Merge tag 'x86_cpu_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / mm / swapfile.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9#include <linux/blkdev.h>
10#include <linux/mm.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/task.h>
13#include <linux/hugetlb.h>
14#include <linux/mman.h>
15#include <linux/slab.h>
16#include <linux/kernel_stat.h>
17#include <linux/swap.h>
18#include <linux/vmalloc.h>
19#include <linux/pagemap.h>
20#include <linux/namei.h>
21#include <linux/shmem_fs.h>
22#include <linux/blk-cgroup.h>
23#include <linux/random.h>
24#include <linux/writeback.h>
25#include <linux/proc_fs.h>
26#include <linux/seq_file.h>
27#include <linux/init.h>
28#include <linux/ksm.h>
29#include <linux/rmap.h>
30#include <linux/security.h>
31#include <linux/backing-dev.h>
32#include <linux/mutex.h>
33#include <linux/capability.h>
34#include <linux/syscalls.h>
35#include <linux/memcontrol.h>
36#include <linux/poll.h>
37#include <linux/oom.h>
38#include <linux/swapfile.h>
39#include <linux/export.h>
40#include <linux/swap_slots.h>
41#include <linux/sort.h>
42#include <linux/completion.h>
43#include <linux/suspend.h>
44#include <linux/zswap.h>
45#include <linux/plist.h>
46
47#include <asm/tlbflush.h>
48#include <linux/swapops.h>
49#include <linux/swap_cgroup.h>
50#include "internal.h"
51#include "swap.h"
52
53static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 unsigned char);
55static void free_swap_count_continuations(struct swap_info_struct *);
56
57static DEFINE_SPINLOCK(swap_lock);
58static unsigned int nr_swapfiles;
59atomic_long_t nr_swap_pages;
60/*
61 * Some modules use swappable objects and may try to swap them out under
62 * memory pressure (via the shrinker). Before doing so, they may wish to
63 * check to see if any swap space is available.
64 */
65EXPORT_SYMBOL_GPL(nr_swap_pages);
66/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67long total_swap_pages;
68static int least_priority = -1;
69unsigned long swapfile_maximum_size;
70#ifdef CONFIG_MIGRATION
71bool swap_migration_ad_supported;
72#endif /* CONFIG_MIGRATION */
73
74static const char Bad_file[] = "Bad swap file entry ";
75static const char Unused_file[] = "Unused swap file entry ";
76static const char Bad_offset[] = "Bad swap offset entry ";
77static const char Unused_offset[] = "Unused swap offset entry ";
78
79/*
80 * all active swap_info_structs
81 * protected with swap_lock, and ordered by priority.
82 */
83static PLIST_HEAD(swap_active_head);
84
85/*
86 * all available (active, not full) swap_info_structs
87 * protected with swap_avail_lock, ordered by priority.
88 * This is used by folio_alloc_swap() instead of swap_active_head
89 * because swap_active_head includes all swap_info_structs,
90 * but folio_alloc_swap() doesn't need to look at full ones.
91 * This uses its own lock instead of swap_lock because when a
92 * swap_info_struct changes between not-full/full, it needs to
93 * add/remove itself to/from this list, but the swap_info_struct->lock
94 * is held and the locking order requires swap_lock to be taken
95 * before any swap_info_struct->lock.
96 */
97static struct plist_head *swap_avail_heads;
98static DEFINE_SPINLOCK(swap_avail_lock);
99
100static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101
102static DEFINE_MUTEX(swapon_mutex);
103
104static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105/* Activity counter to indicate that a swapon or swapoff has occurred */
106static atomic_t proc_poll_event = ATOMIC_INIT(0);
107
108atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109
110static struct swap_info_struct *swap_type_to_swap_info(int type)
111{
112 if (type >= MAX_SWAPFILES)
113 return NULL;
114
115 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116}
117
118static inline unsigned char swap_count(unsigned char ent)
119{
120 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
121}
122
123/* Reclaim the swap entry anyway if possible */
124#define TTRS_ANYWAY 0x1
125/*
126 * Reclaim the swap entry if there are no more mappings of the
127 * corresponding page
128 */
129#define TTRS_UNMAPPED 0x2
130/* Reclaim the swap entry if swap is getting full*/
131#define TTRS_FULL 0x4
132
133/*
134 * returns number of pages in the folio that backs the swap entry. If positive,
135 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
136 * folio was associated with the swap entry.
137 */
138static int __try_to_reclaim_swap(struct swap_info_struct *si,
139 unsigned long offset, unsigned long flags)
140{
141 swp_entry_t entry = swp_entry(si->type, offset);
142 struct folio *folio;
143 int ret = 0;
144
145 folio = filemap_get_folio(swap_address_space(entry), offset);
146 if (IS_ERR(folio))
147 return 0;
148 /*
149 * When this function is called from scan_swap_map_slots() and it's
150 * called by vmscan.c at reclaiming folios. So we hold a folio lock
151 * here. We have to use trylock for avoiding deadlock. This is a special
152 * case and you should use folio_free_swap() with explicit folio_lock()
153 * in usual operations.
154 */
155 if (folio_trylock(folio)) {
156 if ((flags & TTRS_ANYWAY) ||
157 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
158 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
159 ret = folio_free_swap(folio);
160 folio_unlock(folio);
161 }
162 ret = ret ? folio_nr_pages(folio) : -folio_nr_pages(folio);
163 folio_put(folio);
164 return ret;
165}
166
167static inline struct swap_extent *first_se(struct swap_info_struct *sis)
168{
169 struct rb_node *rb = rb_first(&sis->swap_extent_root);
170 return rb_entry(rb, struct swap_extent, rb_node);
171}
172
173static inline struct swap_extent *next_se(struct swap_extent *se)
174{
175 struct rb_node *rb = rb_next(&se->rb_node);
176 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
177}
178
179/*
180 * swapon tell device that all the old swap contents can be discarded,
181 * to allow the swap device to optimize its wear-levelling.
182 */
183static int discard_swap(struct swap_info_struct *si)
184{
185 struct swap_extent *se;
186 sector_t start_block;
187 sector_t nr_blocks;
188 int err = 0;
189
190 /* Do not discard the swap header page! */
191 se = first_se(si);
192 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
193 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
194 if (nr_blocks) {
195 err = blkdev_issue_discard(si->bdev, start_block,
196 nr_blocks, GFP_KERNEL);
197 if (err)
198 return err;
199 cond_resched();
200 }
201
202 for (se = next_se(se); se; se = next_se(se)) {
203 start_block = se->start_block << (PAGE_SHIFT - 9);
204 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
205
206 err = blkdev_issue_discard(si->bdev, start_block,
207 nr_blocks, GFP_KERNEL);
208 if (err)
209 break;
210
211 cond_resched();
212 }
213 return err; /* That will often be -EOPNOTSUPP */
214}
215
216static struct swap_extent *
217offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
218{
219 struct swap_extent *se;
220 struct rb_node *rb;
221
222 rb = sis->swap_extent_root.rb_node;
223 while (rb) {
224 se = rb_entry(rb, struct swap_extent, rb_node);
225 if (offset < se->start_page)
226 rb = rb->rb_left;
227 else if (offset >= se->start_page + se->nr_pages)
228 rb = rb->rb_right;
229 else
230 return se;
231 }
232 /* It *must* be present */
233 BUG();
234}
235
236sector_t swap_folio_sector(struct folio *folio)
237{
238 struct swap_info_struct *sis = swp_swap_info(folio->swap);
239 struct swap_extent *se;
240 sector_t sector;
241 pgoff_t offset;
242
243 offset = swp_offset(folio->swap);
244 se = offset_to_swap_extent(sis, offset);
245 sector = se->start_block + (offset - se->start_page);
246 return sector << (PAGE_SHIFT - 9);
247}
248
249/*
250 * swap allocation tell device that a cluster of swap can now be discarded,
251 * to allow the swap device to optimize its wear-levelling.
252 */
253static void discard_swap_cluster(struct swap_info_struct *si,
254 pgoff_t start_page, pgoff_t nr_pages)
255{
256 struct swap_extent *se = offset_to_swap_extent(si, start_page);
257
258 while (nr_pages) {
259 pgoff_t offset = start_page - se->start_page;
260 sector_t start_block = se->start_block + offset;
261 sector_t nr_blocks = se->nr_pages - offset;
262
263 if (nr_blocks > nr_pages)
264 nr_blocks = nr_pages;
265 start_page += nr_blocks;
266 nr_pages -= nr_blocks;
267
268 start_block <<= PAGE_SHIFT - 9;
269 nr_blocks <<= PAGE_SHIFT - 9;
270 if (blkdev_issue_discard(si->bdev, start_block,
271 nr_blocks, GFP_NOIO))
272 break;
273
274 se = next_se(se);
275 }
276}
277
278#ifdef CONFIG_THP_SWAP
279#define SWAPFILE_CLUSTER HPAGE_PMD_NR
280
281#define swap_entry_order(order) (order)
282#else
283#define SWAPFILE_CLUSTER 256
284
285/*
286 * Define swap_entry_order() as constant to let compiler to optimize
287 * out some code if !CONFIG_THP_SWAP
288 */
289#define swap_entry_order(order) 0
290#endif
291#define LATENCY_LIMIT 256
292
293static inline void cluster_set_flag(struct swap_cluster_info *info,
294 unsigned int flag)
295{
296 info->flags = flag;
297}
298
299static inline unsigned int cluster_count(struct swap_cluster_info *info)
300{
301 return info->data;
302}
303
304static inline void cluster_set_count(struct swap_cluster_info *info,
305 unsigned int c)
306{
307 info->data = c;
308}
309
310static inline void cluster_set_count_flag(struct swap_cluster_info *info,
311 unsigned int c, unsigned int f)
312{
313 info->flags = f;
314 info->data = c;
315}
316
317static inline unsigned int cluster_next(struct swap_cluster_info *info)
318{
319 return info->data;
320}
321
322static inline void cluster_set_next(struct swap_cluster_info *info,
323 unsigned int n)
324{
325 info->data = n;
326}
327
328static inline void cluster_set_next_flag(struct swap_cluster_info *info,
329 unsigned int n, unsigned int f)
330{
331 info->flags = f;
332 info->data = n;
333}
334
335static inline bool cluster_is_free(struct swap_cluster_info *info)
336{
337 return info->flags & CLUSTER_FLAG_FREE;
338}
339
340static inline bool cluster_is_null(struct swap_cluster_info *info)
341{
342 return info->flags & CLUSTER_FLAG_NEXT_NULL;
343}
344
345static inline void cluster_set_null(struct swap_cluster_info *info)
346{
347 info->flags = CLUSTER_FLAG_NEXT_NULL;
348 info->data = 0;
349}
350
351static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352 unsigned long offset)
353{
354 struct swap_cluster_info *ci;
355
356 ci = si->cluster_info;
357 if (ci) {
358 ci += offset / SWAPFILE_CLUSTER;
359 spin_lock(&ci->lock);
360 }
361 return ci;
362}
363
364static inline void unlock_cluster(struct swap_cluster_info *ci)
365{
366 if (ci)
367 spin_unlock(&ci->lock);
368}
369
370/*
371 * Determine the locking method in use for this device. Return
372 * swap_cluster_info if SSD-style cluster-based locking is in place.
373 */
374static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375 struct swap_info_struct *si, unsigned long offset)
376{
377 struct swap_cluster_info *ci;
378
379 /* Try to use fine-grained SSD-style locking if available: */
380 ci = lock_cluster(si, offset);
381 /* Otherwise, fall back to traditional, coarse locking: */
382 if (!ci)
383 spin_lock(&si->lock);
384
385 return ci;
386}
387
388static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389 struct swap_cluster_info *ci)
390{
391 if (ci)
392 unlock_cluster(ci);
393 else
394 spin_unlock(&si->lock);
395}
396
397static inline bool cluster_list_empty(struct swap_cluster_list *list)
398{
399 return cluster_is_null(&list->head);
400}
401
402static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403{
404 return cluster_next(&list->head);
405}
406
407static void cluster_list_init(struct swap_cluster_list *list)
408{
409 cluster_set_null(&list->head);
410 cluster_set_null(&list->tail);
411}
412
413static void cluster_list_add_tail(struct swap_cluster_list *list,
414 struct swap_cluster_info *ci,
415 unsigned int idx)
416{
417 if (cluster_list_empty(list)) {
418 cluster_set_next_flag(&list->head, idx, 0);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 } else {
421 struct swap_cluster_info *ci_tail;
422 unsigned int tail = cluster_next(&list->tail);
423
424 /*
425 * Nested cluster lock, but both cluster locks are
426 * only acquired when we held swap_info_struct->lock
427 */
428 ci_tail = ci + tail;
429 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430 cluster_set_next(ci_tail, idx);
431 spin_unlock(&ci_tail->lock);
432 cluster_set_next_flag(&list->tail, idx, 0);
433 }
434}
435
436static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437 struct swap_cluster_info *ci)
438{
439 unsigned int idx;
440
441 idx = cluster_next(&list->head);
442 if (cluster_next(&list->tail) == idx) {
443 cluster_set_null(&list->head);
444 cluster_set_null(&list->tail);
445 } else
446 cluster_set_next_flag(&list->head,
447 cluster_next(&ci[idx]), 0);
448
449 return idx;
450}
451
452/* Add a cluster to discard list and schedule it to do discard */
453static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454 unsigned int idx)
455{
456 /*
457 * If scan_swap_map_slots() can't find a free cluster, it will check
458 * si->swap_map directly. To make sure the discarding cluster isn't
459 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
460 * It will be cleared after discard
461 */
462 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464
465 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466
467 schedule_work(&si->discard_work);
468}
469
470static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471{
472 struct swap_cluster_info *ci = si->cluster_info;
473
474 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475 cluster_list_add_tail(&si->free_clusters, ci, idx);
476}
477
478/*
479 * Doing discard actually. After a cluster discard is finished, the cluster
480 * will be added to free cluster list. caller should hold si->lock.
