HWPOISON: Refactor truncate to allow direct truncating of page v2
[linux-2.6-block.git] / mm / truncate.c
... / ...
CommitLineData
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/backing-dev.h>
12#include <linux/mm.h>
13#include <linux/swap.h>
14#include <linux/module.h>
15#include <linux/pagemap.h>
16#include <linux/highmem.h>
17#include <linux/pagevec.h>
18#include <linux/task_io_accounting_ops.h>
19#include <linux/buffer_head.h> /* grr. try_to_release_page,
20 do_invalidatepage */
21#include "internal.h"
22
23
24/**
25 * do_invalidatepage - invalidate part or all of a page
26 * @page: the page which is affected
27 * @offset: the index of the truncation point
28 *
29 * do_invalidatepage() is called when all or part of the page has become
30 * invalidated by a truncate operation.
31 *
32 * do_invalidatepage() does not have to release all buffers, but it must
33 * ensure that no dirty buffer is left outside @offset and that no I/O
34 * is underway against any of the blocks which are outside the truncation
35 * point. Because the caller is about to free (and possibly reuse) those
36 * blocks on-disk.
37 */
38void do_invalidatepage(struct page *page, unsigned long offset)
39{
40 void (*invalidatepage)(struct page *, unsigned long);
41 invalidatepage = page->mapping->a_ops->invalidatepage;
42#ifdef CONFIG_BLOCK
43 if (!invalidatepage)
44 invalidatepage = block_invalidatepage;
45#endif
46 if (invalidatepage)
47 (*invalidatepage)(page, offset);
48}
49
50static inline void truncate_partial_page(struct page *page, unsigned partial)
51{
52 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
53 if (page_has_private(page))
54 do_invalidatepage(page, partial);
55}
56
57/*
58 * This cancels just the dirty bit on the kernel page itself, it
59 * does NOT actually remove dirty bits on any mmap's that may be
60 * around. It also leaves the page tagged dirty, so any sync
61 * activity will still find it on the dirty lists, and in particular,
62 * clear_page_dirty_for_io() will still look at the dirty bits in
63 * the VM.
64 *
65 * Doing this should *normally* only ever be done when a page
66 * is truncated, and is not actually mapped anywhere at all. However,
67 * fs/buffer.c does this when it notices that somebody has cleaned
68 * out all the buffers on a page without actually doing it through
69 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
70 */
71void cancel_dirty_page(struct page *page, unsigned int account_size)
72{
73 if (TestClearPageDirty(page)) {
74 struct address_space *mapping = page->mapping;
75 if (mapping && mapping_cap_account_dirty(mapping)) {
76 dec_zone_page_state(page, NR_FILE_DIRTY);
77 dec_bdi_stat(mapping->backing_dev_info,
78 BDI_RECLAIMABLE);
79 if (account_size)
80 task_io_account_cancelled_write(account_size);
81 }
82 }
83}
84EXPORT_SYMBOL(cancel_dirty_page);
85
86/*
87 * If truncate cannot remove the fs-private metadata from the page, the page
88 * becomes orphaned. It will be left on the LRU and may even be mapped into
89 * user pagetables if we're racing with filemap_fault().
90 *
91 * We need to bale out if page->mapping is no longer equal to the original
92 * mapping. This happens a) when the VM reclaimed the page while we waited on
93 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
94 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
95 */
96static int
97truncate_complete_page(struct address_space *mapping, struct page *page)
98{
99 if (page->mapping != mapping)
100 return -EIO;
101
102 if (page_has_private(page))
103 do_invalidatepage(page, 0);
104
105 cancel_dirty_page(page, PAGE_CACHE_SIZE);
106
107 clear_page_mlock(page);
108 remove_from_page_cache(page);
109 ClearPageMappedToDisk(page);
110 page_cache_release(page); /* pagecache ref */
111 return 0;
112}
113
114/*
115 * This is for invalidate_mapping_pages(). That function can be called at
116 * any time, and is not supposed to throw away dirty pages. But pages can
117 * be marked dirty at any time too, so use remove_mapping which safely
118 * discards clean, unused pages.
119 *
120 * Returns non-zero if the page was successfully invalidated.
121 */
122static int
123invalidate_complete_page(struct address_space *mapping, struct page *page)
124{
125 int ret;
126
127 if (page->mapping != mapping)
128 return 0;
129
130 if (page_has_private(page) && !try_to_release_page(page, 0))
131 return 0;
132
133 clear_page_mlock(page);
134 ret = remove_mapping(mapping, page);
135
136 return ret;
137}
138
139int truncate_inode_page(struct address_space *mapping, struct page *page)
140{
141 if (page_mapped(page)) {
142 unmap_mapping_range(mapping,
143 (loff_t)page->index << PAGE_CACHE_SHIFT,
144 PAGE_CACHE_SIZE, 0);
145 }
146 return truncate_complete_page(mapping, page);
147}
148
149/**
150 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
151 * @mapping: mapping to truncate
152 * @lstart: offset from which to truncate
153 * @lend: offset to which to truncate
154 *
155 * Truncate the page cache, removing the pages that are between
156 * specified offsets (and zeroing out partial page
157 * (if lstart is not page aligned)).
