addr), addr = next, addr != end); |
| 237 | return 0; |
| 238 | } |
| 239 | |
| 240 | static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, |
| 241 | phys_addr_t phys_addr, pgprot_t prot, |
| 242 | unsigned int max_page_shift) |
| 243 | { |
| 244 | if (max_page_shift < P4D_SHIFT) |
| 245 | return 0; |
| 246 | |
| 247 | if (!arch_vmap_p4d_supported(prot)) |
| 248 | return 0; |
| 249 | |
| 250 | if ((end - addr) != P4D_SIZE) |
| 251 | return 0; |
| 252 | |
| 253 | if (!IS_ALIGNED(addr, P4D_SIZE)) |
| 254 | return 0; |
| 255 | |
| 256 | if (!IS_ALIGNED(phys_addr, P4D_SIZE)) |
| 257 | return 0; |
| 258 | |
| 259 | if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) |
| 260 | return 0; |
| 261 | |
| 262 | return p4d_set_huge(p4d, phys_addr, prot); |
| 263 | } |
| 264 | |
| 265 | static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, |
| 266 | phys_addr_t phys_addr, pgprot_t prot, |
| 267 | unsigned int max_page_shift, pgtbl_mod_mask *mask) |
| 268 | { |
| 269 | p4d_t *p4d; |
| 270 | unsigned long next; |
| 271 | |
| 272 | p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); |
| 273 | if (!p4d) |
| 274 | return -ENOMEM; |
| 275 | do { |
| 276 | next = p4d_addr_end(addr, end); |
| 277 | |
| 278 | if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, |
| 279 | max_page_shift)) { |
| 280 | *mask |= PGTBL_P4D_MODIFIED; |
| 281 | continue; |
| 282 | } |
| 283 | |
| 284 | if (vmap_pud_range(p4d, addr, next, phys_addr, prot, |
| 285 | max_page_shift, mask)) |
| 286 | return -ENOMEM; |
| 287 | } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | static int vmap_range_noflush(unsigned long addr, unsigned long end, |
| 292 | phys_addr_t phys_addr, pgprot_t prot, |
| 293 | unsigned int max_page_shift) |
| 294 | { |
| 295 | pgd_t *pgd; |
| 296 | unsigned long start; |
| 297 | unsigned long next; |
| 298 | int err; |
| 299 | pgtbl_mod_mask mask = 0; |
| 300 | |
| 301 | might_sleep(); |
| 302 | BUG_ON(addr >= end); |
| 303 | |
| 304 | start = addr; |
| 305 | pgd = pgd_offset_k(addr); |
| 306 | do { |
| 307 | next = pgd_addr_end(addr, end); |
| 308 | err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, |
| 309 | max_page_shift, &mask); |
| 310 | if (err) |
| 311 | break; |
| 312 | } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); |
| 313 | |
| 314 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
| 315 | arch_sync_kernel_mappings(start, end); |
| 316 | |
| 317 | return err; |
| 318 | } |
| 319 | |
| 320 | int vmap_page_range(unsigned long addr, unsigned long end, |
| 321 | phys_addr_t phys_addr, pgprot_t prot) |
| 322 | { |
| 323 | int err; |
| 324 | |
| 325 | err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), |
| 326 | ioremap_max_page_shift); |
| 327 | flush_cache_vmap(addr, end); |
| 328 | if (!err) |
| 329 | err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, |
| 330 | ioremap_max_page_shift); |
| 331 | return err; |
| 332 | } |
| 333 | |
| 334 | int ioremap_page_range(unsigned long addr, unsigned long end, |
| 335 | phys_addr_t phys_addr, pgprot_t prot) |
| 336 | { |
| 337 | struct vm_struct *area; |
| 338 | |
| 339 | area = find_vm_area((void *)addr); |
| 340 | if (!area || !(area->flags & VM_IOREMAP)) { |
| 341 | WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); |
| 342 | return -EINVAL; |
| 343 | } |
| 344 | if (addr != (unsigned long)area->addr || |
| 345 | (void *)end != area->addr + get_vm_area_size(area)) { |
| 346 | WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", |
| 347 | addr, end, (long)area->addr, |
| 348 | (long)area->addr + get_vm_area_size(area)); |
| 349 | return -ERANGE; |
| 350 | } |
| 351 | return vmap_page_range(addr, end, phys_addr, prot); |
| 352 | } |
| 353 | |
| 354 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
| 355 | pgtbl_mod_mask *mask) |
| 356 | { |
| 357 | pte_t *pte; |
| 358 | pte_t ptent; |
| 359 | unsigned long size = PAGE_SIZE; |
| 360 | |
| 361 | pte = pte_offset_kernel(pmd, addr); |
| 362 | arch_enter_lazy_mmu_mode(); |
| 363 | |
| 364 | do { |
| 365 | #ifdef CONFIG_HUGETLB_PAGE |
| 366 | size = arch_vmap_pte_range_unmap_size(addr, pte); |
| 367 | if (size != PAGE_SIZE) { |
| 368 | if (WARN_ON(!IS_ALIGNED(addr, size))) { |
| 369 | addr = ALIGN_DOWN(addr, size); |
| 370 | pte = PTR_ALIGN_DOWN(pte, sizeof(*pte) * (size >> PAGE_SHIFT)); |
| 371 | } |
| 372 | ptent = huge_ptep_get_and_clear(&init_mm, addr, pte, size); |
| 373 | if (WARN_ON(end - addr < size)) |
| 374 | size = end - addr; |
| 375 | } else |
| 376 | #endif |
| 377 | ptent = ptep_get_and_clear(&init_mm, addr, pte); |
| 378 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); |
| 379 | } while (pte += (size >> PAGE_SHIFT), addr += size, addr != end); |
| 380 | |
| 381 | arch_leave_lazy_mmu_mode(); |
| 382 | *mask |= PGTBL_PTE_MODIFIED; |
| 383 | } |
| 384 | |
| 385 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, |
| 386 | pgtbl_mod_mask *mask) |
| 387 | { |
| 388 | pmd_t *pmd; |
| 389 | unsigned long next; |
| 390 | int cleared; |
| 391 | |
| 392 | pmd = pmd_offset(pud, addr); |
| 393 | do { |
| 394 | next = pmd_addr_end(addr, end); |
| 395 | |
| 396 | cleared = pmd_clear_huge(pmd); |
| 397 | if (cleared || pmd_bad(*pmd)) |
| 398 | *mask |= PGTBL_PMD_MODIFIED; |
| 399 | |
| 400 | if (cleared) { |
| 401 | WARN_ON(next - addr < PMD_SIZE); |
| 402 | continue; |
| 403 | } |
| 404 | if (pmd_none_or_clear_bad(pmd)) |
| 405 | continue; |
| 406 | vunmap_pte_range(pmd, addr, next, mask); |
| 407 | |
| 408 | cond_resched(); |
| 409 | } while (pmd++, addr = next, addr != end); |
| 410 | } |
| 411 | |
| 412 | static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, |
| 413 | pgtbl_mod_mask *mask) |
| 414 | { |
| 415 | pud_t *pud; |
| 416 | unsigned long next; |
| 417 | int cleared; |
| 418 | |
| 419 | pud = pud_offset(p4d, addr); |
| 420 | do { |
| 421 | next = pud_addr_end(addr, end); |
| 422 | |
| 423 | cleared = pud_clear_huge(pud); |
| 424 | if (cleared || pud_bad(*pud)) |
| 425 | *mask |= PGTBL_PUD_MODIFIED; |
| 426 | |
| 427 | if (cleared) { |
| 428 | WARN_ON(next - addr < PUD_SIZE); |
| 429 | continue; |
| 430 | } |
| 431 | if (pud_none_or_clear_bad(pud)) |
| 432 | continue; |
| 433 | vunmap_pmd_range(pud, addr, next, mask); |
| 434 | } while (pud++, addr = next, addr != end); |
| 435 | } |
| 436 | |
| 437 | static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, |
| 438 | pgtbl_mod_mask *mask) |
| 439 | { |
| 440 | p4d_t *p4d; |
| 441 | unsigned long next; |
| 442 | |
| 443 | p4d = p4d_offset(pgd, addr); |
| 444 | do { |
| 445 | next = p4d_addr_end(addr, end); |
| 446 | |
| 447 | p4d_clear_huge(p4d); |
| 448 | if (p4d_bad(*p4d)) |
| 449 | *mask |= PGTBL_P4D_MODIFIED; |
| 450 | |
| 451 | if (p4d_none_or_clear_bad(p4d)) |
| 452 | continue; |
| 453 | vunmap_pud_range(p4d, addr, next, mask); |
| 454 | } while (p4d++, addr = next, addr != end); |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | * vunmap_range_noflush is similar to vunmap_range, but does not |
| 459 | * flush caches or TLBs. |
| 460 | * |
| 461 | * The caller is responsible for calling flush_cache_vmap() before calling |
| 462 | * this function, and flush_tlb_kernel_range after it has returned |
| 463 | * successfully (and before the addresses are expected to cause a page fault |
| 464 | * or be re-mapped for something else, if TLB flushes are being delayed or |
| 465 | * coalesced). |
| 466 | * |
| 467 | * This is an internal function only. Do not use outside mm/. |
| 468 | */ |
| 469 | void __vunmap_range_noflush(unsigned long start, unsigned long end) |
| 470 | { |
| 471 | unsigned long next; |
| 472 | pgd_t *pgd; |
| 473 | unsigned long addr = start; |
| 474 | pgtbl_mod_mask mask = 0; |
| 475 | |
| 476 | BUG_ON(addr >= end); |
| 477 | pgd = pgd_offset_k(addr); |
| 478 | do { |
| 479 | next = pgd_addr_end(addr, end); |
| 480 | if (pgd_bad(*pgd)) |
| 481 | mask |= PGTBL_PGD_MODIFIED; |
| 482 | if (pgd_none_or_clear_bad(pgd)) |
| 483 | continue; |
| 484 | vunmap_p4d_range(pgd, addr, next, &mask); |
| 485 | } while (pgd++, addr = next, addr != end); |
| 486 | |
| 487 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
| 488 | arch_sync_kernel_mappings(start, end); |
| 489 | } |
| 490 | |
| 491 | void vunmap_range_noflush(unsigned long start, unsigned long end) |
| 492 | { |
| 493 | kmsan_vunmap_range_noflush(start, end); |
| 494 | __vunmap_range_noflush(start, end); |
| 495 | } |
| 496 | |
| 497 | /** |
| 498 | * vunmap_range - unmap kernel virtual addresses |
| 499 | * @addr: start of the VM area to unmap |
| 500 | * @end: end of the VM area to unmap (non-inclusive) |
| 501 | * |
| 502 | * Clears any present PTEs in the virtual address range, flushes TLBs and |
| 503 | * caches. Any subsequent access to the address before it has been re-mapped |
| 504 | * is a kernel bug. |
| 505 | */ |
| 506 | void vunmap_range(unsigned long addr, unsigned long end) |
| 507 | { |
| 508 | flush_cache_vunmap(addr, end); |
| 509 | vunmap_range_noflush(addr, end); |
| 510 | flush_tlb_kernel_range(addr, end); |
| 511 | } |
| 512 | |
| 513 | static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, |
| 514 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
| 515 | pgtbl_mod_mask *mask) |
| 516 | { |
| 517 | int err = 0; |
| 518 | pte_t *pte; |
| 519 | |
| 520 | /* |
| 521 | * nr is a running index into the array which helps higher level |
| 522 | * callers keep track of where we're up to. |
| 523 | */ |
| 524 | |
| 525 | pte = pte_alloc_kernel_track(pmd, addr, mask); |
| 526 | if (!pte) |
| 527 | return -ENOMEM; |
| 528 | |
| 529 | arch_enter_lazy_mmu_mode(); |
| 530 | |
| 531 | do { |
| 532 | struct page *page = pages[*nr]; |
| 533 | |
| 534 | if (WARN_ON(!pte_none(ptep_get(pte)))) { |
| 535 | err = -EBUSY; |
| 536 | break; |
| 537 | } |
| 538 | if (WARN_ON(!page)) { |
| 539 | err = -ENOMEM; |
| 540 | break; |
| 541 | } |
| 542 | if (WARN_ON(!pfn_valid(page_to_pfn(page)))) { |
| 543 | err = -EINVAL; |
| 544 | break; |
| 545 | } |
| 546 | |
| 547 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); |
| 548 | (*nr)++; |
| 549 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 550 | |
| 551 | arch_leave_lazy_mmu_mode(); |
| 552 | *mask |= PGTBL_PTE_MODIFIED; |
| 553 | |
| 554 | return err; |
| 555 | } |
| 556 | |
| 557 | static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, |
| 558 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
| 559 | pgtbl_mod_mask *mask) |
| 560 | { |
| 561 | pmd_t *pmd; |
| 562 | unsigned long next; |
| 563 | |
| 564 | pmd = pmd_alloc_track(&init_mm, pud, addr, mask); |
| 565 | if (!pmd) |
| 566 | return -ENOMEM; |
| 567 | do { |
| 568 | next = pmd_addr_end(addr, end); |
| 569 | if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) |
| 570 | return -ENOMEM; |
| 571 | } while (pmd++, addr = next, addr != end); |
| 572 | return 0; |
| 573 | } |
| 574 | |
| 575 | static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, |
| 576 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
| 577 | pgtbl_mod_mask *mask) |
| 578 | { |
| 579 | pud_t *pud; |
| 580 | unsigned long next; |
| 581 | |
| 582 | pud = pud_alloc_track(&init_mm, p4d, addr, mask); |
| 583 | if (!pud) |
| 584 | return -ENOMEM; |
| 585 | do { |
| 586 | next = pud_addr_end(addr, end); |
| 587 | if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) |
| 588 | return -ENOMEM; |
| 589 | } while (pud++, addr = next, addr != end); |
| 590 | return 0; |
| 591 | } |
| 592 | |
| 593 | static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, |
| 594 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
| 595 | pgtbl_mod_mask *mask) |
| 596 | { |
| 597 | p4d_t *p4d; |
| 598 | unsigned long next; |
| 599 | |
| 600 | p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); |
| 601 | if (!p4d) |
| 602 | return -ENOMEM; |
| 603 | do { |
| 604 | next = p4d_addr_end(addr, end); |
| 605 | if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) |
| 606 | return -ENOMEM; |
| 607 | } while (p4d++, addr = next, addr != end); |
| 608 | return 0; |
| 609 | } |
| 610 | |
| 611 | static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, |
| 612 | pgprot_t prot, struct page **pages) |
| 613 | { |
| 614 | unsigned long start = addr; |
| 615 | pgd_t *pgd; |
| 616 | unsigned long next; |
| 617 | int err = 0; |
| 618 | int nr = 0; |
| 619 | pgtbl_mod_mask mask = 0; |
| 620 | |
| 621 | BUG_ON(addr >= end); |
| 622 | pgd = pgd_offset_k(addr); |
| 623 | do { |
| 624 | next = pgd_addr_end(addr, end); |
| 625 | if (pgd_bad(*pgd)) |
| 626 | mask |= PGTBL_PGD_MODIFIED; |
| 627 | err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); |
| 628 | if (err) |
| 629 | break; |
| 630 | } while (pgd++, addr = next, addr != end); |
| 631 | |
| 632 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
| 633 | arch_sync_kernel_mappings(start, end); |
| 634 | |
| 635 | return err; |
| 636 | } |
| 637 | |
| 638 | /* |
| 639 | * vmap_pages_range_noflush is similar to vmap_pages_range, but does not |
| 640 | * flush caches. |
| 641 | * |
| 642 | * The caller is responsible for calling flush_cache_vmap() after this |
| 643 | * function returns successfully and before the addresses are accessed. |
| 644 | * |
| 645 | * This is an internal function only. Do not use outside mm/. |
| 646 | */ |
| 647 | int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, |
| 648 | pgprot_t prot, struct page **pages, unsigned int page_shift) |
| 649 | { |
| 650 | unsigned int i, nr = (end - addr) >> PAGE_SHIFT; |
| 651 | |
| 652 | WARN_ON(page_shift < PAGE_SHIFT); |
| 653 | |
| 654 | if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || |
| 655 | page_shift == PAGE_SHIFT) |
| 656 | return vmap_small_pages_range_noflush(addr, end, prot, pages); |
| 657 | |
| 658 | for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { |
| 659 | int err; |
| 660 | |
| 661 | err = vmap_range_noflush(addr, addr + (1UL << page_shift), |
| 662 | page_to_phys(pages[i]), prot, |
| 663 | page_shift); |
| 664 | if (err) |
| 665 | return err; |
| 666 | |
| 667 | addr += 1UL << page_shift; |
| 668 | } |
| 669 | |
| 670 | return 0; |
| 671 | } |
| 672 | |
| 673 | int vmap_pages_range_noflush(unsigned long addr, unsigned long end, |
| 674 | pgprot_t prot, struct page **pages, unsigned int page_shift) |
| 675 | { |
| 676 | int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, |
| 677 | page_shift); |
| 678 | |
| 679 | if (ret) |
| 680 | return ret; |
| 681 | return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); |
| 682 | } |
| 683 | |
| 684 | /** |
| 685 | * vmap_pages_range - map pages to a kernel virtual address |
| 686 | * @addr: start of the VM area to map |
| 687 | * @end: end of the VM area to map (non-inclusive) |
| 688 | * @prot: page protection flags to use |
| 689 | * @pages: pages to map (always PAGE_SIZE pages) |
| 690 | * @page_shift: maximum shift that the pages may be mapped with, @pages must |
| 691 | * be aligned and contiguous up to at least this shift. |
| 692 | * |
| 693 | * RETURNS: |
| 694 | * 0 on success, -errno on failure. |
| 695 | */ |
| 696 | int vmap_pages_range(unsigned long addr, unsigned long end, |
| 697 | pgprot_t prot, struct page **pages, unsigned int page_shift) |
| 698 | { |
| 699 | int err; |
| 700 | |
| 701 | err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); |
| 702 | flush_cache_vmap(addr, end); |
| 703 | return err; |
| 704 | } |
| 705 | |
| 706 | static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, |
| 707 | unsigned long end) |
| 708 | { |
| 709 | might_sleep(); |
| 710 | if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) |
| 711 | return -EINVAL; |
| 712 | if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) |
| 713 | return -EINVAL; |
| 714 | if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) |
| 715 | return -EINVAL; |
| 716 | if ((end - start) >> PAGE_SHIFT > totalram_pages()) |
| 717 | return -E2BIG; |
| 718 | if (start < (unsigned long)area->addr || |
| 719 | (void *)end > area->addr + get_vm_area_size(area)) |
| 720 | return -ERANGE; |
| 721 | return 0; |
| 722 | } |
| 723 | |
| 724 | /** |
| 725 | * vm_area_map_pages - map pages inside given sparse vm_area |
| 726 | * @area: vm_area |
| 727 | * @start: start address inside vm_area |
| 728 | * @end: end address inside vm_area |
| 729 | * @pages: pages to map (always PAGE_SIZE pages) |
| 730 | */ |
| 731 | int vm_area_map_pages(struct vm_struct *area, unsigned long start, |
| 732 | unsigned long end, struct page **pages) |
| 733 | { |
| 734 | int err; |
| 735 | |
| 736 | err = check_sparse_vm_area(area, start, end); |
| 737 | if (err) |
| 738 | return err; |
| 739 | |
| 740 | return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); |
| 741 | } |
| 742 | |
| 743 | /** |
| 744 | * vm_area_unmap_pages - unmap pages inside given sparse vm_area |
| 745 | * @area: vm_area |
| 746 | * @start: start address inside vm_area |
| 747 | * @end: end address inside vm_area |
| 748 | */ |
| 749 | void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, |
| 750 | unsigned long end) |
| 751 | { |
| 752 | if (check_sparse_vm_area(area, start, end)) |
| 753 | return; |
| 754 | |
| 755 | vunmap_range(start, end); |
| 756 | } |
| 757 | |
| 758 | int is_vmalloc_or_module_addr(const void *x) |
| 759 | { |
| 760 | /* |
| 761 | * ARM, x86-64 and sparc64 put modules in a special place, |
| 762 | * and fall back on vmalloc() if that fails. Others |
| 763 | * just put it in the vmalloc space. |
| 764 | */ |
| 765 | #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR) |
| 766 | unsigned long addr = (unsigned long)kasan_reset_tag(x); |
| 767 | if (addr >= MODULES_VADDR && addr < MODULES_END) |
| 768 | return 1; |
| 769 | #endif |
| 770 | return is_vmalloc_addr(x); |
| 771 | } |
| 772 | EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); |
| 773 | |
| 774 | /* |
| 775 | * Walk a vmap address to the struct page it maps. Huge vmap mappings will |
| 776 | * return the tail page that corresponds to the base page address, which |
| 777 | * matches small vmap mappings. |
| 778 | */ |
| 779 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
| 780 | { |
| 781 | unsigned long addr = (unsigned long) vmalloc_addr; |
| 782 | struct page *page = NULL; |
| 783 | pgd_t *pgd = pgd_offset_k(addr); |
| 784 | p4d_t *p4d; |
| 785 | pud_t *pud; |
| 786 | pmd_t *pmd; |
| 787 | pte_t *ptep, pte; |
| 788 | |
| 789 | /* |
| 790 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for |
| 791 | * architectures that do not vmalloc module space |
| 792 | */ |
| 793 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
| 794 | |
| 795 | if (pgd_none(*pgd)) |
| 796 | return NULL; |
| 797 | if (WARN_ON_ONCE(pgd_leaf(*pgd))) |
| 798 | return NULL; /* XXX: no allowance for huge pgd */ |
| 799 | if (WARN_ON_ONCE(pgd_bad(*pgd))) |
| 800 | return NULL; |
| 801 | |
| 802 | p4d = p4d_offset(pgd, addr); |
| 803 | if (p4d_none(*p4d)) |
| 804 | return NULL; |
| 805 | if (p4d_leaf(*p4d)) |
| 806 | return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); |
| 807 | if (WARN_ON_ONCE(p4d_bad(*p4d))) |
| 808 | return NULL; |
| 809 | |
| 810 | pud = pud_offset(p4d, addr); |
| 811 | if (pud_none(*pud)) |
| 812 | return NULL; |
| 813 | if (pud_leaf(*pud)) |
| 814 | return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
| 815 | if (WARN_ON_ONCE(pud_bad(*pud))) |
| 816 | return NULL; |
| 817 | |
| 818 | pmd = pmd_offset(pud, addr); |
| 819 | if (pmd_none(*pmd)) |
| 820 | return NULL; |
| 821 | if (pmd_leaf(*pmd)) |
| 822 | return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
| 823 | if (WARN_ON_ONCE(pmd_bad(*pmd))) |
| 824 | return NULL; |
| 825 | |
| 826 | ptep = pte_offset_kernel(pmd, addr); |
| 827 | pte = ptep_get(ptep); |
| 828 | if (pte_present(pte)) |
| 829 | page = pte_page(pte); |
| 830 | |
| 831 | return page; |
| 832 | } |
| 833 | EXPORT_SYMBOL(vmalloc_to_page); |
| 834 | |
| 835 | /* |
| 836 | * Map a vmalloc()-space virtual address to the physical page frame number. |
| 837 | */ |
| 838 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
| 839 | { |
| 840 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); |
| 841 | } |
| 842 | EXPORT_SYMBOL(vmalloc_to_pfn); |
| 843 | |
| 844 | |
| 845 | /*** Global kva allocator ***/ |
| 846 | |
| 847 | #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 |
| 848 | #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 |
| 849 | |
| 850 | |
| 851 | static DEFINE_SPINLOCK(free_vmap_area_lock); |
| 852 | static bool vmap_initialized __read_mostly; |
| 853 | |
| 854 | /* |
| 855 | * This kmem_cache is used for vmap_area objects. Instead of |
| 856 | * allocating from slab we reuse an object from this cache to |
| 857 | * make things faster. Especially in "no edge" splitting of |
| 858 | * free block. |
| 859 | */ |
| 860 | static struct kmem_cache *vmap_area_cachep; |
| 861 | |
| 862 | /* |
| 863 | * This linked list is used in pair with free_vmap_area_root. |
| 864 | * It gives O(1) access to prev/next to perform fast coalescing. |
| 865 | */ |
| 866 | static LIST_HEAD(free_vmap_area_list); |
| 867 | |
| 868 | /* |
| 869 | * This augment red-black tree represents the free vmap space. |
| 870 | * All vmap_area objects in this tree are sorted by va->va_start |
| 871 | * address. It is used for allocation and merging when a vmap |
| 872 | * object is released. |
| 873 | * |
| 874 | * Each vmap_area node contains a maximum available free block |
| 875 | * of its sub-tree, right or left. Therefore it is possible to |
| 876 | * find a lowest match of free area. |
| 877 | */ |
| 878 | static struct rb_root free_vmap_area_root = RB_ROOT; |
| 879 | |
| 880 | /* |
| 881 | * Preload a CPU with one object for "no edge" split case. The |
| 882 | * aim is to get rid of allocations from the atomic context, thus |
| 883 | * to use more permissive allocation masks. |
| 884 | */ |
| 885 | static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); |
| 886 | |
| 887 | /* |
| 888 | * This structure defines a single, solid model where a list and |
| 889 | * rb-tree are part of one entity protected by the lock. Nodes are |
| 890 | * sorted in ascending order, thus for O(1) access to left/right |
| 891 | * neighbors a list is used as well as for sequential traversal. |
| 892 | */ |
| 893 | struct rb_list { |
| 894 | struct rb_root root; |
| 895 | struct list_head head; |
| 896 | spinlock_t lock; |
| 897 | }; |
| 898 | |
| 899 | /* |