481*/
482static void swap_do_scheduled_discard(struct swap_info_struct *si)
483{
484 struct swap_cluster_info *info, *ci;
485 unsigned int idx;
486
487 info = si->cluster_info;
488
489 while (!cluster_list_empty(&si->discard_clusters)) {
490 idx = cluster_list_del_first(&si->discard_clusters, info);
491 spin_unlock(&si->lock);
492
493 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494 SWAPFILE_CLUSTER);
495
496 spin_lock(&si->lock);
497 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498 __free_cluster(si, idx);
499 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500 0, SWAPFILE_CLUSTER);
501 unlock_cluster(ci);
502 }
503}
504
505static void swap_discard_work(struct work_struct *work)
506{
507 struct swap_info_struct *si;
508
509 si = container_of(work, struct swap_info_struct, discard_work);
510
511 spin_lock(&si->lock);
512 swap_do_scheduled_discard(si);
513 spin_unlock(&si->lock);
514}
515
516static void swap_users_ref_free(struct percpu_ref *ref)
517{
518 struct swap_info_struct *si;
519
520 si = container_of(ref, struct swap_info_struct, users);
521 complete(&si->comp);
522}
523
524static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
525{
526 struct swap_cluster_info *ci = si->cluster_info;
527
528 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
529 cluster_list_del_first(&si->free_clusters, ci);
530 cluster_set_count_flag(ci + idx, 0, 0);
531}
532
533static void free_cluster(struct swap_info_struct *si, unsigned long idx)
534{
535 struct swap_cluster_info *ci = si->cluster_info + idx;
536
537 VM_BUG_ON(cluster_count(ci) != 0);
538 /*
539 * If the swap is discardable, prepare discard the cluster
540 * instead of free it immediately. The cluster will be freed
541 * after discard.
542 */
543 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
544 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
545 swap_cluster_schedule_discard(si, idx);
546 return;
547 }
548
549 __free_cluster(si, idx);
550}
551
552/*
553 * The cluster corresponding to page_nr will be used. The cluster will be
554 * removed from free cluster list and its usage counter will be increased by
555 * count.
556 */
557static void add_cluster_info_page(struct swap_info_struct *p,
558 struct swap_cluster_info *cluster_info, unsigned long page_nr,
559 unsigned long count)
560{
561 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
562
563 if (!cluster_info)
564 return;
565 if (cluster_is_free(&cluster_info[idx]))
566 alloc_cluster(p, idx);
567
568 VM_BUG_ON(cluster_count(&cluster_info[idx]) + count > SWAPFILE_CLUSTER);
569 cluster_set_count(&cluster_info[idx],
570 cluster_count(&cluster_info[idx]) + count);
571}
572
573/*
574 * The cluster corresponding to page_nr will be used. The cluster will be
575 * removed from free cluster list and its usage counter will be increased by 1.
576 */
577static void inc_cluster_info_page(struct swap_info_struct *p,
578 struct swap_cluster_info *cluster_info, unsigned long page_nr)
579{
580 add_cluster_info_page(p, cluster_info, page_nr, 1);
581}
582
583/*
584 * The cluster corresponding to page_nr decreases one usage. If the usage
585 * counter becomes 0, which means no page in the cluster is in using, we can
586 * optionally discard the cluster and add it to free cluster list.
587 */
588static void dec_cluster_info_page(struct swap_info_struct *p,
589 struct swap_cluster_info *cluster_info, unsigned long page_nr)
590{
591 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
592
593 if (!cluster_info)
594 return;
595
596 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
597 cluster_set_count(&cluster_info[idx],
598 cluster_count(&cluster_info[idx]) - 1);
599
600 if (cluster_count(&cluster_info[idx]) == 0)
601 free_cluster(p, idx);
602}
603
604/*
605 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
606 * cluster list. Avoiding such abuse to avoid list corruption.
607 */
608static bool
609scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
610 unsigned long offset, int order)
611{
612 struct percpu_cluster *percpu_cluster;
613 bool conflict;
614
615 offset /= SWAPFILE_CLUSTER;
616 conflict = !cluster_list_empty(&si->free_clusters) &&
617 offset != cluster_list_first(&si->free_clusters) &&
618 cluster_is_free(&si->cluster_info[offset]);
619
620 if (!conflict)
621 return false;
622
623 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
624 percpu_cluster->next[order] = SWAP_NEXT_INVALID;
625 return true;
626}
627
628static inline bool swap_range_empty(char *swap_map, unsigned int start,
629 unsigned int nr_pages)
630{
631 unsigned int i;
632
633 for (i = 0; i < nr_pages; i++) {
634 if (swap_map[start + i])
635 return false;
636 }
637
638 return true;
639}
640
641/*
642 * Try to get swap entries with specified order from current cpu's swap entry
643 * pool (a cluster). This might involve allocating a new cluster for current CPU
644 * too.
645 */
646static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
647 unsigned long *offset, unsigned long *scan_base, int order)
648{
649 unsigned int nr_pages = 1 << order;
650 struct percpu_cluster *cluster;
651 struct swap_cluster_info *ci;
652 unsigned int tmp, max;
653
654new_cluster:
655 cluster = this_cpu_ptr(si->percpu_cluster);
656 tmp = cluster->next[order];
657 if (tmp == SWAP_NEXT_INVALID) {
658 if (!cluster_list_empty(&si->free_clusters)) {
659 tmp = cluster_next(&si->free_clusters.head) *
660 SWAPFILE_CLUSTER;
661 } else if (!cluster_list_empty(&si->discard_clusters)) {
662 /*
663 * we don't have free cluster but have some clusters in
664 * discarding, do discard now and reclaim them, then
665 * reread cluster_next_cpu since we dropped si->lock
666 */
667 swap_do_scheduled_discard(si);
668 *scan_base = this_cpu_read(*si->cluster_next_cpu);
669 *offset = *scan_base;
670 goto new_cluster;
671 } else
672 return false;
673 }
674
675 /*
676 * Other CPUs can use our cluster if they can't find a free cluster,
677 * check if there is still free entry in the cluster, maintaining
678 * natural alignment.
679 */
680 max = min_t(unsigned long, si->max, ALIGN(tmp + 1, SWAPFILE_CLUSTER));
681 if (tmp < max) {
682 ci = lock_cluster(si, tmp);
683 while (tmp < max) {
684 if (swap_range_empty(si->swap_map, tmp, nr_pages))
685 break;
686 tmp += nr_pages;
687 }
688 unlock_cluster(ci);
689 }
690 if (tmp >= max) {
691 cluster->next[order] = SWAP_NEXT_INVALID;
692 goto new_cluster;
693 }
694 *offset = tmp;
695 *scan_base = tmp;
696 tmp += nr_pages;
697 cluster->next[order] = tmp < max ? tmp : SWAP_NEXT_INVALID;
698 return true;
699}
700
701static void __del_from_avail_list(struct swap_info_struct *p)
702{
703 int nid;
704
705 assert_spin_locked(&p->lock);
706 for_each_node(nid)
707 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
708}
709
710static void del_from_avail_list(struct swap_info_struct *p)
711{
712 spin_lock(&swap_avail_lock);
713 __del_from_avail_list(p);
714 spin_unlock(&swap_avail_lock);
715}
716
717static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
718 unsigned int nr_entries)
719{
720 unsigned int end = offset + nr_entries - 1;
721
722 if (offset == si->lowest_bit)
723 si->lowest_bit += nr_entries;
724 if (end == si->highest_bit)
725 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
726 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
727 if (si->inuse_pages == si->pages) {
728 si->lowest_bit = si->max;
729 si->highest_bit = 0;
730 del_from_avail_list(si);
731 }
732}
733
734static void add_to_avail_list(struct swap_info_struct *p)
735{
736 int nid;
737
738 spin_lock(&swap_avail_lock);
739 for_each_node(nid)
740 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
741 spin_unlock(&swap_avail_lock);
742}
743
744static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
745 unsigned int nr_entries)
746{
747 unsigned long begin = offset;
748 unsigned long end = offset + nr_entries - 1;
749 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
750
751 if (offset < si->lowest_bit)
752 si->lowest_bit = offset;
753 if (end > si->highest_bit) {
754 bool was_full = !si->highest_bit;
755
756 WRITE_ONCE(si->highest_bit, end);
757 if (was_full && (si->flags & SWP_WRITEOK))
758 add_to_avail_list(si);
759 }
760 if (si->flags & SWP_BLKDEV)
761 swap_slot_free_notify =
762 si->bdev->bd_disk->fops->swap_slot_free_notify;
763 else
764 swap_slot_free_notify = NULL;
765 while (offset <= end) {
766 arch_swap_invalidate_page(si->type, offset);
767 if (swap_slot_free_notify)
768 swap_slot_free_notify(si->bdev, offset);
769 offset++;
770 }
771 clear_shadow_from_swap_cache(si->type, begin, end);
772
773 /*
774 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
775 * only after the above cleanups are done.
776 */
777 smp_wmb();
778 atomic_long_add(nr_entries, &nr_swap_pages);
779 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
780}
781
782static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
783{
784 unsigned long prev;
785
786 if (!(si->flags & SWP_SOLIDSTATE)) {
787 si->cluster_next = next;
788 return;
789 }
790
791 prev = this_cpu_read(*si->cluster_next_cpu);
792 /*
793 * Cross the swap address space size aligned trunk, choose
794 * another trunk randomly to avoid lock contention on swap
795 * address space if possible.
796 */
797 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
798 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
799 /* No free swap slots available */
800 if (si->highest_bit <= si->lowest_bit)
801 return;
802 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
803 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
804 next = max_t(unsigned int, next, si->lowest_bit);
805 }
806 this_cpu_write(*si->cluster_next_cpu, next);
807}
808
809static bool swap_offset_available_and_locked(struct swap_info_struct *si,
810 unsigned long offset)
811{
812 if (data_race(!si->swap_map[offset])) {
813 spin_lock(&si->lock);
814 return true;
815 }
816
817 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
818 spin_lock(&si->lock);
819 return true;
820 }
821
822 return false;
823}
824
825static int scan_swap_map_slots(struct swap_info_struct *si,
826 unsigned char usage, int nr,
827 swp_entry_t slots[], int order)
828{
829 struct swap_cluster_info *ci;
830 unsigned long offset;
831 unsigned long scan_base;
832 unsigned long last_in_cluster = 0;
833 int latency_ration = LATENCY_LIMIT;
834 unsigned int nr_pages = 1 << order;
835 int n_ret = 0;
836 bool scanned_many = false;
837
838 /*
839 * We try to cluster swap pages by allocating them sequentially
840 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
841 * way, however, we resort to first-free allocation, starting
842 * a new cluster. This prevents us from scattering swap pages
843 * all over the entire swap partition, so that we reduce
844 * overall disk seek times between swap pages. -- sct
845 * But we do now try to find an empty cluster. -Andrea
846 * And we let swap pages go all over an SSD partition. Hugh
847 */
848
849 if (order > 0) {
850 /*
851 * Should not even be attempting large allocations when huge
852 * page swap is disabled. Warn and fail the allocation.
853 */
854 if (!IS_ENABLED(CONFIG_THP_SWAP) ||
855 nr_pages > SWAPFILE_CLUSTER) {
856 VM_WARN_ON_ONCE(1);
857 return 0;
858 }
859
860 /*
861 * Swapfile is not block device or not using clusters so unable
862 * to allocate large entries.
863 */
864 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
865 return 0;
866 }
867
868 si->flags += SWP_SCANNING;
869 /*
870 * Use percpu scan base for SSD to reduce lock contention on
871 * cluster and swap cache. For HDD, sequential access is more
872 * important.
873 */
874 if (si->flags & SWP_SOLIDSTATE)
875 scan_base = this_cpu_read(*si->cluster_next_cpu);
876 else
877 scan_base = si->cluster_next;
878 offset = scan_base;
879
880 /* SSD algorithm */
881 if (si->cluster_info) {
882 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) {
883 if (order > 0)
884 goto no_page;
885 goto scan;
886 }
887 } else if (unlikely(!si->cluster_nr--)) {
888 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
889 si->cluster_nr = SWAPFILE_CLUSTER - 1;
890 goto checks;
891 }
892
893 spin_unlock(&si->lock);
894
895 /*
896 * If seek is expensive, start searching for new cluster from
897 * start of partition, to minimize the span of allocated swap.
898 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
899 * case, just handled by scan_swap_map_try_ssd_cluster() above.
900 */
901 scan_base = offset = si->lowest_bit;
902 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
903
904 /* Locate the first empty (unaligned) cluster */
905 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
906 if (si->swap_map[offset])
907 last_in_cluster = offset + SWAPFILE_CLUSTER;
908 else if (offset == last_in_cluster) {
909 spin_lock(&si->lock);
910 offset -= SWAPFILE_CLUSTER - 1;
911 si->cluster_next = offset;
912 si->cluster_nr = SWAPFILE_CLUSTER - 1;
913 goto checks;
914 }
915 if (unlikely(--latency_ration < 0)) {
916 cond_resched();
917 latency_ration = LATENCY_LIMIT;
918 }
919 }
920
921 offset = scan_base;
922 spin_lock(&si->lock);
923 si->cluster_nr = SWAPFILE_CLUSTER - 1;
924 }
925
926checks:
927 if (si->cluster_info) {
928 while (scan_swap_map_ssd_cluster_conflict(si, offset, order)) {
929 /* take a break if we already got some slots */
930 if (n_ret)
931 goto done;
932 if (!scan_swap_map_try_ssd_cluster(si, &offset,
933 &scan_base, order)) {
934 if (order > 0)
935 goto no_page;
936 goto scan;
937 }
938 }
939 }
940 if (!(si->flags & SWP_WRITEOK))
941 goto no_page;
942 if (!si->highest_bit)
943 goto no_page;
944 if (offset > si->highest_bit)
945 scan_base = offset = si->lowest_bit;
946
947 ci = lock_cluster(si, offset);
948 /* reuse swap entry of cache-only swap if not busy. */
949 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
950 int swap_was_freed;
951 unlock_cluster(ci);
952 spin_unlock(&si->lock);
953 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
954 spin_lock(&si->lock);
955 /* entry was freed successfully, try to use this again */
956 if (swap_was_freed > 0)
957 goto checks;
958 goto scan; /* check next one */
959 }
960
961 if (si->swap_map[offset]) {
962 unlock_cluster(ci);
963 if (!n_ret)
964 goto scan;
965 else
966 goto done;
967 }
968 memset(si->swap_map + offset, usage, nr_pages);
969 add_cluster_info_page(si, si->cluster_info, offset, nr_pages);
970 unlock_cluster(ci);
971
972 swap_range_alloc(si, offset, nr_pages);
973 slots[n_ret++] = swp_entry(si->type, offset);
974
975 /* got enough slots or reach max slots? */
976 if ((n_ret == nr) || (offset >= si->highest_bit))
977 goto done;
978
979 /* search for next available slot */
980
981 /* time to take a break? */
982 if (unlikely(--latency_ration < 0)) {
983 if (n_ret)
984 goto done;
985 spin_unlock(&si->lock);
986 cond_resched();
987 spin_lock(&si->lock);
988 latency_ration = LATENCY_LIMIT;
989 }
990
991 /* try to get more slots in cluster */
992 if (si->cluster_info) {
993 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order))
994 goto checks;
995 if (order > 0)
996 goto done;
997 } else if (si->cluster_nr && !si->swap_map[++offset]) {
998 /* non-ssd case, still more slots in cluster? */
999 --si->cluster_nr;
1000 goto checks;
1001 }
1002
1003 /*
1004 * Even if there's no free clusters available (fragmented),
1005 * try to scan a little more quickly with lock held unless we
1006 * have scanned too many slots already.