158 *
159 * Truncate takes two passes - the first pass is nonblocking. It will not
160 * block on page locks and it will not block on writeback. The second pass
161 * will wait. This is to prevent as much IO as possible in the affected region.
162 * The first pass will remove most pages, so the search cost of the second pass
163 * is low.
164 *
165 * When looking at page->index outside the page lock we need to be careful to
166 * copy it into a local to avoid races (it could change at any time).
167 *
168 * We pass down the cache-hot hint to the page freeing code. Even if the
169 * mapping is large, it is probably the case that the final pages are the most
170 * recently touched, and freeing happens in ascending file offset order.
171 */
172void truncate_inode_pages_range(struct address_space *mapping,
173 loff_t lstart, loff_t lend)
174{
175 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
176 pgoff_t end;
177 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
178 struct pagevec pvec;
179 pgoff_t next;
180 int i;
181
182 if (mapping->nrpages == 0)
183 return;
184
185 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
186 end = (lend >> PAGE_CACHE_SHIFT);
187
188 pagevec_init(&pvec, 0);
189 next = start;
190 while (next <= end &&
191 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
192 for (i = 0; i < pagevec_count(&pvec); i++) {
193 struct page *page = pvec.pages[i];
194 pgoff_t page_index = page->index;
195
196 if (page_index > end) {
197 next = page_index;
198 break;
199 }
200
201 if (page_index > next)
202 next = page_index;
203 next++;
204 if (!trylock_page(page))
205 continue;
206 if (PageWriteback(page)) {
207 unlock_page(page);
208 continue;
209 }
210 truncate_inode_page(mapping, page);
211 unlock_page(page);
212 }
213 pagevec_release(&pvec);
214 cond_resched();
215 }
216
217 if (partial) {
218 struct page *page = find_lock_page(mapping, start - 1);
219 if (page) {
220 wait_on_page_writeback(page);
221 truncate_partial_page(page, partial);
222 unlock_page(page);
223 page_cache_release(page);
224 }
225 }
226
227 next = start;
228 for ( ; ; ) {
229 cond_resched();
230 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
231 if (next == start)
232 break;
233 next = start;
234 continue;
235 }
236 if (pvec.pages[0]->index > end) {
237 pagevec_release(&pvec);
238 break;
239 }
240 for (i = 0; i < pagevec_count(&pvec); i++) {
241 struct page *page = pvec.pages[i];
242
243 if (page->index > end)
244 break;
245 lock_page(page);
246 wait_on_page_writeback(page);
247 truncate_inode_page(mapping, page);
248 if (page->index > next)
249 next = page->index;
250 next++;
251 unlock_page(page);
252 }
253 pagevec_release(&pvec);
254 }
255}
256EXPORT_SYMBOL(truncate_inode_pages_range);
257
258/**
259 * truncate_inode_pages - truncate *all* the pages from an offset
260 * @mapping: mapping to truncate
261 * @lstart: offset from which to truncate
262 *
263 * Called under (and serialised by) inode->i_mutex.
264 */
265void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
266{
267 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
268}
269EXPORT_SYMBOL(truncate_inode_pages);
270
271/**
272 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
273 * @mapping: the address_space which holds the pages to invalidate
274 * @start: the offset 'from' which to invalidate
275 * @end: the offset 'to' which to invalidate (inclusive)
276 *
277 * This function only removes the unlocked pages, if you want to
278 * remove all the pages of one inode, you must call truncate_inode_pages.
279 *
280 * invalidate_mapping_pages() will not block on IO activity. It will not
281 * invalidate pages which are dirty, locked, under writeback or mapped into
282 * pagetables.
283 */
284unsigned long invalidate_mapping_pages(struct address_space *mapping,
285 pgoff_t start, pgoff_t end)
286{
287 struct pagevec pvec;
288 pgoff_t next = start;
289 unsigned long ret = 0;
290 int i;
291
292 pagevec_init(&pvec, 0);
293 while (next <= end &&
294 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
295 for (i = 0; i < pagevec_count(&pvec); i++) {
296 struct page *page = pvec.pages[i];
297 pgoff_t index;
298 int lock_failed;
299
300 lock_failed = !trylock_page(page);
301
302 /*
303 * We really shouldn't be looking at the ->index of an
304 * unlocked page. But we're not allowed to lock these
305 * pages. So we rely upon nobody altering the ->index
306 * of this (pinned-by-us) page.