| 900 | * A fast size storage contains VAs up to 1M size. A pool consists |
| 901 | * of linked between each other ready to go VAs of certain sizes. |
| 902 | * An index in the pool-array corresponds to number of pages + 1. |
| 903 | */ |
| 904 | #define MAX_VA_SIZE_PAGES 256 |
| 905 | |
| 906 | struct vmap_pool { |
| 907 | struct list_head head; |
| 908 | unsigned long len; |
| 909 | }; |
| 910 | |
| 911 | /* |
| 912 | * An effective vmap-node logic. Users make use of nodes instead |
| 913 | * of a global heap. It allows to balance an access and mitigate |
| 914 | * contention. |
| 915 | */ |
| 916 | static struct vmap_node { |
| 917 | /* Simple size segregated storage. */ |
| 918 | struct vmap_pool pool[MAX_VA_SIZE_PAGES]; |
| 919 | spinlock_t pool_lock; |
| 920 | bool skip_populate; |
| 921 | |
| 922 | /* Bookkeeping data of this node. */ |
| 923 | struct rb_list busy; |
| 924 | struct rb_list lazy; |
| 925 | |
| 926 | /* |
| 927 | * Ready-to-free areas. |
| 928 | */ |
| 929 | struct list_head purge_list; |
| 930 | struct work_struct purge_work; |
| 931 | unsigned long nr_purged; |
| 932 | } single; |
| 933 | |
| 934 | /* |
| 935 | * Initial setup consists of one single node, i.e. a balancing |
| 936 | * is fully disabled. Later on, after vmap is initialized these |
| 937 | * parameters are updated based on a system capacity. |
| 938 | */ |
| 939 | static struct vmap_node *vmap_nodes = &single; |
| 940 | static __read_mostly unsigned int nr_vmap_nodes = 1; |
| 941 | static __read_mostly unsigned int vmap_zone_size = 1; |
| 942 | |
| 943 | /* A simple iterator over all vmap-nodes. */ |
| 944 | #define for_each_vmap_node(vn) \ |
| 945 | for ((vn) = &vmap_nodes[0]; \ |
| 946 | (vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++) |
| 947 | |
| 948 | static inline unsigned int |
| 949 | addr_to_node_id(unsigned long addr) |
| 950 | { |
| 951 | return (addr / vmap_zone_size) % nr_vmap_nodes; |
| 952 | } |
| 953 | |
| 954 | static inline struct vmap_node * |
| 955 | addr_to_node(unsigned long addr) |
| 956 | { |
| 957 | return &vmap_nodes[addr_to_node_id(addr)]; |
| 958 | } |
| 959 | |
| 960 | static inline struct vmap_node * |
| 961 | id_to_node(unsigned int id) |
| 962 | { |
| 963 | return &vmap_nodes[id % nr_vmap_nodes]; |
| 964 | } |
| 965 | |
| 966 | static inline unsigned int |
| 967 | node_to_id(struct vmap_node *node) |
| 968 | { |
| 969 | /* Pointer arithmetic. */ |
| 970 | unsigned int id = node - vmap_nodes; |
| 971 | |
| 972 | if (likely(id < nr_vmap_nodes)) |
| 973 | return id; |
| 974 | |
| 975 | WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node); |
| 976 | return 0; |
| 977 | } |
| 978 | |
| 979 | /* |
| 980 | * We use the value 0 to represent "no node", that is why |
| 981 | * an encoded value will be the node-id incremented by 1. |
| 982 | * It is always greater then 0. A valid node_id which can |
| 983 | * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id |
| 984 | * is not valid 0 is returned. |
| 985 | */ |
| 986 | static unsigned int |
| 987 | encode_vn_id(unsigned int node_id) |
| 988 | { |
| 989 | /* Can store U8_MAX [0:254] nodes. */ |
| 990 | if (node_id < nr_vmap_nodes) |
| 991 | return (node_id + 1) << BITS_PER_BYTE; |
| 992 | |
| 993 | /* Warn and no node encoded. */ |
| 994 | WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); |
| 995 | return 0; |
| 996 | } |
| 997 | |
| 998 | /* |
| 999 | * Returns an encoded node-id, the valid range is within |
| 1000 | * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is |
| 1001 | * returned if extracted data is wrong. |
| 1002 | */ |
| 1003 | static unsigned int |
| 1004 | decode_vn_id(unsigned int val) |
| 1005 | { |
| 1006 | unsigned int node_id = (val >> BITS_PER_BYTE) - 1; |
| 1007 | |
| 1008 | /* Can store U8_MAX [0:254] nodes. */ |
| 1009 | if (node_id < nr_vmap_nodes) |
| 1010 | return node_id; |
| 1011 | |
| 1012 | /* If it was _not_ zero, warn. */ |
| 1013 | WARN_ONCE(node_id != UINT_MAX, |
| 1014 | "Decode wrong node id (%d)\n", node_id); |
| 1015 | |
| 1016 | return nr_vmap_nodes; |
| 1017 | } |
| 1018 | |
| 1019 | static bool |
| 1020 | is_vn_id_valid(unsigned int node_id) |
| 1021 | { |
| 1022 | if (node_id < nr_vmap_nodes) |
| 1023 | return true; |
| 1024 | |
| 1025 | return false; |
| 1026 | } |
| 1027 | |
| 1028 | static __always_inline unsigned long |
| 1029 | va_size(struct vmap_area *va) |
| 1030 | { |
| 1031 | return (va->va_end - va->va_start); |
| 1032 | } |
| 1033 | |
| 1034 | static __always_inline unsigned long |
| 1035 | get_subtree_max_size(struct rb_node *node) |
| 1036 | { |
| 1037 | struct vmap_area *va; |
| 1038 | |
| 1039 | va = rb_entry_safe(node, struct vmap_area, rb_node); |
| 1040 | return va ? va->subtree_max_size : 0; |
| 1041 | } |
| 1042 | |
| 1043 | RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, |
| 1044 | struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) |
| 1045 | |
| 1046 | static void reclaim_and_purge_vmap_areas(void); |
| 1047 | static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); |
| 1048 | static void drain_vmap_area_work(struct work_struct *work); |
| 1049 | static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); |
| 1050 | |
| 1051 | static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages; |
| 1052 | static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr; |
| 1053 | |
| 1054 | unsigned long vmalloc_nr_pages(void) |
| 1055 | { |
| 1056 | return atomic_long_read(&nr_vmalloc_pages); |
| 1057 | } |
| 1058 | |
| 1059 | static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) |
| 1060 | { |
| 1061 | struct rb_node *n = root->rb_node; |
| 1062 | |
| 1063 | addr = (unsigned long)kasan_reset_tag((void *)addr); |
| 1064 | |
| 1065 | while (n) { |
| 1066 | struct vmap_area *va; |
| 1067 | |
| 1068 | va = rb_entry(n, struct vmap_area, rb_node); |
| 1069 | if (addr < va->va_start) |
| 1070 | n = n->rb_left; |
| 1071 | else if (addr >= va->va_end) |
| 1072 | n = n->rb_right; |
| 1073 | else |
| 1074 | return va; |
| 1075 | } |
| 1076 | |
| 1077 | return NULL; |
| 1078 | } |
| 1079 | |
| 1080 | /* Look up the first VA which satisfies addr < va_end, NULL if none. */ |
| 1081 | static struct vmap_area * |
| 1082 | __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) |
| 1083 | { |
| 1084 | struct vmap_area *va = NULL; |
| 1085 | struct rb_node *n = root->rb_node; |
| 1086 | |
| 1087 | addr = (unsigned long)kasan_reset_tag((void *)addr); |
| 1088 | |
| 1089 | while (n) { |
| 1090 | struct vmap_area *tmp; |
| 1091 | |
| 1092 | tmp = rb_entry(n, struct vmap_area, rb_node); |
| 1093 | if (tmp->va_end > addr) { |
| 1094 | va = tmp; |
| 1095 | if (tmp->va_start <= addr) |
| 1096 | break; |
| 1097 | |
| 1098 | n = n->rb_left; |
| 1099 | } else |
| 1100 | n = n->rb_right; |
| 1101 | } |
| 1102 | |
| 1103 | return va; |
| 1104 | } |
| 1105 | |
| 1106 | /* |
| 1107 | * Returns a node where a first VA, that satisfies addr < va_end, resides. |
| 1108 | * If success, a node is locked. A user is responsible to unlock it when a |
| 1109 | * VA is no longer needed to be accessed. |
| 1110 | * |
| 1111 | * Returns NULL if nothing found. |
| 1112 | */ |
| 1113 | static struct vmap_node * |
| 1114 | find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) |
| 1115 | { |
| 1116 | unsigned long va_start_lowest; |
| 1117 | struct vmap_node *vn; |
| 1118 | |
| 1119 | repeat: |
| 1120 | va_start_lowest = 0; |
| 1121 | |
| 1122 | for_each_vmap_node(vn) { |
| 1123 | spin_lock(&vn->busy.lock); |
| 1124 | *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); |
| 1125 | |
| 1126 | if (*va) |
| 1127 | if (!va_start_lowest || (*va)->va_start < va_start_lowest) |
| 1128 | va_start_lowest = (*va)->va_start; |
| 1129 | spin_unlock(&vn->busy.lock); |
| 1130 | } |
| 1131 | |
| 1132 | /* |
| 1133 | * Check if found VA exists, it might have gone away. In this case we |
| 1134 | * repeat the search because a VA has been removed concurrently and we |
| 1135 | * need to proceed to the next one, which is a rare case. |
| 1136 | */ |
| 1137 | if (va_start_lowest) { |
| 1138 | vn = addr_to_node(va_start_lowest); |
| 1139 | |
| 1140 | spin_lock(&vn->busy.lock); |
| 1141 | *va = __find_vmap_area(va_start_lowest, &vn->busy.root); |
| 1142 | |
| 1143 | if (*va) |
| 1144 | return vn; |
| 1145 | |
| 1146 | spin_unlock(&vn->busy.lock); |
| 1147 | goto repeat; |
| 1148 | } |
| 1149 | |
| 1150 | return NULL; |
| 1151 | } |
| 1152 | |
| 1153 | /* |
| 1154 | * This function returns back addresses of parent node |
| 1155 | * and its left or right link for further processing. |
| 1156 | * |
| 1157 | * Otherwise NULL is returned. In that case all further |
| 1158 | * steps regarding inserting of conflicting overlap range |
| 1159 | * have to be declined and actually considered as a bug. |
| 1160 | */ |
| 1161 | static __always_inline struct rb_node ** |
| 1162 | find_va_links(struct vmap_area *va, |
| 1163 | struct rb_root *root, struct rb_node *from, |
| 1164 | struct rb_node **parent) |
| 1165 | { |
| 1166 | struct vmap_area *tmp_va; |
| 1167 | struct rb_node **link; |
| 1168 | |
| 1169 | if (root) { |
| 1170 | link = &root->rb_node; |
| 1171 | if (unlikely(!*link)) { |
| 1172 | *parent = NULL; |
| 1173 | return link; |
| 1174 | } |
| 1175 | } else { |
| 1176 | link = &from; |
| 1177 | } |
| 1178 | |
| 1179 | /* |
| 1180 | * Go to the bottom of the tree. When we hit the last point |
| 1181 | * we end up with parent rb_node and correct direction, i name |
| 1182 | * it link, where the new va->rb_node will be attached to. |
| 1183 | */ |
| 1184 | do { |
| 1185 | tmp_va = rb_entry(*link, struct vmap_area, rb_node); |
| 1186 | |
| 1187 | /* |
| 1188 | * During the traversal we also do some sanity check. |
| 1189 | * Trigger the BUG() if there are sides(left/right) |
| 1190 | * or full overlaps. |
| 1191 | */ |
| 1192 | if (va->va_end <= tmp_va->va_start) |
| 1193 | link = &(*link)->rb_left; |
| 1194 | else if (va->va_start >= tmp_va->va_end) |
| 1195 | link = &(*link)->rb_right; |
| 1196 | else { |
| 1197 | WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", |
| 1198 | va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); |
| 1199 | |
| 1200 | return NULL; |
| 1201 | } |
| 1202 | } while (*link); |
| 1203 | |
| 1204 | *parent = &tmp_va->rb_node; |
| 1205 | return link; |
| 1206 | } |
| 1207 | |
| 1208 | static __always_inline struct list_head * |
| 1209 | get_va_next_sibling(struct rb_node *parent, struct rb_node **link) |
| 1210 | { |
| 1211 | struct list_head *list; |
| 1212 | |
| 1213 | if (unlikely(!parent)) |
| 1214 | /* |
| 1215 | * The red-black tree where we try to find VA neighbors |
| 1216 | * before merging or inserting is empty, i.e. it means |
| 1217 | * there is no free vmap space. Normally it does not |
| 1218 | * happen but we handle this case anyway. |
| 1219 | */ |
| 1220 | return NULL; |
| 1221 | |
| 1222 | list = &rb_entry(parent, struct vmap_area, rb_node)->list; |
| 1223 | return (&parent->rb_right == link ? list->next : list); |
| 1224 | } |
| 1225 | |
| 1226 | static __always_inline void |
| 1227 | __link_va(struct vmap_area *va, struct rb_root *root, |
| 1228 | struct rb_node *parent, struct rb_node **link, |
| 1229 | struct list_head *head, bool augment) |
| 1230 | { |
| 1231 | /* |
| 1232 | * VA is still not in the list, but we can |
| 1233 | * identify its future previous list_head node. |
| 1234 | */ |
| 1235 | if (likely(parent)) { |
| 1236 | head = &rb_entry(parent, struct vmap_area, rb_node)->list; |
| 1237 | if (&parent->rb_right != link) |
| 1238 | head = head->prev; |
| 1239 | } |
| 1240 | |
| 1241 | /* Insert to the rb-tree */ |
| 1242 | rb_link_node(&va->rb_node, parent, link); |
| 1243 | if (augment) { |
| 1244 | /* |
| 1245 | * Some explanation here. Just perform simple insertion |
| 1246 | * to the tree. We do not set va->subtree_max_size to |
| 1247 | * its current size before calling rb_insert_augmented(). |
| 1248 | * It is because we populate the tree from the bottom |
| 1249 | * to parent levels when the node _is_ in the tree. |
| 1250 | * |
| 1251 | * Therefore we set subtree_max_size to zero after insertion, |
| 1252 | * to let __augment_tree_propagate_from() puts everything to |
| 1253 | * the correct order later on. |
| 1254 | */ |
| 1255 | rb_insert_augmented(&va->rb_node, |
| 1256 | root, &free_vmap_area_rb_augment_cb); |
| 1257 | va->subtree_max_size = 0; |
| 1258 | } else { |
| 1259 | rb_insert_color(&va->rb_node, root); |
| 1260 | } |
| 1261 | |
| 1262 | /* Address-sort this list */ |
| 1263 | list_add(&va->list, head); |
| 1264 | } |
| 1265 | |
| 1266 | static __always_inline void |
| 1267 | link_va(struct vmap_area *va, struct rb_root *root, |
| 1268 | struct rb_node *parent, struct rb_node **link, |
| 1269 | struct list_head *head) |
| 1270 | { |
| 1271 | __link_va(va, root, parent, link, head, false); |
| 1272 | } |
| 1273 | |
| 1274 | static __always_inline void |
| 1275 | link_va_augment(struct vmap_area *va, struct rb_root *root, |
| 1276 | struct rb_node *parent, struct rb_node **link, |
| 1277 | struct list_head *head) |
| 1278 | { |
| 1279 | __link_va(va, root, parent, link, head, true); |
| 1280 | } |
| 1281 | |
| 1282 | static __always_inline void |
| 1283 | __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) |
| 1284 | { |
| 1285 | if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) |
| 1286 | return; |
| 1287 | |
| 1288 | if (augment) |
| 1289 | rb_erase_augmented(&va->rb_node, |
| 1290 | root, &free_vmap_area_rb_augment_cb); |
| 1291 | else |
| 1292 | rb_erase(&va->rb_node, root); |
| 1293 | |
| 1294 | list_del_init(&va->list); |
| 1295 | RB_CLEAR_NODE(&va->rb_node); |
| 1296 | } |
| 1297 | |
| 1298 | static __always_inline void |
| 1299 | unlink_va(struct vmap_area *va, struct rb_root *root) |
| 1300 | { |
| 1301 | __unlink_va(va, root, false); |
| 1302 | } |
| 1303 | |
| 1304 | static __always_inline void |
| 1305 | unlink_va_augment(struct vmap_area *va, struct rb_root *root) |
| 1306 | { |
| 1307 | __unlink_va(va, root, true); |
| 1308 | } |
| 1309 | |
| 1310 | #if DEBUG_AUGMENT_PROPAGATE_CHECK |
| 1311 | /* |
| 1312 | * Gets called when remove the node and rotate. |
| 1313 | */ |
| 1314 | static __always_inline unsigned long |
| 1315 | compute_subtree_max_size(struct vmap_area *va) |
| 1316 | { |
| 1317 | return max3(va_size(va), |
| 1318 | get_subtree_max_size(va->rb_node.rb_left), |
| 1319 | get_subtree_max_size(va->rb_node.rb_right)); |
| 1320 | } |
| 1321 | |
| 1322 | static void |
| 1323 | augment_tree_propagate_check(void) |
| 1324 | { |
| 1325 | struct vmap_area *va; |
| 1326 | unsigned long computed_size; |
| 1327 | |
| 1328 | list_for_each_entry(va, &free_vmap_area_list, list) { |
| 1329 | computed_size = compute_subtree_max_size(va); |
| 1330 | if (computed_size != va->subtree_max_size) |
| 1331 | pr_emerg("tree is corrupted: %lu, %lu\n", |
| 1332 | va_size(va), va->subtree_max_size); |
| 1333 | } |
| 1334 | } |
| 1335 | #endif |
| 1336 | |
| 1337 | /* |
| 1338 | * This function populates subtree_max_size from bottom to upper |
| 1339 | * levels starting from VA point. The propagation must be done |
| 1340 | * when VA size is modified by changing its va_start/va_end. Or |
| 1341 | * in case of newly inserting of VA to the tree. |
| 1342 | * |
| 1343 | * It means that __augment_tree_propagate_from() must be called: |
| 1344 | * - After VA has been inserted to the tree(free path); |
| 1345 | * - After VA has been shrunk(allocation path); |
| 1346 | * - After VA has been increased(merging path). |
| 1347 | * |
| 1348 | * Please note that, it does not mean that upper parent nodes |
| 1349 | * and their subtree_max_size are recalculated all the time up |
| 1350 | * to the root node. |
| 1351 | * |
| 1352 | * 4--8 |
| 1353 | * /\ |
| 1354 | * / \ |
| 1355 | * / \ |
| 1356 | * 2--2 8--8 |
| 1357 | * |
| 1358 | * For example if we modify the node 4, shrinking it to 2, then |
| 1359 | * no any modification is required. If we shrink the node 2 to 1 |
| 1360 | * its subtree_max_size is updated only, and set to 1. If we shrink |
| 1361 | * the node 8 to 6, then its subtree_max_size is set to 6 and parent |
| 1362 | * node becomes 4--6. |
| 1363 | */ |
| 1364 | static __always_inline void |
| 1365 | augment_tree_propagate_from(struct vmap_area *va) |
| 1366 | { |
| 1367 | /* |
| 1368 | * Populate the tree from bottom towards the root until |
| 1369 | * the calculated maximum available size of checked node |
| 1370 | * is equal to its current one. |
| 1371 | */ |
| 1372 | free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); |
| 1373 | |
| 1374 | #if DEBUG_AUGMENT_PROPAGATE_CHECK |
| 1375 | augment_tree_propagate_check(); |
| 1376 | #endif |
| 1377 | } |
| 1378 | |
| 1379 | static void |
| 1380 | insert_vmap_area(struct vmap_area *va, |
| 1381 | struct rb_root *root, struct list_head *head) |
| 1382 | { |
| 1383 | struct rb_node **link; |
| 1384 | struct rb_node *parent; |
| 1385 | |
| 1386 | link = find_va_links(va, root, NULL, &parent); |
| 1387 | if (link) |
| 1388 | link_va(va, root, parent, link, head); |
| 1389 | } |
| 1390 | |
| 1391 | static void |
| 1392 | insert_vmap_area_augment(struct vmap_area *va, |
| 1393 | struct rb_node *from, struct rb_root *root, |
| 1394 | struct list_head *head) |
| 1395 | { |
| 1396 | struct rb_node **link; |
| 1397 | struct rb_node *parent; |
| 1398 | |
| 1399 | if (from) |
| 1400 | link = find_va_links(va, NULL, from, &parent); |
| 1401 | else |
| 1402 | link = find_va_links(va, root, NULL, &parent); |
| 1403 | |
| 1404 | if (link) { |
| 1405 | link_va_augment(va, root, parent, link, head); |
| 1406 | augment_tree_propagate_from(va); |
| 1407 | } |
| 1408 | } |
| 1409 | |
| 1410 | /* |
| 1411 | * Merge de-allocated chunk of VA memory with previous |
| 1412 | * and next free blocks. If coalesce is not done a new |
| 1413 | * free area is inserted. If VA has been merged, it is |
| 1414 | * freed. |
| 1415 | * |
| 1416 | * Please note, it can return NULL in case of overlap |
| 1417 | * ranges, followed by WARN() report. Despite it is a |
| 1418 | * buggy behaviour, a system can be alive and keep |
| 1419 | * ongoing. |
| 1420 | */ |
| 1421 | static __always_inline struct vmap_area * |
| 1422 | __merge_or_add_vmap_area(struct vmap_area *va, |
| 1423 | struct rb_root *root, struct list_head *head, bool augment) |
| 1424 | { |
| 1425 | struct vmap_area *sibling; |
| 1426 | struct list_head *next; |
| 1427 | struct rb_node **link; |
| 1428 | struct rb_node *parent; |
| 1429 | bool merged = false; |
| 1430 | |
| 1431 | /* |
| 1432 | * Find a place in the tree where VA potentially will be |
| 1433 | * inserted, unless it is merged with its sibling/siblings. |
| 1434 | */ |
| 1435 | link = find_va_links(va, root, NULL, &parent); |
| 1436 | if (!link) |
| 1437 | return NULL; |
| 1438 | |
| 1439 | /* |
| 1440 | * Get next node of VA to check if merging can be done. |
| 1441 | */ |
| 1442 | next = get_va_next_sibling(parent, link); |
| 1443 | if (unlikely(next == NULL)) |
| 1444 | goto insert; |
| 1445 | |
| 1446 | /* |
| 1447 | * start end |
| 1448 | * | | |
| 1449 | * |<------VA------>|<-----Next----->| |
| 1450 | * | | |
| 1451 | * start end |
| 1452 | */ |
| 1453 | if (next != head) { |
| 1454 | sibling = list_entry(next, struct vmap_area, list); |
| 1455 | if (sibling->va_start == va->va_end) { |
| 1456 | sibling->va_start = va->va_start; |
| 1457 | |
| 1458 | /* Free vmap_area object. */ |
| 1459 | kmem_cache_free(vmap_area_cachep, va); |
| 1460 | |
| 1461 | /* Point to the new merged area. */ |
| 1462 | va = sibling; |
| 1463 | merged = true; |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | /* |
| 1468 | * start end |
| 1469 | * | | |
| 1470 | * |<-----Prev----->|<------VA------>| |
| 1471 | * | | |
| 1472 | * start end |
| 1473 | */ |
| 1474 | if (next->prev != head) { |
| 1475 | sibling = list_entry(next->prev, struct vmap_area, list); |
| 1476 | if (sibling->va_end == va->va_start) { |
| 1477 | /* |
| 1478 | * If both neighbors are coalesced, it is important |
| 1479 | * to unlink the "next" node first, followed by merging |
| 1480 | * with "previous" one. Otherwise the tree might not be |
| 1481 | * fully populated if a sibling's augmented value is |
| 1482 | * "normalized" because of rotation operations. |
| 1483 | */ |
| 1484 | if (merged) |
| 1485 | __unlink_va(va, root, augment); |
| 1486 | |
| 1487 | sibling->va_end = va->va_end; |
| 1488 | |
| 1489 | /* Free vmap_area object. */ |
| 1490 | kmem_cache_free(vmap_area_cachep, va); |
| 1491 | |
| 1492 | /* Point to the new merged area. */ |
| 1493 | va = sibling; |
| 1494 | merged = true; |
| 1495 | } |
| 1496 | } |
| 1497 | |
| 1498 | insert: |
| 1499 | if (!merged) |
| 1500 | __link_va(va, root, parent, link, head, augment); |
| 1501 | |
| 1502 | return va; |
| 1503 | } |
| 1504 | |
| 1505 | static __always_inline struct vmap_area * |
| 1506 | merge_or_add_vmap_area(struct vmap_area *va, |
| 1507 | struct rb_root *root, struct list_head *head) |
| 1508 | { |
| 1509 | return __merge_or_add_vmap_area(va, root, head, false); |
| 1510 | } |
| 1511 | |
| 1512 | static __always_inline struct vmap_area * |
| 1513 | merge_or_add_vmap_area_augment(struct vmap_area *va, |
| 1514 | struct rb_root *root, struct list_head *head) |
| 1515 | { |
| 1516 | va = __merge_or_add_vmap_area(va, root, head, true); |
| 1517 | if (va) |
| 1518 | augment_tree_propagate_from(va); |
| 1519 | |
| 1520 | return va; |
| 1521 | } |
| 1522 | |
| 1523 | static __always_inline bool |
| 1524 | is_within_this_va(struct vmap_area *va, unsigned long size, |
| 1525 | unsigned long align, unsigned long vstart) |
| 1526 | { |
| 1527 | unsigned long nva_start_addr; |
| 1528 | |
| 1529 | if (va->va_start > vstart) |
| 1530 | nva_start_addr = ALIGN(va->va_start, align); |
| 1531 | else |
| 1532 | nva_start_addr = ALIGN(vstart, align); |
| 1533 | |
| 1534 | /* Can be overflowed due to big size or alignment. */ |
| 1535 | if (nva_start_addr + size < nva_start_addr || |
| 1536 | nva_start_addr < vstart) |
| 1537 | return false; |
| 1538 | |
| 1539 | return (nva_start_addr + size <= va->va_end); |
| 1540 | } |
| 1541 | |
| 1542 | /* |
| 1543 | * Find the first free block(lowest start address) in the tree, |
| 1544 | * that will accomplish the request corresponding to passing |
| 1545 | * parameters. Please note, with an alignment bigger than PAGE_SIZE, |
| 1546 | * a search length is adjusted to account for worst case alignment |