1007 */
1008 if (!scanned_many) {
1009 unsigned long scan_limit;
1010
1011 if (offset < scan_base)
1012 scan_limit = scan_base;
1013 else
1014 scan_limit = si->highest_bit;
1015 for (; offset <= scan_limit && --latency_ration > 0;
1016 offset++) {
1017 if (!si->swap_map[offset])
1018 goto checks;
1019 }
1020 }
1021
1022done:
1023 if (order == 0)
1024 set_cluster_next(si, offset + 1);
1025 si->flags -= SWP_SCANNING;
1026 return n_ret;
1027
1028scan:
1029 VM_WARN_ON(order > 0);
1030 spin_unlock(&si->lock);
1031 while (++offset <= READ_ONCE(si->highest_bit)) {
1032 if (unlikely(--latency_ration < 0)) {
1033 cond_resched();
1034 latency_ration = LATENCY_LIMIT;
1035 scanned_many = true;
1036 }
1037 if (swap_offset_available_and_locked(si, offset))
1038 goto checks;
1039 }
1040 offset = si->lowest_bit;
1041 while (offset < scan_base) {
1042 if (unlikely(--latency_ration < 0)) {
1043 cond_resched();
1044 latency_ration = LATENCY_LIMIT;
1045 scanned_many = true;
1046 }
1047 if (swap_offset_available_and_locked(si, offset))
1048 goto checks;
1049 offset++;
1050 }
1051 spin_lock(&si->lock);
1052
1053no_page:
1054 si->flags -= SWP_SCANNING;
1055 return n_ret;
1056}
1057
1058static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1059{
1060 unsigned long offset = idx * SWAPFILE_CLUSTER;
1061 struct swap_cluster_info *ci;
1062
1063 ci = lock_cluster(si, offset);
1064 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1065 cluster_set_count_flag(ci, 0, 0);
1066 free_cluster(si, idx);
1067 unlock_cluster(ci);
1068 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1069}
1070
1071int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1072{
1073 int order = swap_entry_order(entry_order);
1074 unsigned long size = 1 << order;
1075 struct swap_info_struct *si, *next;
1076 long avail_pgs;
1077 int n_ret = 0;
1078 int node;
1079
1080 spin_lock(&swap_avail_lock);
1081
1082 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1083 if (avail_pgs <= 0) {
1084 spin_unlock(&swap_avail_lock);
1085 goto noswap;
1086 }
1087
1088 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1089
1090 atomic_long_sub(n_goal * size, &nr_swap_pages);
1091
1092start_over:
1093 node = numa_node_id();
1094 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1095 /* requeue si to after same-priority siblings */
1096 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1097 spin_unlock(&swap_avail_lock);
1098 spin_lock(&si->lock);
1099 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1100 spin_lock(&swap_avail_lock);
1101 if (plist_node_empty(&si->avail_lists[node])) {
1102 spin_unlock(&si->lock);
1103 goto nextsi;
1104 }
1105 WARN(!si->highest_bit,
1106 "swap_info %d in list but !highest_bit\n",
1107 si->type);
1108 WARN(!(si->flags & SWP_WRITEOK),
1109 "swap_info %d in list but !SWP_WRITEOK\n",
1110 si->type);
1111 __del_from_avail_list(si);
1112 spin_unlock(&si->lock);
1113 goto nextsi;
1114 }
1115 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1116 n_goal, swp_entries, order);
1117 spin_unlock(&si->lock);
1118 if (n_ret || size > 1)
1119 goto check_out;
1120 cond_resched();
1121
1122 spin_lock(&swap_avail_lock);
1123nextsi:
1124 /*
1125 * if we got here, it's likely that si was almost full before,
1126 * and since scan_swap_map_slots() can drop the si->lock,
1127 * multiple callers probably all tried to get a page from the
1128 * same si and it filled up before we could get one; or, the si
1129 * filled up between us dropping swap_avail_lock and taking
1130 * si->lock. Since we dropped the swap_avail_lock, the
1131 * swap_avail_head list may have been modified; so if next is
1132 * still in the swap_avail_head list then try it, otherwise
1133 * start over if we have not gotten any slots.
1134 */
1135 if (plist_node_empty(&next->avail_lists[node]))
1136 goto start_over;
1137 }
1138
1139 spin_unlock(&swap_avail_lock);
1140
1141check_out:
1142 if (n_ret < n_goal)
1143 atomic_long_add((long)(n_goal - n_ret) * size,
1144 &nr_swap_pages);
1145noswap:
1146 return n_ret;
1147}
1148
1149static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1150{
1151 struct swap_info_struct *p;
1152 unsigned long offset;
1153
1154 if (!entry.val)
1155 goto out;
1156 p = swp_swap_info(entry);
1157 if (!p)
1158 goto bad_nofile;
1159 if (data_race(!(p->flags & SWP_USED)))
1160 goto bad_device;
1161 offset = swp_offset(entry);
1162 if (offset >= p->max)
1163 goto bad_offset;
1164 if (data_race(!p->swap_map[swp_offset(entry)]))
1165 goto bad_free;
1166 return p;
1167
1168bad_free:
1169 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1170 goto out;
1171bad_offset:
1172 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1173 goto out;
1174bad_device:
1175 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1176 goto out;
1177bad_nofile:
1178 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1179out:
1180 return NULL;
1181}
1182
1183static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1184 struct swap_info_struct *q)
1185{
1186 struct swap_info_struct *p;
1187
1188 p = _swap_info_get(entry);
1189
1190 if (p != q) {
1191 if (q != NULL)
1192 spin_unlock(&q->lock);
1193 if (p != NULL)
1194 spin_lock(&p->lock);
1195 }
1196 return p;
1197}
1198
1199static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1200 unsigned long offset,
1201 unsigned char usage)
1202{
1203 unsigned char count;
1204 unsigned char has_cache;
1205
1206 count = p->swap_map[offset];
1207
1208 has_cache = count & SWAP_HAS_CACHE;
1209 count &= ~SWAP_HAS_CACHE;
1210
1211 if (usage == SWAP_HAS_CACHE) {
1212 VM_BUG_ON(!has_cache);
1213 has_cache = 0;
1214 } else if (count == SWAP_MAP_SHMEM) {
1215 /*
1216 * Or we could insist on shmem.c using a special
1217 * swap_shmem_free() and free_shmem_swap_and_cache()...
1218 */
1219 count = 0;
1220 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1221 if (count == COUNT_CONTINUED) {
1222 if (swap_count_continued(p, offset, count))
1223 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1224 else
1225 count = SWAP_MAP_MAX;
1226 } else
1227 count--;
1228 }
1229
1230 usage = count | has_cache;
1231 if (usage)
1232 WRITE_ONCE(p->swap_map[offset], usage);
1233 else
1234 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1235
1236 return usage;
1237}
1238
1239/*
1240 * When we get a swap entry, if there aren't some other ways to
1241 * prevent swapoff, such as the folio in swap cache is locked, RCU
1242 * reader side is locked, etc., the swap entry may become invalid
1243 * because of swapoff. Then, we need to enclose all swap related
1244 * functions with get_swap_device() and put_swap_device(), unless the
1245 * swap functions call get/put_swap_device() by themselves.
1246 *
1247 * RCU reader side lock (including any spinlock) is sufficient to
1248 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1249 * before freeing data structures.
1250 *
1251 * Check whether swap entry is valid in the swap device. If so,
1252 * return pointer to swap_info_struct, and keep the swap entry valid
1253 * via preventing the swap device from being swapoff, until
1254 * put_swap_device() is called. Otherwise return NULL.
1255 *
1256 * Notice that swapoff or swapoff+swapon can still happen before the
1257 * percpu_ref_tryget_live() in get_swap_device() or after the
1258 * percpu_ref_put() in put_swap_device() if there isn't any other way
1259 * to prevent swapoff. The caller must be prepared for that. For
1260 * example, the following situation is possible.
1261 *
1262 * CPU1 CPU2
1263 * do_swap_page()
1264 * ... swapoff+swapon
1265 * __read_swap_cache_async()
1266 * swapcache_prepare()
1267 * __swap_duplicate()
1268 * // check swap_map
1269 * // verify PTE not changed
1270 *
1271 * In __swap_duplicate(), the swap_map need to be checked before
1272 * changing partly because the specified swap entry may be for another
1273 * swap device which has been swapoff. And in do_swap_page(), after
1274 * the page is read from the swap device, the PTE is verified not
1275 * changed with the page table locked to check whether the swap device
1276 * has been swapoff or swapoff+swapon.
1277 */
1278struct swap_info_struct *get_swap_device(swp_entry_t entry)
1279{
1280 struct swap_info_struct *si;
1281 unsigned long offset;
1282
1283 if (!entry.val)
1284 goto out;
1285 si = swp_swap_info(entry);
1286 if (!si)
1287 goto bad_nofile;
1288 if (!percpu_ref_tryget_live(&si->users))
1289 goto out;
1290 /*
1291 * Guarantee the si->users are checked before accessing other
1292 * fields of swap_info_struct.
1293 *
1294 * Paired with the spin_unlock() after setup_swap_info() in
1295 * enable_swap_info().
1296 */
1297 smp_rmb();
1298 offset = swp_offset(entry);
1299 if (offset >= si->max)
1300 goto put_out;
1301
1302 return si;
1303bad_nofile:
1304 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1305out:
1306 return NULL;
1307put_out:
1308 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1309 percpu_ref_put(&si->users);
1310 return NULL;
1311}
1312
1313static unsigned char __swap_entry_free(struct swap_info_struct *p,
1314 swp_entry_t entry)
1315{
1316 struct swap_cluster_info *ci;
1317 unsigned long offset = swp_offset(entry);
1318 unsigned char usage;
1319
1320 ci = lock_cluster_or_swap_info(p, offset);
1321 usage = __swap_entry_free_locked(p, offset, 1);
1322 unlock_cluster_or_swap_info(p, ci);
1323 if (!usage)
1324 free_swap_slot(entry);
1325
1326 return usage;
1327}
1328
1329static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1330{
1331 struct swap_cluster_info *ci;
1332 unsigned long offset = swp_offset(entry);
1333 unsigned char count;
1334
1335 ci = lock_cluster(p, offset);
1336 count = p->swap_map[offset];
1337 VM_BUG_ON(count != SWAP_HAS_CACHE);
1338 p->swap_map[offset] = 0;
1339 dec_cluster_info_page(p, p->cluster_info, offset);
1340 unlock_cluster(ci);
1341
1342 mem_cgroup_uncharge_swap(entry, 1);
1343 swap_range_free(p, offset, 1);
1344}
1345
1346/*
1347 * Caller has made sure that the swap device corresponding to entry
1348 * is still around or has not been recycled.
1349 */
1350void swap_free(swp_entry_t entry)
1351{
1352 struct swap_info_struct *p;
1353
1354 p = _swap_info_get(entry);
1355 if (p)
1356 __swap_entry_free(p, entry);
1357}
1358
1359/*
1360 * Called after dropping swapcache to decrease refcnt to swap entries.
1361 */
1362void put_swap_folio(struct folio *folio, swp_entry_t entry)
1363{
1364 unsigned long offset = swp_offset(entry);
1365 unsigned long idx = offset / SWAPFILE_CLUSTER;
1366 struct swap_cluster_info *ci;
1367 struct swap_info_struct *si;
1368 unsigned char *map;
1369 unsigned int i, free_entries = 0;
1370 unsigned char val;
1371 int size = 1 << swap_entry_order(folio_order(folio));
1372
1373 si = _swap_info_get(entry);
1374 if (!si)
1375 return;
1376
1377 ci = lock_cluster_or_swap_info(si, offset);
1378 if (size == SWAPFILE_CLUSTER) {
1379 map = si->swap_map + offset;
1380 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1381 val = map[i];
1382 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1383 if (val == SWAP_HAS_CACHE)
1384 free_entries++;
1385 }
1386 if (free_entries == SWAPFILE_CLUSTER) {
1387 unlock_cluster_or_swap_info(si, ci);
1388 spin_lock(&si->lock);
1389 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1390 swap_free_cluster(si, idx);
1391 spin_unlock(&si->lock);
1392 return;
1393 }
1394 }
1395 for (i = 0; i < size; i++, entry.val++) {
1396 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1397 unlock_cluster_or_swap_info(si, ci);
1398 free_swap_slot(entry);
1399 if (i == size - 1)
1400 return;
1401 lock_cluster_or_swap_info(si, offset);
1402 }
1403 }
1404 unlock_cluster_or_swap_info(si, ci);
1405}
1406
1407static int swp_entry_cmp(const void *ent1, const void *ent2)
1408{
1409 const swp_entry_t *e1 = ent1, *e2 = ent2;
1410
1411 return (int)swp_type(*e1) - (int)swp_type(*e2);
1412}
1413
1414void swapcache_free_entries(swp_entry_t *entries, int n)
1415{
1416 struct swap_info_struct *p, *prev;
1417 int i;
1418
1419 if (n <= 0)
1420 return;
1421
1422 prev = NULL;
1423 p = NULL;
1424
1425 /*
1426 * Sort swap entries by swap device, so each lock is only taken once.