307 */
308 index = page->index;
309 if (index > next)
310 next = index;
311 next++;
312 if (lock_failed)
313 continue;
314
315 if (PageDirty(page) || PageWriteback(page))
316 goto unlock;
317 if (page_mapped(page))
318 goto unlock;
319 ret += invalidate_complete_page(mapping, page);
320unlock:
321 unlock_page(page);
322 if (next > end)
323 break;
324 }
325 pagevec_release(&pvec);
326 cond_resched();
327 }
328 return ret;
329}
330EXPORT_SYMBOL(invalidate_mapping_pages);
331
332/*
333 * This is like invalidate_complete_page(), except it ignores the page's
334 * refcount. We do this because invalidate_inode_pages2() needs stronger
335 * invalidation guarantees, and cannot afford to leave pages behind because
336 * shrink_page_list() has a temp ref on them, or because they're transiently
337 * sitting in the lru_cache_add() pagevecs.
338 */
339static int
340invalidate_complete_page2(struct address_space *mapping, struct page *page)
341{
342 if (page->mapping != mapping)
343 return 0;
344
345 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
346 return 0;
347
348 spin_lock_irq(&mapping->tree_lock);
349 if (PageDirty(page))
350 goto failed;
351
352 clear_page_mlock(page);
353 BUG_ON(page_has_private(page));
354 __remove_from_page_cache(page);
355 spin_unlock_irq(&mapping->tree_lock);
356 mem_cgroup_uncharge_cache_page(page);
357 page_cache_release(page); /* pagecache ref */
358 return 1;
359failed:
360 spin_unlock_irq(&mapping->tree_lock);
361 return 0;
362}
363
364static int do_launder_page(struct address_space *mapping, struct page *page)
365{
366 if (!PageDirty(page))
367 return 0;
368 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
369 return 0;
370 return mapping->a_ops->launder_page(page);
371}
372
373/**
374 * invalidate_inode_pages2_range - remove range of pages from an address_space
375 * @mapping: the address_space
376 * @start: the page offset 'from' which to invalidate
377 * @end: the page offset 'to' which to invalidate (inclusive)
378 *
379 * Any pages which are found to be mapped into pagetables are unmapped prior to
380 * invalidation.
381 *
382 * Returns -EBUSY if any pages could not be invalidated.
383 */
384int invalidate_inode_pages2_range(struct address_space *mapping,
385 pgoff_t start, pgoff_t end)
386{
387 struct pagevec pvec;
388 pgoff_t next;
389 int i;
390 int ret = 0;
391 int ret2 = 0;
392 int did_range_unmap = 0;
393 int wrapped = 0;
394
395 pagevec_init(&pvec, 0);
396 next = start;
397 while (next <= end && !wrapped &&
398 pagevec_lookup(&pvec, mapping, next,
399 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
400 for (i = 0; i < pagevec_count(&pvec); i++) {
401 struct page *page = pvec.pages[i];
402 pgoff_t page_index;
403
404 lock_page(page);
405 if (page->mapping != mapping) {
406 unlock_page(page);
407 continue;
408 }
409 page_index = page->index;
410 next = page_index + 1;
411 if (next == 0)
412 wrapped = 1;
413 if (page_index > end) {
414 unlock_page(page);
415 break;
416 }
417 wait_on_page_writeback(page);
418 if (page_mapped(page)) {
419 if (!did_range_unmap) {
420 /*
421 * Zap the rest of the file in one hit.
422 */
423 unmap_mapping_range(mapping,
424 (loff_t)page_index<<PAGE_CACHE_SHIFT,
425 (loff_t)(end - page_index + 1)
426 << PAGE_CACHE_SHIFT,
427 0);
428 did_range_unmap = 1;
429 } else {
430 /*
431 * Just zap this page
432 */
433 unmap_mapping_range(mapping,
434 (loff_t)page_index<<PAGE_CACHE_SHIFT,
435 PAGE_CACHE_SIZE, 0);
436 }
437 }
438 BUG_ON(page_mapped(page));
439 ret2 = do_launder_page(mapping, page);
440 if (ret2 == 0) {
441 if (!invalidate_complete_page2(mapping, page))
442 ret2 = -EBUSY;
443 }
444 if (ret2 < 0)
445 ret = ret2;
446 unlock_page(page);
447 }
448 pagevec_release(&pvec);
449 cond_resched();
450 }
451 return ret;
452}
453EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
454
455/**
456 * invalidate_inode_pages2 - remove all pages from an address_space
457 * @mapping: the address_space
458 *
459 * Any pages which are found to be mapped into pagetables are unmapped prior to
460 * invalidation.
461 *
462 * Returns -EIO if any pages could not be invalidated.
463 */
464int invalidate_inode_pages2(struct address_space *mapping)
465{
466 return invalidate_inode_pages2_range(mapping, 0, -1);
467}
468EXPORT_SYMBOL_GPL(invalidate_inode_pages2);