| 1547 | * overhead. |
| 1548 | */ |
| 1549 | static __always_inline struct vmap_area * |
| 1550 | find_vmap_lowest_match(struct rb_root *root, unsigned long size, |
| 1551 | unsigned long align, unsigned long vstart, bool adjust_search_size) |
| 1552 | { |
| 1553 | struct vmap_area *va; |
| 1554 | struct rb_node *node; |
| 1555 | unsigned long length; |
| 1556 | |
| 1557 | /* Start from the root. */ |
| 1558 | node = root->rb_node; |
| 1559 | |
| 1560 | /* Adjust the search size for alignment overhead. */ |
| 1561 | length = adjust_search_size ? size + align - 1 : size; |
| 1562 | |
| 1563 | while (node) { |
| 1564 | va = rb_entry(node, struct vmap_area, rb_node); |
| 1565 | |
| 1566 | if (get_subtree_max_size(node->rb_left) >= length && |
| 1567 | vstart < va->va_start) { |
| 1568 | node = node->rb_left; |
| 1569 | } else { |
| 1570 | if (is_within_this_va(va, size, align, vstart)) |
| 1571 | return va; |
| 1572 | |
| 1573 | /* |
| 1574 | * Does not make sense to go deeper towards the right |
| 1575 | * sub-tree if it does not have a free block that is |
| 1576 | * equal or bigger to the requested search length. |
| 1577 | */ |
| 1578 | if (get_subtree_max_size(node->rb_right) >= length) { |
| 1579 | node = node->rb_right; |
| 1580 | continue; |
| 1581 | } |
| 1582 | |
| 1583 | /* |
| 1584 | * OK. We roll back and find the first right sub-tree, |
| 1585 | * that will satisfy the search criteria. It can happen |
| 1586 | * due to "vstart" restriction or an alignment overhead |
| 1587 | * that is bigger then PAGE_SIZE. |
| 1588 | */ |
| 1589 | while ((node = rb_parent(node))) { |
| 1590 | va = rb_entry(node, struct vmap_area, rb_node); |
| 1591 | if (is_within_this_va(va, size, align, vstart)) |
| 1592 | return va; |
| 1593 | |
| 1594 | if (get_subtree_max_size(node->rb_right) >= length && |
| 1595 | vstart <= va->va_start) { |
| 1596 | /* |
| 1597 | * Shift the vstart forward. Please note, we update it with |
| 1598 | * parent's start address adding "1" because we do not want |
| 1599 | * to enter same sub-tree after it has already been checked |
| 1600 | * and no suitable free block found there. |
| 1601 | */ |
| 1602 | vstart = va->va_start + 1; |
| 1603 | node = node->rb_right; |
| 1604 | break; |
| 1605 | } |
| 1606 | } |
| 1607 | } |
| 1608 | } |
| 1609 | |
| 1610 | return NULL; |
| 1611 | } |
| 1612 | |
| 1613 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK |
| 1614 | #include <linux/random.h> |
| 1615 | |
| 1616 | static struct vmap_area * |
| 1617 | find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, |
| 1618 | unsigned long align, unsigned long vstart) |
| 1619 | { |
| 1620 | struct vmap_area *va; |
| 1621 | |
| 1622 | list_for_each_entry(va, head, list) { |
| 1623 | if (!is_within_this_va(va, size, align, vstart)) |
| 1624 | continue; |
| 1625 | |
| 1626 | return va; |
| 1627 | } |
| 1628 | |
| 1629 | return NULL; |
| 1630 | } |
| 1631 | |
| 1632 | static void |
| 1633 | find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, |
| 1634 | unsigned long size, unsigned long align) |
| 1635 | { |
| 1636 | struct vmap_area *va_1, *va_2; |
| 1637 | unsigned long vstart; |
| 1638 | unsigned int rnd; |
| 1639 | |
| 1640 | get_random_bytes(&rnd, sizeof(rnd)); |
| 1641 | vstart = VMALLOC_START + rnd; |
| 1642 | |
| 1643 | va_1 = find_vmap_lowest_match(root, size, align, vstart, false); |
| 1644 | va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); |
| 1645 | |
| 1646 | if (va_1 != va_2) |
| 1647 | pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", |
| 1648 | va_1, va_2, vstart); |
| 1649 | } |
| 1650 | #endif |
| 1651 | |
| 1652 | enum fit_type { |
| 1653 | NOTHING_FIT = 0, |
| 1654 | FL_FIT_TYPE = 1, /* full fit */ |
| 1655 | LE_FIT_TYPE = 2, /* left edge fit */ |
| 1656 | RE_FIT_TYPE = 3, /* right edge fit */ |
| 1657 | NE_FIT_TYPE = 4 /* no edge fit */ |
| 1658 | }; |
| 1659 | |
| 1660 | static __always_inline enum fit_type |
| 1661 | classify_va_fit_type(struct vmap_area *va, |
| 1662 | unsigned long nva_start_addr, unsigned long size) |
| 1663 | { |
| 1664 | enum fit_type type; |
| 1665 | |
| 1666 | /* Check if it is within VA. */ |
| 1667 | if (nva_start_addr < va->va_start || |
| 1668 | nva_start_addr + size > va->va_end) |
| 1669 | return NOTHING_FIT; |
| 1670 | |
| 1671 | /* Now classify. */ |
| 1672 | if (va->va_start == nva_start_addr) { |
| 1673 | if (va->va_end == nva_start_addr + size) |
| 1674 | type = FL_FIT_TYPE; |
| 1675 | else |
| 1676 | type = LE_FIT_TYPE; |
| 1677 | } else if (va->va_end == nva_start_addr + size) { |
| 1678 | type = RE_FIT_TYPE; |
| 1679 | } else { |
| 1680 | type = NE_FIT_TYPE; |
| 1681 | } |
| 1682 | |
| 1683 | return type; |
| 1684 | } |
| 1685 | |
| 1686 | static __always_inline int |
| 1687 | va_clip(struct rb_root *root, struct list_head *head, |
| 1688 | struct vmap_area *va, unsigned long nva_start_addr, |
| 1689 | unsigned long size) |
| 1690 | { |
| 1691 | struct vmap_area *lva = NULL; |
| 1692 | enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); |
| 1693 | |
| 1694 | if (type == FL_FIT_TYPE) { |
| 1695 | /* |
| 1696 | * No need to split VA, it fully fits. |
| 1697 | * |
| 1698 | * | | |
| 1699 | * V NVA V |
| 1700 | * |---------------| |
| 1701 | */ |
| 1702 | unlink_va_augment(va, root); |
| 1703 | kmem_cache_free(vmap_area_cachep, va); |
| 1704 | } else if (type == LE_FIT_TYPE) { |
| 1705 | /* |
| 1706 | * Split left edge of fit VA. |
| 1707 | * |
| 1708 | * | | |
| 1709 | * V NVA V R |
| 1710 | * |-------|-------| |
| 1711 | */ |
| 1712 | va->va_start += size; |
| 1713 | } else if (type == RE_FIT_TYPE) { |
| 1714 | /* |
| 1715 | * Split right edge of fit VA. |
| 1716 | * |
| 1717 | * | | |
| 1718 | * L V NVA V |
| 1719 | * |-------|-------| |
| 1720 | */ |
| 1721 | va->va_end = nva_start_addr; |
| 1722 | } else if (type == NE_FIT_TYPE) { |
| 1723 | /* |
| 1724 | * Split no edge of fit VA. |
| 1725 | * |
| 1726 | * | | |
| 1727 | * L V NVA V R |
| 1728 | * |---|-------|---| |
| 1729 | */ |
| 1730 | lva = __this_cpu_xchg(ne_fit_preload_node, NULL); |
| 1731 | if (unlikely(!lva)) { |
| 1732 | /* |
| 1733 | * For percpu allocator we do not do any pre-allocation |
| 1734 | * and leave it as it is. The reason is it most likely |
| 1735 | * never ends up with NE_FIT_TYPE splitting. In case of |
| 1736 | * percpu allocations offsets and sizes are aligned to |
| 1737 | * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE |
| 1738 | * are its main fitting cases. |
| 1739 | * |
| 1740 | * There are a few exceptions though, as an example it is |
| 1741 | * a first allocation (early boot up) when we have "one" |
| 1742 | * big free space that has to be split. |
| 1743 | * |
| 1744 | * Also we can hit this path in case of regular "vmap" |
| 1745 | * allocations, if "this" current CPU was not preloaded. |
| 1746 | * See the comment in alloc_vmap_area() why. If so, then |
| 1747 | * GFP_NOWAIT is used instead to get an extra object for |
| 1748 | * split purpose. That is rare and most time does not |
| 1749 | * occur. |
| 1750 | * |
| 1751 | * What happens if an allocation gets failed. Basically, |
| 1752 | * an "overflow" path is triggered to purge lazily freed |
| 1753 | * areas to free some memory, then, the "retry" path is |
| 1754 | * triggered to repeat one more time. See more details |
| 1755 | * in alloc_vmap_area() function. |
| 1756 | */ |
| 1757 | lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); |
| 1758 | if (!lva) |
| 1759 | return -ENOMEM; |
| 1760 | } |
| 1761 | |
| 1762 | /* |
| 1763 | * Build the remainder. |
| 1764 | */ |
| 1765 | lva->va_start = va->va_start; |
| 1766 | lva->va_end = nva_start_addr; |
| 1767 | |
| 1768 | /* |
| 1769 | * Shrink this VA to remaining size. |
| 1770 | */ |
| 1771 | va->va_start = nva_start_addr + size; |
| 1772 | } else { |
| 1773 | return -EINVAL; |
| 1774 | } |
| 1775 | |
| 1776 | if (type != FL_FIT_TYPE) { |
| 1777 | augment_tree_propagate_from(va); |
| 1778 | |
| 1779 | if (lva) /* type == NE_FIT_TYPE */ |
| 1780 | insert_vmap_area_augment(lva, &va->rb_node, root, head); |
| 1781 | } |
| 1782 | |
| 1783 | return 0; |
| 1784 | } |
| 1785 | |
| 1786 | static unsigned long |
| 1787 | va_alloc(struct vmap_area *va, |
| 1788 | struct rb_root *root, struct list_head *head, |
| 1789 | unsigned long size, unsigned long align, |
| 1790 | unsigned long vstart, unsigned long vend) |
| 1791 | { |
| 1792 | unsigned long nva_start_addr; |
| 1793 | int ret; |
| 1794 | |
| 1795 | if (va->va_start > vstart) |
| 1796 | nva_start_addr = ALIGN(va->va_start, align); |
| 1797 | else |
| 1798 | nva_start_addr = ALIGN(vstart, align); |
| 1799 | |
| 1800 | /* Check the "vend" restriction. */ |
| 1801 | if (nva_start_addr + size > vend) |
| 1802 | return -ERANGE; |
| 1803 | |
| 1804 | /* Update the free vmap_area. */ |
| 1805 | ret = va_clip(root, head, va, nva_start_addr, size); |
| 1806 | if (WARN_ON_ONCE(ret)) |
| 1807 | return ret; |
| 1808 | |
| 1809 | return nva_start_addr; |
| 1810 | } |
| 1811 | |
| 1812 | /* |
| 1813 | * Returns a start address of the newly allocated area, if success. |
| 1814 | * Otherwise an error value is returned that indicates failure. |
| 1815 | */ |
| 1816 | static __always_inline unsigned long |
| 1817 | __alloc_vmap_area(struct rb_root *root, struct list_head *head, |
| 1818 | unsigned long size, unsigned long align, |
| 1819 | unsigned long vstart, unsigned long vend) |
| 1820 | { |
| 1821 | bool adjust_search_size = true; |
| 1822 | unsigned long nva_start_addr; |
| 1823 | struct vmap_area *va; |
| 1824 | |
| 1825 | /* |
| 1826 | * Do not adjust when: |
| 1827 | * a) align <= PAGE_SIZE, because it does not make any sense. |
| 1828 | * All blocks(their start addresses) are at least PAGE_SIZE |
| 1829 | * aligned anyway; |
| 1830 | * b) a short range where a requested size corresponds to exactly |
| 1831 | * specified [vstart:vend] interval and an alignment > PAGE_SIZE. |
| 1832 | * With adjusted search length an allocation would not succeed. |
| 1833 | */ |
| 1834 | if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) |
| 1835 | adjust_search_size = false; |
| 1836 | |
| 1837 | va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); |
| 1838 | if (unlikely(!va)) |
| 1839 | return -ENOENT; |
| 1840 | |
| 1841 | nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); |
| 1842 | |
| 1843 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK |
| 1844 | if (!IS_ERR_VALUE(nva_start_addr)) |
| 1845 | find_vmap_lowest_match_check(root, head, size, align); |
| 1846 | #endif |
| 1847 | |
| 1848 | return nva_start_addr; |
| 1849 | } |
| 1850 | |
| 1851 | /* |
| 1852 | * Free a region of KVA allocated by alloc_vmap_area |
| 1853 | */ |
| 1854 | static void free_vmap_area(struct vmap_area *va) |
| 1855 | { |
| 1856 | struct vmap_node *vn = addr_to_node(va->va_start); |
| 1857 | |
| 1858 | /* |
| 1859 | * Remove from the busy tree/list. |
| 1860 | */ |
| 1861 | spin_lock(&vn->busy.lock); |
| 1862 | unlink_va(va, &vn->busy.root); |
| 1863 | spin_unlock(&vn->busy.lock); |
| 1864 | |
| 1865 | /* |
| 1866 | * Insert/Merge it back to the free tree/list. |
| 1867 | */ |
| 1868 | spin_lock(&free_vmap_area_lock); |
| 1869 | merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); |
| 1870 | spin_unlock(&free_vmap_area_lock); |
| 1871 | } |
| 1872 | |
| 1873 | static inline void |
| 1874 | preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) |
| 1875 | { |
| 1876 | struct vmap_area *va = NULL, *tmp; |
| 1877 | |
| 1878 | /* |
| 1879 | * Preload this CPU with one extra vmap_area object. It is used |
| 1880 | * when fit type of free area is NE_FIT_TYPE. It guarantees that |
| 1881 | * a CPU that does an allocation is preloaded. |
| 1882 | * |
| 1883 | * We do it in non-atomic context, thus it allows us to use more |
| 1884 | * permissive allocation masks to be more stable under low memory |
| 1885 | * condition and high memory pressure. |
| 1886 | */ |
| 1887 | if (!this_cpu_read(ne_fit_preload_node)) |
| 1888 | va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); |
| 1889 | |
| 1890 | spin_lock(lock); |
| 1891 | |
| 1892 | tmp = NULL; |
| 1893 | if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va)) |
| 1894 | kmem_cache_free(vmap_area_cachep, va); |
| 1895 | } |
| 1896 | |
| 1897 | static struct vmap_pool * |
| 1898 | size_to_va_pool(struct vmap_node *vn, unsigned long size) |
| 1899 | { |
| 1900 | unsigned int idx = (size - 1) / PAGE_SIZE; |
| 1901 | |
| 1902 | if (idx < MAX_VA_SIZE_PAGES) |
| 1903 | return &vn->pool[idx]; |
| 1904 | |
| 1905 | return NULL; |
| 1906 | } |
| 1907 | |
| 1908 | static bool |
| 1909 | node_pool_add_va(struct vmap_node *n, struct vmap_area *va) |
| 1910 | { |
| 1911 | struct vmap_pool *vp; |
| 1912 | |
| 1913 | vp = size_to_va_pool(n, va_size(va)); |
| 1914 | if (!vp) |
| 1915 | return false; |
| 1916 | |
| 1917 | spin_lock(&n->pool_lock); |
| 1918 | list_add(&va->list, &vp->head); |
| 1919 | WRITE_ONCE(vp->len, vp->len + 1); |
| 1920 | spin_unlock(&n->pool_lock); |
| 1921 | |
| 1922 | return true; |
| 1923 | } |
| 1924 | |
| 1925 | static struct vmap_area * |
| 1926 | node_pool_del_va(struct vmap_node *vn, unsigned long size, |
| 1927 | unsigned long align, unsigned long vstart, |
| 1928 | unsigned long vend) |
| 1929 | { |
| 1930 | struct vmap_area *va = NULL; |
| 1931 | struct vmap_pool *vp; |
| 1932 | int err = 0; |
| 1933 | |
| 1934 | vp = size_to_va_pool(vn, size); |
| 1935 | if (!vp || list_empty(&vp->head)) |
| 1936 | return NULL; |
| 1937 | |
| 1938 | spin_lock(&vn->pool_lock); |
| 1939 | if (!list_empty(&vp->head)) { |
| 1940 | va = list_first_entry(&vp->head, struct vmap_area, list); |
| 1941 | |
| 1942 | if (IS_ALIGNED(va->va_start, align)) { |
| 1943 | /* |
| 1944 | * Do some sanity check and emit a warning |
| 1945 | * if one of below checks detects an error. |
| 1946 | */ |
| 1947 | err |= (va_size(va) != size); |
| 1948 | err |= (va->va_start < vstart); |
| 1949 | err |= (va->va_end > vend); |
| 1950 | |
| 1951 | if (!WARN_ON_ONCE(err)) { |
| 1952 | list_del_init(&va->list); |
| 1953 | WRITE_ONCE(vp->len, vp->len - 1); |
| 1954 | } else { |
| 1955 | va = NULL; |
| 1956 | } |
| 1957 | } else { |
| 1958 | list_move_tail(&va->list, &vp->head); |
| 1959 | va = NULL; |
| 1960 | } |
| 1961 | } |
| 1962 | spin_unlock(&vn->pool_lock); |
| 1963 | |
| 1964 | return va; |
| 1965 | } |
| 1966 | |
| 1967 | static struct vmap_area * |
| 1968 | node_alloc(unsigned long size, unsigned long align, |
| 1969 | unsigned long vstart, unsigned long vend, |
| 1970 | unsigned long *addr, unsigned int *vn_id) |
| 1971 | { |
| 1972 | struct vmap_area *va; |
| 1973 | |
| 1974 | *vn_id = 0; |
| 1975 | *addr = -EINVAL; |
| 1976 | |
| 1977 | /* |
| 1978 | * Fallback to a global heap if not vmalloc or there |
| 1979 | * is only one node. |
| 1980 | */ |
| 1981 | if (vstart != VMALLOC_START || vend != VMALLOC_END || |
| 1982 | nr_vmap_nodes == 1) |
| 1983 | return NULL; |
| 1984 | |
| 1985 | *vn_id = raw_smp_processor_id() % nr_vmap_nodes; |
| 1986 | va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); |
| 1987 | *vn_id = encode_vn_id(*vn_id); |
| 1988 | |
| 1989 | if (va) |
| 1990 | *addr = va->va_start; |
| 1991 | |
| 1992 | return va; |
| 1993 | } |
| 1994 | |
| 1995 | static inline void setup_vmalloc_vm(struct vm_struct *vm, |
| 1996 | struct vmap_area *va, unsigned long flags, const void *caller) |
| 1997 | { |
| 1998 | vm->flags = flags; |
| 1999 | vm->addr = (void *)va->va_start; |
| 2000 | vm->size = vm->requested_size = va_size(va); |
| 2001 | vm->caller = caller; |
| 2002 | va->vm = vm; |
| 2003 | } |
| 2004 | |
| 2005 | /* |
| 2006 | * Allocate a region of KVA of the specified size and alignment, within the |
| 2007 | * vstart and vend. If vm is passed in, the two will also be bound. |
| 2008 | */ |
| 2009 | static struct vmap_area *alloc_vmap_area(unsigned long size, |
| 2010 | unsigned long align, |
| 2011 | unsigned long vstart, unsigned long vend, |
| 2012 | int node, gfp_t gfp_mask, |
| 2013 | unsigned long va_flags, struct vm_struct *vm) |
| 2014 | { |
| 2015 | struct vmap_node *vn; |
| 2016 | struct vmap_area *va; |
| 2017 | unsigned long freed; |
| 2018 | unsigned long addr; |
| 2019 | unsigned int vn_id; |
| 2020 | int purged = 0; |
| 2021 | int ret; |
| 2022 | |
| 2023 | if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) |
| 2024 | return ERR_PTR(-EINVAL); |
| 2025 | |
| 2026 | if (unlikely(!vmap_initialized)) |
| 2027 | return ERR_PTR(-EBUSY); |
| 2028 | |
| 2029 | might_sleep(); |
| 2030 | |
| 2031 | /* |
| 2032 | * If a VA is obtained from a global heap(if it fails here) |
| 2033 | * it is anyway marked with this "vn_id" so it is returned |
| 2034 | * to this pool's node later. Such way gives a possibility |
| 2035 | * to populate pools based on users demand. |
| 2036 | * |
| 2037 | * On success a ready to go VA is returned. |
| 2038 | */ |
| 2039 | va = node_alloc(size, align, vstart, vend, &addr, &vn_id); |
| 2040 | if (!va) { |
| 2041 | gfp_mask = gfp_mask & GFP_RECLAIM_MASK; |
| 2042 | |
| 2043 | va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); |
| 2044 | if (unlikely(!va)) |
| 2045 | return ERR_PTR(-ENOMEM); |
| 2046 | |
| 2047 | /* |
| 2048 | * Only scan the relevant parts containing pointers to other objects |
| 2049 | * to avoid false negatives. |
| 2050 | */ |
| 2051 | kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); |
| 2052 | } |
| 2053 | |
| 2054 | retry: |
| 2055 | if (IS_ERR_VALUE(addr)) { |
| 2056 | preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); |
| 2057 | addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, |
| 2058 | size, align, vstart, vend); |
| 2059 | spin_unlock(&free_vmap_area_lock); |
| 2060 | } |
| 2061 | |
| 2062 | trace_alloc_vmap_area(addr, size, align, vstart, vend, IS_ERR_VALUE(addr)); |
| 2063 | |
| 2064 | /* |
| 2065 | * If an allocation fails, the error value is |
| 2066 | * returned. Therefore trigger the overflow path. |
| 2067 | */ |
| 2068 | if (IS_ERR_VALUE(addr)) |
| 2069 | goto overflow; |
| 2070 | |
| 2071 | va->va_start = addr; |
| 2072 | va->va_end = addr + size; |
| 2073 | va->vm = NULL; |
| 2074 | va->flags = (va_flags | vn_id); |
| 2075 | |
| 2076 | if (vm) { |
| 2077 | vm->addr = (void *)va->va_start; |
| 2078 | vm->size = va_size(va); |
| 2079 | va->vm = vm; |
| 2080 | } |
| 2081 | |
| 2082 | vn = addr_to_node(va->va_start); |
| 2083 | |
| 2084 | spin_lock(&vn->busy.lock); |
| 2085 | insert_vmap_area(va, &vn->busy.root, &vn->busy.head); |
| 2086 | spin_unlock(&vn->busy.lock); |
| 2087 | |
| 2088 | BUG_ON(!IS_ALIGNED(va->va_start, align)); |
| 2089 | BUG_ON(va->va_start < vstart); |
| 2090 | BUG_ON(va->va_end > vend); |
| 2091 | |
| 2092 | ret = kasan_populate_vmalloc(addr, size); |
| 2093 | if (ret) { |
| 2094 | free_vmap_area(va); |
| 2095 | return ERR_PTR(ret); |
| 2096 | } |
| 2097 | |
| 2098 | return va; |
| 2099 | |
| 2100 | overflow: |
| 2101 | if (!purged) { |
| 2102 | reclaim_and_purge_vmap_areas(); |
| 2103 | purged = 1; |
| 2104 | goto retry; |
| 2105 | } |
| 2106 | |
| 2107 | freed = 0; |
| 2108 | blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); |
| 2109 | |
| 2110 | if (freed > 0) { |
| 2111 | purged = 0; |
| 2112 | goto retry; |
| 2113 | } |
| 2114 | |
| 2115 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) |
| 2116 | pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n", |
| 2117 | size, vstart, vend); |
| 2118 | |
| 2119 | kmem_cache_free(vmap_area_cachep, va); |
| 2120 | return ERR_PTR(-EBUSY); |
| 2121 | } |
| 2122 | |
| 2123 | int register_vmap_purge_notifier(struct notifier_block *nb) |
| 2124 | { |
| 2125 | return blocking_notifier_chain_register(&vmap_notify_list, nb); |
| 2126 | } |
| 2127 | EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); |
| 2128 | |
| 2129 | int unregister_vmap_purge_notifier(struct notifier_block *nb) |
| 2130 | { |
| 2131 | return blocking_notifier_chain_unregister(&vmap_notify_list, nb); |
| 2132 | } |
| 2133 | EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); |
| 2134 | |
| 2135 | /* |
| 2136 | * lazy_max_pages is the maximum amount of virtual address space we gather up |
| 2137 | * before attempting to purge with a TLB flush. |
| 2138 | * |
| 2139 | * There is a tradeoff here: a larger number will cover more kernel page tables |
| 2140 | * and take slightly longer to purge, but it will linearly reduce the number of |
| 2141 | * global TLB flushes that must be performed. It would seem natural to scale |
| 2142 | * this number up linearly with the number of CPUs (because vmapping activity |
| 2143 | * could also scale linearly with the number of CPUs), however it is likely |
| 2144 | * that in practice, workloads might be constrained in other ways that mean |
| 2145 | * vmap activity will not scale linearly with CPUs. Also, I want to be |
| 2146 | * conservative and not introduce a big latency on huge systems, so go with |
| 2147 | * a less aggressive log scale. It will still be an improvement over the old |
| 2148 | * code, and it will be simple to change the scale factor if we find that it |
| 2149 | * becomes a problem on bigger systems. |
| 2150 | */ |
| 2151 | static unsigned long lazy_max_pages(void) |
| 2152 | { |
| 2153 | unsigned int log; |
| 2154 | |
| 2155 | log = fls(num_online_cpus()); |
| 2156 | |
| 2157 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); |
| 2158 | } |
| 2159 | |
| 2160 | /* |
| 2161 | * Serialize vmap purging. There is no actual critical section protected |
| 2162 | * by this lock, but we want to avoid concurrent calls for performance |
| 2163 | * reasons and to make the pcpu_get_vm_areas more deterministic. |
| 2164 | */ |
| 2165 | static DEFINE_MUTEX(vmap_purge_lock); |
| 2166 | |
| 2167 | /* for per-CPU blocks */ |
| 2168 | static void purge_fragmented_blocks_allcpus(void); |
| 2169 | |
| 2170 | static void |
| 2171 | reclaim_list_global(struct list_head *head) |
| 2172 | { |
| 2173 | struct vmap_area *va, *n; |
| 2174 | |
| 2175 | if (list_empty(head)) |
| 2176 | return; |
| 2177 | |
| 2178 | spin_lock(&free_vmap_area_lock); |
| 2179 | list_for_each_entry_safe(va, n, head, list) |
| 2180 | merge_or_add_vmap_area_augment(va, |
| 2181 | &free_vmap_area_root, &free_vmap_area_list); |
| 2182 | spin_unlock(&free_vmap_area_lock); |
| 2183 | } |
| 2184 | |
| 2185 | static void |
| 2186 | decay_va_pool_node(struct vmap_node *vn, bool full_decay) |