1427 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1428 * so low that it isn't necessary to optimize further.
1429 */
1430 if (nr_swapfiles > 1)
1431 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1432 for (i = 0; i < n; ++i) {
1433 p = swap_info_get_cont(entries[i], prev);
1434 if (p)
1435 swap_entry_free(p, entries[i]);
1436 prev = p;
1437 }
1438 if (p)
1439 spin_unlock(&p->lock);
1440}
1441
1442int __swap_count(swp_entry_t entry)
1443{
1444 struct swap_info_struct *si = swp_swap_info(entry);
1445 pgoff_t offset = swp_offset(entry);
1446
1447 return swap_count(si->swap_map[offset]);
1448}
1449
1450/*
1451 * How many references to @entry are currently swapped out?
1452 * This does not give an exact answer when swap count is continued,
1453 * but does include the high COUNT_CONTINUED flag to allow for that.
1454 */
1455int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1456{
1457 pgoff_t offset = swp_offset(entry);
1458 struct swap_cluster_info *ci;
1459 int count;
1460
1461 ci = lock_cluster_or_swap_info(si, offset);
1462 count = swap_count(si->swap_map[offset]);
1463 unlock_cluster_or_swap_info(si, ci);
1464 return count;
1465}
1466
1467/*
1468 * How many references to @entry are currently swapped out?
1469 * This considers COUNT_CONTINUED so it returns exact answer.
1470 */
1471int swp_swapcount(swp_entry_t entry)
1472{
1473 int count, tmp_count, n;
1474 struct swap_info_struct *p;
1475 struct swap_cluster_info *ci;
1476 struct page *page;
1477 pgoff_t offset;
1478 unsigned char *map;
1479
1480 p = _swap_info_get(entry);
1481 if (!p)
1482 return 0;
1483
1484 offset = swp_offset(entry);
1485
1486 ci = lock_cluster_or_swap_info(p, offset);
1487
1488 count = swap_count(p->swap_map[offset]);
1489 if (!(count & COUNT_CONTINUED))
1490 goto out;
1491
1492 count &= ~COUNT_CONTINUED;
1493 n = SWAP_MAP_MAX + 1;
1494
1495 page = vmalloc_to_page(p->swap_map + offset);
1496 offset &= ~PAGE_MASK;
1497 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1498
1499 do {
1500 page = list_next_entry(page, lru);
1501 map = kmap_local_page(page);
1502 tmp_count = map[offset];
1503 kunmap_local(map);
1504
1505 count += (tmp_count & ~COUNT_CONTINUED) * n;
1506 n *= (SWAP_CONT_MAX + 1);
1507 } while (tmp_count & COUNT_CONTINUED);
1508out:
1509 unlock_cluster_or_swap_info(p, ci);
1510 return count;
1511}
1512
1513static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1514 swp_entry_t entry, int order)
1515{
1516 struct swap_cluster_info *ci;
1517 unsigned char *map = si->swap_map;
1518 unsigned int nr_pages = 1 << order;
1519 unsigned long roffset = swp_offset(entry);
1520 unsigned long offset = round_down(roffset, nr_pages);
1521 int i;
1522 bool ret = false;
1523
1524 ci = lock_cluster_or_swap_info(si, offset);
1525 if (!ci || nr_pages == 1) {
1526 if (swap_count(map[roffset]))
1527 ret = true;
1528 goto unlock_out;
1529 }
1530 for (i = 0; i < nr_pages; i++) {
1531 if (swap_count(map[offset + i])) {
1532 ret = true;
1533 break;
1534 }
1535 }
1536unlock_out:
1537 unlock_cluster_or_swap_info(si, ci);
1538 return ret;
1539}
1540
1541static bool folio_swapped(struct folio *folio)
1542{
1543 swp_entry_t entry = folio->swap;
1544 struct swap_info_struct *si = _swap_info_get(entry);
1545
1546 if (!si)
1547 return false;
1548
1549 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1550 return swap_swapcount(si, entry) != 0;
1551
1552 return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1553}
1554
1555/**
1556 * folio_free_swap() - Free the swap space used for this folio.
1557 * @folio: The folio to remove.
1558 *
1559 * If swap is getting full, or if there are no more mappings of this folio,
1560 * then call folio_free_swap to free its swap space.
1561 *
1562 * Return: true if we were able to release the swap space.
1563 */
1564bool folio_free_swap(struct folio *folio)
1565{
1566 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1567
1568 if (!folio_test_swapcache(folio))
1569 return false;
1570 if (folio_test_writeback(folio))
1571 return false;
1572 if (folio_swapped(folio))
1573 return false;
1574
1575 /*
1576 * Once hibernation has begun to create its image of memory,
1577 * there's a danger that one of the calls to folio_free_swap()
1578 * - most probably a call from __try_to_reclaim_swap() while
1579 * hibernation is allocating its own swap pages for the image,
1580 * but conceivably even a call from memory reclaim - will free
1581 * the swap from a folio which has already been recorded in the
1582 * image as a clean swapcache folio, and then reuse its swap for
1583 * another page of the image. On waking from hibernation, the
1584 * original folio might be freed under memory pressure, then
1585 * later read back in from swap, now with the wrong data.
1586 *
1587 * Hibernation suspends storage while it is writing the image
1588 * to disk so check that here.
1589 */
1590 if (pm_suspended_storage())
1591 return false;
1592
1593 delete_from_swap_cache(folio);
1594 folio_set_dirty(folio);
1595 return true;
1596}
1597
1598/**
1599 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1600 * reclaim their cache if no more references remain.
1601 * @entry: First entry of range.
1602 * @nr: Number of entries in range.
1603 *
1604 * For each swap entry in the contiguous range, release a reference. If any swap
1605 * entries become free, try to reclaim their underlying folios, if present. The
1606 * offset range is defined by [entry.offset, entry.offset + nr).
1607 */
1608void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1609{
1610 const unsigned long start_offset = swp_offset(entry);
1611 const unsigned long end_offset = start_offset + nr;
1612 unsigned int type = swp_type(entry);
1613 struct swap_info_struct *si;
1614 bool any_only_cache = false;
1615 unsigned long offset;
1616 unsigned char count;
1617
1618 if (non_swap_entry(entry))
1619 return;
1620
1621 si = get_swap_device(entry);
1622 if (!si)
1623 return;
1624
1625 if (WARN_ON(end_offset > si->max))
1626 goto out;
1627
1628 /*
1629 * First free all entries in the range.
1630 */
1631 for (offset = start_offset; offset < end_offset; offset++) {
1632 if (data_race(si->swap_map[offset])) {
1633 count = __swap_entry_free(si, swp_entry(type, offset));
1634 if (count == SWAP_HAS_CACHE)
1635 any_only_cache = true;
1636 } else {
1637 WARN_ON_ONCE(1);
1638 }
1639 }
1640
1641 /*
1642 * Short-circuit the below loop if none of the entries had their
1643 * reference drop to zero.
1644 */
1645 if (!any_only_cache)
1646 goto out;
1647
1648 /*
1649 * Now go back over the range trying to reclaim the swap cache. This is
1650 * more efficient for large folios because we will only try to reclaim
1651 * the swap once per folio in the common case. If we do
1652 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1653 * latter will get a reference and lock the folio for every individual
1654 * page but will only succeed once the swap slot for every subpage is
1655 * zero.
1656 */
1657 for (offset = start_offset; offset < end_offset; offset += nr) {
1658 nr = 1;
1659 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1660 /*
1661 * Folios are always naturally aligned in swap so
1662 * advance forward to the next boundary. Zero means no
1663 * folio was found for the swap entry, so advance by 1
1664 * in this case. Negative value means folio was found
1665 * but could not be reclaimed. Here we can still advance
1666 * to the next boundary.
1667 */
1668 nr = __try_to_reclaim_swap(si, offset,
1669 TTRS_UNMAPPED | TTRS_FULL);
1670 if (nr == 0)
1671 nr = 1;
1672 else if (nr < 0)
1673 nr = -nr;
1674 nr = ALIGN(offset + 1, nr) - offset;
1675 }
1676 }
1677
1678out:
1679 put_swap_device(si);
1680}
1681
1682#ifdef CONFIG_HIBERNATION
1683
1684swp_entry_t get_swap_page_of_type(int type)
1685{
1686 struct swap_info_struct *si = swap_type_to_swap_info(type);
1687 swp_entry_t entry = {0};
1688
1689 if (!si)
1690 goto fail;
1691
1692 /* This is called for allocating swap entry, not cache */
1693 spin_lock(&si->lock);
1694 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1695 atomic_long_dec(&nr_swap_pages);
1696 spin_unlock(&si->lock);
1697fail:
1698 return entry;
1699}
1700
1701/*
1702 * Find the swap type that corresponds to given device (if any).
1703 *
1704 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1705 * from 0, in which the swap header is expected to be located.
1706 *
1707 * This is needed for the suspend to disk (aka swsusp).
1708 */
1709int swap_type_of(dev_t device, sector_t offset)
1710{
1711 int type;
1712
1713 if (!device)
1714 return -1;
1715
1716 spin_lock(&swap_lock);
1717 for (type = 0; type < nr_swapfiles; type++) {
1718 struct swap_info_struct *sis = swap_info[type];
1719
1720 if (!(sis->flags & SWP_WRITEOK))
1721 continue;
1722
1723 if (device == sis->bdev->bd_dev) {
1724 struct swap_extent *se = first_se(sis);
1725
1726 if (se->start_block == offset) {
1727 spin_unlock(&swap_lock);
1728 return type;
1729 }
1730 }
1731 }
1732 spin_unlock(&swap_lock);
1733 return -ENODEV;
1734}
1735
1736int find_first_swap(dev_t *device)
1737{
1738 int type;
1739
1740 spin_lock(&swap_lock);
1741 for (type = 0; type < nr_swapfiles; type++) {
1742 struct swap_info_struct *sis = swap_info[type];
1743
1744 if (!(sis->flags & SWP_WRITEOK))
1745 continue;
1746 *device = sis->bdev->bd_dev;
1747 spin_unlock(&swap_lock);
1748 return type;
1749 }
1750 spin_unlock(&swap_lock);
1751 return -ENODEV;
1752}
1753
1754/*
1755 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1756 * corresponding to given index in swap_info (swap type).
1757 */
1758sector_t swapdev_block(int type, pgoff_t offset)
1759{
1760 struct swap_info_struct *si = swap_type_to_swap_info(type);
1761 struct swap_extent *se;
1762
1763 if (!si || !(si->flags & SWP_WRITEOK))
1764 return 0;
1765 se = offset_to_swap_extent(si, offset);
1766 return se->start_block + (offset - se->start_page);
1767}
1768
1769/*
1770 * Return either the total number of swap pages of given type, or the number
1771 * of free pages of that type (depending on @free)
1772 *
1773 * This is needed for software suspend
1774 */
1775unsigned int count_swap_pages(int type, int free)
1776{
1777 unsigned int n = 0;
1778
1779 spin_lock(&swap_lock);
1780 if ((unsigned int)type < nr_swapfiles) {
1781 struct swap_info_struct *sis = swap_info[type];
1782
1783 spin_lock(&sis->lock);
1784 if (sis->flags & SWP_WRITEOK) {
1785 n = sis->pages;
1786 if (free)
1787 n -= sis->inuse_pages;
1788 }
1789 spin_unlock(&sis->lock);
1790 }
1791 spin_unlock(&swap_lock);
1792 return n;
1793}
1794#endif /* CONFIG_HIBERNATION */
1795
1796static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1797{
1798 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1799}
1800
1801/*
1802 * No need to decide whether this PTE shares the swap entry with others,
1803 * just let do_wp_page work it out if a write is requested later - to
1804 * force COW, vm_page_prot omits write permission from any private vma.
1805 */
1806static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1807 unsigned long addr, swp_entry_t entry, struct folio *folio)
1808{
1809 struct page *page;
1810 struct folio *swapcache;
1811 spinlock_t *ptl;
1812 pte_t *pte, new_pte, old_pte;
1813 bool hwpoisoned = false;
1814 int ret = 1;
1815
1816 swapcache = folio;
1817 folio = ksm_might_need_to_copy(folio, vma, addr);
1818 if (unlikely(!folio))
1819 return -ENOMEM;
1820 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1821 hwpoisoned = true;
1822 folio = swapcache;
1823 }
1824
1825 page = folio_file_page(folio, swp_offset(entry));
1826 if (PageHWPoison(page))
1827 hwpoisoned = true;
1828
1829 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1830 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1831 swp_entry_to_pte(entry)))) {
1832 ret = 0;
1833 goto out;
1834 }
1835
1836 old_pte = ptep_get(pte);
1837
1838 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1839 swp_entry_t swp_entry;
1840
1841 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1842 if (hwpoisoned) {
1843 swp_entry = make_hwpoison_entry(page);
1844 } else {
1845 swp_entry = make_poisoned_swp_entry();
1846 }
1847 new_pte = swp_entry_to_pte(swp_entry);
1848 ret = 0;
1849 goto setpte;
1850 }
1851
1852 /*
1853 * Some architectures may have to restore extra metadata to the page
1854 * when reading from swap. This metadata may be indexed by swap entry
1855 * so this must be called before swap_free().
1856 */
1857 arch_swap_restore(folio_swap(entry, folio), folio);
1858
1859 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1860 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1861 folio_get(folio);
1862 if (folio == swapcache) {
1863 rmap_t rmap_flags = RMAP_NONE;
1864
1865 /*
1866 * See do_swap_page(): writeback would be problematic.
1867 * However, we do a folio_wait_writeback() just before this
1868 * call and have the folio locked.
1869 */
1870 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1871 if (pte_swp_exclusive(old_pte))
1872 rmap_flags |= RMAP_EXCLUSIVE;
1873
1874 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1875 } else { /* ksm created a completely new copy */
1876 folio_add_new_anon_rmap(folio, vma, addr);
1877 folio_add_lru_vma(folio, vma);
1878 }
1879 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1880 if (pte_swp_soft_dirty(old_pte))
1881 new_pte = pte_mksoft_dirty(new_pte);
1882 if (pte_swp_uffd_wp(old_pte))
1883 new_pte = pte_mkuffd_wp(new_pte);
1884setpte:
1885 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1886 swap_free(entry);
1887out:
1888 if (pte)
1889 pte_unmap_unlock(pte, ptl);
1890 if (folio != swapcache) {
1891 folio_unlock(folio);
1892 folio_put(folio);
1893 }
1894 return ret;
1895}
1896
1897static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1898 unsigned long addr, unsigned long end,
1899 unsigned int type)
1900{
1901 pte_t *pte = NULL;
1902 struct swap_info_struct *si;
1903
1904 si = swap_info[type];
1905 do {
1906 struct folio *folio;
1907 unsigned long offset;
1908 unsigned char swp_count;
1909 swp_entry_t entry;
1910 int ret;
1911 pte_t ptent;
1912
1913 if (!pte++) {
1914 pte = pte_offset_map(pmd, addr);
1915 if (!pte)
1916 break;
1917 }
1918
1919 ptent = ptep_get_lockless(pte);
1920
1921 if (!is_swap_pte(ptent))
1922 continue;
1923
1924 entry = pte_to_swp_entry(ptent);
1925 if (swp_type(entry) != type)
1926 continue;
1927
1928 offset = swp_offset(entry);
1929 pte_unmap(pte);
1930 pte = NULL;
1931
1932 folio = swap_cache_get_folio(entry, vma, addr);
1933 if (!folio) {
1934 struct page *page;
1935 struct vm_fault vmf = {
1936 .vma = vma,
1937 .address = addr,
1938 .real_address = addr,
1939 .pmd = pmd,
1940 };
1941
1942 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1943 &vmf);
1944 if (page)
1945 folio = page_folio(page);
1946 }
1947 if (!folio) {
1948 swp_count = READ_ONCE(si->swap_map[offset]);
1949 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1950 continue;
1951 return -ENOMEM;
1952 }
1953
1954 folio_lock(folio);
1955 folio_wait_writeback(folio);
1956 ret = unuse_pte(vma, pmd, addr, entry, folio);
1957 if (ret < 0) {
1958 folio_unlock(folio);
1959 folio_put(folio);
1960 return ret;
1961 }
1962
1963 folio_free_swap(folio);
1964 folio_unlock(folio);
1965 folio_put(folio);
1966 } while (addr += PAGE_SIZE, addr != end);
1967
1968 if (pte)
1969 pte_unmap(pte);
1970 return 0;
1971}
1972
1973static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1974 unsigned long addr, unsigned long end,
1975 unsigned int type)
1976{
1977 pmd_t *pmd;
1978 unsigned long next;
1979 int ret;
1980
1981 pmd = pmd_offset(pud, addr);
1982 do {
1983 cond_resched();
1984 next = pmd_addr_end(addr, end);
1985 ret = unuse_pte_range(vma, pmd, addr, next, type);
1986 if (ret)
1987 return ret;
1988 } while (pmd++, addr = next, addr != end);
1989 return 0;
1990}
1991
1992static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1993 unsigned long addr, unsigned long end,
1994 unsigned int type)
1995{
1996 pud_t *pud;
1997 unsigned long next;
1998 int ret;
1999
2000 pud = pud_offset(p4d, addr);
2001 do {
2002 next = pud_addr_end(addr, end);
2003 if (pud_none_or_clear_bad(pud))
2004 continue;
2005 ret = unuse_pmd_range(vma, pud, addr, next, type);
2006 if (ret)
2007 return ret;
2008 } while (pud++, addr = next, addr != end);
2009 return 0;
2010}
2011
2012static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2013 unsigned long addr, unsigned long end,
2014 unsigned int type)
2015{
2016 p4d_t *p4d;
2017 unsigned long next;
2018 int ret;
2019
2020 p4d = p4d_offset(pgd, addr);
2021 do {
2022 next = p4d_addr_end(addr, end);
2023 if (p4d_none_or_clear_bad(p4d))
2024 continue;
2025 ret = unuse_pud_range(vma, p4d, addr, next, type);
2026 if (ret)
2027 return ret;
2028 } while (p4d++, addr = next, addr != end);
2029 return 0;
2030}
2031
2032static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2033{
2034 pgd_t *pgd;
2035 unsigned long addr, end, next;
2036 int ret;
2037
2038 addr = vma->vm_start;
2039 end = vma->vm_end;
2040
2041 pgd = pgd_offset(vma->vm_mm, addr);
2042 do {
2043 next = pgd_addr_end(addr, end);
2044 if (pgd_none_or_clear_bad(pgd))
2045 continue;
2046 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2047 if (ret)
2048 return ret;
2049 } while (pgd++, addr = next, addr != end);
2050 return 0;
2051}
2052
2053static int unuse_mm(struct mm_struct *mm, unsigned int type)
2054{
2055 struct vm_area_struct *vma;
2056 int ret = 0;
2057 VMA_ITERATOR(vmi, mm, 0);
2058
2059 mmap_read_lock(mm);
2060 for_each_vma(vmi, vma) {
2061 if (vma->anon_vma) {
2062 ret = unuse_vma(vma, type);
2063 if (ret)
2064 break;
2065 }
2066
2067 cond_resched();
2068 }
2069 mmap_read_unlock(mm);
2070 return ret;
2071}
2072
2073/*
2074 * Scan swap_map from current position to next entry still in use.
2075 * Return 0 if there are no inuse entries after prev till end of
2076 * the map.
2077 */
2078static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2079 unsigned int prev)
2080{
2081 unsigned int i;
2082 unsigned char count;
2083
2084 /*
2085 * No need for swap_lock here: we're just looking
2086 * for whether an entry is in use, not modifying it; false
2087 * hits are okay, and sys_swapoff() has already prevented new
2088 * allocations from this area (while holding swap_lock).
2089 */
2090 for (i = prev + 1; i < si->max; i++) {
2091 count = READ_ONCE(si->swap_map[i]);
2092 if (count && swap_count(count) != SWAP_MAP_BAD)
2093 break;
2094 if ((i % LATENCY_LIMIT) == 0)
2095 cond_resched();
2096 }
2097
2098 if (i == si->max)
2099 i = 0;
2100
2101 return i;
2102}
2103
2104static int try_to_unuse(unsigned int type)
2105{
2106 struct mm_struct *prev_mm;
2107 struct mm_struct *mm;
2108 struct list_head *p;
2109 int retval = 0;
2110 struct swap_info_struct *si = swap_info[type];
2111 struct folio *folio;
2112 swp_entry_t entry;
2113 unsigned int i;
2114
2115 if (!READ_ONCE(si->inuse_pages))
2116 goto success;
2117
2118retry:
2119 retval = shmem_unuse(type);
2120 if (retval)
2121 return retval;
2122
2123 prev_mm = &init_mm;
2124 mmget(prev_mm);
2125
2126 spin_lock(&mmlist_lock);
2127 p = &init_mm.mmlist;
2128 while (READ_ONCE(si->inuse_pages) &&
2129 !signal_pending(current) &&
2130 (p = p->next) != &init_mm.mmlist) {
2131
2132 mm = list_entry(p, struct mm_struct, mmlist);
2133 if (!mmget_not_zero(mm))
2134 continue;
2135 spin_unlock(&mmlist_lock);
2136 mmput(prev_mm);
2137 prev_mm = mm;
2138 retval = unuse_mm(mm, type);
2139 if (retval) {
2140 mmput(prev_mm);
2141 return retval;
2142 }
2143
2144 /*
2145 * Make sure that we aren't completely killing
2146 * interactive performance.
2147 */
2148 cond_resched();
2149 spin_lock(&mmlist_lock);
2150 }
2151 spin_unlock(&mmlist_lock);
2152
2153 mmput(prev_mm);
2154
2155 i = 0;
2156 while (READ_ONCE(si->inuse_pages) &&
2157 !signal_pending(current) &&
2158 (i = find_next_to_unuse(si, i)) != 0) {
2159
2160 entry = swp_entry(type, i);
2161 folio = filemap_get_folio(swap_address_space(entry), i);
2162 if (IS_ERR(folio))
2163 continue;
2164
2165 /*
2166 * It is conceivable that a racing task removed this folio from
2167 * swap cache just before we acquired the page lock. The folio
2168 * might even be back in swap cache on another swap area. But
2169 * that is okay, folio_free_swap() only removes stale folios.
2170 */
2171 folio_lock(folio);
2172 folio_wait_writeback(folio);
2173 folio_free_swap(folio);
2174 folio_unlock(folio);
2175 folio_put(folio);
2176 }
2177
2178 /*
2179 * Lets check again to see if there are still swap entries in the map.
2180 * If yes, we would need to do retry the unuse logic again.
2181 * Under global memory pressure, swap entries can be reinserted back
2182 * into process space after the mmlist loop above passes over them.
2183 *
2184 * Limit the number of retries? No: when mmget_not_zero()
2185 * above fails, that mm is likely to be freeing swap from
2186 * exit_mmap(), which proceeds at its own independent pace;
2187 * and even shmem_writepage() could have been preempted after
2188 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2189 * and robust (though cpu-intensive) just to keep retrying.
2190 */
2191 if (READ_ONCE(si->inuse_pages)) {
2192 if (!signal_pending(current))
2193 goto retry;
2194 return -EINTR;
2195 }
2196
2197success:
2198 /*
2199 * Make sure that further cleanups after try_to_unuse() returns happen
2200 * after swap_range_free() reduces si->inuse_pages to 0.
2201 */
2202 smp_mb();
2203 return 0;
2204}
2205
2206/*
2207 * After a successful try_to_unuse, if no swap is now in use, we know
2208 * we can empty the mmlist. swap_lock must be held on entry and exit.
2209 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2210 * added to the mmlist just after page_duplicate - before would be racy.
2211 */
2212static void drain_mmlist(void)
2213{
2214 struct list_head *p, *next;
2215 unsigned int type;
2216
2217 for (type = 0; type < nr_swapfiles; type++)
2218 if (swap_info[type]->inuse_pages)
2219 return;
2220 spin_lock(&mmlist_lock);
2221 list_for_each_safe(p, next, &init_mm.mmlist)
2222 list_del_init(p);
2223 spin_unlock(&mmlist_lock);
2224}
2225
2226/*
2227 * Free all of a swapdev's extent information
2228 */
2229static void destroy_swap_extents(struct swap_info_struct *sis)
2230{
2231 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2232 struct rb_node *rb = sis->swap_extent_root.rb_node;
2233 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2234
2235 rb_erase(rb, &sis->swap_extent_root);
2236 kfree(se);
2237 }
2238
2239 if (sis->flags & SWP_ACTIVATED) {
2240 struct file *swap_file = sis->swap_file;
2241 struct address_space *mapping = swap_file->f_mapping;
2242
2243 sis->flags &= ~SWP_ACTIVATED;
2244 if (mapping->a_ops->swap_deactivate)
2245 mapping->a_ops->swap_deactivate(swap_file);
2246 }
2247}
2248
2249/*
2250 * Add a block range (and the corresponding page range) into this swapdev's
2251 * extent tree.
2252 *
2253 * This function rather assumes that it is called in ascending page order.
2254 */
2255int
2256add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2257 unsigned long nr_pages, sector_t start_block)
2258{
2259 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2260 struct swap_extent *se;
2261 struct swap_extent *new_se;
2262
2263 /*
2264 * place the new node at the right most since the
2265 * function is called in ascending page order.
2266 */
2267 while (*link) {
2268 parent = *link;
2269 link = &parent->rb_right;
2270 }
2271
2272 if (parent) {
2273 se = rb_entry(parent, struct swap_extent, rb_node);
2274 BUG_ON(se->start_page + se->nr_pages != start_page);
2275 if (se->start_block + se->nr_pages == start_block) {
2276 /* Merge it */
2277 se->nr_pages += nr_pages;
2278 return 0;
2279 }
2280 }
2281
2282 /* No merge, insert a new extent. */
2283 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2284 if (new_se == NULL)
2285 return -ENOMEM;
2286 new_se->start_page = start_page;
2287 new_se->nr_pages = nr_pages;
2288 new_se->start_block = start_block;
2289
2290 rb_link_node(&new_se->rb_node, parent, link);
2291 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2292 return 1;
2293}
2294EXPORT_SYMBOL_GPL(add_swap_extent);
2295
2296/*
2297 * A `swap extent' is a simple thing which maps a contiguous range of pages
2298 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2299 * built at swapon time and is then used at swap_writepage/swap_read_folio
2300 * time for locating where on disk a page belongs.
2301 *
2302 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2303 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2304 * swap files identically.
2305 *
2306 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2307 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2308 * swapfiles are handled *identically* after swapon time.
2309 *
2310 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2311 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2312 * blocks are found which do not fall within the PAGE_SIZE alignment
2313 * requirements, they are simply tossed out - we will never use those blocks
2314 * for swapping.
2315 *
2316 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2317 * prevents users from writing to the swap device, which will corrupt memory.
2318 *
2319 * The amount of disk space which a single swap extent represents varies.
2320 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2321 * extents in the rbtree. - akpm.