| 2187 | { |
| 2188 | LIST_HEAD(decay_list); |
| 2189 | struct rb_root decay_root = RB_ROOT; |
| 2190 | struct vmap_area *va, *nva; |
| 2191 | unsigned long n_decay, pool_len; |
| 2192 | int i; |
| 2193 | |
| 2194 | for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { |
| 2195 | LIST_HEAD(tmp_list); |
| 2196 | |
| 2197 | if (list_empty(&vn->pool[i].head)) |
| 2198 | continue; |
| 2199 | |
| 2200 | /* Detach the pool, so no-one can access it. */ |
| 2201 | spin_lock(&vn->pool_lock); |
| 2202 | list_replace_init(&vn->pool[i].head, &tmp_list); |
| 2203 | spin_unlock(&vn->pool_lock); |
| 2204 | |
| 2205 | pool_len = n_decay = vn->pool[i].len; |
| 2206 | WRITE_ONCE(vn->pool[i].len, 0); |
| 2207 | |
| 2208 | /* Decay a pool by ~25% out of left objects. */ |
| 2209 | if (!full_decay) |
| 2210 | n_decay >>= 2; |
| 2211 | pool_len -= n_decay; |
| 2212 | |
| 2213 | list_for_each_entry_safe(va, nva, &tmp_list, list) { |
| 2214 | if (!n_decay--) |
| 2215 | break; |
| 2216 | |
| 2217 | list_del_init(&va->list); |
| 2218 | merge_or_add_vmap_area(va, &decay_root, &decay_list); |
| 2219 | } |
| 2220 | |
| 2221 | /* |
| 2222 | * Attach the pool back if it has been partly decayed. |
| 2223 | * Please note, it is supposed that nobody(other contexts) |
| 2224 | * can populate the pool therefore a simple list replace |
| 2225 | * operation takes place here. |
| 2226 | */ |
| 2227 | if (!list_empty(&tmp_list)) { |
| 2228 | spin_lock(&vn->pool_lock); |
| 2229 | list_replace_init(&tmp_list, &vn->pool[i].head); |
| 2230 | WRITE_ONCE(vn->pool[i].len, pool_len); |
| 2231 | spin_unlock(&vn->pool_lock); |
| 2232 | } |
| 2233 | } |
| 2234 | |
| 2235 | reclaim_list_global(&decay_list); |
| 2236 | } |
| 2237 | |
| 2238 | static void |
| 2239 | kasan_release_vmalloc_node(struct vmap_node *vn) |
| 2240 | { |
| 2241 | struct vmap_area *va; |
| 2242 | unsigned long start, end; |
| 2243 | |
| 2244 | start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start; |
| 2245 | end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end; |
| 2246 | |
| 2247 | list_for_each_entry(va, &vn->purge_list, list) { |
| 2248 | if (is_vmalloc_or_module_addr((void *) va->va_start)) |
| 2249 | kasan_release_vmalloc(va->va_start, va->va_end, |
| 2250 | va->va_start, va->va_end, |
| 2251 | KASAN_VMALLOC_PAGE_RANGE); |
| 2252 | } |
| 2253 | |
| 2254 | kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH); |
| 2255 | } |
| 2256 | |
| 2257 | static void purge_vmap_node(struct work_struct *work) |
| 2258 | { |
| 2259 | struct vmap_node *vn = container_of(work, |
| 2260 | struct vmap_node, purge_work); |
| 2261 | unsigned long nr_purged_pages = 0; |
| 2262 | struct vmap_area *va, *n_va; |
| 2263 | LIST_HEAD(local_list); |
| 2264 | |
| 2265 | if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) |
| 2266 | kasan_release_vmalloc_node(vn); |
| 2267 | |
| 2268 | vn->nr_purged = 0; |
| 2269 | |
| 2270 | list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { |
| 2271 | unsigned long nr = va_size(va) >> PAGE_SHIFT; |
| 2272 | unsigned int vn_id = decode_vn_id(va->flags); |
| 2273 | |
| 2274 | list_del_init(&va->list); |
| 2275 | |
| 2276 | nr_purged_pages += nr; |
| 2277 | vn->nr_purged++; |
| 2278 | |
| 2279 | if (is_vn_id_valid(vn_id) && !vn->skip_populate) |
| 2280 | if (node_pool_add_va(vn, va)) |
| 2281 | continue; |
| 2282 | |
| 2283 | /* Go back to global. */ |
| 2284 | list_add(&va->list, &local_list); |
| 2285 | } |
| 2286 | |
| 2287 | atomic_long_sub(nr_purged_pages, &vmap_lazy_nr); |
| 2288 | |
| 2289 | reclaim_list_global(&local_list); |
| 2290 | } |
| 2291 | |
| 2292 | /* |
| 2293 | * Purges all lazily-freed vmap areas. |
| 2294 | */ |
| 2295 | static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, |
| 2296 | bool full_pool_decay) |
| 2297 | { |
| 2298 | unsigned long nr_purged_areas = 0; |
| 2299 | unsigned int nr_purge_helpers; |
| 2300 | static cpumask_t purge_nodes; |
| 2301 | unsigned int nr_purge_nodes; |
| 2302 | struct vmap_node *vn; |
| 2303 | int i; |
| 2304 | |
| 2305 | lockdep_assert_held(&vmap_purge_lock); |
| 2306 | |
| 2307 | /* |
| 2308 | * Use cpumask to mark which node has to be processed. |
| 2309 | */ |
| 2310 | purge_nodes = CPU_MASK_NONE; |
| 2311 | |
| 2312 | for_each_vmap_node(vn) { |
| 2313 | INIT_LIST_HEAD(&vn->purge_list); |
| 2314 | vn->skip_populate = full_pool_decay; |
| 2315 | decay_va_pool_node(vn, full_pool_decay); |
| 2316 | |
| 2317 | if (RB_EMPTY_ROOT(&vn->lazy.root)) |
| 2318 | continue; |
| 2319 | |
| 2320 | spin_lock(&vn->lazy.lock); |
| 2321 | WRITE_ONCE(vn->lazy.root.rb_node, NULL); |
| 2322 | list_replace_init(&vn->lazy.head, &vn->purge_list); |
| 2323 | spin_unlock(&vn->lazy.lock); |
| 2324 | |
| 2325 | start = min(start, list_first_entry(&vn->purge_list, |
| 2326 | struct vmap_area, list)->va_start); |
| 2327 | |
| 2328 | end = max(end, list_last_entry(&vn->purge_list, |
| 2329 | struct vmap_area, list)->va_end); |
| 2330 | |
| 2331 | cpumask_set_cpu(node_to_id(vn), &purge_nodes); |
| 2332 | } |
| 2333 | |
| 2334 | nr_purge_nodes = cpumask_weight(&purge_nodes); |
| 2335 | if (nr_purge_nodes > 0) { |
| 2336 | flush_tlb_kernel_range(start, end); |
| 2337 | |
| 2338 | /* One extra worker is per a lazy_max_pages() full set minus one. */ |
| 2339 | nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); |
| 2340 | nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; |
| 2341 | |
| 2342 | for_each_cpu(i, &purge_nodes) { |
| 2343 | vn = &vmap_nodes[i]; |
| 2344 | |
| 2345 | if (nr_purge_helpers > 0) { |
| 2346 | INIT_WORK(&vn->purge_work, purge_vmap_node); |
| 2347 | |
| 2348 | if (cpumask_test_cpu(i, cpu_online_mask)) |
| 2349 | schedule_work_on(i, &vn->purge_work); |
| 2350 | else |
| 2351 | schedule_work(&vn->purge_work); |
| 2352 | |
| 2353 | nr_purge_helpers--; |
| 2354 | } else { |
| 2355 | vn->purge_work.func = NULL; |
| 2356 | purge_vmap_node(&vn->purge_work); |
| 2357 | nr_purged_areas += vn->nr_purged; |
| 2358 | } |
| 2359 | } |
| 2360 | |
| 2361 | for_each_cpu(i, &purge_nodes) { |
| 2362 | vn = &vmap_nodes[i]; |
| 2363 | |
| 2364 | if (vn->purge_work.func) { |
| 2365 | flush_work(&vn->purge_work); |
| 2366 | nr_purged_areas += vn->nr_purged; |
| 2367 | } |
| 2368 | } |
| 2369 | } |
| 2370 | |
| 2371 | trace_purge_vmap_area_lazy(start, end, nr_purged_areas); |
| 2372 | return nr_purged_areas > 0; |
| 2373 | } |
| 2374 | |
| 2375 | /* |
| 2376 | * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. |
| 2377 | */ |
| 2378 | static void reclaim_and_purge_vmap_areas(void) |
| 2379 | |
| 2380 | { |
| 2381 | mutex_lock(&vmap_purge_lock); |
| 2382 | purge_fragmented_blocks_allcpus(); |
| 2383 | __purge_vmap_area_lazy(ULONG_MAX, 0, true); |
| 2384 | mutex_unlock(&vmap_purge_lock); |
| 2385 | } |
| 2386 | |
| 2387 | static void drain_vmap_area_work(struct work_struct *work) |
| 2388 | { |
| 2389 | mutex_lock(&vmap_purge_lock); |
| 2390 | __purge_vmap_area_lazy(ULONG_MAX, 0, false); |
| 2391 | mutex_unlock(&vmap_purge_lock); |
| 2392 | } |
| 2393 | |
| 2394 | /* |
| 2395 | * Free a vmap area, caller ensuring that the area has been unmapped, |
| 2396 | * unlinked and flush_cache_vunmap had been called for the correct |
| 2397 | * range previously. |
| 2398 | */ |
| 2399 | static void free_vmap_area_noflush(struct vmap_area *va) |
| 2400 | { |
| 2401 | unsigned long nr_lazy_max = lazy_max_pages(); |
| 2402 | unsigned long va_start = va->va_start; |
| 2403 | unsigned int vn_id = decode_vn_id(va->flags); |
| 2404 | struct vmap_node *vn; |
| 2405 | unsigned long nr_lazy; |
| 2406 | |
| 2407 | if (WARN_ON_ONCE(!list_empty(&va->list))) |
| 2408 | return; |
| 2409 | |
| 2410 | nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT, |
| 2411 | &vmap_lazy_nr); |
| 2412 | |
| 2413 | /* |
| 2414 | * If it was request by a certain node we would like to |
| 2415 | * return it to that node, i.e. its pool for later reuse. |
| 2416 | */ |
| 2417 | vn = is_vn_id_valid(vn_id) ? |
| 2418 | id_to_node(vn_id):addr_to_node(va->va_start); |
| 2419 | |
| 2420 | spin_lock(&vn->lazy.lock); |
| 2421 | insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); |
| 2422 | spin_unlock(&vn->lazy.lock); |
| 2423 | |
| 2424 | trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); |
| 2425 | |
| 2426 | /* After this point, we may free va at any time */ |
| 2427 | if (unlikely(nr_lazy > nr_lazy_max)) |
| 2428 | schedule_work(&drain_vmap_work); |
| 2429 | } |
| 2430 | |
| 2431 | /* |
| 2432 | * Free and unmap a vmap area |
| 2433 | */ |
| 2434 | static void free_unmap_vmap_area(struct vmap_area *va) |
| 2435 | { |
| 2436 | flush_cache_vunmap(va->va_start, va->va_end); |
| 2437 | vunmap_range_noflush(va->va_start, va->va_end); |
| 2438 | if (debug_pagealloc_enabled_static()) |
| 2439 | flush_tlb_kernel_range(va->va_start, va->va_end); |
| 2440 | |
| 2441 | free_vmap_area_noflush(va); |
| 2442 | } |
| 2443 | |
| 2444 | struct vmap_area *find_vmap_area(unsigned long addr) |
| 2445 | { |
| 2446 | struct vmap_node *vn; |
| 2447 | struct vmap_area *va; |
| 2448 | int i, j; |
| 2449 | |
| 2450 | if (unlikely(!vmap_initialized)) |
| 2451 | return NULL; |
| 2452 | |
| 2453 | /* |
| 2454 | * An addr_to_node_id(addr) converts an address to a node index |
| 2455 | * where a VA is located. If VA spans several zones and passed |
| 2456 | * addr is not the same as va->va_start, what is not common, we |
| 2457 | * may need to scan extra nodes. See an example: |
| 2458 | * |
| 2459 | * <----va----> |
| 2460 | * -|-----|-----|-----|-----|- |
| 2461 | * 1 2 0 1 |
| 2462 | * |
| 2463 | * VA resides in node 1 whereas it spans 1, 2 an 0. If passed |
| 2464 | * addr is within 2 or 0 nodes we should do extra work. |
| 2465 | */ |
| 2466 | i = j = addr_to_node_id(addr); |
| 2467 | do { |
| 2468 | vn = &vmap_nodes[i]; |
| 2469 | |
| 2470 | spin_lock(&vn->busy.lock); |
| 2471 | va = __find_vmap_area(addr, &vn->busy.root); |
| 2472 | spin_unlock(&vn->busy.lock); |
| 2473 | |
| 2474 | if (va) |
| 2475 | return va; |
| 2476 | } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); |
| 2477 | |
| 2478 | return NULL; |
| 2479 | } |
| 2480 | |
| 2481 | static struct vmap_area *find_unlink_vmap_area(unsigned long addr) |
| 2482 | { |
| 2483 | struct vmap_node *vn; |
| 2484 | struct vmap_area *va; |
| 2485 | int i, j; |
| 2486 | |
| 2487 | /* |
| 2488 | * Check the comment in the find_vmap_area() about the loop. |
| 2489 | */ |
| 2490 | i = j = addr_to_node_id(addr); |
| 2491 | do { |
| 2492 | vn = &vmap_nodes[i]; |
| 2493 | |
| 2494 | spin_lock(&vn->busy.lock); |
| 2495 | va = __find_vmap_area(addr, &vn->busy.root); |
| 2496 | if (va) |
| 2497 | unlink_va(va, &vn->busy.root); |
| 2498 | spin_unlock(&vn->busy.lock); |
| 2499 | |
| 2500 | if (va) |
| 2501 | return va; |
| 2502 | } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); |
| 2503 | |
| 2504 | return NULL; |
| 2505 | } |
| 2506 | |
| 2507 | /*** Per cpu kva allocator ***/ |
| 2508 | |
| 2509 | /* |
| 2510 | * vmap space is limited especially on 32 bit architectures. Ensure there is |
| 2511 | * room for at least 16 percpu vmap blocks per CPU. |
| 2512 | */ |
| 2513 | /* |
| 2514 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able |
| 2515 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess |
| 2516 | * instead (we just need a rough idea) |
| 2517 | */ |
| 2518 | #if BITS_PER_LONG == 32 |
| 2519 | #define VMALLOC_SPACE (128UL*1024*1024) |
| 2520 | #else |
| 2521 | #define VMALLOC_SPACE (128UL*1024*1024*1024) |
| 2522 | #endif |
| 2523 | |
| 2524 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) |
| 2525 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ |
| 2526 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ |
| 2527 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) |
| 2528 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ |
| 2529 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ |
| 2530 | #define VMAP_BBMAP_BITS \ |
| 2531 | VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ |
| 2532 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ |
| 2533 | VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) |
| 2534 | |
| 2535 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) |
| 2536 | |
| 2537 | /* |
| 2538 | * Purge threshold to prevent overeager purging of fragmented blocks for |
| 2539 | * regular operations: Purge if vb->free is less than 1/4 of the capacity. |
| 2540 | */ |
| 2541 | #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) |
| 2542 | |
| 2543 | #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ |
| 2544 | #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ |
| 2545 | #define VMAP_FLAGS_MASK 0x3 |
| 2546 | |
| 2547 | struct vmap_block_queue { |
| 2548 | spinlock_t lock; |
| 2549 | struct list_head free; |
| 2550 | |
| 2551 | /* |
| 2552 | * An xarray requires an extra memory dynamically to |
| 2553 | * be allocated. If it is an issue, we can use rb-tree |
| 2554 | * instead. |
| 2555 | */ |
| 2556 | struct xarray vmap_blocks; |
| 2557 | }; |
| 2558 | |
| 2559 | struct vmap_block { |
| 2560 | spinlock_t lock; |
| 2561 | struct vmap_area *va; |
| 2562 | unsigned long free, dirty; |
| 2563 | DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); |
| 2564 | unsigned long dirty_min, dirty_max; /*< dirty range */ |
| 2565 | struct list_head free_list; |
| 2566 | struct rcu_head rcu_head; |
| 2567 | struct list_head purge; |
| 2568 | unsigned int cpu; |
| 2569 | }; |
| 2570 | |
| 2571 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ |
| 2572 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); |
| 2573 | |
| 2574 | /* |
| 2575 | * In order to fast access to any "vmap_block" associated with a |
| 2576 | * specific address, we use a hash. |
| 2577 | * |
| 2578 | * A per-cpu vmap_block_queue is used in both ways, to serialize |
| 2579 | * an access to free block chains among CPUs(alloc path) and it |
| 2580 | * also acts as a vmap_block hash(alloc/free paths). It means we |
| 2581 | * overload it, since we already have the per-cpu array which is |
| 2582 | * used as a hash table. When used as a hash a 'cpu' passed to |
| 2583 | * per_cpu() is not actually a CPU but rather a hash index. |
| 2584 | * |
| 2585 | * A hash function is addr_to_vb_xa() which hashes any address |
| 2586 | * to a specific index(in a hash) it belongs to. This then uses a |
| 2587 | * per_cpu() macro to access an array with generated index. |
| 2588 | * |
| 2589 | * An example: |
| 2590 | * |
| 2591 | * CPU_1 CPU_2 CPU_0 |
| 2592 | * | | | |
| 2593 | * V V V |
| 2594 | * 0 10 20 30 40 50 60 |
| 2595 | * |------|------|------|------|------|------|...<vmap address space> |
| 2596 | * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 |
| 2597 | * |
| 2598 | * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus |
| 2599 | * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; |
| 2600 | * |
| 2601 | * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus |
| 2602 | * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; |
| 2603 | * |
| 2604 | * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus |
| 2605 | * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. |
| 2606 | * |
| 2607 | * This technique almost always avoids lock contention on insert/remove, |
| 2608 | * however xarray spinlocks protect against any contention that remains. |
| 2609 | */ |
| 2610 | static struct xarray * |
| 2611 | addr_to_vb_xa(unsigned long addr) |
| 2612 | { |
| 2613 | int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids; |
| 2614 | |
| 2615 | /* |
| 2616 | * Please note, nr_cpu_ids points on a highest set |
| 2617 | * possible bit, i.e. we never invoke cpumask_next() |
| 2618 | * if an index points on it which is nr_cpu_ids - 1. |
| 2619 | */ |
| 2620 | if (!cpu_possible(index)) |
| 2621 | index = cpumask_next(index, cpu_possible_mask); |
| 2622 | |
| 2623 | return &per_cpu(vmap_block_queue, index).vmap_blocks; |
| 2624 | } |
| 2625 | |
| 2626 | /* |
| 2627 | * We should probably have a fallback mechanism to allocate virtual memory |
| 2628 | * out of partially filled vmap blocks. However vmap block sizing should be |
| 2629 | * fairly reasonable according to the vmalloc size, so it shouldn't be a |
| 2630 | * big problem. |
| 2631 | */ |
| 2632 | |
| 2633 | static unsigned long addr_to_vb_idx(unsigned long addr) |
| 2634 | { |
| 2635 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); |
| 2636 | addr /= VMAP_BLOCK_SIZE; |
| 2637 | return addr; |
| 2638 | } |
| 2639 | |
| 2640 | static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) |
| 2641 | { |
| 2642 | unsigned long addr; |
| 2643 | |
| 2644 | addr = va_start + (pages_off << PAGE_SHIFT); |
| 2645 | BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); |
| 2646 | return (void *)addr; |
| 2647 | } |
| 2648 | |
| 2649 | /** |
| 2650 | * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this |
| 2651 | * block. Of course pages number can't exceed VMAP_BBMAP_BITS |
| 2652 | * @order: how many 2^order pages should be occupied in newly allocated block |
| 2653 | * @gfp_mask: flags for the page level allocator |
| 2654 | * |
| 2655 | * Return: virtual address in a newly allocated block or ERR_PTR(-errno) |
| 2656 | */ |
| 2657 | static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) |
| 2658 | { |
| 2659 | struct vmap_block_queue *vbq; |
| 2660 | struct vmap_block *vb; |
| 2661 | struct vmap_area *va; |
| 2662 | struct xarray *xa; |
| 2663 | unsigned long vb_idx; |
| 2664 | int node, err; |
| 2665 | void *vaddr; |
| 2666 | |
| 2667 | node = numa_node_id(); |
| 2668 | |
| 2669 | vb = kmalloc_node(sizeof(struct vmap_block), |
| 2670 | gfp_mask & GFP_RECLAIM_MASK, node); |
| 2671 | if (unlikely(!vb)) |
| 2672 | return ERR_PTR(-ENOMEM); |
| 2673 | |
| 2674 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, |
| 2675 | VMALLOC_START, VMALLOC_END, |
| 2676 | node, gfp_mask, |
| 2677 | VMAP_RAM|VMAP_BLOCK, NULL); |
| 2678 | if (IS_ERR(va)) { |
| 2679 | kfree(vb); |
| 2680 | return ERR_CAST(va); |
| 2681 | } |
| 2682 | |
| 2683 | vaddr = vmap_block_vaddr(va->va_start, 0); |
| 2684 | spin_lock_init(&vb->lock); |
| 2685 | vb->va = va; |
| 2686 | /* At least something should be left free */ |
| 2687 | BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); |
| 2688 | bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); |
| 2689 | vb->free = VMAP_BBMAP_BITS - (1UL << order); |
| 2690 | vb->dirty = 0; |
| 2691 | vb->dirty_min = VMAP_BBMAP_BITS; |
| 2692 | vb->dirty_max = 0; |
| 2693 | bitmap_set(vb->used_map, 0, (1UL << order)); |
| 2694 | INIT_LIST_HEAD(&vb->free_list); |
| 2695 | vb->cpu = raw_smp_processor_id(); |
| 2696 | |
| 2697 | xa = addr_to_vb_xa(va->va_start); |
| 2698 | vb_idx = addr_to_vb_idx(va->va_start); |
| 2699 | err = xa_insert(xa, vb_idx, vb, gfp_mask); |
| 2700 | if (err) { |
| 2701 | kfree(vb); |
| 2702 | free_vmap_area(va); |
| 2703 | return ERR_PTR(err); |
| 2704 | } |
| 2705 | /* |
| 2706 | * list_add_tail_rcu could happened in another core |
| 2707 | * rather than vb->cpu due to task migration, which |
| 2708 | * is safe as list_add_tail_rcu will ensure the list's |
| 2709 | * integrity together with list_for_each_rcu from read |
| 2710 | * side. |
| 2711 | */ |
| 2712 | vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu); |
| 2713 | spin_lock(&vbq->lock); |
| 2714 | list_add_tail_rcu(&vb->free_list, &vbq->free); |
| 2715 | spin_unlock(&vbq->lock); |
| 2716 | |
| 2717 | return vaddr; |
| 2718 | } |
| 2719 | |
| 2720 | static void free_vmap_block(struct vmap_block *vb) |
| 2721 | { |
| 2722 | struct vmap_node *vn; |
| 2723 | struct vmap_block *tmp; |
| 2724 | struct xarray *xa; |
| 2725 | |
| 2726 | xa = addr_to_vb_xa(vb->va->va_start); |
| 2727 | tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); |
| 2728 | BUG_ON(tmp != vb); |
| 2729 | |
| 2730 | vn = addr_to_node(vb->va->va_start); |
| 2731 | spin_lock(&vn->busy.lock); |
| 2732 | unlink_va(vb->va, &vn->busy.root); |
| 2733 | spin_unlock(&vn->busy.lock); |
| 2734 | |
| 2735 | free_vmap_area_noflush(vb->va); |
| 2736 | kfree_rcu(vb, rcu_head); |
| 2737 | } |
| 2738 | |
| 2739 | static bool purge_fragmented_block(struct vmap_block *vb, |
| 2740 | struct list_head *purge_list, bool force_purge) |
| 2741 | { |
| 2742 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu); |
| 2743 | |
| 2744 | if (vb->free + vb->dirty != VMAP_BBMAP_BITS || |
| 2745 | vb->dirty == VMAP_BBMAP_BITS) |
| 2746 | return false; |
| 2747 | |
| 2748 | /* Don't overeagerly purge usable blocks unless requested */ |
| 2749 | if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) |
| 2750 | return false; |
| 2751 | |
| 2752 | /* prevent further allocs after releasing lock */ |
| 2753 | WRITE_ONCE(vb->free, 0); |
| 2754 | /* prevent purging it again */ |
| 2755 | WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); |
| 2756 | vb->dirty_min = 0; |
| 2757 | vb->dirty_max = VMAP_BBMAP_BITS; |
| 2758 | spin_lock(&vbq->lock); |
| 2759 | list_del_rcu(&vb->free_list); |
| 2760 | spin_unlock(&vbq->lock); |
| 2761 | list_add_tail(&vb->purge, purge_list); |
| 2762 | return true; |
| 2763 | } |
| 2764 | |
| 2765 | static void free_purged_blocks(struct list_head *purge_list) |
| 2766 | { |
| 2767 | struct vmap_block *vb, *n_vb; |
| 2768 | |
| 2769 | list_for_each_entry_safe(vb, n_vb, purge_list, purge) { |
| 2770 | list_del(&vb->purge); |
| 2771 | free_vmap_block(vb); |
| 2772 | } |
| 2773 | } |
| 2774 | |
| 2775 | static void purge_fragmented_blocks(int cpu) |
| 2776 | { |
| 2777 | LIST_HEAD(purge); |
| 2778 | struct vmap_block *vb; |
| 2779 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); |
| 2780 | |
| 2781 | rcu_read_lock(); |
| 2782 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { |
| 2783 | unsigned long free = READ_ONCE(vb->free); |
| 2784 | unsigned long dirty = READ_ONCE(vb->dirty); |
| 2785 | |
| 2786 | if (free + dirty != VMAP_BBMAP_BITS || |
| 2787 | dirty == VMAP_BBMAP_BITS) |
| 2788 | continue; |
| 2789 | |
| 2790 | spin_lock(&vb->lock); |
| 2791 | purge_fragmented_block(vb, &purge, true); |
| 2792 | spin_unlock(&vb->lock); |
| 2793 | } |
| 2794 | rcu_read_unlock(); |
| 2795 | free_purged_blocks(&purge); |
| 2796 | } |
| 2797 | |
| 2798 | static void purge_fragmented_blocks_allcpus(void) |
| 2799 | { |
| 2800 | int cpu; |
| 2801 | |
| 2802 | for_each_possible_cpu(cpu) |
| 2803 | purge_fragmented_blocks(cpu); |
| 2804 | } |
| 2805 | |