2322 */
2323static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2324{
2325 struct file *swap_file = sis->swap_file;
2326 struct address_space *mapping = swap_file->f_mapping;
2327 struct inode *inode = mapping->host;
2328 int ret;
2329
2330 if (S_ISBLK(inode->i_mode)) {
2331 ret = add_swap_extent(sis, 0, sis->max, 0);
2332 *span = sis->pages;
2333 return ret;
2334 }
2335
2336 if (mapping->a_ops->swap_activate) {
2337 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2338 if (ret < 0)
2339 return ret;
2340 sis->flags |= SWP_ACTIVATED;
2341 if ((sis->flags & SWP_FS_OPS) &&
2342 sio_pool_init() != 0) {
2343 destroy_swap_extents(sis);
2344 return -ENOMEM;
2345 }
2346 return ret;
2347 }
2348
2349 return generic_swapfile_activate(sis, swap_file, span);
2350}
2351
2352static int swap_node(struct swap_info_struct *p)
2353{
2354 struct block_device *bdev;
2355
2356 if (p->bdev)
2357 bdev = p->bdev;
2358 else
2359 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2360
2361 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2362}
2363
2364static void setup_swap_info(struct swap_info_struct *p, int prio,
2365 unsigned char *swap_map,
2366 struct swap_cluster_info *cluster_info)
2367{
2368 int i;
2369
2370 if (prio >= 0)
2371 p->prio = prio;
2372 else
2373 p->prio = --least_priority;
2374 /*
2375 * the plist prio is negated because plist ordering is
2376 * low-to-high, while swap ordering is high-to-low
2377 */
2378 p->list.prio = -p->prio;
2379 for_each_node(i) {
2380 if (p->prio >= 0)
2381 p->avail_lists[i].prio = -p->prio;
2382 else {
2383 if (swap_node(p) == i)
2384 p->avail_lists[i].prio = 1;
2385 else
2386 p->avail_lists[i].prio = -p->prio;
2387 }
2388 }
2389 p->swap_map = swap_map;
2390 p->cluster_info = cluster_info;
2391}
2392
2393static void _enable_swap_info(struct swap_info_struct *p)
2394{
2395 p->flags |= SWP_WRITEOK;
2396 atomic_long_add(p->pages, &nr_swap_pages);
2397 total_swap_pages += p->pages;
2398
2399 assert_spin_locked(&swap_lock);
2400 /*
2401 * both lists are plists, and thus priority ordered.
2402 * swap_active_head needs to be priority ordered for swapoff(),
2403 * which on removal of any swap_info_struct with an auto-assigned
2404 * (i.e. negative) priority increments the auto-assigned priority
2405 * of any lower-priority swap_info_structs.
2406 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2407 * which allocates swap pages from the highest available priority
2408 * swap_info_struct.
2409 */
2410 plist_add(&p->list, &swap_active_head);
2411
2412 /* add to available list iff swap device is not full */
2413 if (p->highest_bit)
2414 add_to_avail_list(p);
2415}
2416
2417static void enable_swap_info(struct swap_info_struct *p, int prio,
2418 unsigned char *swap_map,
2419 struct swap_cluster_info *cluster_info)
2420{
2421 spin_lock(&swap_lock);
2422 spin_lock(&p->lock);
2423 setup_swap_info(p, prio, swap_map, cluster_info);
2424 spin_unlock(&p->lock);
2425 spin_unlock(&swap_lock);
2426 /*
2427 * Finished initializing swap device, now it's safe to reference it.
2428 */
2429 percpu_ref_resurrect(&p->users);
2430 spin_lock(&swap_lock);
2431 spin_lock(&p->lock);
2432 _enable_swap_info(p);
2433 spin_unlock(&p->lock);
2434 spin_unlock(&swap_lock);
2435}
2436
2437static void reinsert_swap_info(struct swap_info_struct *p)
2438{
2439 spin_lock(&swap_lock);
2440 spin_lock(&p->lock);
2441 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2442 _enable_swap_info(p);
2443 spin_unlock(&p->lock);
2444 spin_unlock(&swap_lock);
2445}
2446
2447static bool __has_usable_swap(void)
2448{
2449 return !plist_head_empty(&swap_active_head);
2450}
2451
2452bool has_usable_swap(void)
2453{
2454 bool ret;
2455
2456 spin_lock(&swap_lock);
2457 ret = __has_usable_swap();
2458 spin_unlock(&swap_lock);
2459 return ret;
2460}
2461
2462SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2463{
2464 struct swap_info_struct *p = NULL;
2465 unsigned char *swap_map;
2466 struct swap_cluster_info *cluster_info;
2467 struct file *swap_file, *victim;
2468 struct address_space *mapping;
2469 struct inode *inode;
2470 struct filename *pathname;
2471 int err, found = 0;
2472
2473 if (!capable(CAP_SYS_ADMIN))
2474 return -EPERM;
2475
2476 BUG_ON(!current->mm);
2477
2478 pathname = getname(specialfile);
2479 if (IS_ERR(pathname))
2480 return PTR_ERR(pathname);
2481
2482 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2483 err = PTR_ERR(victim);
2484 if (IS_ERR(victim))
2485 goto out;
2486
2487 mapping = victim->f_mapping;
2488 spin_lock(&swap_lock);
2489 plist_for_each_entry(p, &swap_active_head, list) {
2490 if (p->flags & SWP_WRITEOK) {
2491 if (p->swap_file->f_mapping == mapping) {
2492 found = 1;
2493 break;
2494 }
2495 }
2496 }
2497 if (!found) {
2498 err = -EINVAL;
2499 spin_unlock(&swap_lock);
2500 goto out_dput;
2501 }
2502 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2503 vm_unacct_memory(p->pages);
2504 else {
2505 err = -ENOMEM;
2506 spin_unlock(&swap_lock);
2507 goto out_dput;
2508 }
2509 spin_lock(&p->lock);
2510 del_from_avail_list(p);
2511 if (p->prio < 0) {
2512 struct swap_info_struct *si = p;
2513 int nid;
2514
2515 plist_for_each_entry_continue(si, &swap_active_head, list) {
2516 si->prio++;
2517 si->list.prio--;
2518 for_each_node(nid) {
2519 if (si->avail_lists[nid].prio != 1)
2520 si->avail_lists[nid].prio--;
2521 }
2522 }
2523 least_priority++;
2524 }
2525 plist_del(&p->list, &swap_active_head);
2526 atomic_long_sub(p->pages, &nr_swap_pages);
2527 total_swap_pages -= p->pages;
2528 p->flags &= ~SWP_WRITEOK;
2529 spin_unlock(&p->lock);
2530 spin_unlock(&swap_lock);
2531
2532 disable_swap_slots_cache_lock();
2533
2534 set_current_oom_origin();
2535 err = try_to_unuse(p->type);
2536 clear_current_oom_origin();
2537
2538 if (err) {
2539 /* re-insert swap space back into swap_list */
2540 reinsert_swap_info(p);
2541 reenable_swap_slots_cache_unlock();
2542 goto out_dput;
2543 }
2544
2545 reenable_swap_slots_cache_unlock();
2546
2547 /*
2548 * Wait for swap operations protected by get/put_swap_device()
2549 * to complete. Because of synchronize_rcu() here, all swap
2550 * operations protected by RCU reader side lock (including any
2551 * spinlock) will be waited too. This makes it easy to
2552 * prevent folio_test_swapcache() and the following swap cache
2553 * operations from racing with swapoff.
2554 */
2555 percpu_ref_kill(&p->users);
2556 synchronize_rcu();
2557 wait_for_completion(&p->comp);
2558
2559 flush_work(&p->discard_work);
2560
2561 destroy_swap_extents(p);
2562 if (p->flags & SWP_CONTINUED)
2563 free_swap_count_continuations(p);
2564
2565 if (!p->bdev || !bdev_nonrot(p->bdev))
2566 atomic_dec(&nr_rotate_swap);
2567
2568 mutex_lock(&swapon_mutex);
2569 spin_lock(&swap_lock);
2570 spin_lock(&p->lock);
2571 drain_mmlist();
2572
2573 /* wait for anyone still in scan_swap_map_slots */
2574 p->highest_bit = 0; /* cuts scans short */
2575 while (p->flags >= SWP_SCANNING) {
2576 spin_unlock(&p->lock);
2577 spin_unlock(&swap_lock);
2578 schedule_timeout_uninterruptible(1);
2579 spin_lock(&swap_lock);
2580 spin_lock(&p->lock);
2581 }
2582
2583 swap_file = p->swap_file;
2584 p->swap_file = NULL;
2585 p->max = 0;
2586 swap_map = p->swap_map;
2587 p->swap_map = NULL;
2588 cluster_info = p->cluster_info;
2589 p->cluster_info = NULL;
2590 spin_unlock(&p->lock);
2591 spin_unlock(&swap_lock);
2592 arch_swap_invalidate_area(p->type);
2593 zswap_swapoff(p->type);
2594 mutex_unlock(&swapon_mutex);
2595 free_percpu(p->percpu_cluster);
2596 p->percpu_cluster = NULL;
2597 free_percpu(p->cluster_next_cpu);
2598 p->cluster_next_cpu = NULL;
2599 vfree(swap_map);
2600 kvfree(cluster_info);
2601 /* Destroy swap account information */
2602 swap_cgroup_swapoff(p->type);
2603 exit_swap_address_space(p->type);
2604
2605 inode = mapping->host;
2606
2607 inode_lock(inode);
2608 inode->i_flags &= ~S_SWAPFILE;
2609 inode_unlock(inode);
2610 filp_close(swap_file, NULL);
2611
2612 /*
2613 * Clear the SWP_USED flag after all resources are freed so that swapon
2614 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2615 * not hold p->lock after we cleared its SWP_WRITEOK.
2616 */
2617 spin_lock(&swap_lock);
2618 p->flags = 0;
2619 spin_unlock(&swap_lock);
2620
2621 err = 0;
2622 atomic_inc(&proc_poll_event);
2623 wake_up_interruptible(&proc_poll_wait);
2624
2625out_dput:
2626 filp_close(victim, NULL);
2627out:
2628 putname(pathname);
2629 return err;
2630}
2631
2632#ifdef CONFIG_PROC_FS
2633static __poll_t swaps_poll(struct file *file, poll_table *wait)
2634{
2635 struct seq_file *seq = file->private_data;
2636
2637 poll_wait(file, &proc_poll_wait, wait);
2638
2639 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2640 seq->poll_event = atomic_read(&proc_poll_event);
2641 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2642 }
2643
2644 return EPOLLIN | EPOLLRDNORM;
2645}
2646
2647/* iterator */
2648static void *swap_start(struct seq_file *swap, loff_t *pos)
2649{
2650 struct swap_info_struct *si;
2651 int type;
2652 loff_t l = *pos;
2653
2654 mutex_lock(&swapon_mutex);
2655
2656 if (!l)
2657 return SEQ_START_TOKEN;
2658
2659 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2660 if (!(si->flags & SWP_USED) || !si->swap_map)
2661 continue;
2662 if (!--l)
2663 return si;
2664 }
2665
2666 return NULL;
2667}
2668
2669static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2670{
2671 struct swap_info_struct *si = v;
2672 int type;
2673
2674 if (v == SEQ_START_TOKEN)
2675 type = 0;
2676 else
2677 type = si->type + 1;
2678
2679 ++(*pos);
2680 for (; (si = swap_type_to_swap_info(type)); type++) {
2681 if (!(si->flags & SWP_USED) || !si->swap_map)
2682 continue;
2683 return si;
2684 }
2685
2686 return NULL;
2687}
2688
2689static void swap_stop(struct seq_file *swap, void *v)
2690{
2691 mutex_unlock(&swapon_mutex);
2692}
2693
2694static int swap_show(struct seq_file *swap, void *v)
2695{
2696 struct swap_info_struct *si = v;
2697 struct file *file;
2698 int len;
2699 unsigned long bytes, inuse;
2700
2701 if (si == SEQ_START_TOKEN) {
2702 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2703 return 0;
2704 }
2705
2706 bytes = K(si->pages);
2707 inuse = K(READ_ONCE(si->inuse_pages));
2708
2709 file = si->swap_file;
2710 len = seq_file_path(swap, file, " \t\n\\");
2711 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2712 len < 40 ? 40 - len : 1, " ",
2713 S_ISBLK(file_inode(file)->i_mode) ?
2714 "partition" : "file\t",
2715 bytes, bytes < 10000000 ? "\t" : "",
2716 inuse, inuse < 10000000 ? "\t" : "",
2717 si->prio);
2718 return 0;
2719}
2720
2721static const struct seq_operations swaps_op = {
2722 .start = swap_start,
2723 .next = swap_next,
2724 .stop = swap_stop,
2725 .show = swap_show
2726};
2727
2728static int swaps_open(struct inode *inode, struct file *file)
2729{
2730 struct seq_file *seq;
2731 int ret;
2732
2733 ret = seq_open(file, &swaps_op);
2734 if (ret)
2735 return ret;
2736
2737 seq = file->private_data;
2738 seq->poll_event = atomic_read(&proc_poll_event);
2739 return 0;
2740}
2741
2742static const struct proc_ops swaps_proc_ops = {
2743 .proc_flags = PROC_ENTRY_PERMANENT,
2744 .proc_open = swaps_open,
2745 .proc_read = seq_read,
2746 .proc_lseek = seq_lseek,
2747 .proc_release = seq_release,
2748 .proc_poll = swaps_poll,
2749};
2750
2751static int __init procswaps_init(void)
2752{
2753 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2754 return 0;
2755}
2756__initcall(procswaps_init);
2757#endif /* CONFIG_PROC_FS */
2758
2759#ifdef MAX_SWAPFILES_CHECK
2760static int __init max_swapfiles_check(void)
2761{
2762 MAX_SWAPFILES_CHECK();
2763 return 0;
2764}
2765late_initcall(max_swapfiles_check);
2766#endif
2767
2768static struct swap_info_struct *alloc_swap_info(void)
2769{
2770 struct swap_info_struct *p;
2771 struct swap_info_struct *defer = NULL;
2772 unsigned int type;
2773 int i;
2774
2775 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2776 if (!p)
2777 return ERR_PTR(-ENOMEM);
2778
2779 if (percpu_ref_init(&p->users, swap_users_ref_free,
2780 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2781 kvfree(p);
2782 return ERR_PTR(-ENOMEM);
2783 }
2784
2785 spin_lock(&swap_lock);
2786 for (type = 0; type < nr_swapfiles; type++) {
2787 if (!(swap_info[type]->flags & SWP_USED))
2788 break;
2789 }
2790 if (type >= MAX_SWAPFILES) {
2791 spin_unlock(&swap_lock);
2792 percpu_ref_exit(&p->users);
2793 kvfree(p);
2794 return ERR_PTR(-EPERM);
2795 }
2796 if (type >= nr_swapfiles) {
2797 p->type = type;
2798 /*
2799 * Publish the swap_info_struct after initializing it.
2800 * Note that kvzalloc() above zeroes all its fields.