| 2806 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) |
| 2807 | { |
| 2808 | struct vmap_block_queue *vbq; |
| 2809 | struct vmap_block *vb; |
| 2810 | void *vaddr = NULL; |
| 2811 | unsigned int order; |
| 2812 | |
| 2813 | BUG_ON(offset_in_page(size)); |
| 2814 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
| 2815 | if (WARN_ON(size == 0)) { |
| 2816 | /* |
| 2817 | * Allocating 0 bytes isn't what caller wants since |
| 2818 | * get_order(0) returns funny result. Just warn and terminate |
| 2819 | * early. |
| 2820 | */ |
| 2821 | return ERR_PTR(-EINVAL); |
| 2822 | } |
| 2823 | order = get_order(size); |
| 2824 | |
| 2825 | rcu_read_lock(); |
| 2826 | vbq = raw_cpu_ptr(&vmap_block_queue); |
| 2827 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { |
| 2828 | unsigned long pages_off; |
| 2829 | |
| 2830 | if (READ_ONCE(vb->free) < (1UL << order)) |
| 2831 | continue; |
| 2832 | |
| 2833 | spin_lock(&vb->lock); |
| 2834 | if (vb->free < (1UL << order)) { |
| 2835 | spin_unlock(&vb->lock); |
| 2836 | continue; |
| 2837 | } |
| 2838 | |
| 2839 | pages_off = VMAP_BBMAP_BITS - vb->free; |
| 2840 | vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); |
| 2841 | WRITE_ONCE(vb->free, vb->free - (1UL << order)); |
| 2842 | bitmap_set(vb->used_map, pages_off, (1UL << order)); |
| 2843 | if (vb->free == 0) { |
| 2844 | spin_lock(&vbq->lock); |
| 2845 | list_del_rcu(&vb->free_list); |
| 2846 | spin_unlock(&vbq->lock); |
| 2847 | } |
| 2848 | |
| 2849 | spin_unlock(&vb->lock); |
| 2850 | break; |
| 2851 | } |
| 2852 | |
| 2853 | rcu_read_unlock(); |
| 2854 | |
| 2855 | /* Allocate new block if nothing was found */ |
| 2856 | if (!vaddr) |
| 2857 | vaddr = new_vmap_block(order, gfp_mask); |
| 2858 | |
| 2859 | return vaddr; |
| 2860 | } |
| 2861 | |
| 2862 | static void vb_free(unsigned long addr, unsigned long size) |
| 2863 | { |
| 2864 | unsigned long offset; |
| 2865 | unsigned int order; |
| 2866 | struct vmap_block *vb; |
| 2867 | struct xarray *xa; |
| 2868 | |
| 2869 | BUG_ON(offset_in_page(size)); |
| 2870 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
| 2871 | |
| 2872 | flush_cache_vunmap(addr, addr + size); |
| 2873 | |
| 2874 | order = get_order(size); |
| 2875 | offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; |
| 2876 | |
| 2877 | xa = addr_to_vb_xa(addr); |
| 2878 | vb = xa_load(xa, addr_to_vb_idx(addr)); |
| 2879 | |
| 2880 | spin_lock(&vb->lock); |
| 2881 | bitmap_clear(vb->used_map, offset, (1UL << order)); |
| 2882 | spin_unlock(&vb->lock); |
| 2883 | |
| 2884 | vunmap_range_noflush(addr, addr + size); |
| 2885 | |
| 2886 | if (debug_pagealloc_enabled_static()) |
| 2887 | flush_tlb_kernel_range(addr, addr + size); |
| 2888 | |
| 2889 | spin_lock(&vb->lock); |
| 2890 | |
| 2891 | /* Expand the not yet TLB flushed dirty range */ |
| 2892 | vb->dirty_min = min(vb->dirty_min, offset); |
| 2893 | vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); |
| 2894 | |
| 2895 | WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); |
| 2896 | if (vb->dirty == VMAP_BBMAP_BITS) { |
| 2897 | BUG_ON(vb->free); |
| 2898 | spin_unlock(&vb->lock); |
| 2899 | free_vmap_block(vb); |
| 2900 | } else |
| 2901 | spin_unlock(&vb->lock); |
| 2902 | } |
| 2903 | |
| 2904 | static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) |
| 2905 | { |
| 2906 | LIST_HEAD(purge_list); |
| 2907 | int cpu; |
| 2908 | |
| 2909 | if (unlikely(!vmap_initialized)) |
| 2910 | return; |
| 2911 | |
| 2912 | mutex_lock(&vmap_purge_lock); |
| 2913 | |
| 2914 | for_each_possible_cpu(cpu) { |
| 2915 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); |
| 2916 | struct vmap_block *vb; |
| 2917 | unsigned long idx; |
| 2918 | |
| 2919 | rcu_read_lock(); |
| 2920 | xa_for_each(&vbq->vmap_blocks, idx, vb) { |
| 2921 | spin_lock(&vb->lock); |
| 2922 | |
| 2923 | /* |
| 2924 | * Try to purge a fragmented block first. If it's |
| 2925 | * not purgeable, check whether there is dirty |
| 2926 | * space to be flushed. |
| 2927 | */ |
| 2928 | if (!purge_fragmented_block(vb, &purge_list, false) && |
| 2929 | vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { |
| 2930 | unsigned long va_start = vb->va->va_start; |
| 2931 | unsigned long s, e; |
| 2932 | |
| 2933 | s = va_start + (vb->dirty_min << PAGE_SHIFT); |
| 2934 | e = va_start + (vb->dirty_max << PAGE_SHIFT); |
| 2935 | |
| 2936 | start = min(s, start); |
| 2937 | end = max(e, end); |
| 2938 | |
| 2939 | /* Prevent that this is flushed again */ |
| 2940 | vb->dirty_min = VMAP_BBMAP_BITS; |
| 2941 | vb->dirty_max = 0; |
| 2942 | |
| 2943 | flush = 1; |
| 2944 | } |
| 2945 | spin_unlock(&vb->lock); |
| 2946 | } |
| 2947 | rcu_read_unlock(); |
| 2948 | } |
| 2949 | free_purged_blocks(&purge_list); |
| 2950 | |
| 2951 | if (!__purge_vmap_area_lazy(start, end, false) && flush) |
| 2952 | flush_tlb_kernel_range(start, end); |
| 2953 | mutex_unlock(&vmap_purge_lock); |
| 2954 | } |
| 2955 | |
| 2956 | /** |
| 2957 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer |
| 2958 | * |
| 2959 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily |
| 2960 | * to amortize TLB flushing overheads. What this means is that any page you |
| 2961 | * have now, may, in a former life, have been mapped into kernel virtual |
| 2962 | * address by the vmap layer and so there might be some CPUs with TLB entries |
| 2963 | * still referencing that page (additional to the regular 1:1 kernel mapping). |
| 2964 | * |
| 2965 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can |
| 2966 | * be sure that none of the pages we have control over will have any aliases |
| 2967 | * from the vmap layer. |
| 2968 | */ |
| 2969 | void vm_unmap_aliases(void) |
| 2970 | { |
| 2971 | _vm_unmap_aliases(ULONG_MAX, 0, 0); |
| 2972 | } |
| 2973 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); |
| 2974 | |
| 2975 | /** |
| 2976 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram |
| 2977 | * @mem: the pointer returned by vm_map_ram |
| 2978 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) |
| 2979 | */ |
| 2980 | void vm_unmap_ram(const void *mem, unsigned int count) |
| 2981 | { |
| 2982 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
| 2983 | unsigned long addr = (unsigned long)kasan_reset_tag(mem); |
| 2984 | struct vmap_area *va; |
| 2985 | |
| 2986 | might_sleep(); |
| 2987 | BUG_ON(!addr); |
| 2988 | BUG_ON(addr < VMALLOC_START); |
| 2989 | BUG_ON(addr > VMALLOC_END); |
| 2990 | BUG_ON(!PAGE_ALIGNED(addr)); |
| 2991 | |
| 2992 | kasan_poison_vmalloc(mem, size); |
| 2993 | |
| 2994 | if (likely(count <= VMAP_MAX_ALLOC)) { |
| 2995 | debug_check_no_locks_freed(mem, size); |
| 2996 | vb_free(addr, size); |
| 2997 | return; |
| 2998 | } |
| 2999 | |
| 3000 | va = find_unlink_vmap_area(addr); |
| 3001 | if (WARN_ON_ONCE(!va)) |
| 3002 | return; |
| 3003 | |
| 3004 | debug_check_no_locks_freed((void *)va->va_start, va_size(va)); |
| 3005 | free_unmap_vmap_area(va); |
| 3006 | } |
| 3007 | EXPORT_SYMBOL(vm_unmap_ram); |
| 3008 | |
| 3009 | /** |
| 3010 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) |
| 3011 | * @pages: an array of pointers to the pages to be mapped |
| 3012 | * @count: number of pages |
| 3013 | * @node: prefer to allocate data structures on this node |
| 3014 | * |
| 3015 | * If you use this function for less than VMAP_MAX_ALLOC pages, it could be |
| 3016 | * faster than vmap so it's good. But if you mix long-life and short-life |
| 3017 | * objects with vm_map_ram(), it could consume lots of address space through |
| 3018 | * fragmentation (especially on a 32bit machine). You could see failures in |
| 3019 | * the end. Please use this function for short-lived objects. |
| 3020 | * |
| 3021 | * Returns: a pointer to the address that has been mapped, or %NULL on failure |
| 3022 | */ |
| 3023 | void *vm_map_ram(struct page **pages, unsigned int count, int node) |
| 3024 | { |
| 3025 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
| 3026 | unsigned long addr; |
| 3027 | void *mem; |
| 3028 | |
| 3029 | if (likely(count <= VMAP_MAX_ALLOC)) { |
| 3030 | mem = vb_alloc(size, GFP_KERNEL); |
| 3031 | if (IS_ERR(mem)) |
| 3032 | return NULL; |
| 3033 | addr = (unsigned long)mem; |
| 3034 | } else { |
| 3035 | struct vmap_area *va; |
| 3036 | va = alloc_vmap_area(size, PAGE_SIZE, |
| 3037 | VMALLOC_START, VMALLOC_END, |
| 3038 | node, GFP_KERNEL, VMAP_RAM, |
| 3039 | NULL); |
| 3040 | if (IS_ERR(va)) |
| 3041 | return NULL; |
| 3042 | |
| 3043 | addr = va->va_start; |
| 3044 | mem = (void *)addr; |
| 3045 | } |
| 3046 | |
| 3047 | if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, |
| 3048 | pages, PAGE_SHIFT) < 0) { |
| 3049 | vm_unmap_ram(mem, count); |
| 3050 | return NULL; |
| 3051 | } |
| 3052 | |
| 3053 | /* |
| 3054 | * Mark the pages as accessible, now that they are mapped. |
| 3055 | * With hardware tag-based KASAN, marking is skipped for |
| 3056 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). |
| 3057 | */ |
| 3058 | mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); |
| 3059 | |
| 3060 | return mem; |
| 3061 | } |
| 3062 | EXPORT_SYMBOL(vm_map_ram); |
| 3063 | |
| 3064 | static struct vm_struct *vmlist __initdata; |
| 3065 | |
| 3066 | static inline unsigned int vm_area_page_order(struct vm_struct *vm) |
| 3067 | { |
| 3068 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC |
| 3069 | return vm->page_order; |
| 3070 | #else |
| 3071 | return 0; |
| 3072 | #endif |
| 3073 | } |
| 3074 | |
| 3075 | unsigned int get_vm_area_page_order(struct vm_struct *vm) |
| 3076 | { |
| 3077 | return vm_area_page_order(vm); |
| 3078 | } |
| 3079 | |
| 3080 | static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) |
| 3081 | { |
| 3082 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC |
| 3083 | vm->page_order = order; |
| 3084 | #else |
| 3085 | BUG_ON(order != 0); |
| 3086 | #endif |
| 3087 | } |
| 3088 | |
| 3089 | /** |
| 3090 | * vm_area_add_early - add vmap area early during boot |
| 3091 | * @vm: vm_struct to add |
| 3092 | * |
| 3093 | * This function is used to add fixed kernel vm area to vmlist before |
| 3094 | * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags |
| 3095 | * should contain proper values and the other fields should be zero. |
| 3096 | * |
| 3097 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. |
| 3098 | */ |
| 3099 | void __init vm_area_add_early(struct vm_struct *vm) |
| 3100 | { |
| 3101 | struct vm_struct *tmp, **p; |
| 3102 | |
| 3103 | BUG_ON(vmap_initialized); |
| 3104 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { |
| 3105 | if (tmp->addr >= vm->addr) { |
| 3106 | BUG_ON(tmp->addr < vm->addr + vm->size); |
| 3107 | break; |
| 3108 | } else |
| 3109 | BUG_ON(tmp->addr + tmp->size > vm->addr); |
| 3110 | } |
| 3111 | vm->next = *p; |
| 3112 | *p = vm; |
| 3113 | } |
| 3114 | |
| 3115 | /** |
| 3116 | * vm_area_register_early - register vmap area early during boot |
| 3117 | * @vm: vm_struct to register |
| 3118 | * @align: requested alignment |
| 3119 | * |
| 3120 | * This function is used to register kernel vm area before |
| 3121 | * vmalloc_init() is called. @vm->size and @vm->flags should contain |
| 3122 | * proper values on entry and other fields should be zero. On return, |
| 3123 | * vm->addr contains the allocated address. |
| 3124 | * |
| 3125 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. |
| 3126 | */ |
| 3127 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
| 3128 | { |
| 3129 | unsigned long addr = ALIGN(VMALLOC_START, align); |
| 3130 | struct vm_struct *cur, **p; |
| 3131 | |
| 3132 | BUG_ON(vmap_initialized); |
| 3133 | |
| 3134 | for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { |
| 3135 | if ((unsigned long)cur->addr - addr >= vm->size) |
| 3136 | break; |
| 3137 | addr = ALIGN((unsigned long)cur->addr + cur->size, align); |
| 3138 | } |
| 3139 | |
| 3140 | BUG_ON(addr > VMALLOC_END - vm->size); |
| 3141 | vm->addr = (void *)addr; |
| 3142 | vm->next = *p; |
| 3143 | *p = vm; |
| 3144 | kasan_populate_early_vm_area_shadow(vm->addr, vm->size); |
| 3145 | } |
| 3146 | |
| 3147 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) |
| 3148 | { |
| 3149 | /* |
| 3150 | * Before removing VM_UNINITIALIZED, |
| 3151 | * we should make sure that vm has proper values. |
| 3152 | * Pair with smp_rmb() in vread_iter() and vmalloc_info_show(). |
| 3153 | */ |
| 3154 | smp_wmb(); |
| 3155 | vm->flags &= ~VM_UNINITIALIZED; |
| 3156 | } |
| 3157 | |
| 3158 | struct vm_struct *__get_vm_area_node(unsigned long size, |
| 3159 | unsigned long align, unsigned long shift, unsigned long flags, |
| 3160 | unsigned long start, unsigned long end, int node, |
| 3161 | gfp_t gfp_mask, const void *caller) |
| 3162 | { |
| 3163 | struct vmap_area *va; |
| 3164 | struct vm_struct *area; |
| 3165 | unsigned long requested_size = size; |
| 3166 | |
| 3167 | BUG_ON(in_interrupt()); |
| 3168 | size = ALIGN(size, 1ul << shift); |
| 3169 | if (unlikely(!size)) |
| 3170 | return NULL; |
| 3171 | |
| 3172 | if (flags & VM_IOREMAP) |
| 3173 | align = 1ul << clamp_t(int, get_count_order_long(size), |
| 3174 | PAGE_SHIFT, IOREMAP_MAX_ORDER); |
| 3175 | |
| 3176 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
| 3177 | if (unlikely(!area)) |
| 3178 | return NULL; |
| 3179 | |
| 3180 | if (!(flags & VM_NO_GUARD)) |
| 3181 | size += PAGE_SIZE; |
| 3182 | |
| 3183 | area->flags = flags; |
| 3184 | area->caller = caller; |
| 3185 | area->requested_size = requested_size; |
| 3186 | |
| 3187 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area); |
| 3188 | if (IS_ERR(va)) { |
| 3189 | kfree(area); |
| 3190 | return NULL; |
| 3191 | } |
| 3192 | |
| 3193 | /* |
| 3194 | * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a |
| 3195 | * best-effort approach, as they can be mapped outside of vmalloc code. |
| 3196 | * For VM_ALLOC mappings, the pages are marked as accessible after |
| 3197 | * getting mapped in __vmalloc_node_range(). |
| 3198 | * With hardware tag-based KASAN, marking is skipped for |
| 3199 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). |
| 3200 | */ |
| 3201 | if (!(flags & VM_ALLOC)) |
| 3202 | area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, |
| 3203 | KASAN_VMALLOC_PROT_NORMAL); |
| 3204 | |
| 3205 | return area; |
| 3206 | } |
| 3207 | |
| 3208 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
| 3209 | unsigned long start, unsigned long end, |
| 3210 | const void *caller) |
| 3211 | { |
| 3212 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, |
| 3213 | NUMA_NO_NODE, GFP_KERNEL, caller); |
| 3214 | } |
| 3215 | |
| 3216 | /** |
| 3217 | * get_vm_area - reserve a contiguous kernel virtual area |
| 3218 | * @size: size of the area |
| 3219 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC |
| 3220 | * |
| 3221 | * Search an area of @size in the kernel virtual mapping area, |
| 3222 | * and reserved it for out purposes. Returns the area descriptor |
| 3223 | * on success or %NULL on failure. |
| 3224 | * |
| 3225 | * Return: the area descriptor on success or %NULL on failure. |
| 3226 | */ |
| 3227 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) |
| 3228 | { |
| 3229 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, |
| 3230 | VMALLOC_START, VMALLOC_END, |
| 3231 | NUMA_NO_NODE, GFP_KERNEL, |
| 3232 | __builtin_return_address(0)); |
| 3233 | } |
| 3234 | |
| 3235 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, |
| 3236 | const void *caller) |
| 3237 | { |
| 3238 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, |
| 3239 | VMALLOC_START, VMALLOC_END, |
| 3240 | NUMA_NO_NODE, GFP_KERNEL, caller); |
| 3241 | } |
| 3242 | |
| 3243 | /** |
| 3244 | * find_vm_area - find a continuous kernel virtual area |
| 3245 | * @addr: base address |
| 3246 | * |
| 3247 | * Search for the kernel VM area starting at @addr, and return it. |
| 3248 | * It is up to the caller to do all required locking to keep the returned |
| 3249 | * pointer valid. |
| 3250 | * |
| 3251 | * Return: the area descriptor on success or %NULL on failure. |
| 3252 | */ |
| 3253 | struct vm_struct *find_vm_area(const void *addr) |
| 3254 | { |
| 3255 | struct vmap_area *va; |
| 3256 | |
| 3257 | va = find_vmap_area((unsigned long)addr); |
| 3258 | if (!va) |
| 3259 | return NULL; |
| 3260 | |
| 3261 | return va->vm; |
| 3262 | } |
| 3263 | |
| 3264 | /** |
| 3265 | * remove_vm_area - find and remove a continuous kernel virtual area |
| 3266 | * @addr: base address |
| 3267 | * |
| 3268 | * Search for the kernel VM area starting at @addr, and remove it. |
| 3269 | * This function returns the found VM area, but using it is NOT safe |
| 3270 | * on SMP machines, except for its size or flags. |
| 3271 | * |
| 3272 | * Return: the area descriptor on success or %NULL on failure. |
| 3273 | */ |
| 3274 | struct vm_struct *remove_vm_area(const void *addr) |
| 3275 | { |
| 3276 | struct vmap_area *va; |
| 3277 | struct vm_struct *vm; |
| 3278 | |
| 3279 | might_sleep(); |
| 3280 | |
| 3281 | if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", |
| 3282 | addr)) |
| 3283 | return NULL; |
| 3284 | |
| 3285 | va = find_unlink_vmap_area((unsigned long)addr); |
| 3286 | if (!va || !va->vm) |
| 3287 | return NULL; |
| 3288 | vm = va->vm; |
| 3289 | |
| 3290 | debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); |
| 3291 | debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); |
| 3292 | kasan_free_module_shadow(vm); |
| 3293 | kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); |
| 3294 | |
| 3295 | free_unmap_vmap_area(va); |
| 3296 | return vm; |
| 3297 | } |
| 3298 | |
| 3299 | static inline void set_area_direct_map(const struct vm_struct *area, |
| 3300 | int (*set_direct_map)(struct page *page)) |
| 3301 | { |
| 3302 | int i; |
| 3303 | |
| 3304 | /* HUGE_VMALLOC passes small pages to set_direct_map */ |
| 3305 | for (i = 0; i < area->nr_pages; i++) |
| 3306 | if (page_address(area->pages[i])) |
| 3307 | set_direct_map(area->pages[i]); |
| 3308 | } |
| 3309 | |
| 3310 | /* |
| 3311 | * Flush the vm mapping and reset the direct map. |
| 3312 | */ |
| 3313 | static void vm_reset_perms(struct vm_struct *area) |
| 3314 | { |
| 3315 | unsigned long start = ULONG_MAX, end = 0; |
| 3316 | unsigned int page_order = vm_area_page_order(area); |
| 3317 | int flush_dmap = 0; |
| 3318 | int i; |
| 3319 | |
| 3320 | /* |
| 3321 | * Find the start and end range of the direct mappings to make sure that |
| 3322 | * the vm_unmap_aliases() flush includes the direct map. |
| 3323 | */ |
| 3324 | for (i = 0; i < area->nr_pages; i += 1U << page_order) { |
| 3325 | unsigned long addr = (unsigned long)page_address(area->pages[i]); |
| 3326 | |
| 3327 | if (addr) { |
| 3328 | unsigned long page_size; |
| 3329 | |
| 3330 | page_size = PAGE_SIZE << page_order; |
| 3331 | start = min(addr, start); |
| 3332 | end = max(addr + page_size, end); |
| 3333 | flush_dmap = 1; |
| 3334 | } |
| 3335 | } |
| 3336 | |
| 3337 | /* |
| 3338 | * Set direct map to something invalid so that it won't be cached if |
| 3339 | * there are any accesses after the TLB flush, then flush the TLB and |
| 3340 | * reset the direct map permissions to the default. |
| 3341 | */ |
| 3342 | set_area_direct_map(area, set_direct_map_invalid_noflush); |
| 3343 | _vm_unmap_aliases(start, end, flush_dmap); |
| 3344 | set_area_direct_map(area, set_direct_map_default_noflush); |
| 3345 | } |
| 3346 | |
| 3347 | static void delayed_vfree_work(struct work_struct *w) |
| 3348 | { |
| 3349 | struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); |
| 3350 | struct llist_node *t, *llnode; |
| 3351 | |
| 3352 | llist_for_each_safe(llnode, t, llist_del_all(&p->list)) |
| 3353 | vfree(llnode); |
| 3354 | } |
| 3355 | |
| 3356 | /** |
| 3357 | * vfree_atomic - release memory allocated by vmalloc() |
| 3358 | * @addr: memory base address |
| 3359 | * |
| 3360 | * This one is just like vfree() but can be called in any atomic context |
| 3361 | * except NMIs. |
| 3362 | */ |
| 3363 | void vfree_atomic(const void *addr) |
| 3364 | { |
| 3365 | struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); |
| 3366 | |
| 3367 | BUG_ON(in_nmi()); |
| 3368 | kmemleak_free(addr); |
| 3369 | |
| 3370 | /* |
| 3371 | * Use raw_cpu_ptr() because this can be called from preemptible |
| 3372 | * context. Preemption is absolutely fine here, because the llist_add() |
| 3373 | * implementation is lockless, so it works even if we are adding to |
| 3374 | * another cpu's list. schedule_work() should be fine with this too. |
| 3375 | */ |
| 3376 | if (addr && llist_add((struct llist_node *)addr, &p->list)) |
| 3377 | schedule_work(&p->wq); |
| 3378 | } |
| 3379 | |
| 3380 | /** |
| 3381 | * vfree - Release memory allocated by vmalloc() |
| 3382 | * @addr: Memory base address |
| 3383 | * |
| 3384 | * Free the virtually continuous memory area starting at @addr, as obtained |
| 3385 | * from one of the vmalloc() family of APIs. This will usually also free the |
| 3386 | * physical memory underlying the virtual allocation, but that memory is |
| 3387 | * reference counted, so it will not be freed until the last user goes away. |
| 3388 | * |
| 3389 | * If @addr is NULL, no operation is performed. |
| 3390 | * |
| 3391 | * Context: |
| 3392 | * May sleep if called *not* from interrupt context. |
| 3393 | * Must not be called in NMI context (strictly speaking, it could be |
| 3394 | * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling |
| 3395 | * conventions for vfree() arch-dependent would be a really bad idea). |
| 3396 | */ |
| 3397 | void vfree(const void *addr) |
| 3398 | { |
| 3399 | struct vm_struct *vm; |
| 3400 | int i; |
| 3401 | |
| 3402 | if (unlikely(in_interrupt())) { |
| 3403 | vfree_atomic(addr); |
| 3404 | return; |
| 3405 | } |
| 3406 | |
| 3407 | BUG_ON(in_nmi()); |
| 3408 | kmemleak_free(addr); |
| 3409 | might_sleep(); |
| 3410 | |
| 3411 | if (!addr) |
| 3412 | return; |
| 3413 | |
| 3414 | vm = remove_vm_area(addr); |
| 3415 | if (unlikely(!vm)) { |
| 3416 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
| 3417 | addr); |
| 3418 | return; |
| 3419 | } |
| 3420 | |
| 3421 | if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) |
| 3422 | vm_reset_perms(vm); |
| 3423 | /* All pages of vm should be charged to same memcg, so use first one. */ |
| 3424 | if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES)) |