2801 */
2802 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2803 nr_swapfiles++;
2804 } else {
2805 defer = p;
2806 p = swap_info[type];
2807 /*
2808 * Do not memset this entry: a racing procfs swap_next()
2809 * would be relying on p->type to remain valid.
2810 */
2811 }
2812 p->swap_extent_root = RB_ROOT;
2813 plist_node_init(&p->list, 0);
2814 for_each_node(i)
2815 plist_node_init(&p->avail_lists[i], 0);
2816 p->flags = SWP_USED;
2817 spin_unlock(&swap_lock);
2818 if (defer) {
2819 percpu_ref_exit(&defer->users);
2820 kvfree(defer);
2821 }
2822 spin_lock_init(&p->lock);
2823 spin_lock_init(&p->cont_lock);
2824 init_completion(&p->comp);
2825
2826 return p;
2827}
2828
2829static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2830{
2831 if (S_ISBLK(inode->i_mode)) {
2832 p->bdev = I_BDEV(inode);
2833 /*
2834 * Zoned block devices contain zones that have a sequential
2835 * write only restriction. Hence zoned block devices are not
2836 * suitable for swapping. Disallow them here.
2837 */
2838 if (bdev_is_zoned(p->bdev))
2839 return -EINVAL;
2840 p->flags |= SWP_BLKDEV;
2841 } else if (S_ISREG(inode->i_mode)) {
2842 p->bdev = inode->i_sb->s_bdev;
2843 }
2844
2845 return 0;
2846}
2847
2848
2849/*
2850 * Find out how many pages are allowed for a single swap device. There
2851 * are two limiting factors:
2852 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2853 * 2) the number of bits in the swap pte, as defined by the different
2854 * architectures.
2855 *
2856 * In order to find the largest possible bit mask, a swap entry with
2857 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2858 * decoded to a swp_entry_t again, and finally the swap offset is
2859 * extracted.
2860 *
2861 * This will mask all the bits from the initial ~0UL mask that can't
2862 * be encoded in either the swp_entry_t or the architecture definition
2863 * of a swap pte.
2864 */
2865unsigned long generic_max_swapfile_size(void)
2866{
2867 return swp_offset(pte_to_swp_entry(
2868 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2869}
2870
2871/* Can be overridden by an architecture for additional checks. */
2872__weak unsigned long arch_max_swapfile_size(void)
2873{
2874 return generic_max_swapfile_size();
2875}
2876
2877static unsigned long read_swap_header(struct swap_info_struct *p,
2878 union swap_header *swap_header,
2879 struct inode *inode)
2880{
2881 int i;
2882 unsigned long maxpages;
2883 unsigned long swapfilepages;
2884 unsigned long last_page;
2885
2886 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2887 pr_err("Unable to find swap-space signature\n");
2888 return 0;
2889 }
2890
2891 /* swap partition endianness hack... */
2892 if (swab32(swap_header->info.version) == 1) {
2893 swab32s(&swap_header->info.version);
2894 swab32s(&swap_header->info.last_page);
2895 swab32s(&swap_header->info.nr_badpages);
2896 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2897 return 0;
2898 for (i = 0; i < swap_header->info.nr_badpages; i++)
2899 swab32s(&swap_header->info.badpages[i]);
2900 }
2901 /* Check the swap header's sub-version */
2902 if (swap_header->info.version != 1) {
2903 pr_warn("Unable to handle swap header version %d\n",
2904 swap_header->info.version);
2905 return 0;
2906 }
2907
2908 p->lowest_bit = 1;
2909 p->cluster_next = 1;
2910 p->cluster_nr = 0;
2911
2912 maxpages = swapfile_maximum_size;
2913 last_page = swap_header->info.last_page;
2914 if (!last_page) {
2915 pr_warn("Empty swap-file\n");
2916 return 0;
2917 }
2918 if (last_page > maxpages) {
2919 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2920 K(maxpages), K(last_page));
2921 }
2922 if (maxpages > last_page) {
2923 maxpages = last_page + 1;
2924 /* p->max is an unsigned int: don't overflow it */
2925 if ((unsigned int)maxpages == 0)
2926 maxpages = UINT_MAX;
2927 }
2928 p->highest_bit = maxpages - 1;
2929
2930 if (!maxpages)
2931 return 0;
2932 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2933 if (swapfilepages && maxpages > swapfilepages) {
2934 pr_warn("Swap area shorter than signature indicates\n");
2935 return 0;
2936 }
2937 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2938 return 0;
2939 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2940 return 0;
2941
2942 return maxpages;
2943}
2944
2945#define SWAP_CLUSTER_INFO_COLS \
2946 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2947#define SWAP_CLUSTER_SPACE_COLS \
2948 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2949#define SWAP_CLUSTER_COLS \
2950 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2951
2952static int setup_swap_map_and_extents(struct swap_info_struct *p,
2953 union swap_header *swap_header,
2954 unsigned char *swap_map,
2955 struct swap_cluster_info *cluster_info,
2956 unsigned long maxpages,
2957 sector_t *span)
2958{
2959 unsigned int j, k;
2960 unsigned int nr_good_pages;
2961 int nr_extents;
2962 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2963 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2964 unsigned long i, idx;
2965
2966 nr_good_pages = maxpages - 1; /* omit header page */
2967
2968 cluster_list_init(&p->free_clusters);
2969 cluster_list_init(&p->discard_clusters);
2970
2971 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2972 unsigned int page_nr = swap_header->info.badpages[i];
2973 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2974 return -EINVAL;
2975 if (page_nr < maxpages) {
2976 swap_map[page_nr] = SWAP_MAP_BAD;
2977 nr_good_pages--;
2978 /*
2979 * Haven't marked the cluster free yet, no list
2980 * operation involved
2981 */
2982 inc_cluster_info_page(p, cluster_info, page_nr);
2983 }
2984 }
2985
2986 /* Haven't marked the cluster free yet, no list operation involved */
2987 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2988 inc_cluster_info_page(p, cluster_info, i);
2989
2990 if (nr_good_pages) {
2991 swap_map[0] = SWAP_MAP_BAD;
2992 /*
2993 * Not mark the cluster free yet, no list
2994 * operation involved
2995 */
2996 inc_cluster_info_page(p, cluster_info, 0);
2997 p->max = maxpages;
2998 p->pages = nr_good_pages;
2999 nr_extents = setup_swap_extents(p, span);
3000 if (nr_extents < 0)
3001 return nr_extents;
3002 nr_good_pages = p->pages;
3003 }
3004 if (!nr_good_pages) {
3005 pr_warn("Empty swap-file\n");
3006 return -EINVAL;
3007 }
3008
3009 if (!cluster_info)
3010 return nr_extents;
3011
3012
3013 /*
3014 * Reduce false cache line sharing between cluster_info and
3015 * sharing same address space.
3016 */
3017 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3018 j = (k + col) % SWAP_CLUSTER_COLS;
3019 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3020 idx = i * SWAP_CLUSTER_COLS + j;
3021 if (idx >= nr_clusters)
3022 continue;
3023 if (cluster_count(&cluster_info[idx]))
3024 continue;
3025 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3026 cluster_list_add_tail(&p->free_clusters, cluster_info,
3027 idx);
3028 }
3029 }
3030 return nr_extents;
3031}
3032
3033SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3034{
3035 struct swap_info_struct *p;
3036 struct filename *name;
3037 struct file *swap_file = NULL;
3038 struct address_space *mapping;
3039 struct dentry *dentry;
3040 int prio;
3041 int error;
3042 union swap_header *swap_header;
3043 int nr_extents;
3044 sector_t span;
3045 unsigned long maxpages;
3046 unsigned char *swap_map = NULL;
3047 struct swap_cluster_info *cluster_info = NULL;
3048 struct page *page = NULL;
3049 struct inode *inode = NULL;
3050 bool inced_nr_rotate_swap = false;
3051
3052 if (swap_flags & ~SWAP_FLAGS_VALID)
3053 return -EINVAL;
3054
3055 if (!capable(CAP_SYS_ADMIN))
3056 return -EPERM;
3057
3058 if (!swap_avail_heads)
3059 return -ENOMEM;
3060
3061 p = alloc_swap_info();
3062 if (IS_ERR(p))
3063 return PTR_ERR(p);
3064
3065 INIT_WORK(&p->discard_work, swap_discard_work);
3066
3067 name = getname(specialfile);
3068 if (IS_ERR(name)) {
3069 error = PTR_ERR(name);
3070 name = NULL;
3071 goto bad_swap;
3072 }
3073 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3074 if (IS_ERR(swap_file)) {
3075 error = PTR_ERR(swap_file);
3076 swap_file = NULL;
3077 goto bad_swap;
3078 }
3079
3080 p->swap_file = swap_file;
3081 mapping = swap_file->f_mapping;
3082 dentry = swap_file->f_path.dentry;
3083 inode = mapping->host;
3084
3085 error = claim_swapfile(p, inode);
3086 if (unlikely(error))
3087 goto bad_swap;
3088
3089 inode_lock(inode);
3090 if (d_unlinked(dentry) || cant_mount(dentry)) {
3091 error = -ENOENT;
3092 goto bad_swap_unlock_inode;
3093 }
3094 if (IS_SWAPFILE(inode)) {
3095 error = -EBUSY;
3096 goto bad_swap_unlock_inode;
3097 }
3098
3099 /*
3100 * Read the swap header.
3101 */
3102 if (!mapping->a_ops->read_folio) {
3103 error = -EINVAL;
3104 goto bad_swap_unlock_inode;
3105 }
3106 page = read_mapping_page(mapping, 0, swap_file);
3107 if (IS_ERR(page)) {
3108 error = PTR_ERR(page);
3109 goto bad_swap_unlock_inode;
3110 }
3111 swap_header = kmap(page);
3112
3113 maxpages = read_swap_header(p, swap_header, inode);
3114 if (unlikely(!maxpages)) {
3115 error = -EINVAL;
3116 goto bad_swap_unlock_inode;
3117 }
3118
3119 /* OK, set up the swap map and apply the bad block list */
3120 swap_map = vzalloc(maxpages);
3121 if (!swap_map) {
3122 error = -ENOMEM;
3123 goto bad_swap_unlock_inode;
3124 }
3125
3126 if (p->bdev && bdev_stable_writes(p->bdev))
3127 p->flags |= SWP_STABLE_WRITES;
3128
3129 if (p->bdev && bdev_synchronous(p->bdev))
3130 p->flags |= SWP_SYNCHRONOUS_IO;
3131
3132 if (p->bdev && bdev_nonrot(p->bdev)) {
3133 int cpu, i;
3134 unsigned long ci, nr_cluster;
3135
3136 p->flags |= SWP_SOLIDSTATE;
3137 p->cluster_next_cpu = alloc_percpu(unsigned int);
3138 if (!p->cluster_next_cpu) {
3139 error = -ENOMEM;
3140 goto bad_swap_unlock_inode;
3141 }
3142 /*
3143 * select a random position to start with to help wear leveling
3144 * SSD
3145 */
3146 for_each_possible_cpu(cpu) {
3147 per_cpu(*p->cluster_next_cpu, cpu) =
3148 get_random_u32_inclusive(1, p->highest_bit);
3149 }
3150 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3151
3152 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3153 GFP_KERNEL);
3154 if (!cluster_info) {
3155 error = -ENOMEM;
3156 goto bad_swap_unlock_inode;
3157 }
3158
3159 for (ci = 0; ci < nr_cluster; ci++)
3160 spin_lock_init(&((cluster_info + ci)->lock));
3161
3162 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3163 if (!p->percpu_cluster) {
3164 error = -ENOMEM;
3165 goto bad_swap_unlock_inode;
3166 }
3167 for_each_possible_cpu(cpu) {
3168 struct percpu_cluster *cluster;
3169
3170 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3171 for (i = 0; i < SWAP_NR_ORDERS; i++)
3172 cluster->next[i] = SWAP_NEXT_INVALID;
3173 }
3174 } else {
3175 atomic_inc(&nr_rotate_swap);
3176 inced_nr_rotate_swap = true;
3177 }
3178
3179 error = swap_cgroup_swapon(p->type, maxpages);
3180 if (error)
3181 goto bad_swap_unlock_inode;
3182
3183 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3184 cluster_info, maxpages, &span);
3185 if (unlikely(nr_extents < 0)) {
3186 error = nr_extents;
3187 goto bad_swap_unlock_inode;
3188 }
3189
3190 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3191 p->bdev && bdev_max_discard_sectors(p->bdev)) {
3192 /*
3193 * When discard is enabled for swap with no particular
3194 * policy flagged, we set all swap discard flags here in
3195 * order to sustain backward compatibility with older
3196 * swapon(8) releases.
3197 */
3198 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3199 SWP_PAGE_DISCARD);
3200
3201 /*
3202 * By flagging sys_swapon, a sysadmin can tell us to
3203 * either do single-time area discards only, or to just
3204 * perform discards for released swap page-clusters.
3205 * Now it's time to adjust the p->flags accordingly.
3206 */
3207 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3208 p->flags &= ~SWP_PAGE_DISCARD;
3209 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3210 p->flags &= ~SWP_AREA_DISCARD;
3211
3212 /* issue a swapon-time discard if it's still required */
3213 if (p->flags & SWP_AREA_DISCARD) {
3214 int err = discard_swap(p);
3215 if (unlikely(err))
3216 pr_err("swapon: discard_swap(%p): %d\n",
3217 p, err);
3218 }
3219 }
3220
3221 error = init_swap_address_space(p->type, maxpages);
3222 if (error)
3223 goto bad_swap_unlock_inode;
3224
3225 error = zswap_swapon(p->type, maxpages);
3226 if (error)
3227 goto free_swap_address_space;
3228
3229 /*
3230 * Flush any pending IO and dirty mappings before we start using this
3231 * swap device.