| 3425 | mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages); |
| 3426 | for (i = 0; i < vm->nr_pages; i++) { |
| 3427 | struct page *page = vm->pages[i]; |
| 3428 | |
| 3429 | BUG_ON(!page); |
| 3430 | /* |
| 3431 | * High-order allocs for huge vmallocs are split, so |
| 3432 | * can be freed as an array of order-0 allocations |
| 3433 | */ |
| 3434 | __free_page(page); |
| 3435 | cond_resched(); |
| 3436 | } |
| 3437 | if (!(vm->flags & VM_MAP_PUT_PAGES)) |
| 3438 | atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); |
| 3439 | kvfree(vm->pages); |
| 3440 | kfree(vm); |
| 3441 | } |
| 3442 | EXPORT_SYMBOL(vfree); |
| 3443 | |
| 3444 | /** |
| 3445 | * vunmap - release virtual mapping obtained by vmap() |
| 3446 | * @addr: memory base address |
| 3447 | * |
| 3448 | * Free the virtually contiguous memory area starting at @addr, |
| 3449 | * which was created from the page array passed to vmap(). |
| 3450 | * |
| 3451 | * Must not be called in interrupt context. |
| 3452 | */ |
| 3453 | void vunmap(const void *addr) |
| 3454 | { |
| 3455 | struct vm_struct *vm; |
| 3456 | |
| 3457 | BUG_ON(in_interrupt()); |
| 3458 | might_sleep(); |
| 3459 | |
| 3460 | if (!addr) |
| 3461 | return; |
| 3462 | vm = remove_vm_area(addr); |
| 3463 | if (unlikely(!vm)) { |
| 3464 | WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", |
| 3465 | addr); |
| 3466 | return; |
| 3467 | } |
| 3468 | kfree(vm); |
| 3469 | } |
| 3470 | EXPORT_SYMBOL(vunmap); |
| 3471 | |
| 3472 | /** |
| 3473 | * vmap - map an array of pages into virtually contiguous space |
| 3474 | * @pages: array of page pointers |
| 3475 | * @count: number of pages to map |
| 3476 | * @flags: vm_area->flags |
| 3477 | * @prot: page protection for the mapping |
| 3478 | * |
| 3479 | * Maps @count pages from @pages into contiguous kernel virtual space. |
| 3480 | * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself |
| 3481 | * (which must be kmalloc or vmalloc memory) and one reference per pages in it |
| 3482 | * are transferred from the caller to vmap(), and will be freed / dropped when |
| 3483 | * vfree() is called on the return value. |
| 3484 | * |
| 3485 | * Return: the address of the area or %NULL on failure |
| 3486 | */ |
| 3487 | void *vmap(struct page **pages, unsigned int count, |
| 3488 | unsigned long flags, pgprot_t prot) |
| 3489 | { |
| 3490 | struct vm_struct *area; |
| 3491 | unsigned long addr; |
| 3492 | unsigned long size; /* In bytes */ |
| 3493 | |
| 3494 | might_sleep(); |
| 3495 | |
| 3496 | if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) |
| 3497 | return NULL; |
| 3498 | |
| 3499 | /* |
| 3500 | * Your top guard is someone else's bottom guard. Not having a top |
| 3501 | * guard compromises someone else's mappings too. |
| 3502 | */ |
| 3503 | if (WARN_ON_ONCE(flags & VM_NO_GUARD)) |
| 3504 | flags &= ~VM_NO_GUARD; |
| 3505 | |
| 3506 | if (count > totalram_pages()) |
| 3507 | return NULL; |
| 3508 | |
| 3509 | size = (unsigned long)count << PAGE_SHIFT; |
| 3510 | area = get_vm_area_caller(size, flags, __builtin_return_address(0)); |
| 3511 | if (!area) |
| 3512 | return NULL; |
| 3513 | |
| 3514 | addr = (unsigned long)area->addr; |
| 3515 | if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), |
| 3516 | pages, PAGE_SHIFT) < 0) { |
| 3517 | vunmap(area->addr); |
| 3518 | return NULL; |
| 3519 | } |
| 3520 | |
| 3521 | if (flags & VM_MAP_PUT_PAGES) { |
| 3522 | area->pages = pages; |
| 3523 | area->nr_pages = count; |
| 3524 | } |
| 3525 | return area->addr; |
| 3526 | } |
| 3527 | EXPORT_SYMBOL(vmap); |
| 3528 | |
| 3529 | #ifdef CONFIG_VMAP_PFN |
| 3530 | struct vmap_pfn_data { |
| 3531 | unsigned long *pfns; |
| 3532 | pgprot_t prot; |
| 3533 | unsigned int idx; |
| 3534 | }; |
| 3535 | |
| 3536 | static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) |
| 3537 | { |
| 3538 | struct vmap_pfn_data *data = private; |
| 3539 | unsigned long pfn = data->pfns[data->idx]; |
| 3540 | pte_t ptent; |
| 3541 | |
| 3542 | if (WARN_ON_ONCE(pfn_valid(pfn))) |
| 3543 | return -EINVAL; |
| 3544 | |
| 3545 | ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); |
| 3546 | set_pte_at(&init_mm, addr, pte, ptent); |
| 3547 | |
| 3548 | data->idx++; |
| 3549 | return 0; |
| 3550 | } |
| 3551 | |
| 3552 | /** |
| 3553 | * vmap_pfn - map an array of PFNs into virtually contiguous space |
| 3554 | * @pfns: array of PFNs |
| 3555 | * @count: number of pages to map |
| 3556 | * @prot: page protection for the mapping |
| 3557 | * |
| 3558 | * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns |
| 3559 | * the start address of the mapping. |
| 3560 | */ |
| 3561 | void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) |
| 3562 | { |
| 3563 | struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; |
| 3564 | struct vm_struct *area; |
| 3565 | |
| 3566 | area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, |
| 3567 | __builtin_return_address(0)); |
| 3568 | if (!area) |
| 3569 | return NULL; |
| 3570 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, |
| 3571 | count * PAGE_SIZE, vmap_pfn_apply, &data)) { |
| 3572 | free_vm_area(area); |
| 3573 | return NULL; |
| 3574 | } |
| 3575 | |
| 3576 | flush_cache_vmap((unsigned long)area->addr, |
| 3577 | (unsigned long)area->addr + count * PAGE_SIZE); |
| 3578 | |
| 3579 | return area->addr; |
| 3580 | } |
| 3581 | EXPORT_SYMBOL_GPL(vmap_pfn); |
| 3582 | #endif /* CONFIG_VMAP_PFN */ |
| 3583 | |
| 3584 | static inline unsigned int |
| 3585 | vm_area_alloc_pages(gfp_t gfp, int nid, |
| 3586 | unsigned int order, unsigned int nr_pages, struct page **pages) |
| 3587 | { |
| 3588 | unsigned int nr_allocated = 0; |
| 3589 | struct page *page; |
| 3590 | int i; |
| 3591 | |
| 3592 | /* |
| 3593 | * For order-0 pages we make use of bulk allocator, if |
| 3594 | * the page array is partly or not at all populated due |
| 3595 | * to fails, fallback to a single page allocator that is |
| 3596 | * more permissive. |
| 3597 | */ |
| 3598 | if (!order) { |
| 3599 | while (nr_allocated < nr_pages) { |
| 3600 | unsigned int nr, nr_pages_request; |
| 3601 | |
| 3602 | /* |
| 3603 | * A maximum allowed request is hard-coded and is 100 |
| 3604 | * pages per call. That is done in order to prevent a |
| 3605 | * long preemption off scenario in the bulk-allocator |
| 3606 | * so the range is [1:100]. |
| 3607 | */ |
| 3608 | nr_pages_request = min(100U, nr_pages - nr_allocated); |
| 3609 | |
| 3610 | /* memory allocation should consider mempolicy, we can't |
| 3611 | * wrongly use nearest node when nid == NUMA_NO_NODE, |
| 3612 | * otherwise memory may be allocated in only one node, |
| 3613 | * but mempolicy wants to alloc memory by interleaving. |
| 3614 | */ |
| 3615 | if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) |
| 3616 | nr = alloc_pages_bulk_mempolicy_noprof(gfp, |
| 3617 | nr_pages_request, |
| 3618 | pages + nr_allocated); |
| 3619 | else |
| 3620 | nr = alloc_pages_bulk_node_noprof(gfp, nid, |
| 3621 | nr_pages_request, |
| 3622 | pages + nr_allocated); |
| 3623 | |
| 3624 | nr_allocated += nr; |
| 3625 | cond_resched(); |
| 3626 | |
| 3627 | /* |
| 3628 | * If zero or pages were obtained partly, |
| 3629 | * fallback to a single page allocator. |
| 3630 | */ |
| 3631 | if (nr != nr_pages_request) |
| 3632 | break; |
| 3633 | } |
| 3634 | } |
| 3635 | |
| 3636 | /* High-order pages or fallback path if "bulk" fails. */ |
| 3637 | while (nr_allocated < nr_pages) { |
| 3638 | if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current)) |
| 3639 | break; |
| 3640 | |
| 3641 | if (nid == NUMA_NO_NODE) |
| 3642 | page = alloc_pages_noprof(gfp, order); |
| 3643 | else |
| 3644 | page = alloc_pages_node_noprof(nid, gfp, order); |
| 3645 | |
| 3646 | if (unlikely(!page)) |
| 3647 | break; |
| 3648 | |
| 3649 | /* |
| 3650 | * High-order allocations must be able to be treated as |
| 3651 | * independent small pages by callers (as they can with |
| 3652 | * small-page vmallocs). Some drivers do their own refcounting |
| 3653 | * on vmalloc_to_page() pages, some use page->mapping, |
| 3654 | * page->lru, etc. |
| 3655 | */ |
| 3656 | if (order) |
| 3657 | split_page(page, order); |
| 3658 | |
| 3659 | /* |
| 3660 | * Careful, we allocate and map page-order pages, but |
| 3661 | * tracking is done per PAGE_SIZE page so as to keep the |
| 3662 | * vm_struct APIs independent of the physical/mapped size. |
| 3663 | */ |
| 3664 | for (i = 0; i < (1U << order); i++) |
| 3665 | pages[nr_allocated + i] = page + i; |
| 3666 | |
| 3667 | cond_resched(); |
| 3668 | nr_allocated += 1U << order; |
| 3669 | } |
| 3670 | |
| 3671 | return nr_allocated; |
| 3672 | } |
| 3673 | |
| 3674 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
| 3675 | pgprot_t prot, unsigned int page_shift, |
| 3676 | int node) |
| 3677 | { |
| 3678 | const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
| 3679 | bool nofail = gfp_mask & __GFP_NOFAIL; |
| 3680 | unsigned long addr = (unsigned long)area->addr; |
| 3681 | unsigned long size = get_vm_area_size(area); |
| 3682 | unsigned long array_size; |
| 3683 | unsigned int nr_small_pages = size >> PAGE_SHIFT; |
| 3684 | unsigned int page_order; |
| 3685 | unsigned int flags; |
| 3686 | int ret; |
| 3687 | |
| 3688 | array_size = (unsigned long)nr_small_pages * sizeof(struct page *); |
| 3689 | |
| 3690 | if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) |
| 3691 | gfp_mask |= __GFP_HIGHMEM; |
| 3692 | |
| 3693 | /* Please note that the recursion is strictly bounded. */ |
| 3694 | if (array_size > PAGE_SIZE) { |
| 3695 | area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node, |
| 3696 | area->caller); |
| 3697 | } else { |
| 3698 | area->pages = kmalloc_node_noprof(array_size, nested_gfp, node); |
| 3699 | } |
| 3700 | |
| 3701 | if (!area->pages) { |
| 3702 | warn_alloc(gfp_mask, NULL, |
| 3703 | "vmalloc error: size %lu, failed to allocated page array size %lu", |
| 3704 | nr_small_pages * PAGE_SIZE, array_size); |
| 3705 | free_vm_area(area); |
| 3706 | return NULL; |
| 3707 | } |
| 3708 | |
| 3709 | set_vm_area_page_order(area, page_shift - PAGE_SHIFT); |
| 3710 | page_order = vm_area_page_order(area); |
| 3711 | |
| 3712 | /* |
| 3713 | * High-order nofail allocations are really expensive and |
| 3714 | * potentially dangerous (pre-mature OOM, disruptive reclaim |
| 3715 | * and compaction etc. |
| 3716 | * |
| 3717 | * Please note, the __vmalloc_node_range_noprof() falls-back |
| 3718 | * to order-0 pages if high-order attempt is unsuccessful. |
| 3719 | */ |
| 3720 | area->nr_pages = vm_area_alloc_pages((page_order ? |
| 3721 | gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN, |
| 3722 | node, page_order, nr_small_pages, area->pages); |
| 3723 | |
| 3724 | atomic_long_add(area->nr_pages, &nr_vmalloc_pages); |
| 3725 | /* All pages of vm should be charged to same memcg, so use first one. */ |
| 3726 | if (gfp_mask & __GFP_ACCOUNT && area->nr_pages) |
| 3727 | mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC, |
| 3728 | area->nr_pages); |
| 3729 | |
| 3730 | /* |
| 3731 | * If not enough pages were obtained to accomplish an |
| 3732 | * allocation request, free them via vfree() if any. |
| 3733 | */ |
| 3734 | if (area->nr_pages != nr_small_pages) { |
| 3735 | /* |
| 3736 | * vm_area_alloc_pages() can fail due to insufficient memory but |
| 3737 | * also:- |
| 3738 | * |
| 3739 | * - a pending fatal signal |
| 3740 | * - insufficient huge page-order pages |
| 3741 | * |
| 3742 | * Since we always retry allocations at order-0 in the huge page |
| 3743 | * case a warning for either is spurious. |
| 3744 | */ |
| 3745 | if (!fatal_signal_pending(current) && page_order == 0) |
| 3746 | warn_alloc(gfp_mask, NULL, |
| 3747 | "vmalloc error: size %lu, failed to allocate pages", |
| 3748 | area->nr_pages * PAGE_SIZE); |
| 3749 | goto fail; |
| 3750 | } |
| 3751 | |
| 3752 | /* |
| 3753 | * page tables allocations ignore external gfp mask, enforce it |
| 3754 | * by the scope API |
| 3755 | */ |
| 3756 | if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) |
| 3757 | flags = memalloc_nofs_save(); |
| 3758 | else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) |
| 3759 | flags = memalloc_noio_save(); |
| 3760 | |
| 3761 | do { |
| 3762 | ret = vmap_pages_range(addr, addr + size, prot, area->pages, |
| 3763 | page_shift); |
| 3764 | if (nofail && (ret < 0)) |
| 3765 | schedule_timeout_uninterruptible(1); |
| 3766 | } while (nofail && (ret < 0)); |
| 3767 | |
| 3768 | if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) |
| 3769 | memalloc_nofs_restore(flags); |
| 3770 | else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) |
| 3771 | memalloc_noio_restore(flags); |
| 3772 | |
| 3773 | if (ret < 0) { |
| 3774 | warn_alloc(gfp_mask, NULL, |
| 3775 | "vmalloc error: size %lu, failed to map pages", |
| 3776 | area->nr_pages * PAGE_SIZE); |
| 3777 | goto fail; |
| 3778 | } |
| 3779 | |
| 3780 | return area->addr; |
| 3781 | |
| 3782 | fail: |
| 3783 | vfree(area->addr); |
| 3784 | return NULL; |
| 3785 | } |
| 3786 | |
| 3787 | /** |
| 3788 | * __vmalloc_node_range - allocate virtually contiguous memory |
| 3789 | * @size: allocation size |
| 3790 | * @align: desired alignment |
| 3791 | * @start: vm area range start |
| 3792 | * @end: vm area range end |
| 3793 | * @gfp_mask: flags for the page level allocator |
| 3794 | * @prot: protection mask for the allocated pages |
| 3795 | * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) |
| 3796 | * @node: node to use for allocation or NUMA_NO_NODE |
| 3797 | * @caller: caller's return address |
| 3798 | * |
| 3799 | * Allocate enough pages to cover @size from the page level |
| 3800 | * allocator with @gfp_mask flags. Please note that the full set of gfp |
| 3801 | * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all |
| 3802 | * supported. |
| 3803 | * Zone modifiers are not supported. From the reclaim modifiers |
| 3804 | * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) |
| 3805 | * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and |
| 3806 | * __GFP_RETRY_MAYFAIL are not supported). |
| 3807 | * |
| 3808 | * __GFP_NOWARN can be used to suppress failures messages. |
| 3809 | * |
| 3810 | * Map them into contiguous kernel virtual space, using a pagetable |
| 3811 | * protection of @prot. |
| 3812 | * |
| 3813 | * Return: the address of the area or %NULL on failure |
| 3814 | */ |
| 3815 | void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, |
| 3816 | unsigned long start, unsigned long end, gfp_t gfp_mask, |
| 3817 | pgprot_t prot, unsigned long vm_flags, int node, |
| 3818 | const void *caller) |
| 3819 | { |
| 3820 | struct vm_struct *area; |
| 3821 | void *ret; |
| 3822 | kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; |
| 3823 | unsigned long original_align = align; |
| 3824 | unsigned int shift = PAGE_SHIFT; |
| 3825 | |
| 3826 | if (WARN_ON_ONCE(!size)) |
| 3827 | return NULL; |
| 3828 | |
| 3829 | if ((size >> PAGE_SHIFT) > totalram_pages()) { |
| 3830 | warn_alloc(gfp_mask, NULL, |
| 3831 | "vmalloc error: size %lu, exceeds total pages", |
| 3832 | size); |
| 3833 | return NULL; |
| 3834 | } |
| 3835 | |
| 3836 | if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { |
| 3837 | /* |
| 3838 | * Try huge pages. Only try for PAGE_KERNEL allocations, |
| 3839 | * others like modules don't yet expect huge pages in |
| 3840 | * their allocations due to apply_to_page_range not |
| 3841 | * supporting them. |
| 3842 | */ |
| 3843 | |
| 3844 | if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE) |
| 3845 | shift = PMD_SHIFT; |
| 3846 | else |
| 3847 | shift = arch_vmap_pte_supported_shift(size); |
| 3848 | |
| 3849 | align = max(original_align, 1UL << shift); |
| 3850 | } |
| 3851 | |
| 3852 | again: |
| 3853 | area = __get_vm_area_node(size, align, shift, VM_ALLOC | |
| 3854 | VM_UNINITIALIZED | vm_flags, start, end, node, |
| 3855 | gfp_mask, caller); |
| 3856 | if (!area) { |
| 3857 | bool nofail = gfp_mask & __GFP_NOFAIL; |
| 3858 | warn_alloc(gfp_mask, NULL, |
| 3859 | "vmalloc error: size %lu, vm_struct allocation failed%s", |
| 3860 | size, (nofail) ? ". Retrying." : ""); |
| 3861 | if (nofail) { |
| 3862 | schedule_timeout_uninterruptible(1); |
| 3863 | goto again; |
| 3864 | } |
| 3865 | goto fail; |
| 3866 | } |
| 3867 | |
| 3868 | /* |
| 3869 | * Prepare arguments for __vmalloc_area_node() and |
| 3870 | * kasan_unpoison_vmalloc(). |
| 3871 | */ |
| 3872 | if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { |
| 3873 | if (kasan_hw_tags_enabled()) { |
| 3874 | /* |
| 3875 | * Modify protection bits to allow tagging. |
| 3876 | * This must be done before mapping. |
| 3877 | */ |
| 3878 | prot = arch_vmap_pgprot_tagged(prot); |
| 3879 | |
| 3880 | /* |
| 3881 | * Skip page_alloc poisoning and zeroing for physical |
| 3882 | * pages backing VM_ALLOC mapping. Memory is instead |
| 3883 | * poisoned and zeroed by kasan_unpoison_vmalloc(). |
| 3884 | */ |
| 3885 | gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; |
| 3886 | } |
| 3887 | |
| 3888 | /* Take note that the mapping is PAGE_KERNEL. */ |
| 3889 | kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; |
| 3890 | } |
| 3891 | |
| 3892 | /* Allocate physical pages and map them into vmalloc space. */ |
| 3893 | ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); |
| 3894 | if (!ret) |
| 3895 | goto fail; |
| 3896 | |
| 3897 | /* |
| 3898 | * Mark the pages as accessible, now that they are mapped. |
| 3899 | * The condition for setting KASAN_VMALLOC_INIT should complement the |
| 3900 | * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check |
| 3901 | * to make sure that memory is initialized under the same conditions. |
| 3902 | * Tag-based KASAN modes only assign tags to normal non-executable |
| 3903 | * allocations, see __kasan_unpoison_vmalloc(). |
| 3904 | */ |
| 3905 | kasan_flags |= KASAN_VMALLOC_VM_ALLOC; |
| 3906 | if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && |
| 3907 | (gfp_mask & __GFP_SKIP_ZERO)) |
| 3908 | kasan_flags |= KASAN_VMALLOC_INIT; |
| 3909 | /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ |
| 3910 | area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags); |
| 3911 | |
| 3912 | /* |
| 3913 | * In this function, newly allocated vm_struct has VM_UNINITIALIZED |
| 3914 | * flag. It means that vm_struct is not fully initialized. |
| 3915 | * Now, it is fully initialized, so remove this flag here. |
| 3916 | */ |
| 3917 | clear_vm_uninitialized_flag(area); |
| 3918 | |
| 3919 | if (!(vm_flags & VM_DEFER_KMEMLEAK)) |
| 3920 | kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask); |
| 3921 | |
| 3922 | return area->addr; |
| 3923 | |
| 3924 | fail: |
| 3925 | if (shift > PAGE_SHIFT) { |
| 3926 | shift = PAGE_SHIFT; |
| 3927 | align = original_align; |
| 3928 | goto again; |
| 3929 | } |
| 3930 | |
| 3931 | return NULL; |
| 3932 | } |
| 3933 | |
| 3934 | /** |
| 3935 | * __vmalloc_node - allocate virtually contiguous memory |
| 3936 | * @size: allocation size |
| 3937 | * @align: desired alignment |
| 3938 | * @gfp_mask: flags for the page level allocator |
| 3939 | * @node: node to use for allocation or NUMA_NO_NODE |
| 3940 | * @caller: caller's return address |
| 3941 | * |
| 3942 | * Allocate enough pages to cover @size from the page level allocator with |
| 3943 | * @gfp_mask flags. Map them into contiguous kernel virtual space. |
| 3944 | * |
| 3945 | * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL |
| 3946 | * and __GFP_NOFAIL are not supported |
| 3947 | * |
| 3948 | * Any use of gfp flags outside of GFP_KERNEL should be consulted |
| 3949 | * with mm people. |
| 3950 | * |
| 3951 | * Return: pointer to the allocated memory or %NULL on error |
| 3952 | */ |
| 3953 | void *__vmalloc_node_noprof(unsigned long size, unsigned long align, |
| 3954 | gfp_t gfp_mask, int node, const void *caller) |
| 3955 | { |
| 3956 | return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, |
| 3957 | gfp_mask, PAGE_KERNEL, 0, node, caller); |
| 3958 | } |
| 3959 | /* |
| 3960 | * This is only for performance analysis of vmalloc and stress purpose. |
| 3961 | * It is required by vmalloc test module, therefore do not use it other |
| 3962 | * than that. |
| 3963 | */ |
| 3964 | #ifdef CONFIG_TEST_VMALLOC_MODULE |
| 3965 | EXPORT_SYMBOL_GPL(__vmalloc_node_noprof); |
| 3966 | #endif |
| 3967 | |
| 3968 | void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) |
| 3969 | { |
| 3970 | return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE, |
| 3971 | __builtin_return_address(0)); |
| 3972 | } |
| 3973 | EXPORT_SYMBOL(__vmalloc_noprof); |
| 3974 | |
| 3975 | /** |
| 3976 | * vmalloc - allocate virtually contiguous memory |
| 3977 | * @size: allocation size |
| 3978 | * |
| 3979 | * Allocate enough pages to cover @size from the page level |
| 3980 | * allocator and map them into contiguous kernel virtual space. |
| 3981 | * |
| 3982 | * For tight control over page level allocator and protection flags |
| 3983 | * use __vmalloc() instead. |
| 3984 | * |
| 3985 | * Return: pointer to the allocated memory or %NULL on error |
| 3986 | */ |
| 3987 | void *vmalloc_noprof(unsigned long size) |
| 3988 | { |
| 3989 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE, |
| 3990 | __builtin_return_address(0)); |
| 3991 | } |
| 3992 | EXPORT_SYMBOL(vmalloc_noprof); |
| 3993 | |
| 3994 | /** |
| 3995 | * vmalloc_huge_node - allocate virtually contiguous memory, allow huge pages |
| 3996 | * @size: allocation size |
| 3997 | * @gfp_mask: flags for the page level allocator |
| 3998 | * @node: node to use for allocation or NUMA_NO_NODE |
| 3999 | * |
| 4000 | * Allocate enough pages to cover @size from the page level |
| 4001 | * allocator and map them into contiguous kernel virtual space. |
| 4002 | * If @size is greater than or equal to PMD_SIZE, allow using |
| 4003 | * huge pages for the memory |
| 4004 | * |
| 4005 | * Return: pointer to the allocated memory or %NULL on error |
| 4006 | */ |
| 4007 | void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node) |
| 4008 | { |
| 4009 | return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, |
| 4010 | gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, |
| 4011 | node, __builtin_return_address(0)); |
| 4012 | } |
| 4013 | EXPORT_SYMBOL_GPL(vmalloc_huge_node_noprof); |
| 4014 | |
| 4015 | /** |
| 4016 | * vzalloc - allocate virtually contiguous memory with zero fill |
| 4017 | * @size: allocation size |
| 4018 | * |
| 4019 | * Allocate enough pages to cover @size from the page level |
| 4020 | * allocator and map them into contiguous kernel virtual space. |
| 4021 | * The memory allocated is set to zero. |
| 4022 | * |
| 4023 | * For tight control over page level allocator and protection flags |
| 4024 | * use __vmalloc() instead. |
| 4025 | * |
| 4026 | * Return: pointer to the allocated memory or %NULL on error |
| 4027 | */ |
| 4028 | void *vzalloc_noprof(unsigned long size) |
| 4029 | { |
| 4030 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, |
| 4031 | __builtin_return_address(0)); |
| 4032 | } |
| 4033 | EXPORT_SYMBOL(vzalloc_noprof); |
| 4034 | |
| 4035 | /** |
| 4036 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
| 4037 | * @size: allocation size |
| 4038 | * |
| 4039 | * The resulting memory area is zeroed so it can be mapped to userspace |
| 4040 | * without leaking data. |
| 4041 | * |
| 4042 | * Return: pointer to the allocated memory or %NULL on error |
| 4043 | */ |
| 4044 | void *vmalloc_user_noprof(unsigned long size) |
| 4045 | { |
| 4046 | return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, |
| 4047 | GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, |
| 4048 | VM_USERMAP, NUMA_NO_NODE, |
| 4049 | __builtin_return_address(0)); |
| 4050 | } |
| 4051 | EXPORT_SYMBOL(vmalloc_user_noprof); |
| 4052 | |
| 4053 | /** |
| 4054 | * vmalloc_node - allocate memory on a specific node |
| 4055 | * @size: allocation size |
| 4056 | * @node: numa node |
| 4057 | * |
| 4058 | * Allocate enough pages to cover @size from the page level |
| 4059 | * allocator and map them into contiguous kernel virtual space. |
| 4060 | * |
| 4061 | * For tight control over page level allocator and protection flags |
| 4062 | * use __vmalloc() instead. |
| 4063 | * |
| 4064 | * Return: pointer to the allocated memory or %NULL on error |
| 4065 | */ |
| 4066 | void *vmalloc_node_noprof(unsigned long size, int node) |
| 4067 | { |
| 4068 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node, |
| 4069 | __builtin_return_address(0)); |
| 4070 | } |
| 4071 | EXPORT_SYMBOL(vmalloc_node_noprof); |
| 4072 | |
| 4073 | /** |
| 4074 | * vzalloc_node - allocate memory on a specific node with zero fill |
| 4075 | * @size: allocation size |
| 4076 | * @node: numa node |
| 4077 | * |
| 4078 | * Allocate enough pages to cover @size from the page level |
| 4079 | * allocator and map them into contiguous kernel virtual space. |
| 4080 | * The memory allocated is set to zero. |
| 4081 | * |
| 4082 | * Return: pointer to the allocated memory or %NULL on error |
| 4083 | */ |
| 4084 | void *vzalloc_node_noprof(unsigned long size, int node) |
| 4085 | { |
| 4086 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node, |
| 4087 | __builtin_return_address(0)); |
| 4088 | } |
| 4089 | EXPORT_SYMBOL(vzalloc_node_noprof); |
| 4090 | |
| 4091 | /** |
| 4092 | * vrealloc - reallocate virtually contiguous memory; contents remain unchanged |
| 4093 | * @p: object to reallocate memory for |
| 4094 | * @size: the size to reallocate |
| 4095 | * @flags: the flags for the page level allocator |
| 4096 | * |
| 4097 | * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and |
| 4098 | * @p is not a %NULL pointer, the object pointed to is freed. |
| 4099 | * |
| 4100 | * If __GFP_ZERO logic is requested, callers must ensure that, starting with the |
| 4101 | * initial memory allocation, every subsequent call to this API for the same |
| 4102 | * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that |
| 4103 | * __GFP_ZERO is not fully honored by this API. |
| 4104 | * |
| 4105 | * In any case, the contents of the object pointed to are preserved up to the |
| 4106 | * lesser of the new and old sizes. |
| 4107 | * |
| 4108 | * This function must not be called concurrently with itself or vfree() for the |
| 4109 | * same memory allocation. |
| 4110 | * |
| 4111 | * Return: pointer to the allocated memory; %NULL if @size is zero or in case of |
| 4112 | * failure |
| 4113 | */ |
| 4114 | void *vrealloc_noprof(const void *p, size_t size, gfp_t flags) |
| 4115 | { |
| 4116 | struct vm_struct *vm = NULL; |
| 4117 | size_t alloced_size = 0; |
| 4118 | size_t old_size = 0; |
| 4119 | void *n; |
| 4120 | |
| 4121 | if (!size) { |
| 4122 | vfree(p); |
| 4123 | return NULL; |
| 4124 | } |
| 4125 | |
| 4126 | if (p) { |
| 4127 | vm = find_vm_area(p); |
| 4128 | if (unlikely(!vm)) { |
| 4129 | WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p); |
| 4130 | return NULL; |
| 4131 | } |
| 4132 | |
| 4133 | alloced_size = get_vm_area_size(vm); |
| 4134 | old_size = vm->requested_size; |
| 4135 | if (WARN(alloced_size < old_size, |
| 4136 | "vrealloc() has mismatched area vs requested sizes (%p)\n", p)) |
| 4137 | return NULL; |
| 4138 | } |
| 4139 | |
| 4140 | /* |
| 4141 | * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What |
| 4142 | * would be a good heuristic for when to shrink the vm_area? |
| 4143 | */ |
| 4144 | if (size <= old_size) { |
| 4145 | /* Zero out "freed" memory, potentially for future realloc. */ |
| 4146 | if (want_init_on_free() || want_init_on_alloc(flags)) |
| 4147 | memset((void *)p + size, 0, old_size - size); |
| 4148 | vm->requested_size = size; |
| 4149 | kasan_poison_vmalloc(p + size, old_size - size); |
| 4150 | return (void *)p; |
| 4151 | } |
| 4152 | |
| 4153 | /* |
| 4154 | * We already have the bytes available in the allocation; use them. |
| 4155 | */ |
| 4156 | if (size <= alloced_size) { |
| 4157 | kasan_unpoison_vmalloc(p + old_size, size - old_size, |
| 4158 | KASAN_VMALLOC_PROT_NORMAL); |
| 4159 | /* |
| 4160 | * No need to zero memory here, as unused memory will have |
| 4161 | * already been zeroed at initial allocation time or during |
| 4162 | * realloc shrink time. |
| 4163 | */ |
| 4164 | vm->requested_size = size; |
| 4165 | return (void *)p; |
| 4166 | } |
| 4167 | |
| 4168 | /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */ |
| 4169 | n = __vmalloc_noprof(size, flags); |
| 4170 | if (!n) |
| 4171 | return NULL; |
| 4172 | |
| 4173 | if (p) { |
| 4174 | memcpy(n, p, old_size); |
| 4175 | vfree(p); |
| 4176 | } |
| 4177 | |
| 4178 | return n; |
| 4179 | } |
| 4180 | |
| 4181 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
| 4182 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) |
| 4183 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
| 4184 | #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) |
| 4185 | #else |
| 4186 | /* |
| 4187 | * 64b systems should always have either DMA or DMA32 zones. For others |
| 4188 | * GFP_DMA32 should do the right thing and use the normal zone. |
| 4189 | */ |
| 4190 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) |
| 4191 | #endif |
| 4192 | |
| 4193 | /** |
| 4194 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) |
| 4195 | * @size: allocation size |
| 4196 | * |
| 4197 | * Allocate enough 32bit PA addressable pages to cover @size from the |
| 4198 | * page level allocator and map them into contiguous kernel virtual space. |
| 4199 | * |
| 4200 | * Return: pointer to the allocated memory or %NULL on error |
| 4201 | */ |
| 4202 | void *vmalloc_32_noprof(unsigned long size) |
| 4203 | { |
| 4204 | return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, |
| 4205 | __builtin_return_address(0)); |
| 4206 | } |
| 4207 | EXPORT_SYMBOL(vmalloc_32_noprof); |
| 4208 | |
| 4209 | /** |
| 4210 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
| 4211 | * @size: allocation size |
| 4212 | * |
| 4213 | * The resulting memory area is 32bit addressable and zeroed so it can be |
| 4214 | * mapped to userspace without leaking data. |
| 4215 | * |
| 4216 | * Return: pointer to the allocated memory or %NULL on error |
| 4217 | */ |
| 4218 | void *vmalloc_32_user_noprof(unsigned long size) |
| 4219 | { |
| 4220 | return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, |
| 4221 | GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
| 4222 | VM_USERMAP, NUMA_NO_NODE, |
| 4223 | __builtin_return_address(0)); |
| 4224 | } |
| 4225 | EXPORT_SYMBOL(vmalloc_32_user_noprof); |
| 4226 | |
| 4227 | /* |
| 4228 | * Atomically zero bytes in the iterator. |
| 4229 | * |
| 4230 | * Returns the number of zeroed bytes. |
| 4231 | */ |
| 4232 | static size_t zero_iter(struct iov_iter *iter, size_t count) |
| 4233 | { |
| 4234 | size_t remains = count; |
| 4235 | |
| 4236 | while (remains > 0) { |
| 4237 | size_t num, copied; |
| 4238 | |
| 4239 | num = min_t(size_t, remains, PAGE_SIZE); |
| 4240 | copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); |
| 4241 | remains -= copied; |
| 4242 | |
| 4243 | if (copied < num) |
| 4244 | break; |
| 4245 | } |
| 4246 | |
| 4247 | return count - remains; |
| 4248 | } |
| 4249 | |
| 4250 | /* |
| 4251 | * small helper routine, copy contents to iter from addr. |
| 4252 | * If the page is not present, fill zero. |
| 4253 | * |
| 4254 | * Returns the number of copied bytes. |
| 4255 | */ |
| 4256 | static size_t aligned_vread_iter(struct iov_iter *iter, |
| 4257 | const char *addr, size_t count) |
| 4258 | { |
| 4259 | size_t remains = count; |
| 4260 | struct page *page; |
| 4261 | |
| 4262 | while (remains > 0) { |
| 4263 | unsigned long offset, length; |
| 4264 | size_t copied = 0; |
| 4265 | |
| 4266 | offset = offset_in_page(addr); |
| 4267 | length = PAGE_SIZE - offset; |
| 4268 | if (length > remains) |
| 4269 | length = remains; |
| 4270 | page = vmalloc_to_page(addr); |
| 4271 | /* |
| 4272 | * To do safe access to this _mapped_ area, we need lock. But |
| 4273 | * adding lock here means that we need to add overhead of |
| 4274 | * vmalloc()/vfree() calls for this _debug_ interface, rarely |
| 4275 | * used. Instead of that, we'll use an local mapping via |
| 4276 | * copy_page_to_iter_nofault() and accept a small overhead in |
| 4277 | * this access function. |
| 4278 | */ |
| 4279 | if (page) |
| 4280 | copied = copy_page_to_iter_nofault(page, offset, |
| 4281 | length, iter); |
| 4282 | else |
| 4283 | copied = zero_iter(iter, length); |
| 4284 | |
| 4285 | addr += copied; |
| 4286 | remains -= copied; |
| 4287 | |
| 4288 | if (copied != length) |
| 4289 | break; |
| 4290 | } |
| 4291 | |
| 4292 | return count - remains; |
| 4293 | } |
| 4294 | |
| 4295 | /* |
| 4296 | * Read from a vm_map_ram region of memory. |
| 4297 | * |
| 4298 | * Returns the number of copied bytes. |
| 4299 | */ |
| 4300 | static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, |
| 4301 | size_t count, unsigned long flags) |
| 4302 | { |
| 4303 | char *start; |
| 4304 | struct vmap_block *vb; |
| 4305 | struct xarray *xa; |
| 4306 | unsigned long offset; |
| 4307 | unsigned int rs, re; |
| 4308 | size_t remains, n; |
| 4309 | |
| 4310 | /* |
| 4311 | * If it's area created by vm_map_ram() interface directly, but |
| 4312 | * not further subdividing and delegating management to vmap_block, |
| 4313 | * handle it here. |
| 4314 | */ |
| 4315 | if (!(flags & VMAP_BLOCK)) |
| 4316 | return aligned_vread_iter(iter, addr, count); |
| 4317 | |
| 4318 | remains = count; |
| 4319 | |
| 4320 | /* |
| 4321 | * Area is split into regions and tracked with vmap_block, read out |
| 4322 | * each region and zero fill the hole between regions. |
| 4323 | */ |
| 4324 | xa = addr_to_vb_xa((unsigned long) addr); |
| 4325 | vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); |
| 4326 | if (!vb) |
| 4327 | goto finished_zero; |
| 4328 | |
| 4329 | spin_lock(&vb->lock); |
| 4330 | if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { |
| 4331 | spin_unlock(&vb->lock); |
| 4332 | goto finished_zero; |
| 4333 | } |
| 4334 | |
| 4335 | for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { |
| 4336 | size_t copied; |
| 4337 | |
| 4338 | if (remains == 0) |
| 4339 | goto finished; |
| 4340 | |
| 4341 | start = vmap_block_vaddr(vb->va->va_start, rs); |
| 4342 | |
| 4343 | if (addr < start) { |
| 4344 | size_t to_zero = min_t(size_t, start - addr, remains); |
| 4345 | size_t zeroed = zero_iter(iter, to_zero); |
| 4346 | |
| 4347 | addr += zeroed; |
| 4348 | remains -= zeroed; |
| 4349 | |
| 4350 | if (remains == 0 || zeroed != to_zero) |
| 4351 | goto finished; |
| 4352 | } |
| 4353 | |
| 4354 | /*it could start reading from the middle of used region*/ |
| 4355 | offset = offset_in_page(addr); |
| 4356 | n = ((re - rs + 1) << PAGE_SHIFT) - offset; |
| 4357 | if (n > remains) |
| 4358 | n = remains; |
| 4359 | |
| 4360 | copied = aligned_vread_iter(iter, start + offset, n); |
| 4361 | |
| 4362 | addr += copied; |
| 4363 | remains -= copied; |
| 4364 | |
| 4365 | if (copied != n) |
| 4366 | goto finished; |
| 4367 | } |
| 4368 | |
| 4369 | spin_unlock(&vb->lock); |
| 4370 | |
| 4371 | finished_zero: |
| 4372 | /* zero-fill the left dirty or free regions */ |
| 4373 | return count - remains + zero_iter(iter, remains); |
| 4374 | finished: |
| 4375 | /* We couldn't copy/zero everything */ |
| 4376 | spin_unlock(&vb->lock); |
| 4377 | return count - remains; |
| 4378 | } |
| 4379 | |
| 4380 | /** |
| 4381 | * vread_iter() - read vmalloc area in a safe way to an iterator. |
| 4382 | * @iter: the iterator to which data should be written. |
| 4383 | * @addr: vm address. |
| 4384 | * @count: number of bytes to be read. |
| 4385 | * |
| 4386 | * This function checks that addr is a valid vmalloc'ed area, and |
| 4387 | * copy data from that area to a given buffer. If the given memory range |
| 4388 | * of [addr...addr+count) includes some valid address, data is copied to |
| 4389 | * proper area of @buf. If there are memory holes, they'll be zero-filled. |
| 4390 | * IOREMAP area is treated as memory hole and no copy is done. |
| 4391 | * |
| 4392 | * If [addr...addr+count) doesn't includes any intersects with alive |
| 4393 | * vm_struct area, returns 0. @buf should be kernel's buffer. |
| 4394 | * |
| 4395 | * Note: In usual ops, vread() is never necessary because the caller |
| 4396 | * should know vmalloc() area is valid and can use memcpy(). |
| 4397 | * This is for routines which have to access vmalloc area without |
| 4398 | * any information, as /proc/kcore. |
| 4399 | * |
| 4400 | * Return: number of bytes for which addr and buf should be increased |
| 4401 | * (same number as @count) or %0 if [addr...addr+count) doesn't |
| 4402 | * include any intersection with valid vmalloc area |
| 4403 | */ |
| 4404 | long vread_iter(struct iov_iter *iter, const char *addr, size_t count) |
| 4405 | { |
| 4406 | struct vmap_node *vn; |
| 4407 | struct vmap_area *va; |
| 4408 | struct vm_struct *vm; |
| 4409 | char *vaddr; |
| 4410 | size_t n, size, flags, remains; |
| 4411 | unsigned long next; |
| 4412 | |
| 4413 | addr = kasan_reset_tag(addr); |
| 4414 | |
| 4415 | /* Don't allow overflow */ |
| 4416 | if ((unsigned long) addr + count < count) |
| 4417 | count = -(unsigned long) addr; |
| 4418 | |
| 4419 | remains = count; |
| 4420 | |
| 4421 | vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); |
| 4422 | if (!vn) |
| 4423 | goto finished_zero; |
| 4424 | |
| 4425 | /* no intersects with alive vmap_area */ |
| 4426 | if ((unsigned long)addr + remains <= va->va_start) |
| 4427 | goto finished_zero; |
| 4428 | |
| 4429 | do { |
| 4430 | size_t copied; |
| 4431 | |
| 4432 | if (remains == 0) |
| 4433 | goto finished; |
| 4434 | |
| 4435 | vm = va->vm; |
| 4436 | flags = va->flags & VMAP_FLAGS_MASK; |
| 4437 | /* |
| 4438 | * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need |
| 4439 | * be set together with VMAP_RAM. |
| 4440 | */ |
| 4441 | WARN_ON(flags == VMAP_BLOCK); |
| 4442 | |
| 4443 | if (!vm && !flags) |
| 4444 | goto next_va; |
| 4445 | |
| 4446 | if (vm && (vm->flags & VM_UNINITIALIZED)) |
| 4447 | goto next_va; |
| 4448 | |
| 4449 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ |
| 4450 | smp_rmb(); |
| 4451 | |
| 4452 | vaddr = (char *) va->va_start; |
| 4453 | size = vm ? get_vm_area_size(vm) : va_size(va); |
| 4454 | |
| 4455 | if (addr >= vaddr + size) |
| 4456 | goto next_va; |
| 4457 | |
| 4458 | if (addr < vaddr) { |
| 4459 | size_t to_zero = min_t(size_t, vaddr - addr, remains); |
| 4460 | size_t zeroed = zero_iter(iter, to_zero); |
| 4461 | |
| 4462 | addr += zeroed; |
| 4463 | remains -= zeroed; |
| 4464 | |
| 4465 | if (remains == 0 || zeroed != to_zero) |
| 4466 | goto finished; |
| 4467 | } |
| 4468 | |
| 4469 | n = vaddr + size - addr; |
| 4470 | if (n > remains) |
| 4471 | n = remains; |
| 4472 | |
| 4473 | if (flags & VMAP_RAM) |
| 4474 | copied = vmap_ram_vread_iter(iter, addr, n, flags); |
| 4475 | else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) |
| 4476 | copied = aligned_vread_iter(iter, addr, n); |
| 4477 | else /* IOREMAP | SPARSE area is treated as memory hole */ |
| 4478 | copied = zero_iter(iter, n); |
| 4479 | |
| 4480 | addr += copied; |
| 4481 | remains -= copied; |
| 4482 | |
| 4483 | if (copied != n) |
| 4484 | goto finished; |
| 4485 | |
| 4486 | next_va: |
| 4487 | next = va->va_end; |
| 4488 | spin_unlock(&vn->busy.lock); |
| 4489 | } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); |
| 4490 | |
| 4491 | finished_zero: |
| 4492 | if (vn) |
| 4493 | spin_unlock(&vn->busy.lock); |
| 4494 | |
| 4495 | /* zero-fill memory holes */ |
| 4496 | return count - remains + zero_iter(iter, remains); |
| 4497 | finished: |
| 4498 | /* Nothing remains, or We couldn't copy/zero everything. */ |
| 4499 | if (vn) |
| 4500 | spin_unlock(&vn->busy.lock); |
| 4501 | |
| 4502 | return count - remains; |
| 4503 | } |
| 4504 | |
| 4505 | /** |
| 4506 | * remap_vmalloc_range_partial - map vmalloc pages to userspace |
| 4507 | * @vma: vma to cover |
| 4508 | * @uaddr: target user address to start at |
| 4509 | * @kaddr: virtual address of vmalloc kernel memory |
| 4510 | * @pgoff: offset from @kaddr to start at |
| 4511 | * @size: size of map area |
| 4512 | * |
| 4513 | * Returns: 0 for success, -Exxx on failure |
| 4514 | * |
| 4515 | * This function checks that @kaddr is a valid vmalloc'ed area, |
| 4516 | * and that it is big enough to cover the range starting at |
| 4517 | * @uaddr in @vma. Will return failure if that criteria isn't |
| 4518 | * met. |
| 4519 | * |
| 4520 | * Similar to remap_pfn_range() (see mm/memory.c) |
| 4521 | */ |
| 4522 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, |
| 4523 | void *kaddr, unsigned long pgoff, |
| 4524 | unsigned long size) |
| 4525 | { |
| 4526 | struct vm_struct *area; |
| 4527 | unsigned long off; |
| 4528 | unsigned long end_index; |
| 4529 | |
| 4530 | if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) |
| 4531 | return -EINVAL; |
| 4532 | |
| 4533 | size = PAGE_ALIGN(size); |
| 4534 | |
| 4535 | if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) |
| 4536 | return -EINVAL; |
| 4537 | |
| 4538 | area = find_vm_area(kaddr); |
| 4539 | if (!area) |
| 4540 | return -EINVAL; |
| 4541 | |
| 4542 | if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) |
| 4543 | return -EINVAL; |
| 4544 | |
| 4545 | if (check_add_overflow(size, off, &end_index) || |
| 4546 | end_index > get_vm_area_size(area)) |
| 4547 | return -EINVAL; |
| 4548 | kaddr += off; |
| 4549 | |
| 4550 | do { |
| 4551 | struct page *page = vmalloc_to_page(kaddr); |
| 4552 | int ret; |
| 4553 | |
| 4554 | ret = vm_insert_page(vma, uaddr, page); |
| 4555 | if (ret) |
| 4556 | return ret; |
| 4557 | |
| 4558 | uaddr += PAGE_SIZE; |
| 4559 | kaddr += PAGE_SIZE; |
| 4560 | size -= PAGE_SIZE; |
| 4561 | } while (size > 0); |
| 4562 | |
| 4563 | vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); |
| 4564 | |
| 4565 | return 0; |
| 4566 | } |
| 4567 | |
| 4568 | /** |
| 4569 | * remap_vmalloc_range - map vmalloc pages to userspace |
| 4570 | * @vma: vma to cover (map full range of vma) |
| 4571 | * @addr: vmalloc memory |
| 4572 | * @pgoff: number of pages into addr before first page to map |
| 4573 | * |
| 4574 | * Returns: 0 for success, -Exxx on failure |
| 4575 | * |
| 4576 | * This function checks that addr is a valid vmalloc'ed area, and |
| 4577 | * that it is big enough to cover the vma. Will return failure if |
| 4578 | * that criteria isn't met. |
| 4579 | * |
| 4580 | * Similar to remap_pfn_range() (see mm/memory.c) |
| 4581 | */ |
| 4582 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, |
| 4583 | unsigned long pgoff) |
| 4584 | { |
| 4585 | return remap_vmalloc_range_partial(vma, vma->vm_start, |
| 4586 | addr, pgoff, |
| 4587 | vma->vm_end - vma->vm_start); |
| 4588 | } |
| 4589 | EXPORT_SYMBOL(remap_vmalloc_range); |
| 4590 | |
| 4591 | void free_vm_area(struct vm_struct *area) |
| 4592 | { |
| 4593 | struct vm_struct *ret; |
| 4594 | ret = remove_vm_area(area->addr); |
| 4595 | BUG_ON(ret != area); |
| 4596 | kfree(area); |
| 4597 | } |
| 4598 | EXPORT_SYMBOL_GPL(free_vm_area); |
| 4599 | |
| 4600 | #ifdef CONFIG_SMP |
| 4601 | static struct vmap_area *node_to_va(struct rb_node *n) |
| 4602 | { |
| 4603 | return rb_entry_safe(n, struct vmap_area, rb_node); |
| 4604 | } |
| 4605 | |
| 4606 | /** |
| 4607 | * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to |
| 4608 | * @addr: target address |
| 4609 | * |
| 4610 | * Returns: vmap_area if it is found. If there is no such area |
| 4611 | * the first highest(reverse order) vmap_area is returned |
| 4612 | * i.e. va->va_start < addr && va->va_end < addr or NULL |
| 4613 | * if there are no any areas before @addr. |
| 4614 | */ |
| 4615 | static struct vmap_area * |
| 4616 | pvm_find_va_enclose_addr(unsigned long addr) |
| 4617 | { |
| 4618 | struct vmap_area *va, *tmp; |
| 4619 | struct rb_node *n; |
| 4620 | |
| 4621 | n = free_vmap_area_root.rb_node; |
| 4622 | va = NULL; |
| 4623 | |
| 4624 | while (n) { |
| 4625 | tmp = rb_entry(n, struct vmap_area, rb_node); |
| 4626 | if (tmp->va_start <= addr) { |
| 4627 | va = tmp; |
| 4628 | if (tmp->va_end >= addr) |
| 4629 | break; |
| 4630 | |
| 4631 | n = n->rb_right; |
| 4632 | } else { |
| 4633 | n = n->rb_left; |
| 4634 | } |
| 4635 | } |
| 4636 | |
| 4637 | return va; |
| 4638 | } |
| 4639 | |
| 4640 | /** |
| 4641 | * pvm_determine_end_from_reverse - find the highest aligned address |
| 4642 | * of free block below VMALLOC_END |
| 4643 | * @va: |
| 4644 | * in - the VA we start the search(reverse order); |