3232 */
3233 inode->i_flags |= S_SWAPFILE;
3234 error = inode_drain_writes(inode);
3235 if (error) {
3236 inode->i_flags &= ~S_SWAPFILE;
3237 goto free_swap_zswap;
3238 }
3239
3240 mutex_lock(&swapon_mutex);
3241 prio = -1;
3242 if (swap_flags & SWAP_FLAG_PREFER)
3243 prio =
3244 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3245 enable_swap_info(p, prio, swap_map, cluster_info);
3246
3247 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3248 K(p->pages), name->name, p->prio, nr_extents,
3249 K((unsigned long long)span),
3250 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3251 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3252 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3253 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3254
3255 mutex_unlock(&swapon_mutex);
3256 atomic_inc(&proc_poll_event);
3257 wake_up_interruptible(&proc_poll_wait);
3258
3259 error = 0;
3260 goto out;
3261free_swap_zswap:
3262 zswap_swapoff(p->type);
3263free_swap_address_space:
3264 exit_swap_address_space(p->type);
3265bad_swap_unlock_inode:
3266 inode_unlock(inode);
3267bad_swap:
3268 free_percpu(p->percpu_cluster);
3269 p->percpu_cluster = NULL;
3270 free_percpu(p->cluster_next_cpu);
3271 p->cluster_next_cpu = NULL;
3272 inode = NULL;
3273 destroy_swap_extents(p);
3274 swap_cgroup_swapoff(p->type);
3275 spin_lock(&swap_lock);
3276 p->swap_file = NULL;
3277 p->flags = 0;
3278 spin_unlock(&swap_lock);
3279 vfree(swap_map);
3280 kvfree(cluster_info);
3281 if (inced_nr_rotate_swap)
3282 atomic_dec(&nr_rotate_swap);
3283 if (swap_file)
3284 filp_close(swap_file, NULL);
3285out:
3286 if (page && !IS_ERR(page)) {
3287 kunmap(page);
3288 put_page(page);
3289 }
3290 if (name)
3291 putname(name);
3292 if (inode)
3293 inode_unlock(inode);
3294 if (!error)
3295 enable_swap_slots_cache();
3296 return error;
3297}
3298
3299void si_swapinfo(struct sysinfo *val)
3300{
3301 unsigned int type;
3302 unsigned long nr_to_be_unused = 0;
3303
3304 spin_lock(&swap_lock);
3305 for (type = 0; type < nr_swapfiles; type++) {
3306 struct swap_info_struct *si = swap_info[type];
3307
3308 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3309 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3310 }
3311 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3312 val->totalswap = total_swap_pages + nr_to_be_unused;
3313 spin_unlock(&swap_lock);
3314}
3315
3316/*
3317 * Verify that a swap entry is valid and increment its swap map count.
3318 *
3319 * Returns error code in following case.
3320 * - success -> 0
3321 * - swp_entry is invalid -> EINVAL
3322 * - swp_entry is migration entry -> EINVAL
3323 * - swap-cache reference is requested but there is already one. -> EEXIST
3324 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3325 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3326 */
3327static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3328{
3329 struct swap_info_struct *p;
3330 struct swap_cluster_info *ci;
3331 unsigned long offset;
3332 unsigned char count;
3333 unsigned char has_cache;
3334 int err;
3335
3336 p = swp_swap_info(entry);
3337
3338 offset = swp_offset(entry);
3339 ci = lock_cluster_or_swap_info(p, offset);
3340
3341 count = p->swap_map[offset];
3342
3343 /*
3344 * swapin_readahead() doesn't check if a swap entry is valid, so the
3345 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3346 */
3347 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3348 err = -ENOENT;
3349 goto unlock_out;
3350 }
3351
3352 has_cache = count & SWAP_HAS_CACHE;
3353 count &= ~SWAP_HAS_CACHE;
3354 err = 0;
3355
3356 if (usage == SWAP_HAS_CACHE) {
3357
3358 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3359 if (!has_cache && count)
3360 has_cache = SWAP_HAS_CACHE;
3361 else if (has_cache) /* someone else added cache */
3362 err = -EEXIST;
3363 else /* no users remaining */
3364 err = -ENOENT;
3365
3366 } else if (count || has_cache) {
3367
3368 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3369 count += usage;
3370 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3371 err = -EINVAL;
3372 else if (swap_count_continued(p, offset, count))
3373 count = COUNT_CONTINUED;
3374 else
3375 err = -ENOMEM;
3376 } else
3377 err = -ENOENT; /* unused swap entry */
3378
3379 if (!err)
3380 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3381
3382unlock_out:
3383 unlock_cluster_or_swap_info(p, ci);
3384 return err;
3385}
3386
3387/*
3388 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3389 * (in which case its reference count is never incremented).
3390 */
3391void swap_shmem_alloc(swp_entry_t entry)
3392{
3393 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3394}
3395
3396/*
3397 * Increase reference count of swap entry by 1.
3398 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3399 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3400 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3401 * might occur if a page table entry has got corrupted.
3402 */
3403int swap_duplicate(swp_entry_t entry)
3404{
3405 int err = 0;
3406
3407 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3408 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3409 return err;
3410}
3411
3412/*
3413 * @entry: swap entry for which we allocate swap cache.
3414 *
3415 * Called when allocating swap cache for existing swap entry,
3416 * This can return error codes. Returns 0 at success.
3417 * -EEXIST means there is a swap cache.
3418 * Note: return code is different from swap_duplicate().
3419 */
3420int swapcache_prepare(swp_entry_t entry)
3421{
3422 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3423}
3424
3425void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3426{
3427 struct swap_cluster_info *ci;
3428 unsigned long offset = swp_offset(entry);
3429 unsigned char usage;
3430
3431 ci = lock_cluster_or_swap_info(si, offset);
3432 usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3433 unlock_cluster_or_swap_info(si, ci);
3434 if (!usage)
3435 free_swap_slot(entry);
3436}
3437
3438struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3439{
3440 return swap_type_to_swap_info(swp_type(entry));
3441}
3442
3443/*
3444 * out-of-line methods to avoid include hell.
3445 */
3446struct address_space *swapcache_mapping(struct folio *folio)
3447{
3448 return swp_swap_info(folio->swap)->swap_file->f_mapping;
3449}
3450EXPORT_SYMBOL_GPL(swapcache_mapping);
3451
3452pgoff_t __page_file_index(struct page *page)
3453{
3454 swp_entry_t swap = page_swap_entry(page);
3455 return swp_offset(swap);
3456}
3457EXPORT_SYMBOL_GPL(__page_file_index);
3458
3459/*
3460 * add_swap_count_continuation - called when a swap count is duplicated
3461 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3462 * page of the original vmalloc'ed swap_map, to hold the continuation count
3463 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3464 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3465 *
3466 * These continuation pages are seldom referenced: the common paths all work
3467 * on the original swap_map, only referring to a continuation page when the
3468 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3469 *
3470 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3471 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3472 * can be called after dropping locks.
3473 */
3474int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3475{
3476 struct swap_info_struct *si;
3477 struct swap_cluster_info *ci;
3478 struct page *head;
3479 struct page *page;
3480 struct page *list_page;
3481 pgoff_t offset;
3482 unsigned char count;
3483 int ret = 0;
3484
3485 /*
3486 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3487 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3488 */
3489 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3490
3491 si = get_swap_device(entry);
3492 if (!si) {
3493 /*
3494 * An acceptable race has occurred since the failing
3495 * __swap_duplicate(): the swap device may be swapoff
3496 */
3497 goto outer;
3498 }
3499 spin_lock(&si->lock);
3500
3501 offset = swp_offset(entry);
3502
3503 ci = lock_cluster(si, offset);
3504
3505 count = swap_count(si->swap_map[offset]);
3506
3507 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3508 /*
3509 * The higher the swap count, the more likely it is that tasks
3510 * will race to add swap count continuation: we need to avoid
3511 * over-provisioning.
3512 */
3513 goto out;
3514 }
3515
3516 if (!page) {
3517 ret = -ENOMEM;
3518 goto out;
3519 }
3520
3521 head = vmalloc_to_page(si->swap_map + offset);
3522 offset &= ~PAGE_MASK;
3523
3524 spin_lock(&si->cont_lock);
3525 /*
3526 * Page allocation does not initialize the page's lru field,
3527 * but it does always reset its private field.
3528 */
3529 if (!page_private(head)) {
3530 BUG_ON(count & COUNT_CONTINUED);
3531 INIT_LIST_HEAD(&head->lru);
3532 set_page_private(head, SWP_CONTINUED);
3533 si->flags |= SWP_CONTINUED;
3534 }
3535
3536 list_for_each_entry(list_page, &head->lru, lru) {
3537 unsigned char *map;
3538
3539 /*
3540 * If the previous map said no continuation, but we've found
3541 * a continuation page, free our allocation and use this one.
3542 */
3543 if (!(count & COUNT_CONTINUED))
3544 goto out_unlock_cont;
3545
3546 map = kmap_local_page(list_page) + offset;
3547 count = *map;
3548 kunmap_local(map);
3549
3550 /*
3551 * If this continuation count now has some space in it,
3552 * free our allocation and use this one.
3553 */
3554 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3555 goto out_unlock_cont;
3556 }
3557
3558 list_add_tail(&page->lru, &head->lru);
3559 page = NULL; /* now it's attached, don't free it */
3560out_unlock_cont:
3561 spin_unlock(&si->cont_lock);
3562out:
3563 unlock_cluster(ci);
3564 spin_unlock(&si->lock);
3565 put_swap_device(si);
3566outer:
3567 if (page)
3568 __free_page(page);
3569 return ret;
3570}
3571
3572/*
3573 * swap_count_continued - when the original swap_map count is incremented
3574 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3575 * into, carry if so, or else fail until a new continuation page is allocated;
3576 * when the original swap_map count is decremented from 0 with continuation,
3577 * borrow from the continuation and report whether it still holds more.
3578 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3579 * lock.
3580 */
3581static bool swap_count_continued(struct swap_info_struct *si,
3582 pgoff_t offset, unsigned char count)
3583{
3584 struct page *head;
3585 struct page *page;
3586 unsigned char *map;
3587 bool ret;
3588
3589 head = vmalloc_to_page(si->swap_map + offset);
3590 if (page_private(head) != SWP_CONTINUED) {
3591 BUG_ON(count & COUNT_CONTINUED);
3592 return false; /* need to add count continuation */
3593 }
3594
3595 spin_lock(&si->cont_lock);
3596 offset &= ~PAGE_MASK;
3597 page = list_next_entry(head, lru);
3598 map = kmap_local_page(page) + offset;
3599
3600 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3601 goto init_map; /* jump over SWAP_CONT_MAX checks */
3602
3603 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3604 /*
3605 * Think of how you add 1 to 999
3606 */
3607 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3608 kunmap_local(map);
3609 page = list_next_entry(page, lru);
3610 BUG_ON(page == head);
3611 map = kmap_local_page(page) + offset;
3612 }
3613 if (*map == SWAP_CONT_MAX) {
3614 kunmap_local(map);
3615 page = list_next_entry(page, lru);
3616 if (page == head) {
3617 ret = false; /* add count continuation */
3618 goto out;
3619 }
3620 map = kmap_local_page(page) + offset;
3621init_map: *map = 0; /* we didn't zero the page */
3622 }
3623 *map += 1;
3624 kunmap_local(map);
3625 while ((page = list_prev_entry(page, lru)) != head) {
3626 map = kmap_local_page(page) + offset;
3627 *map = COUNT_CONTINUED;
3628 kunmap_local(map);
3629 }
3630 ret = true; /* incremented */
3631
3632 } else { /* decrementing */
3633 /*
3634 * Think of how you subtract 1 from 1000
3635 */
3636 BUG_ON(count != COUNT_CONTINUED);
3637 while (*map == COUNT_CONTINUED) {
3638 kunmap_local(map);
3639 page = list_next_entry(page, lru);
3640 BUG_ON(page == head);
3641 map = kmap_local_page(page) + offset;
3642 }
3643 BUG_ON(*map == 0);
3644 *map -= 1;
3645 if (*map == 0)
3646 count = 0;
3647 kunmap_local(map);
3648 while ((page = list_prev_entry(page, lru)) != head) {
3649 map = kmap_local_page(page) + offset;
3650 *map = SWAP_CONT_MAX | count;
3651 count = COUNT_CONTINUED;
3652 kunmap_local(map);
3653 }
3654 ret = count == COUNT_CONTINUED;
3655 }
3656out:
3657 spin_unlock(&si->cont_lock);
3658 return ret;
3659}
3660
3661/*
3662 * free_swap_count_continuations - swapoff free all the continuation pages
3663 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3664 */
3665static void free_swap_count_continuations(struct swap_info_struct *si)
3666{
3667 pgoff_t offset;
3668
3669 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3670 struct page *head;
3671 head = vmalloc_to_page(si->swap_map + offset);
3672 if (page_private(head)) {
3673 struct page *page, *next;
3674
3675 list_for_each_entry_safe(page, next, &head->lru, lru) {
3676 list_del(&page->lru);
3677 __free_page(page);
3678 }
3679 }
3680 }
3681}
3682
3683#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3684void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3685{
3686 struct swap_info_struct *si, *next;
3687 int nid = folio_nid(folio);
3688
3689 if (!(gfp & __GFP_IO))
3690 return;
3691
3692 if (!__has_usable_swap())
3693 return;
3694
3695 if (!blk_cgroup_congested())
3696 return;
3697
3698 /*
3699 * We've already scheduled a throttle, avoid taking the global swap
3700 * lock.
3701 */
3702 if (current->throttle_disk)
3703 return;
3704
3705 spin_lock(&swap_avail_lock);
3706 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3707 avail_lists[nid]) {
3708 if (si->bdev) {
3709 blkcg_schedule_throttle(si->bdev->bd_disk, true);
3710 break;
3711 }
3712 }
3713 spin_unlock(&swap_avail_lock);
3714}
3715#endif
3716
3717static int __init swapfile_init(void)
3718{
3719 int nid;
3720
3721 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3722 GFP_KERNEL);
3723 if (!swap_avail_heads) {
3724 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3725 return -ENOMEM;
3726 }
3727
3728 for_each_node(nid)
3729 plist_head_init(&swap_avail_heads[nid]);
3730
3731 swapfile_maximum_size = arch_max_swapfile_size();
3732
3733#ifdef CONFIG_MIGRATION
3734 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3735 swap_migration_ad_supported = true;
3736#endif /* CONFIG_MIGRATION */
3737
3738 return 0;
3739}
3740subsys_initcall(swapfile_init);