| 4645 | * out - the VA with the highest aligned end address. |
| 4646 | * @align: alignment for required highest address |
| 4647 | * |
| 4648 | * Returns: determined end address within vmap_area |
| 4649 | */ |
| 4650 | static unsigned long |
| 4651 | pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) |
| 4652 | { |
| 4653 | unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); |
| 4654 | unsigned long addr; |
| 4655 | |
| 4656 | if (likely(*va)) { |
| 4657 | list_for_each_entry_from_reverse((*va), |
| 4658 | &free_vmap_area_list, list) { |
| 4659 | addr = min((*va)->va_end & ~(align - 1), vmalloc_end); |
| 4660 | if ((*va)->va_start < addr) |
| 4661 | return addr; |
| 4662 | } |
| 4663 | } |
| 4664 | |
| 4665 | return 0; |
| 4666 | } |
| 4667 | |
| 4668 | /** |
| 4669 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator |
| 4670 | * @offsets: array containing offset of each area |
| 4671 | * @sizes: array containing size of each area |
| 4672 | * @nr_vms: the number of areas to allocate |
| 4673 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this |
| 4674 | * |
| 4675 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated |
| 4676 | * vm_structs on success, %NULL on failure |
| 4677 | * |
| 4678 | * Percpu allocator wants to use congruent vm areas so that it can |
| 4679 | * maintain the offsets among percpu areas. This function allocates |
| 4680 | * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to |
| 4681 | * be scattered pretty far, distance between two areas easily going up |
| 4682 | * to gigabytes. To avoid interacting with regular vmallocs, these |
| 4683 | * areas are allocated from top. |
| 4684 | * |
| 4685 | * Despite its complicated look, this allocator is rather simple. It |
| 4686 | * does everything top-down and scans free blocks from the end looking |
| 4687 | * for matching base. While scanning, if any of the areas do not fit the |
| 4688 | * base address is pulled down to fit the area. Scanning is repeated till |
| 4689 | * all the areas fit and then all necessary data structures are inserted |
| 4690 | * and the result is returned. |
| 4691 | */ |
| 4692 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, |
| 4693 | const size_t *sizes, int nr_vms, |
| 4694 | size_t align) |
| 4695 | { |
| 4696 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); |
| 4697 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); |
| 4698 | struct vmap_area **vas, *va; |
| 4699 | struct vm_struct **vms; |
| 4700 | int area, area2, last_area, term_area; |
| 4701 | unsigned long base, start, size, end, last_end, orig_start, orig_end; |
| 4702 | bool purged = false; |
| 4703 | |
| 4704 | /* verify parameters and allocate data structures */ |
| 4705 | BUG_ON(offset_in_page(align) || !is_power_of_2(align)); |
| 4706 | for (last_area = 0, area = 0; area < nr_vms; area++) { |
| 4707 | start = offsets[area]; |
| 4708 | end = start + sizes[area]; |
| 4709 | |
| 4710 | /* is everything aligned properly? */ |
| 4711 | BUG_ON(!IS_ALIGNED(offsets[area], align)); |
| 4712 | BUG_ON(!IS_ALIGNED(sizes[area], align)); |
| 4713 | |
| 4714 | /* detect the area with the highest address */ |
| 4715 | if (start > offsets[last_area]) |
| 4716 | last_area = area; |
| 4717 | |
| 4718 | for (area2 = area + 1; area2 < nr_vms; area2++) { |
| 4719 | unsigned long start2 = offsets[area2]; |
| 4720 | unsigned long end2 = start2 + sizes[area2]; |
| 4721 | |
| 4722 | BUG_ON(start2 < end && start < end2); |
| 4723 | } |
| 4724 | } |
| 4725 | last_end = offsets[last_area] + sizes[last_area]; |
| 4726 | |
| 4727 | if (vmalloc_end - vmalloc_start < last_end) { |
| 4728 | WARN_ON(true); |
| 4729 | return NULL; |
| 4730 | } |
| 4731 | |
| 4732 | vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); |
| 4733 | vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); |
| 4734 | if (!vas || !vms) |
| 4735 | goto err_free2; |
| 4736 | |
| 4737 | for (area = 0; area < nr_vms; area++) { |
| 4738 | vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); |
| 4739 | vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); |
| 4740 | if (!vas[area] || !vms[area]) |
| 4741 | goto err_free; |
| 4742 | } |
| 4743 | retry: |
| 4744 | spin_lock(&free_vmap_area_lock); |
| 4745 | |
| 4746 | /* start scanning - we scan from the top, begin with the last area */ |
| 4747 | area = term_area = last_area; |
| 4748 | start = offsets[area]; |
| 4749 | end = start + sizes[area]; |
| 4750 | |
| 4751 | va = pvm_find_va_enclose_addr(vmalloc_end); |
| 4752 | base = pvm_determine_end_from_reverse(&va, align) - end; |
| 4753 | |
| 4754 | while (true) { |
| 4755 | /* |
| 4756 | * base might have underflowed, add last_end before |
| 4757 | * comparing. |
| 4758 | */ |
| 4759 | if (base + last_end < vmalloc_start + last_end) |
| 4760 | goto overflow; |
| 4761 | |
| 4762 | /* |
| 4763 | * Fitting base has not been found. |
| 4764 | */ |
| 4765 | if (va == NULL) |
| 4766 | goto overflow; |
| 4767 | |
| 4768 | /* |
| 4769 | * If required width exceeds current VA block, move |
| 4770 | * base downwards and then recheck. |
| 4771 | */ |
| 4772 | if (base + end > va->va_end) { |
| 4773 | base = pvm_determine_end_from_reverse(&va, align) - end; |
| 4774 | term_area = area; |
| 4775 | continue; |
| 4776 | } |
| 4777 | |
| 4778 | /* |
| 4779 | * If this VA does not fit, move base downwards and recheck. |
| 4780 | */ |
| 4781 | if (base + start < va->va_start) { |
| 4782 | va = node_to_va(rb_prev(&va->rb_node)); |
| 4783 | base = pvm_determine_end_from_reverse(&va, align) - end; |
| 4784 | term_area = area; |
| 4785 | continue; |
| 4786 | } |
| 4787 | |
| 4788 | /* |
| 4789 | * This area fits, move on to the previous one. If |
| 4790 | * the previous one is the terminal one, we're done. |
| 4791 | */ |
| 4792 | area = (area + nr_vms - 1) % nr_vms; |
| 4793 | if (area == term_area) |
| 4794 | break; |
| 4795 | |
| 4796 | start = offsets[area]; |
| 4797 | end = start + sizes[area]; |
| 4798 | va = pvm_find_va_enclose_addr(base + end); |
| 4799 | } |
| 4800 | |
| 4801 | /* we've found a fitting base, insert all va's */ |
| 4802 | for (area = 0; area < nr_vms; area++) { |
| 4803 | int ret; |
| 4804 | |
| 4805 | start = base + offsets[area]; |
| 4806 | size = sizes[area]; |
| 4807 | |
| 4808 | va = pvm_find_va_enclose_addr(start); |
| 4809 | if (WARN_ON_ONCE(va == NULL)) |
| 4810 | /* It is a BUG(), but trigger recovery instead. */ |
| 4811 | goto recovery; |
| 4812 | |
| 4813 | ret = va_clip(&free_vmap_area_root, |
| 4814 | &free_vmap_area_list, va, start, size); |
| 4815 | if (WARN_ON_ONCE(unlikely(ret))) |
| 4816 | /* It is a BUG(), but trigger recovery instead. */ |
| 4817 | goto recovery; |
| 4818 | |
| 4819 | /* Allocated area. */ |
| 4820 | va = vas[area]; |
| 4821 | va->va_start = start; |
| 4822 | va->va_end = start + size; |
| 4823 | } |
| 4824 | |
| 4825 | spin_unlock(&free_vmap_area_lock); |
| 4826 | |
| 4827 | /* populate the kasan shadow space */ |
| 4828 | for (area = 0; area < nr_vms; area++) { |
| 4829 | if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) |
| 4830 | goto err_free_shadow; |
| 4831 | } |
| 4832 | |
| 4833 | /* insert all vm's */ |
| 4834 | for (area = 0; area < nr_vms; area++) { |
| 4835 | struct vmap_node *vn = addr_to_node(vas[area]->va_start); |
| 4836 | |
| 4837 | spin_lock(&vn->busy.lock); |
| 4838 | insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); |
| 4839 | setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, |
| 4840 | pcpu_get_vm_areas); |
| 4841 | spin_unlock(&vn->busy.lock); |
| 4842 | } |
| 4843 | |
| 4844 | /* |
| 4845 | * Mark allocated areas as accessible. Do it now as a best-effort |
| 4846 | * approach, as they can be mapped outside of vmalloc code. |
| 4847 | * With hardware tag-based KASAN, marking is skipped for |
| 4848 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). |
| 4849 | */ |
| 4850 | for (area = 0; area < nr_vms; area++) |
| 4851 | vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, |
| 4852 | vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); |
| 4853 | |
| 4854 | kfree(vas); |
| 4855 | return vms; |
| 4856 | |
| 4857 | recovery: |
| 4858 | /* |
| 4859 | * Remove previously allocated areas. There is no |
| 4860 | * need in removing these areas from the busy tree, |
| 4861 | * because they are inserted only on the final step |
| 4862 | * and when pcpu_get_vm_areas() is success. |
| 4863 | */ |
| 4864 | while (area--) { |
| 4865 | orig_start = vas[area]->va_start; |
| 4866 | orig_end = vas[area]->va_end; |
| 4867 | va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, |
| 4868 | &free_vmap_area_list); |
| 4869 | if (va) |
| 4870 | kasan_release_vmalloc(orig_start, orig_end, |
| 4871 | va->va_start, va->va_end, |
| 4872 | KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); |
| 4873 | vas[area] = NULL; |
| 4874 | } |
| 4875 | |
| 4876 | overflow: |
| 4877 | spin_unlock(&free_vmap_area_lock); |
| 4878 | if (!purged) { |
| 4879 | reclaim_and_purge_vmap_areas(); |
| 4880 | purged = true; |
| 4881 | |
| 4882 | /* Before "retry", check if we recover. */ |
| 4883 | for (area = 0; area < nr_vms; area++) { |
| 4884 | if (vas[area]) |
| 4885 | continue; |
| 4886 | |
| 4887 | vas[area] = kmem_cache_zalloc( |
| 4888 | vmap_area_cachep, GFP_KERNEL); |
| 4889 | if (!vas[area]) |
| 4890 | goto err_free; |
| 4891 | } |
| 4892 | |
| 4893 | goto retry; |
| 4894 | } |
| 4895 | |
| 4896 | err_free: |
| 4897 | for (area = 0; area < nr_vms; area++) { |
| 4898 | if (vas[area]) |
| 4899 | kmem_cache_free(vmap_area_cachep, vas[area]); |
| 4900 | |
| 4901 | kfree(vms[area]); |
| 4902 | } |
| 4903 | err_free2: |
| 4904 | kfree(vas); |
| 4905 | kfree(vms); |
| 4906 | return NULL; |
| 4907 | |
| 4908 | err_free_shadow: |
| 4909 | spin_lock(&free_vmap_area_lock); |
| 4910 | /* |
| 4911 | * We release all the vmalloc shadows, even the ones for regions that |
| 4912 | * hadn't been successfully added. This relies on kasan_release_vmalloc |
| 4913 | * being able to tolerate this case. |
| 4914 | */ |
| 4915 | for (area = 0; area < nr_vms; area++) { |
| 4916 | orig_start = vas[area]->va_start; |
| 4917 | orig_end = vas[area]->va_end; |
| 4918 | va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, |
| 4919 | &free_vmap_area_list); |
| 4920 | if (va) |
| 4921 | kasan_release_vmalloc(orig_start, orig_end, |
| 4922 | va->va_start, va->va_end, |
| 4923 | KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); |
| 4924 | vas[area] = NULL; |
| 4925 | kfree(vms[area]); |
| 4926 | } |
| 4927 | spin_unlock(&free_vmap_area_lock); |
| 4928 | kfree(vas); |
| 4929 | kfree(vms); |
| 4930 | return NULL; |
| 4931 | } |
| 4932 | |
| 4933 | /** |
| 4934 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator |
| 4935 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() |
| 4936 | * @nr_vms: the number of allocated areas |
| 4937 | * |
| 4938 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). |
| 4939 | */ |
| 4940 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) |
| 4941 | { |
| 4942 | int i; |
| 4943 | |
| 4944 | for (i = 0; i < nr_vms; i++) |
| 4945 | free_vm_area(vms[i]); |
| 4946 | kfree(vms); |
| 4947 | } |
| 4948 | #endif /* CONFIG_SMP */ |
| 4949 | |
| 4950 | #ifdef CONFIG_PRINTK |
| 4951 | bool vmalloc_dump_obj(void *object) |
| 4952 | { |
| 4953 | const void *caller; |
| 4954 | struct vm_struct *vm; |
| 4955 | struct vmap_area *va; |
| 4956 | struct vmap_node *vn; |
| 4957 | unsigned long addr; |
| 4958 | unsigned int nr_pages; |
| 4959 | |
| 4960 | addr = PAGE_ALIGN((unsigned long) object); |
| 4961 | vn = addr_to_node(addr); |
| 4962 | |
| 4963 | if (!spin_trylock(&vn->busy.lock)) |
| 4964 | return false; |
| 4965 | |
| 4966 | va = __find_vmap_area(addr, &vn->busy.root); |
| 4967 | if (!va || !va->vm) { |
| 4968 | spin_unlock(&vn->busy.lock); |
| 4969 | return false; |
| 4970 | } |
| 4971 | |
| 4972 | vm = va->vm; |
| 4973 | addr = (unsigned long) vm->addr; |
| 4974 | caller = vm->caller; |
| 4975 | nr_pages = vm->nr_pages; |
| 4976 | spin_unlock(&vn->busy.lock); |
| 4977 | |
| 4978 | pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", |
| 4979 | nr_pages, addr, caller); |
| 4980 | |
| 4981 | return true; |
| 4982 | } |
| 4983 | #endif |
| 4984 | |
| 4985 | #ifdef CONFIG_PROC_FS |
| 4986 | |
| 4987 | /* |
| 4988 | * Print number of pages allocated on each memory node. |
| 4989 | * |
| 4990 | * This function can only be called if CONFIG_NUMA is enabled |
| 4991 | * and VM_UNINITIALIZED bit in v->flags is disabled. |
| 4992 | */ |
| 4993 | static void show_numa_info(struct seq_file *m, struct vm_struct *v, |
| 4994 | unsigned int *counters) |
| 4995 | { |
| 4996 | unsigned int nr; |
| 4997 | unsigned int step = 1U << vm_area_page_order(v); |
| 4998 | |
| 4999 | if (!counters) |
| 5000 | return; |
| 5001 | |
| 5002 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); |
| 5003 | |
| 5004 | for (nr = 0; nr < v->nr_pages; nr += step) |
| 5005 | counters[page_to_nid(v->pages[nr])] += step; |
| 5006 | for_each_node_state(nr, N_HIGH_MEMORY) |
| 5007 | if (counters[nr]) |
| 5008 | seq_printf(m, " N%u=%u", nr, counters[nr]); |
| 5009 | } |
| 5010 | |
| 5011 | static void show_purge_info(struct seq_file *m) |
| 5012 | { |
| 5013 | struct vmap_node *vn; |
| 5014 | struct vmap_area *va; |
| 5015 | |
| 5016 | for_each_vmap_node(vn) { |
| 5017 | spin_lock(&vn->lazy.lock); |
| 5018 | list_for_each_entry(va, &vn->lazy.head, list) { |
| 5019 | seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", |
| 5020 | (void *)va->va_start, (void *)va->va_end, |
| 5021 | va_size(va)); |
| 5022 | } |
| 5023 | spin_unlock(&vn->lazy.lock); |
| 5024 | } |
| 5025 | } |
| 5026 | |
| 5027 | static int vmalloc_info_show(struct seq_file *m, void *p) |
| 5028 | { |
| 5029 | struct vmap_node *vn; |
| 5030 | struct vmap_area *va; |
| 5031 | struct vm_struct *v; |
| 5032 | unsigned int *counters; |
| 5033 | |
| 5034 | if (IS_ENABLED(CONFIG_NUMA)) |
| 5035 | counters = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); |
| 5036 | |
| 5037 | for_each_vmap_node(vn) { |
| 5038 | spin_lock(&vn->busy.lock); |
| 5039 | list_for_each_entry(va, &vn->busy.head, list) { |
| 5040 | if (!va->vm) { |
| 5041 | if (va->flags & VMAP_RAM) |
| 5042 | seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", |
| 5043 | (void *)va->va_start, (void *)va->va_end, |
| 5044 | va_size(va)); |
| 5045 | |
| 5046 | continue; |
| 5047 | } |
| 5048 | |
| 5049 | v = va->vm; |
| 5050 | if (v->flags & VM_UNINITIALIZED) |
| 5051 | continue; |
| 5052 | |
| 5053 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ |
| 5054 | smp_rmb(); |
| 5055 | |
| 5056 | seq_printf(m, "0x%pK-0x%pK %7ld", |
| 5057 | v->addr, v->addr + v->size, v->size); |
| 5058 | |
| 5059 | if (v->caller) |
| 5060 | seq_printf(m, " %pS", v->caller); |
| 5061 | |
| 5062 | if (v->nr_pages) |
| 5063 | seq_printf(m, " pages=%d", v->nr_pages); |
| 5064 | |
| 5065 | if (v->phys_addr) |
| 5066 | seq_printf(m, " phys=%pa", &v->phys_addr); |
| 5067 | |
| 5068 | if (v->flags & VM_IOREMAP) |
| 5069 | seq_puts(m, " ioremap"); |
| 5070 | |
| 5071 | if (v->flags & VM_SPARSE) |
| 5072 | seq_puts(m, " sparse"); |
| 5073 | |
| 5074 | if (v->flags & VM_ALLOC) |
| 5075 | seq_puts(m, " vmalloc"); |
| 5076 | |
| 5077 | if (v->flags & VM_MAP) |
| 5078 | seq_puts(m, " vmap"); |
| 5079 | |
| 5080 | if (v->flags & VM_USERMAP) |
| 5081 | seq_puts(m, " user"); |
| 5082 | |
| 5083 | if (v->flags & VM_DMA_COHERENT) |
| 5084 | seq_puts(m, " dma-coherent"); |
| 5085 | |
| 5086 | if (is_vmalloc_addr(v->pages)) |
| 5087 | seq_puts(m, " vpages"); |
| 5088 | |
| 5089 | if (IS_ENABLED(CONFIG_NUMA)) |
| 5090 | show_numa_info(m, v, counters); |
| 5091 | |
| 5092 | seq_putc(m, '\n'); |
| 5093 | } |
| 5094 | spin_unlock(&vn->busy.lock); |
| 5095 | } |
| 5096 | |
| 5097 | /* |
| 5098 | * As a final step, dump "unpurged" areas. |
| 5099 | */ |
| 5100 | show_purge_info(m); |
| 5101 | if (IS_ENABLED(CONFIG_NUMA)) |
| 5102 | kfree(counters); |
| 5103 | return 0; |
| 5104 | } |
| 5105 | |
| 5106 | static int __init proc_vmalloc_init(void) |
| 5107 | { |
| 5108 | proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show); |
| 5109 | return 0; |
| 5110 | } |
| 5111 | module_init(proc_vmalloc_init); |
| 5112 | |
| 5113 | #endif |
| 5114 | |
| 5115 | static void __init vmap_init_free_space(void) |
| 5116 | { |
| 5117 | unsigned long vmap_start = 1; |
| 5118 | const unsigned long vmap_end = ULONG_MAX; |
| 5119 | struct vmap_area *free; |
| 5120 | struct vm_struct *busy; |
| 5121 | |
| 5122 | /* |
| 5123 | * B F B B B F |
| 5124 | * -|-----|.....|-----|-----|-----|.....|- |
| 5125 | * | The KVA space | |
| 5126 | * |<--------------------------------->| |
| 5127 | */ |
| 5128 | for (busy = vmlist; busy; busy = busy->next) { |
| 5129 | if ((unsigned long) busy->addr - vmap_start > 0) { |
| 5130 | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); |
| 5131 | if (!WARN_ON_ONCE(!free)) { |
| 5132 | free->va_start = vmap_start; |
| 5133 | free->va_end = (unsigned long) busy->addr; |
| 5134 | |
| 5135 | insert_vmap_area_augment(free, NULL, |
| 5136 | &free_vmap_area_root, |
| 5137 | &free_vmap_area_list); |
| 5138 | } |
| 5139 | } |
| 5140 | |
| 5141 | vmap_start = (unsigned long) busy->addr + busy->size; |
| 5142 | } |
| 5143 | |
| 5144 | if (vmap_end - vmap_start > 0) { |
| 5145 | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); |
| 5146 | if (!WARN_ON_ONCE(!free)) { |
| 5147 | free->va_start = vmap_start; |
| 5148 | free->va_end = vmap_end; |
| 5149 | |
| 5150 | insert_vmap_area_augment(free, NULL, |
| 5151 | &free_vmap_area_root, |
| 5152 | &free_vmap_area_list); |
| 5153 | } |
| 5154 | } |
| 5155 | } |
| 5156 | |
| 5157 | static void vmap_init_nodes(void) |
| 5158 | { |
| 5159 | struct vmap_node *vn; |
| 5160 | int i; |
| 5161 | |
| 5162 | #if BITS_PER_LONG == 64 |
| 5163 | /* |
| 5164 | * A high threshold of max nodes is fixed and bound to 128, |
| 5165 | * thus a scale factor is 1 for systems where number of cores |
| 5166 | * are less or equal to specified threshold. |
| 5167 | * |
| 5168 | * As for NUMA-aware notes. For bigger systems, for example |
| 5169 | * NUMA with multi-sockets, where we can end-up with thousands |
| 5170 | * of cores in total, a "sub-numa-clustering" should be added. |
| 5171 | * |
| 5172 | * In this case a NUMA domain is considered as a single entity |
| 5173 | * with dedicated sub-nodes in it which describe one group or |
| 5174 | * set of cores. Therefore a per-domain purging is supposed to |
| 5175 | * be added as well as a per-domain balancing. |
| 5176 | */ |
| 5177 | int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); |
| 5178 | |
| 5179 | if (n > 1) { |
| 5180 | vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN); |
| 5181 | if (vn) { |
| 5182 | /* Node partition is 16 pages. */ |
| 5183 | vmap_zone_size = (1 << 4) * PAGE_SIZE; |
| 5184 | nr_vmap_nodes = n; |
| 5185 | vmap_nodes = vn; |
| 5186 | } else { |
| 5187 | pr_err("Failed to allocate an array. Disable a node layer\n"); |
| 5188 | } |
| 5189 | } |
| 5190 | #endif |
| 5191 | |
| 5192 | for_each_vmap_node(vn) { |
| 5193 | vn->busy.root = RB_ROOT; |
| 5194 | INIT_LIST_HEAD(&vn->busy.head); |
| 5195 | spin_lock_init(&vn->busy.lock); |
| 5196 | |
| 5197 | vn->lazy.root = RB_ROOT; |
| 5198 | INIT_LIST_HEAD(&vn->lazy.head); |
| 5199 | spin_lock_init(&vn->lazy.lock); |
| 5200 | |
| 5201 | for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { |
| 5202 | INIT_LIST_HEAD(&vn->pool[i].head); |
| 5203 | WRITE_ONCE(vn->pool[i].len, 0); |
| 5204 | } |
| 5205 | |
| 5206 | spin_lock_init(&vn->pool_lock); |
| 5207 | } |
| 5208 | } |
| 5209 | |
| 5210 | static unsigned long |
| 5211 | vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) |
| 5212 | { |
| 5213 | unsigned long count = 0; |
| 5214 | struct vmap_node *vn; |
| 5215 | int i; |
| 5216 | |
| 5217 | for_each_vmap_node(vn) { |
| 5218 | for (i = 0; i < MAX_VA_SIZE_PAGES; i++) |
| 5219 | count += READ_ONCE(vn->pool[i].len); |
| 5220 | } |
| 5221 | |
| 5222 | return count ? count : SHRINK_EMPTY; |
| 5223 | } |
| 5224 | |
| 5225 | static unsigned long |
| 5226 | vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) |
| 5227 | { |
| 5228 | struct vmap_node *vn; |
| 5229 | |
| 5230 | for_each_vmap_node(vn) |
| 5231 | decay_va_pool_node(vn, true); |
| 5232 | |
| 5233 | return SHRINK_STOP; |
| 5234 | } |
| 5235 | |
| 5236 | void __init vmalloc_init(void) |
| 5237 | { |
| 5238 | struct shrinker *vmap_node_shrinker; |
| 5239 | struct vmap_area *va; |
| 5240 | struct vmap_node *vn; |
| 5241 | struct vm_struct *tmp; |
| 5242 | int i; |
| 5243 | |
| 5244 | /* |
| 5245 | * Create the cache for vmap_area objects. |
| 5246 | */ |
| 5247 | vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); |
| 5248 | |
| 5249 | for_each_possible_cpu(i) { |
| 5250 | struct vmap_block_queue *vbq; |
| 5251 | struct vfree_deferred *p; |
| 5252 | |
| 5253 | vbq = &per_cpu(vmap_block_queue, i); |
| 5254 | spin_lock_init(&vbq->lock); |
| 5255 | INIT_LIST_HEAD(&vbq->free); |
| 5256 | p = &per_cpu(vfree_deferred, i); |
| 5257 | init_llist_head(&p->list); |
| 5258 | INIT_WORK(&p->wq, delayed_vfree_work); |
| 5259 | xa_init(&vbq->vmap_blocks); |
| 5260 | } |
| 5261 | |
| 5262 | /* |
| 5263 | * Setup nodes before importing vmlist. |
| 5264 | */ |
| 5265 | vmap_init_nodes(); |
| 5266 | |
| 5267 | /* Import existing vmlist entries. */ |
| 5268 | for (tmp = vmlist; tmp; tmp = tmp->next) { |
| 5269 | va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); |
| 5270 | if (WARN_ON_ONCE(!va)) |
| 5271 | continue; |
| 5272 | |
| 5273 | va->va_start = (unsigned long)tmp->addr; |
| 5274 | va->va_end = va->va_start + tmp->size; |
| 5275 | va->vm = tmp; |
| 5276 | |
| 5277 | vn = addr_to_node(va->va_start); |
| 5278 | insert_vmap_area(va, &vn->busy.root, &vn->busy.head); |
| 5279 | } |
| 5280 | |
| 5281 | /* |
| 5282 | * Now we can initialize a free vmap space. |
| 5283 | */ |
| 5284 | vmap_init_free_space(); |
| 5285 | vmap_initialized = true; |
| 5286 | |
| 5287 | vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); |
| 5288 | if (!vmap_node_shrinker) { |
| 5289 | pr_err("Failed to allocate vmap-node shrinker!\n"); |
| 5290 | return; |
| 5291 | } |
| 5292 | |
| 5293 | vmap_node_shrinker->count_objects = vmap_node_shrink_count; |
| 5294 | vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; |
| 5295 | shrinker_register(vmap_node_shrinker); |
| 5296 | } |